1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 #define CREATE_TRACE_POINTS 21 #include <trace/events/rtc.h> 22 23 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 24 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 25 26 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) 27 { 28 time64_t secs; 29 30 if (!rtc->offset_secs) 31 return; 32 33 secs = rtc_tm_to_time64(tm); 34 35 /* 36 * Since the reading time values from RTC device are always in the RTC 37 * original valid range, but we need to skip the overlapped region 38 * between expanded range and original range, which is no need to add 39 * the offset. 40 */ 41 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || 42 (rtc->start_secs < rtc->range_min && 43 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) 44 return; 45 46 rtc_time64_to_tm(secs + rtc->offset_secs, tm); 47 } 48 49 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) 50 { 51 time64_t secs; 52 53 if (!rtc->offset_secs) 54 return; 55 56 secs = rtc_tm_to_time64(tm); 57 58 /* 59 * If the setting time values are in the valid range of RTC hardware 60 * device, then no need to subtract the offset when setting time to RTC 61 * device. Otherwise we need to subtract the offset to make the time 62 * values are valid for RTC hardware device. 63 */ 64 if (secs >= rtc->range_min && secs <= rtc->range_max) 65 return; 66 67 rtc_time64_to_tm(secs - rtc->offset_secs, tm); 68 } 69 70 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) 71 { 72 if (rtc->range_min != rtc->range_max) { 73 time64_t time = rtc_tm_to_time64(tm); 74 time64_t range_min = rtc->set_start_time ? rtc->start_secs : 75 rtc->range_min; 76 time64_t range_max = rtc->set_start_time ? 77 (rtc->start_secs + rtc->range_max - rtc->range_min) : 78 rtc->range_max; 79 80 if (time < range_min || time > range_max) 81 return -ERANGE; 82 } 83 84 return 0; 85 } 86 87 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 88 { 89 int err; 90 if (!rtc->ops) 91 err = -ENODEV; 92 else if (!rtc->ops->read_time) 93 err = -EINVAL; 94 else { 95 memset(tm, 0, sizeof(struct rtc_time)); 96 err = rtc->ops->read_time(rtc->dev.parent, tm); 97 if (err < 0) { 98 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", 99 err); 100 return err; 101 } 102 103 rtc_add_offset(rtc, tm); 104 105 err = rtc_valid_tm(tm); 106 if (err < 0) 107 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); 108 } 109 return err; 110 } 111 112 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 113 { 114 int err; 115 116 err = mutex_lock_interruptible(&rtc->ops_lock); 117 if (err) 118 return err; 119 120 err = __rtc_read_time(rtc, tm); 121 mutex_unlock(&rtc->ops_lock); 122 123 trace_rtc_read_time(rtc_tm_to_time64(tm), err); 124 return err; 125 } 126 EXPORT_SYMBOL_GPL(rtc_read_time); 127 128 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 129 { 130 int err; 131 132 err = rtc_valid_tm(tm); 133 if (err != 0) 134 return err; 135 136 err = rtc_valid_range(rtc, tm); 137 if (err) 138 return err; 139 140 rtc_subtract_offset(rtc, tm); 141 142 err = mutex_lock_interruptible(&rtc->ops_lock); 143 if (err) 144 return err; 145 146 if (!rtc->ops) 147 err = -ENODEV; 148 else if (rtc->ops->set_time) 149 err = rtc->ops->set_time(rtc->dev.parent, tm); 150 else if (rtc->ops->set_mmss64) { 151 time64_t secs64 = rtc_tm_to_time64(tm); 152 153 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64); 154 } else if (rtc->ops->set_mmss) { 155 time64_t secs64 = rtc_tm_to_time64(tm); 156 err = rtc->ops->set_mmss(rtc->dev.parent, secs64); 157 } else 158 err = -EINVAL; 159 160 pm_stay_awake(rtc->dev.parent); 161 mutex_unlock(&rtc->ops_lock); 162 /* A timer might have just expired */ 163 schedule_work(&rtc->irqwork); 164 165 trace_rtc_set_time(rtc_tm_to_time64(tm), err); 166 return err; 167 } 168 EXPORT_SYMBOL_GPL(rtc_set_time); 169 170 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 171 { 172 int err; 173 174 err = mutex_lock_interruptible(&rtc->ops_lock); 175 if (err) 176 return err; 177 178 if (rtc->ops == NULL) 179 err = -ENODEV; 180 else if (!rtc->ops->read_alarm) 181 err = -EINVAL; 182 else { 183 alarm->enabled = 0; 184 alarm->pending = 0; 185 alarm->time.tm_sec = -1; 186 alarm->time.tm_min = -1; 187 alarm->time.tm_hour = -1; 188 alarm->time.tm_mday = -1; 189 alarm->time.tm_mon = -1; 190 alarm->time.tm_year = -1; 191 alarm->time.tm_wday = -1; 192 alarm->time.tm_yday = -1; 193 alarm->time.tm_isdst = -1; 194 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 195 } 196 197 mutex_unlock(&rtc->ops_lock); 198 199 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 200 return err; 201 } 202 203 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 204 { 205 int err; 206 struct rtc_time before, now; 207 int first_time = 1; 208 time64_t t_now, t_alm; 209 enum { none, day, month, year } missing = none; 210 unsigned days; 211 212 /* The lower level RTC driver may return -1 in some fields, 213 * creating invalid alarm->time values, for reasons like: 214 * 215 * - The hardware may not be capable of filling them in; 216 * many alarms match only on time-of-day fields, not 217 * day/month/year calendar data. 218 * 219 * - Some hardware uses illegal values as "wildcard" match 220 * values, which non-Linux firmware (like a BIOS) may try 221 * to set up as e.g. "alarm 15 minutes after each hour". 222 * Linux uses only oneshot alarms. 223 * 224 * When we see that here, we deal with it by using values from 225 * a current RTC timestamp for any missing (-1) values. The 226 * RTC driver prevents "periodic alarm" modes. 227 * 228 * But this can be racey, because some fields of the RTC timestamp 229 * may have wrapped in the interval since we read the RTC alarm, 230 * which would lead to us inserting inconsistent values in place 231 * of the -1 fields. 232 * 233 * Reading the alarm and timestamp in the reverse sequence 234 * would have the same race condition, and not solve the issue. 235 * 236 * So, we must first read the RTC timestamp, 237 * then read the RTC alarm value, 238 * and then read a second RTC timestamp. 239 * 240 * If any fields of the second timestamp have changed 241 * when compared with the first timestamp, then we know 242 * our timestamp may be inconsistent with that used by 243 * the low-level rtc_read_alarm_internal() function. 244 * 245 * So, when the two timestamps disagree, we just loop and do 246 * the process again to get a fully consistent set of values. 247 * 248 * This could all instead be done in the lower level driver, 249 * but since more than one lower level RTC implementation needs it, 250 * then it's probably best best to do it here instead of there.. 251 */ 252 253 /* Get the "before" timestamp */ 254 err = rtc_read_time(rtc, &before); 255 if (err < 0) 256 return err; 257 do { 258 if (!first_time) 259 memcpy(&before, &now, sizeof(struct rtc_time)); 260 first_time = 0; 261 262 /* get the RTC alarm values, which may be incomplete */ 263 err = rtc_read_alarm_internal(rtc, alarm); 264 if (err) 265 return err; 266 267 /* full-function RTCs won't have such missing fields */ 268 if (rtc_valid_tm(&alarm->time) == 0) { 269 rtc_add_offset(rtc, &alarm->time); 270 return 0; 271 } 272 273 /* get the "after" timestamp, to detect wrapped fields */ 274 err = rtc_read_time(rtc, &now); 275 if (err < 0) 276 return err; 277 278 /* note that tm_sec is a "don't care" value here: */ 279 } while ( before.tm_min != now.tm_min 280 || before.tm_hour != now.tm_hour 281 || before.tm_mon != now.tm_mon 282 || before.tm_year != now.tm_year); 283 284 /* Fill in the missing alarm fields using the timestamp; we 285 * know there's at least one since alarm->time is invalid. 286 */ 287 if (alarm->time.tm_sec == -1) 288 alarm->time.tm_sec = now.tm_sec; 289 if (alarm->time.tm_min == -1) 290 alarm->time.tm_min = now.tm_min; 291 if (alarm->time.tm_hour == -1) 292 alarm->time.tm_hour = now.tm_hour; 293 294 /* For simplicity, only support date rollover for now */ 295 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 296 alarm->time.tm_mday = now.tm_mday; 297 missing = day; 298 } 299 if ((unsigned)alarm->time.tm_mon >= 12) { 300 alarm->time.tm_mon = now.tm_mon; 301 if (missing == none) 302 missing = month; 303 } 304 if (alarm->time.tm_year == -1) { 305 alarm->time.tm_year = now.tm_year; 306 if (missing == none) 307 missing = year; 308 } 309 310 /* Can't proceed if alarm is still invalid after replacing 311 * missing fields. 312 */ 313 err = rtc_valid_tm(&alarm->time); 314 if (err) 315 goto done; 316 317 /* with luck, no rollover is needed */ 318 t_now = rtc_tm_to_time64(&now); 319 t_alm = rtc_tm_to_time64(&alarm->time); 320 if (t_now < t_alm) 321 goto done; 322 323 switch (missing) { 324 325 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 326 * that will trigger at 5am will do so at 5am Tuesday, which 327 * could also be in the next month or year. This is a common 328 * case, especially for PCs. 329 */ 330 case day: 331 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 332 t_alm += 24 * 60 * 60; 333 rtc_time64_to_tm(t_alm, &alarm->time); 334 break; 335 336 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 337 * be next month. An alarm matching on the 30th, 29th, or 28th 338 * may end up in the month after that! Many newer PCs support 339 * this type of alarm. 340 */ 341 case month: 342 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 343 do { 344 if (alarm->time.tm_mon < 11) 345 alarm->time.tm_mon++; 346 else { 347 alarm->time.tm_mon = 0; 348 alarm->time.tm_year++; 349 } 350 days = rtc_month_days(alarm->time.tm_mon, 351 alarm->time.tm_year); 352 } while (days < alarm->time.tm_mday); 353 break; 354 355 /* Year rollover ... easy except for leap years! */ 356 case year: 357 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 358 do { 359 alarm->time.tm_year++; 360 } while (!is_leap_year(alarm->time.tm_year + 1900) 361 && rtc_valid_tm(&alarm->time) != 0); 362 break; 363 364 default: 365 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 366 } 367 368 err = rtc_valid_tm(&alarm->time); 369 370 done: 371 if (err) { 372 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n", 373 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1, 374 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min, 375 alarm->time.tm_sec); 376 } 377 378 return err; 379 } 380 381 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 382 { 383 int err; 384 385 err = mutex_lock_interruptible(&rtc->ops_lock); 386 if (err) 387 return err; 388 if (rtc->ops == NULL) 389 err = -ENODEV; 390 else if (!rtc->ops->read_alarm) 391 err = -EINVAL; 392 else { 393 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 394 alarm->enabled = rtc->aie_timer.enabled; 395 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 396 } 397 mutex_unlock(&rtc->ops_lock); 398 399 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 400 return err; 401 } 402 EXPORT_SYMBOL_GPL(rtc_read_alarm); 403 404 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 405 { 406 struct rtc_time tm; 407 time64_t now, scheduled; 408 int err; 409 410 err = rtc_valid_tm(&alarm->time); 411 if (err) 412 return err; 413 414 scheduled = rtc_tm_to_time64(&alarm->time); 415 416 /* Make sure we're not setting alarms in the past */ 417 err = __rtc_read_time(rtc, &tm); 418 if (err) 419 return err; 420 now = rtc_tm_to_time64(&tm); 421 if (scheduled <= now) 422 return -ETIME; 423 /* 424 * XXX - We just checked to make sure the alarm time is not 425 * in the past, but there is still a race window where if 426 * the is alarm set for the next second and the second ticks 427 * over right here, before we set the alarm. 428 */ 429 430 rtc_subtract_offset(rtc, &alarm->time); 431 432 if (!rtc->ops) 433 err = -ENODEV; 434 else if (!rtc->ops->set_alarm) 435 err = -EINVAL; 436 else 437 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 438 439 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); 440 return err; 441 } 442 443 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 444 { 445 int err; 446 447 if (!rtc->ops) 448 return -ENODEV; 449 else if (!rtc->ops->set_alarm) 450 return -EINVAL; 451 452 err = rtc_valid_tm(&alarm->time); 453 if (err != 0) 454 return err; 455 456 err = rtc_valid_range(rtc, &alarm->time); 457 if (err) 458 return err; 459 460 err = mutex_lock_interruptible(&rtc->ops_lock); 461 if (err) 462 return err; 463 if (rtc->aie_timer.enabled) 464 rtc_timer_remove(rtc, &rtc->aie_timer); 465 466 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 467 rtc->aie_timer.period = 0; 468 if (alarm->enabled) 469 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 470 471 mutex_unlock(&rtc->ops_lock); 472 473 return err; 474 } 475 EXPORT_SYMBOL_GPL(rtc_set_alarm); 476 477 /* Called once per device from rtc_device_register */ 478 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 479 { 480 int err; 481 struct rtc_time now; 482 483 err = rtc_valid_tm(&alarm->time); 484 if (err != 0) 485 return err; 486 487 err = rtc_read_time(rtc, &now); 488 if (err) 489 return err; 490 491 err = mutex_lock_interruptible(&rtc->ops_lock); 492 if (err) 493 return err; 494 495 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 496 rtc->aie_timer.period = 0; 497 498 /* Alarm has to be enabled & in the future for us to enqueue it */ 499 if (alarm->enabled && (rtc_tm_to_ktime(now) < 500 rtc->aie_timer.node.expires)) { 501 502 rtc->aie_timer.enabled = 1; 503 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 504 trace_rtc_timer_enqueue(&rtc->aie_timer); 505 } 506 mutex_unlock(&rtc->ops_lock); 507 return err; 508 } 509 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 510 511 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 512 { 513 int err = mutex_lock_interruptible(&rtc->ops_lock); 514 if (err) 515 return err; 516 517 if (rtc->aie_timer.enabled != enabled) { 518 if (enabled) 519 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 520 else 521 rtc_timer_remove(rtc, &rtc->aie_timer); 522 } 523 524 if (err) 525 /* nothing */; 526 else if (!rtc->ops) 527 err = -ENODEV; 528 else if (!rtc->ops->alarm_irq_enable) 529 err = -EINVAL; 530 else 531 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 532 533 mutex_unlock(&rtc->ops_lock); 534 535 trace_rtc_alarm_irq_enable(enabled, err); 536 return err; 537 } 538 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 539 540 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 541 { 542 int err = mutex_lock_interruptible(&rtc->ops_lock); 543 if (err) 544 return err; 545 546 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 547 if (enabled == 0 && rtc->uie_irq_active) { 548 mutex_unlock(&rtc->ops_lock); 549 return rtc_dev_update_irq_enable_emul(rtc, 0); 550 } 551 #endif 552 /* make sure we're changing state */ 553 if (rtc->uie_rtctimer.enabled == enabled) 554 goto out; 555 556 if (rtc->uie_unsupported) { 557 err = -EINVAL; 558 goto out; 559 } 560 561 if (enabled) { 562 struct rtc_time tm; 563 ktime_t now, onesec; 564 565 __rtc_read_time(rtc, &tm); 566 onesec = ktime_set(1, 0); 567 now = rtc_tm_to_ktime(tm); 568 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 569 rtc->uie_rtctimer.period = ktime_set(1, 0); 570 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 571 } else 572 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 573 574 out: 575 mutex_unlock(&rtc->ops_lock); 576 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 577 /* 578 * Enable emulation if the driver did not provide 579 * the update_irq_enable function pointer or if returned 580 * -EINVAL to signal that it has been configured without 581 * interrupts or that are not available at the moment. 582 */ 583 if (err == -EINVAL) 584 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 585 #endif 586 return err; 587 588 } 589 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 590 591 592 /** 593 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 594 * @rtc: pointer to the rtc device 595 * 596 * This function is called when an AIE, UIE or PIE mode interrupt 597 * has occurred (or been emulated). 598 * 599 */ 600 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 601 { 602 unsigned long flags; 603 604 /* mark one irq of the appropriate mode */ 605 spin_lock_irqsave(&rtc->irq_lock, flags); 606 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 607 spin_unlock_irqrestore(&rtc->irq_lock, flags); 608 609 wake_up_interruptible(&rtc->irq_queue); 610 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 611 } 612 613 614 /** 615 * rtc_aie_update_irq - AIE mode rtctimer hook 616 * @private: pointer to the rtc_device 617 * 618 * This functions is called when the aie_timer expires. 619 */ 620 void rtc_aie_update_irq(void *private) 621 { 622 struct rtc_device *rtc = (struct rtc_device *)private; 623 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 624 } 625 626 627 /** 628 * rtc_uie_update_irq - UIE mode rtctimer hook 629 * @private: pointer to the rtc_device 630 * 631 * This functions is called when the uie_timer expires. 632 */ 633 void rtc_uie_update_irq(void *private) 634 { 635 struct rtc_device *rtc = (struct rtc_device *)private; 636 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 637 } 638 639 640 /** 641 * rtc_pie_update_irq - PIE mode hrtimer hook 642 * @timer: pointer to the pie mode hrtimer 643 * 644 * This function is used to emulate PIE mode interrupts 645 * using an hrtimer. This function is called when the periodic 646 * hrtimer expires. 647 */ 648 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 649 { 650 struct rtc_device *rtc; 651 ktime_t period; 652 int count; 653 rtc = container_of(timer, struct rtc_device, pie_timer); 654 655 period = NSEC_PER_SEC / rtc->irq_freq; 656 count = hrtimer_forward_now(timer, period); 657 658 rtc_handle_legacy_irq(rtc, count, RTC_PF); 659 660 return HRTIMER_RESTART; 661 } 662 663 /** 664 * rtc_update_irq - Triggered when a RTC interrupt occurs. 665 * @rtc: the rtc device 666 * @num: how many irqs are being reported (usually one) 667 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 668 * Context: any 669 */ 670 void rtc_update_irq(struct rtc_device *rtc, 671 unsigned long num, unsigned long events) 672 { 673 if (IS_ERR_OR_NULL(rtc)) 674 return; 675 676 pm_stay_awake(rtc->dev.parent); 677 schedule_work(&rtc->irqwork); 678 } 679 EXPORT_SYMBOL_GPL(rtc_update_irq); 680 681 static int __rtc_match(struct device *dev, const void *data) 682 { 683 const char *name = data; 684 685 if (strcmp(dev_name(dev), name) == 0) 686 return 1; 687 return 0; 688 } 689 690 struct rtc_device *rtc_class_open(const char *name) 691 { 692 struct device *dev; 693 struct rtc_device *rtc = NULL; 694 695 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 696 if (dev) 697 rtc = to_rtc_device(dev); 698 699 if (rtc) { 700 if (!try_module_get(rtc->owner)) { 701 put_device(dev); 702 rtc = NULL; 703 } 704 } 705 706 return rtc; 707 } 708 EXPORT_SYMBOL_GPL(rtc_class_open); 709 710 void rtc_class_close(struct rtc_device *rtc) 711 { 712 module_put(rtc->owner); 713 put_device(&rtc->dev); 714 } 715 EXPORT_SYMBOL_GPL(rtc_class_close); 716 717 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 718 { 719 /* 720 * We always cancel the timer here first, because otherwise 721 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 722 * when we manage to start the timer before the callback 723 * returns HRTIMER_RESTART. 724 * 725 * We cannot use hrtimer_cancel() here as a running callback 726 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 727 * would spin forever. 728 */ 729 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 730 return -1; 731 732 if (enabled) { 733 ktime_t period = NSEC_PER_SEC / rtc->irq_freq; 734 735 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 736 } 737 return 0; 738 } 739 740 /** 741 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 742 * @rtc: the rtc device 743 * @enabled: true to enable periodic IRQs 744 * Context: any 745 * 746 * Note that rtc_irq_set_freq() should previously have been used to 747 * specify the desired frequency of periodic IRQ. 748 */ 749 int rtc_irq_set_state(struct rtc_device *rtc, int enabled) 750 { 751 int err = 0; 752 753 while (rtc_update_hrtimer(rtc, enabled) < 0) 754 cpu_relax(); 755 756 rtc->pie_enabled = enabled; 757 758 trace_rtc_irq_set_state(enabled, err); 759 return err; 760 } 761 762 /** 763 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 764 * @rtc: the rtc device 765 * @freq: positive frequency 766 * Context: any 767 * 768 * Note that rtc_irq_set_state() is used to enable or disable the 769 * periodic IRQs. 770 */ 771 int rtc_irq_set_freq(struct rtc_device *rtc, int freq) 772 { 773 int err = 0; 774 775 if (freq <= 0 || freq > RTC_MAX_FREQ) 776 return -EINVAL; 777 778 rtc->irq_freq = freq; 779 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) 780 cpu_relax(); 781 782 trace_rtc_irq_set_freq(freq, err); 783 return err; 784 } 785 786 /** 787 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 788 * @rtc rtc device 789 * @timer timer being added. 790 * 791 * Enqueues a timer onto the rtc devices timerqueue and sets 792 * the next alarm event appropriately. 793 * 794 * Sets the enabled bit on the added timer. 795 * 796 * Must hold ops_lock for proper serialization of timerqueue 797 */ 798 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 799 { 800 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 801 struct rtc_time tm; 802 ktime_t now; 803 804 timer->enabled = 1; 805 __rtc_read_time(rtc, &tm); 806 now = rtc_tm_to_ktime(tm); 807 808 /* Skip over expired timers */ 809 while (next) { 810 if (next->expires >= now) 811 break; 812 next = timerqueue_iterate_next(next); 813 } 814 815 timerqueue_add(&rtc->timerqueue, &timer->node); 816 trace_rtc_timer_enqueue(timer); 817 if (!next || ktime_before(timer->node.expires, next->expires)) { 818 struct rtc_wkalrm alarm; 819 int err; 820 alarm.time = rtc_ktime_to_tm(timer->node.expires); 821 alarm.enabled = 1; 822 err = __rtc_set_alarm(rtc, &alarm); 823 if (err == -ETIME) { 824 pm_stay_awake(rtc->dev.parent); 825 schedule_work(&rtc->irqwork); 826 } else if (err) { 827 timerqueue_del(&rtc->timerqueue, &timer->node); 828 trace_rtc_timer_dequeue(timer); 829 timer->enabled = 0; 830 return err; 831 } 832 } 833 return 0; 834 } 835 836 static void rtc_alarm_disable(struct rtc_device *rtc) 837 { 838 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 839 return; 840 841 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 842 trace_rtc_alarm_irq_enable(0, 0); 843 } 844 845 /** 846 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 847 * @rtc rtc device 848 * @timer timer being removed. 849 * 850 * Removes a timer onto the rtc devices timerqueue and sets 851 * the next alarm event appropriately. 852 * 853 * Clears the enabled bit on the removed timer. 854 * 855 * Must hold ops_lock for proper serialization of timerqueue 856 */ 857 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 858 { 859 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 860 timerqueue_del(&rtc->timerqueue, &timer->node); 861 trace_rtc_timer_dequeue(timer); 862 timer->enabled = 0; 863 if (next == &timer->node) { 864 struct rtc_wkalrm alarm; 865 int err; 866 next = timerqueue_getnext(&rtc->timerqueue); 867 if (!next) { 868 rtc_alarm_disable(rtc); 869 return; 870 } 871 alarm.time = rtc_ktime_to_tm(next->expires); 872 alarm.enabled = 1; 873 err = __rtc_set_alarm(rtc, &alarm); 874 if (err == -ETIME) { 875 pm_stay_awake(rtc->dev.parent); 876 schedule_work(&rtc->irqwork); 877 } 878 } 879 } 880 881 /** 882 * rtc_timer_do_work - Expires rtc timers 883 * @rtc rtc device 884 * @timer timer being removed. 885 * 886 * Expires rtc timers. Reprograms next alarm event if needed. 887 * Called via worktask. 888 * 889 * Serializes access to timerqueue via ops_lock mutex 890 */ 891 void rtc_timer_do_work(struct work_struct *work) 892 { 893 struct rtc_timer *timer; 894 struct timerqueue_node *next; 895 ktime_t now; 896 struct rtc_time tm; 897 898 struct rtc_device *rtc = 899 container_of(work, struct rtc_device, irqwork); 900 901 mutex_lock(&rtc->ops_lock); 902 again: 903 __rtc_read_time(rtc, &tm); 904 now = rtc_tm_to_ktime(tm); 905 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 906 if (next->expires > now) 907 break; 908 909 /* expire timer */ 910 timer = container_of(next, struct rtc_timer, node); 911 timerqueue_del(&rtc->timerqueue, &timer->node); 912 trace_rtc_timer_dequeue(timer); 913 timer->enabled = 0; 914 if (timer->func) 915 timer->func(timer->private_data); 916 917 trace_rtc_timer_fired(timer); 918 /* Re-add/fwd periodic timers */ 919 if (ktime_to_ns(timer->period)) { 920 timer->node.expires = ktime_add(timer->node.expires, 921 timer->period); 922 timer->enabled = 1; 923 timerqueue_add(&rtc->timerqueue, &timer->node); 924 trace_rtc_timer_enqueue(timer); 925 } 926 } 927 928 /* Set next alarm */ 929 if (next) { 930 struct rtc_wkalrm alarm; 931 int err; 932 int retry = 3; 933 934 alarm.time = rtc_ktime_to_tm(next->expires); 935 alarm.enabled = 1; 936 reprogram: 937 err = __rtc_set_alarm(rtc, &alarm); 938 if (err == -ETIME) 939 goto again; 940 else if (err) { 941 if (retry-- > 0) 942 goto reprogram; 943 944 timer = container_of(next, struct rtc_timer, node); 945 timerqueue_del(&rtc->timerqueue, &timer->node); 946 trace_rtc_timer_dequeue(timer); 947 timer->enabled = 0; 948 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 949 goto again; 950 } 951 } else 952 rtc_alarm_disable(rtc); 953 954 pm_relax(rtc->dev.parent); 955 mutex_unlock(&rtc->ops_lock); 956 } 957 958 959 /* rtc_timer_init - Initializes an rtc_timer 960 * @timer: timer to be intiialized 961 * @f: function pointer to be called when timer fires 962 * @data: private data passed to function pointer 963 * 964 * Kernel interface to initializing an rtc_timer. 965 */ 966 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data) 967 { 968 timerqueue_init(&timer->node); 969 timer->enabled = 0; 970 timer->func = f; 971 timer->private_data = data; 972 } 973 974 /* rtc_timer_start - Sets an rtc_timer to fire in the future 975 * @ rtc: rtc device to be used 976 * @ timer: timer being set 977 * @ expires: time at which to expire the timer 978 * @ period: period that the timer will recur 979 * 980 * Kernel interface to set an rtc_timer 981 */ 982 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 983 ktime_t expires, ktime_t period) 984 { 985 int ret = 0; 986 mutex_lock(&rtc->ops_lock); 987 if (timer->enabled) 988 rtc_timer_remove(rtc, timer); 989 990 timer->node.expires = expires; 991 timer->period = period; 992 993 ret = rtc_timer_enqueue(rtc, timer); 994 995 mutex_unlock(&rtc->ops_lock); 996 return ret; 997 } 998 999 /* rtc_timer_cancel - Stops an rtc_timer 1000 * @ rtc: rtc device to be used 1001 * @ timer: timer being set 1002 * 1003 * Kernel interface to cancel an rtc_timer 1004 */ 1005 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 1006 { 1007 mutex_lock(&rtc->ops_lock); 1008 if (timer->enabled) 1009 rtc_timer_remove(rtc, timer); 1010 mutex_unlock(&rtc->ops_lock); 1011 } 1012 1013 /** 1014 * rtc_read_offset - Read the amount of rtc offset in parts per billion 1015 * @ rtc: rtc device to be used 1016 * @ offset: the offset in parts per billion 1017 * 1018 * see below for details. 1019 * 1020 * Kernel interface to read rtc clock offset 1021 * Returns 0 on success, or a negative number on error. 1022 * If read_offset() is not implemented for the rtc, return -EINVAL 1023 */ 1024 int rtc_read_offset(struct rtc_device *rtc, long *offset) 1025 { 1026 int ret; 1027 1028 if (!rtc->ops) 1029 return -ENODEV; 1030 1031 if (!rtc->ops->read_offset) 1032 return -EINVAL; 1033 1034 mutex_lock(&rtc->ops_lock); 1035 ret = rtc->ops->read_offset(rtc->dev.parent, offset); 1036 mutex_unlock(&rtc->ops_lock); 1037 1038 trace_rtc_read_offset(*offset, ret); 1039 return ret; 1040 } 1041 1042 /** 1043 * rtc_set_offset - Adjusts the duration of the average second 1044 * @ rtc: rtc device to be used 1045 * @ offset: the offset in parts per billion 1046 * 1047 * Some rtc's allow an adjustment to the average duration of a second 1048 * to compensate for differences in the actual clock rate due to temperature, 1049 * the crystal, capacitor, etc. 1050 * 1051 * The adjustment applied is as follows: 1052 * t = t0 * (1 + offset * 1e-9) 1053 * where t0 is the measured length of 1 RTC second with offset = 0 1054 * 1055 * Kernel interface to adjust an rtc clock offset. 1056 * Return 0 on success, or a negative number on error. 1057 * If the rtc offset is not setable (or not implemented), return -EINVAL 1058 */ 1059 int rtc_set_offset(struct rtc_device *rtc, long offset) 1060 { 1061 int ret; 1062 1063 if (!rtc->ops) 1064 return -ENODEV; 1065 1066 if (!rtc->ops->set_offset) 1067 return -EINVAL; 1068 1069 mutex_lock(&rtc->ops_lock); 1070 ret = rtc->ops->set_offset(rtc->dev.parent, offset); 1071 mutex_unlock(&rtc->ops_lock); 1072 1073 trace_rtc_set_offset(offset, ret); 1074 return ret; 1075 } 1076