1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RTC subsystem, interface functions 4 * 5 * Copyright (C) 2005 Tower Technologies 6 * Author: Alessandro Zummo <a.zummo@towertech.it> 7 * 8 * based on arch/arm/common/rtctime.c 9 */ 10 11 #include <linux/rtc.h> 12 #include <linux/sched.h> 13 #include <linux/module.h> 14 #include <linux/log2.h> 15 #include <linux/workqueue.h> 16 17 #define CREATE_TRACE_POINTS 18 #include <trace/events/rtc.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 time64_t secs; 26 27 if (!rtc->offset_secs) 28 return; 29 30 secs = rtc_tm_to_time64(tm); 31 32 /* 33 * Since the reading time values from RTC device are always in the RTC 34 * original valid range, but we need to skip the overlapped region 35 * between expanded range and original range, which is no need to add 36 * the offset. 37 */ 38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || 39 (rtc->start_secs < rtc->range_min && 40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) 41 return; 42 43 rtc_time64_to_tm(secs + rtc->offset_secs, tm); 44 } 45 46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) 47 { 48 time64_t secs; 49 50 if (!rtc->offset_secs) 51 return; 52 53 secs = rtc_tm_to_time64(tm); 54 55 /* 56 * If the setting time values are in the valid range of RTC hardware 57 * device, then no need to subtract the offset when setting time to RTC 58 * device. Otherwise we need to subtract the offset to make the time 59 * values are valid for RTC hardware device. 60 */ 61 if (secs >= rtc->range_min && secs <= rtc->range_max) 62 return; 63 64 rtc_time64_to_tm(secs - rtc->offset_secs, tm); 65 } 66 67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) 68 { 69 if (rtc->range_min != rtc->range_max) { 70 time64_t time = rtc_tm_to_time64(tm); 71 time64_t range_min = rtc->set_start_time ? rtc->start_secs : 72 rtc->range_min; 73 timeu64_t range_max = rtc->set_start_time ? 74 (rtc->start_secs + rtc->range_max - rtc->range_min) : 75 rtc->range_max; 76 77 if (time < range_min || time > range_max) 78 return -ERANGE; 79 } 80 81 return 0; 82 } 83 84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 85 { 86 int err; 87 88 if (!rtc->ops) { 89 err = -ENODEV; 90 } else if (!rtc->ops->read_time) { 91 err = -EINVAL; 92 } else { 93 memset(tm, 0, sizeof(struct rtc_time)); 94 err = rtc->ops->read_time(rtc->dev.parent, tm); 95 if (err < 0) { 96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", 97 err); 98 return err; 99 } 100 101 rtc_add_offset(rtc, tm); 102 103 err = rtc_valid_tm(tm); 104 if (err < 0) 105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); 106 } 107 return err; 108 } 109 110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 111 { 112 int err; 113 114 err = mutex_lock_interruptible(&rtc->ops_lock); 115 if (err) 116 return err; 117 118 err = __rtc_read_time(rtc, tm); 119 mutex_unlock(&rtc->ops_lock); 120 121 trace_rtc_read_time(rtc_tm_to_time64(tm), err); 122 return err; 123 } 124 EXPORT_SYMBOL_GPL(rtc_read_time); 125 126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 127 { 128 int err, uie; 129 130 err = rtc_valid_tm(tm); 131 if (err != 0) 132 return err; 133 134 err = rtc_valid_range(rtc, tm); 135 if (err) 136 return err; 137 138 rtc_subtract_offset(rtc, tm); 139 140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 141 uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active; 142 #else 143 uie = rtc->uie_rtctimer.enabled; 144 #endif 145 if (uie) { 146 err = rtc_update_irq_enable(rtc, 0); 147 if (err) 148 return err; 149 } 150 151 err = mutex_lock_interruptible(&rtc->ops_lock); 152 if (err) 153 return err; 154 155 if (!rtc->ops) 156 err = -ENODEV; 157 else if (rtc->ops->set_time) 158 err = rtc->ops->set_time(rtc->dev.parent, tm); 159 else 160 err = -EINVAL; 161 162 pm_stay_awake(rtc->dev.parent); 163 mutex_unlock(&rtc->ops_lock); 164 /* A timer might have just expired */ 165 schedule_work(&rtc->irqwork); 166 167 if (uie) { 168 err = rtc_update_irq_enable(rtc, 1); 169 if (err) 170 return err; 171 } 172 173 trace_rtc_set_time(rtc_tm_to_time64(tm), err); 174 return err; 175 } 176 EXPORT_SYMBOL_GPL(rtc_set_time); 177 178 static int rtc_read_alarm_internal(struct rtc_device *rtc, 179 struct rtc_wkalrm *alarm) 180 { 181 int err; 182 183 err = mutex_lock_interruptible(&rtc->ops_lock); 184 if (err) 185 return err; 186 187 if (!rtc->ops) { 188 err = -ENODEV; 189 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) { 190 err = -EINVAL; 191 } else { 192 alarm->enabled = 0; 193 alarm->pending = 0; 194 alarm->time.tm_sec = -1; 195 alarm->time.tm_min = -1; 196 alarm->time.tm_hour = -1; 197 alarm->time.tm_mday = -1; 198 alarm->time.tm_mon = -1; 199 alarm->time.tm_year = -1; 200 alarm->time.tm_wday = -1; 201 alarm->time.tm_yday = -1; 202 alarm->time.tm_isdst = -1; 203 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 204 } 205 206 mutex_unlock(&rtc->ops_lock); 207 208 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 209 return err; 210 } 211 212 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 213 { 214 int err; 215 struct rtc_time before, now; 216 int first_time = 1; 217 time64_t t_now, t_alm; 218 enum { none, day, month, year } missing = none; 219 unsigned int days; 220 221 /* The lower level RTC driver may return -1 in some fields, 222 * creating invalid alarm->time values, for reasons like: 223 * 224 * - The hardware may not be capable of filling them in; 225 * many alarms match only on time-of-day fields, not 226 * day/month/year calendar data. 227 * 228 * - Some hardware uses illegal values as "wildcard" match 229 * values, which non-Linux firmware (like a BIOS) may try 230 * to set up as e.g. "alarm 15 minutes after each hour". 231 * Linux uses only oneshot alarms. 232 * 233 * When we see that here, we deal with it by using values from 234 * a current RTC timestamp for any missing (-1) values. The 235 * RTC driver prevents "periodic alarm" modes. 236 * 237 * But this can be racey, because some fields of the RTC timestamp 238 * may have wrapped in the interval since we read the RTC alarm, 239 * which would lead to us inserting inconsistent values in place 240 * of the -1 fields. 241 * 242 * Reading the alarm and timestamp in the reverse sequence 243 * would have the same race condition, and not solve the issue. 244 * 245 * So, we must first read the RTC timestamp, 246 * then read the RTC alarm value, 247 * and then read a second RTC timestamp. 248 * 249 * If any fields of the second timestamp have changed 250 * when compared with the first timestamp, then we know 251 * our timestamp may be inconsistent with that used by 252 * the low-level rtc_read_alarm_internal() function. 253 * 254 * So, when the two timestamps disagree, we just loop and do 255 * the process again to get a fully consistent set of values. 256 * 257 * This could all instead be done in the lower level driver, 258 * but since more than one lower level RTC implementation needs it, 259 * then it's probably best to do it here instead of there.. 260 */ 261 262 /* Get the "before" timestamp */ 263 err = rtc_read_time(rtc, &before); 264 if (err < 0) 265 return err; 266 do { 267 if (!first_time) 268 memcpy(&before, &now, sizeof(struct rtc_time)); 269 first_time = 0; 270 271 /* get the RTC alarm values, which may be incomplete */ 272 err = rtc_read_alarm_internal(rtc, alarm); 273 if (err) 274 return err; 275 276 /* full-function RTCs won't have such missing fields */ 277 err = rtc_valid_tm(&alarm->time); 278 if (!err) 279 goto done; 280 281 /* get the "after" timestamp, to detect wrapped fields */ 282 err = rtc_read_time(rtc, &now); 283 if (err < 0) 284 return err; 285 286 /* note that tm_sec is a "don't care" value here: */ 287 } while (before.tm_min != now.tm_min || 288 before.tm_hour != now.tm_hour || 289 before.tm_mon != now.tm_mon || 290 before.tm_year != now.tm_year); 291 292 /* Fill in the missing alarm fields using the timestamp; we 293 * know there's at least one since alarm->time is invalid. 294 */ 295 if (alarm->time.tm_sec == -1) 296 alarm->time.tm_sec = now.tm_sec; 297 if (alarm->time.tm_min == -1) 298 alarm->time.tm_min = now.tm_min; 299 if (alarm->time.tm_hour == -1) 300 alarm->time.tm_hour = now.tm_hour; 301 302 /* For simplicity, only support date rollover for now */ 303 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 304 alarm->time.tm_mday = now.tm_mday; 305 missing = day; 306 } 307 if ((unsigned int)alarm->time.tm_mon >= 12) { 308 alarm->time.tm_mon = now.tm_mon; 309 if (missing == none) 310 missing = month; 311 } 312 if (alarm->time.tm_year == -1) { 313 alarm->time.tm_year = now.tm_year; 314 if (missing == none) 315 missing = year; 316 } 317 318 /* Can't proceed if alarm is still invalid after replacing 319 * missing fields. 320 */ 321 err = rtc_valid_tm(&alarm->time); 322 if (err) 323 goto done; 324 325 /* with luck, no rollover is needed */ 326 t_now = rtc_tm_to_time64(&now); 327 t_alm = rtc_tm_to_time64(&alarm->time); 328 if (t_now < t_alm) 329 goto done; 330 331 switch (missing) { 332 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 333 * that will trigger at 5am will do so at 5am Tuesday, which 334 * could also be in the next month or year. This is a common 335 * case, especially for PCs. 336 */ 337 case day: 338 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 339 t_alm += 24 * 60 * 60; 340 rtc_time64_to_tm(t_alm, &alarm->time); 341 break; 342 343 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 344 * be next month. An alarm matching on the 30th, 29th, or 28th 345 * may end up in the month after that! Many newer PCs support 346 * this type of alarm. 347 */ 348 case month: 349 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 350 do { 351 if (alarm->time.tm_mon < 11) { 352 alarm->time.tm_mon++; 353 } else { 354 alarm->time.tm_mon = 0; 355 alarm->time.tm_year++; 356 } 357 days = rtc_month_days(alarm->time.tm_mon, 358 alarm->time.tm_year); 359 } while (days < alarm->time.tm_mday); 360 break; 361 362 /* Year rollover ... easy except for leap years! */ 363 case year: 364 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 365 do { 366 alarm->time.tm_year++; 367 } while (!is_leap_year(alarm->time.tm_year + 1900) && 368 rtc_valid_tm(&alarm->time) != 0); 369 break; 370 371 default: 372 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 373 } 374 375 err = rtc_valid_tm(&alarm->time); 376 377 done: 378 if (err && alarm->enabled) 379 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n", 380 &alarm->time); 381 else 382 rtc_add_offset(rtc, &alarm->time); 383 384 return err; 385 } 386 387 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 388 { 389 int err; 390 391 err = mutex_lock_interruptible(&rtc->ops_lock); 392 if (err) 393 return err; 394 if (!rtc->ops) { 395 err = -ENODEV; 396 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) { 397 err = -EINVAL; 398 } else { 399 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 400 alarm->enabled = rtc->aie_timer.enabled; 401 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 402 } 403 mutex_unlock(&rtc->ops_lock); 404 405 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 406 return err; 407 } 408 EXPORT_SYMBOL_GPL(rtc_read_alarm); 409 410 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 411 { 412 struct rtc_time tm; 413 time64_t now, scheduled; 414 int err; 415 416 err = rtc_valid_tm(&alarm->time); 417 if (err) 418 return err; 419 420 scheduled = rtc_tm_to_time64(&alarm->time); 421 422 /* Make sure we're not setting alarms in the past */ 423 err = __rtc_read_time(rtc, &tm); 424 if (err) 425 return err; 426 now = rtc_tm_to_time64(&tm); 427 428 if (scheduled <= now) 429 return -ETIME; 430 /* 431 * XXX - We just checked to make sure the alarm time is not 432 * in the past, but there is still a race window where if 433 * the is alarm set for the next second and the second ticks 434 * over right here, before we set the alarm. 435 */ 436 437 rtc_subtract_offset(rtc, &alarm->time); 438 439 if (!rtc->ops) 440 err = -ENODEV; 441 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 442 err = -EINVAL; 443 else 444 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 445 446 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); 447 return err; 448 } 449 450 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 451 { 452 ktime_t alarm_time; 453 int err; 454 455 if (!rtc->ops) 456 return -ENODEV; 457 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 458 return -EINVAL; 459 460 err = rtc_valid_tm(&alarm->time); 461 if (err != 0) 462 return err; 463 464 err = rtc_valid_range(rtc, &alarm->time); 465 if (err) 466 return err; 467 468 err = mutex_lock_interruptible(&rtc->ops_lock); 469 if (err) 470 return err; 471 if (rtc->aie_timer.enabled) 472 rtc_timer_remove(rtc, &rtc->aie_timer); 473 474 alarm_time = rtc_tm_to_ktime(alarm->time); 475 /* 476 * Round down so we never miss a deadline, checking for past deadline is 477 * done in __rtc_set_alarm 478 */ 479 if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features)) 480 alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC); 481 482 rtc->aie_timer.node.expires = alarm_time; 483 rtc->aie_timer.period = 0; 484 if (alarm->enabled) 485 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 486 487 mutex_unlock(&rtc->ops_lock); 488 489 return err; 490 } 491 EXPORT_SYMBOL_GPL(rtc_set_alarm); 492 493 /* Called once per device from rtc_device_register */ 494 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 495 { 496 int err; 497 struct rtc_time now; 498 499 err = rtc_valid_tm(&alarm->time); 500 if (err != 0) 501 return err; 502 503 err = rtc_read_time(rtc, &now); 504 if (err) 505 return err; 506 507 err = mutex_lock_interruptible(&rtc->ops_lock); 508 if (err) 509 return err; 510 511 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 512 rtc->aie_timer.period = 0; 513 514 /* Alarm has to be enabled & in the future for us to enqueue it */ 515 if (alarm->enabled && (rtc_tm_to_ktime(now) < 516 rtc->aie_timer.node.expires)) { 517 rtc->aie_timer.enabled = 1; 518 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 519 trace_rtc_timer_enqueue(&rtc->aie_timer); 520 } 521 mutex_unlock(&rtc->ops_lock); 522 return err; 523 } 524 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 525 526 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 527 { 528 int err; 529 530 err = mutex_lock_interruptible(&rtc->ops_lock); 531 if (err) 532 return err; 533 534 if (rtc->aie_timer.enabled != enabled) { 535 if (enabled) 536 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 537 else 538 rtc_timer_remove(rtc, &rtc->aie_timer); 539 } 540 541 if (err) 542 /* nothing */; 543 else if (!rtc->ops) 544 err = -ENODEV; 545 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) 546 err = -EINVAL; 547 else 548 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 549 550 mutex_unlock(&rtc->ops_lock); 551 552 trace_rtc_alarm_irq_enable(enabled, err); 553 return err; 554 } 555 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 556 557 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 558 { 559 int err; 560 561 err = mutex_lock_interruptible(&rtc->ops_lock); 562 if (err) 563 return err; 564 565 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 566 if (enabled == 0 && rtc->uie_irq_active) { 567 mutex_unlock(&rtc->ops_lock); 568 return rtc_dev_update_irq_enable_emul(rtc, 0); 569 } 570 #endif 571 /* make sure we're changing state */ 572 if (rtc->uie_rtctimer.enabled == enabled) 573 goto out; 574 575 if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) || 576 !test_bit(RTC_FEATURE_ALARM, rtc->features)) { 577 mutex_unlock(&rtc->ops_lock); 578 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 579 return rtc_dev_update_irq_enable_emul(rtc, enabled); 580 #else 581 return -EINVAL; 582 #endif 583 } 584 585 if (enabled) { 586 struct rtc_time tm; 587 ktime_t now, onesec; 588 589 err = __rtc_read_time(rtc, &tm); 590 if (err) 591 goto out; 592 onesec = ktime_set(1, 0); 593 now = rtc_tm_to_ktime(tm); 594 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 595 rtc->uie_rtctimer.period = ktime_set(1, 0); 596 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 597 } else { 598 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 599 } 600 601 out: 602 mutex_unlock(&rtc->ops_lock); 603 604 return err; 605 } 606 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 607 608 /** 609 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 610 * @rtc: pointer to the rtc device 611 * @num: number of occurence of the event 612 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF 613 * 614 * This function is called when an AIE, UIE or PIE mode interrupt 615 * has occurred (or been emulated). 616 * 617 */ 618 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 619 { 620 unsigned long flags; 621 622 /* mark one irq of the appropriate mode */ 623 spin_lock_irqsave(&rtc->irq_lock, flags); 624 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode); 625 spin_unlock_irqrestore(&rtc->irq_lock, flags); 626 627 wake_up_interruptible(&rtc->irq_queue); 628 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 629 } 630 631 /** 632 * rtc_aie_update_irq - AIE mode rtctimer hook 633 * @rtc: pointer to the rtc_device 634 * 635 * This functions is called when the aie_timer expires. 636 */ 637 void rtc_aie_update_irq(struct rtc_device *rtc) 638 { 639 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 640 } 641 642 /** 643 * rtc_uie_update_irq - UIE mode rtctimer hook 644 * @rtc: pointer to the rtc_device 645 * 646 * This functions is called when the uie_timer expires. 647 */ 648 void rtc_uie_update_irq(struct rtc_device *rtc) 649 { 650 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 651 } 652 653 /** 654 * rtc_pie_update_irq - PIE mode hrtimer hook 655 * @timer: pointer to the pie mode hrtimer 656 * 657 * This function is used to emulate PIE mode interrupts 658 * using an hrtimer. This function is called when the periodic 659 * hrtimer expires. 660 */ 661 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 662 { 663 struct rtc_device *rtc; 664 ktime_t period; 665 u64 count; 666 667 rtc = container_of(timer, struct rtc_device, pie_timer); 668 669 period = NSEC_PER_SEC / rtc->irq_freq; 670 count = hrtimer_forward_now(timer, period); 671 672 rtc_handle_legacy_irq(rtc, count, RTC_PF); 673 674 return HRTIMER_RESTART; 675 } 676 677 /** 678 * rtc_update_irq - Triggered when a RTC interrupt occurs. 679 * @rtc: the rtc device 680 * @num: how many irqs are being reported (usually one) 681 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 682 * Context: any 683 */ 684 void rtc_update_irq(struct rtc_device *rtc, 685 unsigned long num, unsigned long events) 686 { 687 if (IS_ERR_OR_NULL(rtc)) 688 return; 689 690 pm_stay_awake(rtc->dev.parent); 691 schedule_work(&rtc->irqwork); 692 } 693 EXPORT_SYMBOL_GPL(rtc_update_irq); 694 695 struct rtc_device *rtc_class_open(const char *name) 696 { 697 struct device *dev; 698 struct rtc_device *rtc = NULL; 699 700 dev = class_find_device_by_name(&rtc_class, name); 701 if (dev) 702 rtc = to_rtc_device(dev); 703 704 if (rtc) { 705 if (!try_module_get(rtc->owner)) { 706 put_device(dev); 707 rtc = NULL; 708 } 709 } 710 711 return rtc; 712 } 713 EXPORT_SYMBOL_GPL(rtc_class_open); 714 715 void rtc_class_close(struct rtc_device *rtc) 716 { 717 module_put(rtc->owner); 718 put_device(&rtc->dev); 719 } 720 EXPORT_SYMBOL_GPL(rtc_class_close); 721 722 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 723 { 724 /* 725 * We always cancel the timer here first, because otherwise 726 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 727 * when we manage to start the timer before the callback 728 * returns HRTIMER_RESTART. 729 * 730 * We cannot use hrtimer_cancel() here as a running callback 731 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 732 * would spin forever. 733 */ 734 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 735 return -1; 736 737 if (enabled) { 738 ktime_t period = NSEC_PER_SEC / rtc->irq_freq; 739 740 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 741 } 742 return 0; 743 } 744 745 /** 746 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 747 * @rtc: the rtc device 748 * @enabled: true to enable periodic IRQs 749 * Context: any 750 * 751 * Note that rtc_irq_set_freq() should previously have been used to 752 * specify the desired frequency of periodic IRQ. 753 */ 754 int rtc_irq_set_state(struct rtc_device *rtc, int enabled) 755 { 756 int err = 0; 757 758 while (rtc_update_hrtimer(rtc, enabled) < 0) 759 cpu_relax(); 760 761 rtc->pie_enabled = enabled; 762 763 trace_rtc_irq_set_state(enabled, err); 764 return err; 765 } 766 767 /** 768 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 769 * @rtc: the rtc device 770 * @freq: positive frequency 771 * Context: any 772 * 773 * Note that rtc_irq_set_state() is used to enable or disable the 774 * periodic IRQs. 775 */ 776 int rtc_irq_set_freq(struct rtc_device *rtc, int freq) 777 { 778 int err = 0; 779 780 if (freq <= 0 || freq > RTC_MAX_FREQ) 781 return -EINVAL; 782 783 rtc->irq_freq = freq; 784 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) 785 cpu_relax(); 786 787 trace_rtc_irq_set_freq(freq, err); 788 return err; 789 } 790 791 /** 792 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 793 * @rtc: rtc device 794 * @timer: timer being added. 795 * 796 * Enqueues a timer onto the rtc devices timerqueue and sets 797 * the next alarm event appropriately. 798 * 799 * Sets the enabled bit on the added timer. 800 * 801 * Must hold ops_lock for proper serialization of timerqueue 802 */ 803 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 804 { 805 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 806 struct rtc_time tm; 807 ktime_t now; 808 int err; 809 810 err = __rtc_read_time(rtc, &tm); 811 if (err) 812 return err; 813 814 timer->enabled = 1; 815 now = rtc_tm_to_ktime(tm); 816 817 /* Skip over expired timers */ 818 while (next) { 819 if (next->expires >= now) 820 break; 821 next = timerqueue_iterate_next(next); 822 } 823 824 timerqueue_add(&rtc->timerqueue, &timer->node); 825 trace_rtc_timer_enqueue(timer); 826 if (!next || ktime_before(timer->node.expires, next->expires)) { 827 struct rtc_wkalrm alarm; 828 829 alarm.time = rtc_ktime_to_tm(timer->node.expires); 830 alarm.enabled = 1; 831 err = __rtc_set_alarm(rtc, &alarm); 832 if (err == -ETIME) { 833 pm_stay_awake(rtc->dev.parent); 834 schedule_work(&rtc->irqwork); 835 } else if (err) { 836 timerqueue_del(&rtc->timerqueue, &timer->node); 837 trace_rtc_timer_dequeue(timer); 838 timer->enabled = 0; 839 return err; 840 } 841 } 842 return 0; 843 } 844 845 static void rtc_alarm_disable(struct rtc_device *rtc) 846 { 847 if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) 848 return; 849 850 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 851 trace_rtc_alarm_irq_enable(0, 0); 852 } 853 854 /** 855 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 856 * @rtc: rtc device 857 * @timer: timer being removed. 858 * 859 * Removes a timer onto the rtc devices timerqueue and sets 860 * the next alarm event appropriately. 861 * 862 * Clears the enabled bit on the removed timer. 863 * 864 * Must hold ops_lock for proper serialization of timerqueue 865 */ 866 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 867 { 868 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 869 870 timerqueue_del(&rtc->timerqueue, &timer->node); 871 trace_rtc_timer_dequeue(timer); 872 timer->enabled = 0; 873 if (next == &timer->node) { 874 struct rtc_wkalrm alarm; 875 int err; 876 877 next = timerqueue_getnext(&rtc->timerqueue); 878 if (!next) { 879 rtc_alarm_disable(rtc); 880 return; 881 } 882 alarm.time = rtc_ktime_to_tm(next->expires); 883 alarm.enabled = 1; 884 err = __rtc_set_alarm(rtc, &alarm); 885 if (err == -ETIME) { 886 pm_stay_awake(rtc->dev.parent); 887 schedule_work(&rtc->irqwork); 888 } 889 } 890 } 891 892 /** 893 * rtc_timer_do_work - Expires rtc timers 894 * @work: work item 895 * 896 * Expires rtc timers. Reprograms next alarm event if needed. 897 * Called via worktask. 898 * 899 * Serializes access to timerqueue via ops_lock mutex 900 */ 901 void rtc_timer_do_work(struct work_struct *work) 902 { 903 struct rtc_timer *timer; 904 struct timerqueue_node *next; 905 ktime_t now; 906 struct rtc_time tm; 907 int err; 908 909 struct rtc_device *rtc = 910 container_of(work, struct rtc_device, irqwork); 911 912 mutex_lock(&rtc->ops_lock); 913 again: 914 err = __rtc_read_time(rtc, &tm); 915 if (err) { 916 mutex_unlock(&rtc->ops_lock); 917 return; 918 } 919 now = rtc_tm_to_ktime(tm); 920 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 921 if (next->expires > now) 922 break; 923 924 /* expire timer */ 925 timer = container_of(next, struct rtc_timer, node); 926 timerqueue_del(&rtc->timerqueue, &timer->node); 927 trace_rtc_timer_dequeue(timer); 928 timer->enabled = 0; 929 if (timer->func) 930 timer->func(timer->rtc); 931 932 trace_rtc_timer_fired(timer); 933 /* Re-add/fwd periodic timers */ 934 if (ktime_to_ns(timer->period)) { 935 timer->node.expires = ktime_add(timer->node.expires, 936 timer->period); 937 timer->enabled = 1; 938 timerqueue_add(&rtc->timerqueue, &timer->node); 939 trace_rtc_timer_enqueue(timer); 940 } 941 } 942 943 /* Set next alarm */ 944 if (next) { 945 struct rtc_wkalrm alarm; 946 int err; 947 int retry = 3; 948 949 alarm.time = rtc_ktime_to_tm(next->expires); 950 alarm.enabled = 1; 951 reprogram: 952 err = __rtc_set_alarm(rtc, &alarm); 953 if (err == -ETIME) { 954 goto again; 955 } else if (err) { 956 if (retry-- > 0) 957 goto reprogram; 958 959 timer = container_of(next, struct rtc_timer, node); 960 timerqueue_del(&rtc->timerqueue, &timer->node); 961 trace_rtc_timer_dequeue(timer); 962 timer->enabled = 0; 963 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 964 goto again; 965 } 966 } else { 967 rtc_alarm_disable(rtc); 968 } 969 970 pm_relax(rtc->dev.parent); 971 mutex_unlock(&rtc->ops_lock); 972 } 973 974 /* rtc_timer_init - Initializes an rtc_timer 975 * @timer: timer to be intiialized 976 * @f: function pointer to be called when timer fires 977 * @rtc: pointer to the rtc_device 978 * 979 * Kernel interface to initializing an rtc_timer. 980 */ 981 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r), 982 struct rtc_device *rtc) 983 { 984 timerqueue_init(&timer->node); 985 timer->enabled = 0; 986 timer->func = f; 987 timer->rtc = rtc; 988 } 989 990 /* rtc_timer_start - Sets an rtc_timer to fire in the future 991 * @ rtc: rtc device to be used 992 * @ timer: timer being set 993 * @ expires: time at which to expire the timer 994 * @ period: period that the timer will recur 995 * 996 * Kernel interface to set an rtc_timer 997 */ 998 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 999 ktime_t expires, ktime_t period) 1000 { 1001 int ret = 0; 1002 1003 mutex_lock(&rtc->ops_lock); 1004 if (timer->enabled) 1005 rtc_timer_remove(rtc, timer); 1006 1007 timer->node.expires = expires; 1008 timer->period = period; 1009 1010 ret = rtc_timer_enqueue(rtc, timer); 1011 1012 mutex_unlock(&rtc->ops_lock); 1013 return ret; 1014 } 1015 1016 /* rtc_timer_cancel - Stops an rtc_timer 1017 * @ rtc: rtc device to be used 1018 * @ timer: timer being set 1019 * 1020 * Kernel interface to cancel an rtc_timer 1021 */ 1022 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 1023 { 1024 mutex_lock(&rtc->ops_lock); 1025 if (timer->enabled) 1026 rtc_timer_remove(rtc, timer); 1027 mutex_unlock(&rtc->ops_lock); 1028 } 1029 1030 /** 1031 * rtc_read_offset - Read the amount of rtc offset in parts per billion 1032 * @rtc: rtc device to be used 1033 * @offset: the offset in parts per billion 1034 * 1035 * see below for details. 1036 * 1037 * Kernel interface to read rtc clock offset 1038 * Returns 0 on success, or a negative number on error. 1039 * If read_offset() is not implemented for the rtc, return -EINVAL 1040 */ 1041 int rtc_read_offset(struct rtc_device *rtc, long *offset) 1042 { 1043 int ret; 1044 1045 if (!rtc->ops) 1046 return -ENODEV; 1047 1048 if (!rtc->ops->read_offset) 1049 return -EINVAL; 1050 1051 mutex_lock(&rtc->ops_lock); 1052 ret = rtc->ops->read_offset(rtc->dev.parent, offset); 1053 mutex_unlock(&rtc->ops_lock); 1054 1055 trace_rtc_read_offset(*offset, ret); 1056 return ret; 1057 } 1058 1059 /** 1060 * rtc_set_offset - Adjusts the duration of the average second 1061 * @rtc: rtc device to be used 1062 * @offset: the offset in parts per billion 1063 * 1064 * Some rtc's allow an adjustment to the average duration of a second 1065 * to compensate for differences in the actual clock rate due to temperature, 1066 * the crystal, capacitor, etc. 1067 * 1068 * The adjustment applied is as follows: 1069 * t = t0 * (1 + offset * 1e-9) 1070 * where t0 is the measured length of 1 RTC second with offset = 0 1071 * 1072 * Kernel interface to adjust an rtc clock offset. 1073 * Return 0 on success, or a negative number on error. 1074 * If the rtc offset is not setable (or not implemented), return -EINVAL 1075 */ 1076 int rtc_set_offset(struct rtc_device *rtc, long offset) 1077 { 1078 int ret; 1079 1080 if (!rtc->ops) 1081 return -ENODEV; 1082 1083 if (!rtc->ops->set_offset) 1084 return -EINVAL; 1085 1086 mutex_lock(&rtc->ops_lock); 1087 ret = rtc->ops->set_offset(rtc->dev.parent, offset); 1088 mutex_unlock(&rtc->ops_lock); 1089 1090 trace_rtc_set_offset(offset, ret); 1091 return ret; 1092 } 1093