xref: /linux/drivers/rtc/interface.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC subsystem, interface functions
4  *
5  * Copyright (C) 2005 Tower Technologies
6  * Author: Alessandro Zummo <a.zummo@towertech.it>
7  *
8  * based on arch/arm/common/rtctime.c
9  */
10 
11 #include <linux/rtc.h>
12 #include <linux/sched.h>
13 #include <linux/module.h>
14 #include <linux/log2.h>
15 #include <linux/workqueue.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/rtc.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	time64_t secs;
26 
27 	if (!rtc->offset_secs)
28 		return;
29 
30 	secs = rtc_tm_to_time64(tm);
31 
32 	/*
33 	 * Since the reading time values from RTC device are always in the RTC
34 	 * original valid range, but we need to skip the overlapped region
35 	 * between expanded range and original range, which is no need to add
36 	 * the offset.
37 	 */
38 	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 	    (rtc->start_secs < rtc->range_min &&
40 	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 		return;
42 
43 	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
44 }
45 
46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	time64_t secs;
49 
50 	if (!rtc->offset_secs)
51 		return;
52 
53 	secs = rtc_tm_to_time64(tm);
54 
55 	/*
56 	 * If the setting time values are in the valid range of RTC hardware
57 	 * device, then no need to subtract the offset when setting time to RTC
58 	 * device. Otherwise we need to subtract the offset to make the time
59 	 * values are valid for RTC hardware device.
60 	 */
61 	if (secs >= rtc->range_min && secs <= rtc->range_max)
62 		return;
63 
64 	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
65 }
66 
67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
68 {
69 	if (rtc->range_min != rtc->range_max) {
70 		time64_t time = rtc_tm_to_time64(tm);
71 		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 			rtc->range_min;
73 		timeu64_t range_max = rtc->set_start_time ?
74 			(rtc->start_secs + rtc->range_max - rtc->range_min) :
75 			rtc->range_max;
76 
77 		if (time < range_min || time > range_max)
78 			return -ERANGE;
79 	}
80 
81 	return 0;
82 }
83 
84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
85 {
86 	int err;
87 
88 	if (!rtc->ops) {
89 		err = -ENODEV;
90 	} else if (!rtc->ops->read_time) {
91 		err = -EINVAL;
92 	} else {
93 		memset(tm, 0, sizeof(struct rtc_time));
94 		err = rtc->ops->read_time(rtc->dev.parent, tm);
95 		if (err < 0) {
96 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 				err);
98 			return err;
99 		}
100 
101 		rtc_add_offset(rtc, tm);
102 
103 		err = rtc_valid_tm(tm);
104 		if (err < 0)
105 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
106 	}
107 	return err;
108 }
109 
110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
111 {
112 	int err;
113 
114 	err = mutex_lock_interruptible(&rtc->ops_lock);
115 	if (err)
116 		return err;
117 
118 	err = __rtc_read_time(rtc, tm);
119 	mutex_unlock(&rtc->ops_lock);
120 
121 	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 	return err;
123 }
124 EXPORT_SYMBOL_GPL(rtc_read_time);
125 
126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
127 {
128 	int err, uie;
129 
130 	err = rtc_valid_tm(tm);
131 	if (err != 0)
132 		return err;
133 
134 	err = rtc_valid_range(rtc, tm);
135 	if (err)
136 		return err;
137 
138 	rtc_subtract_offset(rtc, tm);
139 
140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
141 	uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
142 #else
143 	uie = rtc->uie_rtctimer.enabled;
144 #endif
145 	if (uie) {
146 		err = rtc_update_irq_enable(rtc, 0);
147 		if (err)
148 			return err;
149 	}
150 
151 	err = mutex_lock_interruptible(&rtc->ops_lock);
152 	if (err)
153 		return err;
154 
155 	if (!rtc->ops)
156 		err = -ENODEV;
157 	else if (rtc->ops->set_time)
158 		err = rtc->ops->set_time(rtc->dev.parent, tm);
159 	else
160 		err = -EINVAL;
161 
162 	pm_stay_awake(rtc->dev.parent);
163 	mutex_unlock(&rtc->ops_lock);
164 	/* A timer might have just expired */
165 	schedule_work(&rtc->irqwork);
166 
167 	if (uie) {
168 		err = rtc_update_irq_enable(rtc, 1);
169 		if (err)
170 			return err;
171 	}
172 
173 	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
174 	return err;
175 }
176 EXPORT_SYMBOL_GPL(rtc_set_time);
177 
178 static int rtc_read_alarm_internal(struct rtc_device *rtc,
179 				   struct rtc_wkalrm *alarm)
180 {
181 	int err;
182 
183 	err = mutex_lock_interruptible(&rtc->ops_lock);
184 	if (err)
185 		return err;
186 
187 	if (!rtc->ops) {
188 		err = -ENODEV;
189 	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
190 		err = -EINVAL;
191 	} else {
192 		alarm->enabled = 0;
193 		alarm->pending = 0;
194 		alarm->time.tm_sec = -1;
195 		alarm->time.tm_min = -1;
196 		alarm->time.tm_hour = -1;
197 		alarm->time.tm_mday = -1;
198 		alarm->time.tm_mon = -1;
199 		alarm->time.tm_year = -1;
200 		alarm->time.tm_wday = -1;
201 		alarm->time.tm_yday = -1;
202 		alarm->time.tm_isdst = -1;
203 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
204 	}
205 
206 	mutex_unlock(&rtc->ops_lock);
207 
208 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
209 	return err;
210 }
211 
212 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
213 {
214 	int err;
215 	struct rtc_time before, now;
216 	int first_time = 1;
217 	time64_t t_now, t_alm;
218 	enum { none, day, month, year } missing = none;
219 	unsigned int days;
220 
221 	/* The lower level RTC driver may return -1 in some fields,
222 	 * creating invalid alarm->time values, for reasons like:
223 	 *
224 	 *   - The hardware may not be capable of filling them in;
225 	 *     many alarms match only on time-of-day fields, not
226 	 *     day/month/year calendar data.
227 	 *
228 	 *   - Some hardware uses illegal values as "wildcard" match
229 	 *     values, which non-Linux firmware (like a BIOS) may try
230 	 *     to set up as e.g. "alarm 15 minutes after each hour".
231 	 *     Linux uses only oneshot alarms.
232 	 *
233 	 * When we see that here, we deal with it by using values from
234 	 * a current RTC timestamp for any missing (-1) values.  The
235 	 * RTC driver prevents "periodic alarm" modes.
236 	 *
237 	 * But this can be racey, because some fields of the RTC timestamp
238 	 * may have wrapped in the interval since we read the RTC alarm,
239 	 * which would lead to us inserting inconsistent values in place
240 	 * of the -1 fields.
241 	 *
242 	 * Reading the alarm and timestamp in the reverse sequence
243 	 * would have the same race condition, and not solve the issue.
244 	 *
245 	 * So, we must first read the RTC timestamp,
246 	 * then read the RTC alarm value,
247 	 * and then read a second RTC timestamp.
248 	 *
249 	 * If any fields of the second timestamp have changed
250 	 * when compared with the first timestamp, then we know
251 	 * our timestamp may be inconsistent with that used by
252 	 * the low-level rtc_read_alarm_internal() function.
253 	 *
254 	 * So, when the two timestamps disagree, we just loop and do
255 	 * the process again to get a fully consistent set of values.
256 	 *
257 	 * This could all instead be done in the lower level driver,
258 	 * but since more than one lower level RTC implementation needs it,
259 	 * then it's probably best to do it here instead of there..
260 	 */
261 
262 	/* Get the "before" timestamp */
263 	err = rtc_read_time(rtc, &before);
264 	if (err < 0)
265 		return err;
266 	do {
267 		if (!first_time)
268 			memcpy(&before, &now, sizeof(struct rtc_time));
269 		first_time = 0;
270 
271 		/* get the RTC alarm values, which may be incomplete */
272 		err = rtc_read_alarm_internal(rtc, alarm);
273 		if (err)
274 			return err;
275 
276 		/* full-function RTCs won't have such missing fields */
277 		err = rtc_valid_tm(&alarm->time);
278 		if (!err)
279 			goto done;
280 
281 		/* get the "after" timestamp, to detect wrapped fields */
282 		err = rtc_read_time(rtc, &now);
283 		if (err < 0)
284 			return err;
285 
286 		/* note that tm_sec is a "don't care" value here: */
287 	} while (before.tm_min  != now.tm_min ||
288 		 before.tm_hour != now.tm_hour ||
289 		 before.tm_mon  != now.tm_mon ||
290 		 before.tm_year != now.tm_year);
291 
292 	/* Fill in the missing alarm fields using the timestamp; we
293 	 * know there's at least one since alarm->time is invalid.
294 	 */
295 	if (alarm->time.tm_sec == -1)
296 		alarm->time.tm_sec = now.tm_sec;
297 	if (alarm->time.tm_min == -1)
298 		alarm->time.tm_min = now.tm_min;
299 	if (alarm->time.tm_hour == -1)
300 		alarm->time.tm_hour = now.tm_hour;
301 
302 	/* For simplicity, only support date rollover for now */
303 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
304 		alarm->time.tm_mday = now.tm_mday;
305 		missing = day;
306 	}
307 	if ((unsigned int)alarm->time.tm_mon >= 12) {
308 		alarm->time.tm_mon = now.tm_mon;
309 		if (missing == none)
310 			missing = month;
311 	}
312 	if (alarm->time.tm_year == -1) {
313 		alarm->time.tm_year = now.tm_year;
314 		if (missing == none)
315 			missing = year;
316 	}
317 
318 	/* Can't proceed if alarm is still invalid after replacing
319 	 * missing fields.
320 	 */
321 	err = rtc_valid_tm(&alarm->time);
322 	if (err)
323 		goto done;
324 
325 	/* with luck, no rollover is needed */
326 	t_now = rtc_tm_to_time64(&now);
327 	t_alm = rtc_tm_to_time64(&alarm->time);
328 	if (t_now < t_alm)
329 		goto done;
330 
331 	switch (missing) {
332 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
333 	 * that will trigger at 5am will do so at 5am Tuesday, which
334 	 * could also be in the next month or year.  This is a common
335 	 * case, especially for PCs.
336 	 */
337 	case day:
338 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
339 		t_alm += 24 * 60 * 60;
340 		rtc_time64_to_tm(t_alm, &alarm->time);
341 		break;
342 
343 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
344 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
345 	 * may end up in the month after that!  Many newer PCs support
346 	 * this type of alarm.
347 	 */
348 	case month:
349 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
350 		do {
351 			if (alarm->time.tm_mon < 11) {
352 				alarm->time.tm_mon++;
353 			} else {
354 				alarm->time.tm_mon = 0;
355 				alarm->time.tm_year++;
356 			}
357 			days = rtc_month_days(alarm->time.tm_mon,
358 					      alarm->time.tm_year);
359 		} while (days < alarm->time.tm_mday);
360 		break;
361 
362 	/* Year rollover ... easy except for leap years! */
363 	case year:
364 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
365 		do {
366 			alarm->time.tm_year++;
367 		} while (!is_leap_year(alarm->time.tm_year + 1900) &&
368 			 rtc_valid_tm(&alarm->time) != 0);
369 		break;
370 
371 	default:
372 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
373 	}
374 
375 	err = rtc_valid_tm(&alarm->time);
376 
377 done:
378 	if (err && alarm->enabled)
379 		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
380 			 &alarm->time);
381 	else
382 		rtc_add_offset(rtc, &alarm->time);
383 
384 	return err;
385 }
386 
387 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
388 {
389 	int err;
390 
391 	err = mutex_lock_interruptible(&rtc->ops_lock);
392 	if (err)
393 		return err;
394 	if (!rtc->ops) {
395 		err = -ENODEV;
396 	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) {
397 		err = -EINVAL;
398 	} else {
399 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
400 		alarm->enabled = rtc->aie_timer.enabled;
401 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
402 	}
403 	mutex_unlock(&rtc->ops_lock);
404 
405 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
406 	return err;
407 }
408 EXPORT_SYMBOL_GPL(rtc_read_alarm);
409 
410 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
411 {
412 	struct rtc_time tm;
413 	time64_t now, scheduled;
414 	int err;
415 
416 	err = rtc_valid_tm(&alarm->time);
417 	if (err)
418 		return err;
419 
420 	scheduled = rtc_tm_to_time64(&alarm->time);
421 
422 	/* Make sure we're not setting alarms in the past */
423 	err = __rtc_read_time(rtc, &tm);
424 	if (err)
425 		return err;
426 	now = rtc_tm_to_time64(&tm);
427 
428 	if (scheduled <= now)
429 		return -ETIME;
430 	/*
431 	 * XXX - We just checked to make sure the alarm time is not
432 	 * in the past, but there is still a race window where if
433 	 * the is alarm set for the next second and the second ticks
434 	 * over right here, before we set the alarm.
435 	 */
436 
437 	rtc_subtract_offset(rtc, &alarm->time);
438 
439 	if (!rtc->ops)
440 		err = -ENODEV;
441 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
442 		err = -EINVAL;
443 	else
444 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
445 
446 	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
447 	return err;
448 }
449 
450 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
451 {
452 	ktime_t alarm_time;
453 	int err;
454 
455 	if (!rtc->ops)
456 		return -ENODEV;
457 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
458 		return -EINVAL;
459 
460 	err = rtc_valid_tm(&alarm->time);
461 	if (err != 0)
462 		return err;
463 
464 	err = rtc_valid_range(rtc, &alarm->time);
465 	if (err)
466 		return err;
467 
468 	err = mutex_lock_interruptible(&rtc->ops_lock);
469 	if (err)
470 		return err;
471 	if (rtc->aie_timer.enabled)
472 		rtc_timer_remove(rtc, &rtc->aie_timer);
473 
474 	alarm_time = rtc_tm_to_ktime(alarm->time);
475 	/*
476 	 * Round down so we never miss a deadline, checking for past deadline is
477 	 * done in __rtc_set_alarm
478 	 */
479 	if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features))
480 		alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC);
481 
482 	rtc->aie_timer.node.expires = alarm_time;
483 	rtc->aie_timer.period = 0;
484 	if (alarm->enabled)
485 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
486 
487 	mutex_unlock(&rtc->ops_lock);
488 
489 	return err;
490 }
491 EXPORT_SYMBOL_GPL(rtc_set_alarm);
492 
493 /* Called once per device from rtc_device_register */
494 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
495 {
496 	int err;
497 	struct rtc_time now;
498 
499 	err = rtc_valid_tm(&alarm->time);
500 	if (err != 0)
501 		return err;
502 
503 	err = rtc_read_time(rtc, &now);
504 	if (err)
505 		return err;
506 
507 	err = mutex_lock_interruptible(&rtc->ops_lock);
508 	if (err)
509 		return err;
510 
511 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
512 	rtc->aie_timer.period = 0;
513 
514 	/* Alarm has to be enabled & in the future for us to enqueue it */
515 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
516 			 rtc->aie_timer.node.expires)) {
517 		rtc->aie_timer.enabled = 1;
518 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
519 		trace_rtc_timer_enqueue(&rtc->aie_timer);
520 	}
521 	mutex_unlock(&rtc->ops_lock);
522 	return err;
523 }
524 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
525 
526 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
527 {
528 	int err;
529 
530 	err = mutex_lock_interruptible(&rtc->ops_lock);
531 	if (err)
532 		return err;
533 
534 	if (rtc->aie_timer.enabled != enabled) {
535 		if (enabled)
536 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
537 		else
538 			rtc_timer_remove(rtc, &rtc->aie_timer);
539 	}
540 
541 	if (err)
542 		/* nothing */;
543 	else if (!rtc->ops)
544 		err = -ENODEV;
545 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
546 		err = -EINVAL;
547 	else
548 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
549 
550 	mutex_unlock(&rtc->ops_lock);
551 
552 	trace_rtc_alarm_irq_enable(enabled, err);
553 	return err;
554 }
555 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
556 
557 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
558 {
559 	int err;
560 
561 	err = mutex_lock_interruptible(&rtc->ops_lock);
562 	if (err)
563 		return err;
564 
565 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
566 	if (enabled == 0 && rtc->uie_irq_active) {
567 		mutex_unlock(&rtc->ops_lock);
568 		return rtc_dev_update_irq_enable_emul(rtc, 0);
569 	}
570 #endif
571 	/* make sure we're changing state */
572 	if (rtc->uie_rtctimer.enabled == enabled)
573 		goto out;
574 
575 	if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) ||
576 	    !test_bit(RTC_FEATURE_ALARM, rtc->features)) {
577 		mutex_unlock(&rtc->ops_lock);
578 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
579 		return rtc_dev_update_irq_enable_emul(rtc, enabled);
580 #else
581 		return -EINVAL;
582 #endif
583 	}
584 
585 	if (enabled) {
586 		struct rtc_time tm;
587 		ktime_t now, onesec;
588 
589 		err = __rtc_read_time(rtc, &tm);
590 		if (err)
591 			goto out;
592 		onesec = ktime_set(1, 0);
593 		now = rtc_tm_to_ktime(tm);
594 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
595 		rtc->uie_rtctimer.period = ktime_set(1, 0);
596 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
597 	} else {
598 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
599 	}
600 
601 out:
602 	mutex_unlock(&rtc->ops_lock);
603 
604 	return err;
605 }
606 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
607 
608 /**
609  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
610  * @rtc: pointer to the rtc device
611  * @num: number of occurence of the event
612  * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
613  *
614  * This function is called when an AIE, UIE or PIE mode interrupt
615  * has occurred (or been emulated).
616  *
617  */
618 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
619 {
620 	unsigned long flags;
621 
622 	/* mark one irq of the appropriate mode */
623 	spin_lock_irqsave(&rtc->irq_lock, flags);
624 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
625 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
626 
627 	wake_up_interruptible(&rtc->irq_queue);
628 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
629 }
630 
631 /**
632  * rtc_aie_update_irq - AIE mode rtctimer hook
633  * @rtc: pointer to the rtc_device
634  *
635  * This functions is called when the aie_timer expires.
636  */
637 void rtc_aie_update_irq(struct rtc_device *rtc)
638 {
639 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
640 }
641 
642 /**
643  * rtc_uie_update_irq - UIE mode rtctimer hook
644  * @rtc: pointer to the rtc_device
645  *
646  * This functions is called when the uie_timer expires.
647  */
648 void rtc_uie_update_irq(struct rtc_device *rtc)
649 {
650 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
651 }
652 
653 /**
654  * rtc_pie_update_irq - PIE mode hrtimer hook
655  * @timer: pointer to the pie mode hrtimer
656  *
657  * This function is used to emulate PIE mode interrupts
658  * using an hrtimer. This function is called when the periodic
659  * hrtimer expires.
660  */
661 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
662 {
663 	struct rtc_device *rtc;
664 	ktime_t period;
665 	u64 count;
666 
667 	rtc = container_of(timer, struct rtc_device, pie_timer);
668 
669 	period = NSEC_PER_SEC / rtc->irq_freq;
670 	count = hrtimer_forward_now(timer, period);
671 
672 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
673 
674 	return HRTIMER_RESTART;
675 }
676 
677 /**
678  * rtc_update_irq - Triggered when a RTC interrupt occurs.
679  * @rtc: the rtc device
680  * @num: how many irqs are being reported (usually one)
681  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
682  * Context: any
683  */
684 void rtc_update_irq(struct rtc_device *rtc,
685 		    unsigned long num, unsigned long events)
686 {
687 	if (IS_ERR_OR_NULL(rtc))
688 		return;
689 
690 	pm_stay_awake(rtc->dev.parent);
691 	schedule_work(&rtc->irqwork);
692 }
693 EXPORT_SYMBOL_GPL(rtc_update_irq);
694 
695 struct rtc_device *rtc_class_open(const char *name)
696 {
697 	struct device *dev;
698 	struct rtc_device *rtc = NULL;
699 
700 	dev = class_find_device_by_name(&rtc_class, name);
701 	if (dev)
702 		rtc = to_rtc_device(dev);
703 
704 	if (rtc) {
705 		if (!try_module_get(rtc->owner)) {
706 			put_device(dev);
707 			rtc = NULL;
708 		}
709 	}
710 
711 	return rtc;
712 }
713 EXPORT_SYMBOL_GPL(rtc_class_open);
714 
715 void rtc_class_close(struct rtc_device *rtc)
716 {
717 	module_put(rtc->owner);
718 	put_device(&rtc->dev);
719 }
720 EXPORT_SYMBOL_GPL(rtc_class_close);
721 
722 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
723 {
724 	/*
725 	 * We always cancel the timer here first, because otherwise
726 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
727 	 * when we manage to start the timer before the callback
728 	 * returns HRTIMER_RESTART.
729 	 *
730 	 * We cannot use hrtimer_cancel() here as a running callback
731 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
732 	 * would spin forever.
733 	 */
734 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
735 		return -1;
736 
737 	if (enabled) {
738 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
739 
740 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
741 	}
742 	return 0;
743 }
744 
745 /**
746  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
747  * @rtc: the rtc device
748  * @enabled: true to enable periodic IRQs
749  * Context: any
750  *
751  * Note that rtc_irq_set_freq() should previously have been used to
752  * specify the desired frequency of periodic IRQ.
753  */
754 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
755 {
756 	int err = 0;
757 
758 	while (rtc_update_hrtimer(rtc, enabled) < 0)
759 		cpu_relax();
760 
761 	rtc->pie_enabled = enabled;
762 
763 	trace_rtc_irq_set_state(enabled, err);
764 	return err;
765 }
766 
767 /**
768  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
769  * @rtc: the rtc device
770  * @freq: positive frequency
771  * Context: any
772  *
773  * Note that rtc_irq_set_state() is used to enable or disable the
774  * periodic IRQs.
775  */
776 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
777 {
778 	int err = 0;
779 
780 	if (freq <= 0 || freq > RTC_MAX_FREQ)
781 		return -EINVAL;
782 
783 	rtc->irq_freq = freq;
784 	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
785 		cpu_relax();
786 
787 	trace_rtc_irq_set_freq(freq, err);
788 	return err;
789 }
790 
791 /**
792  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
793  * @rtc: rtc device
794  * @timer: timer being added.
795  *
796  * Enqueues a timer onto the rtc devices timerqueue and sets
797  * the next alarm event appropriately.
798  *
799  * Sets the enabled bit on the added timer.
800  *
801  * Must hold ops_lock for proper serialization of timerqueue
802  */
803 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
804 {
805 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
806 	struct rtc_time tm;
807 	ktime_t now;
808 	int err;
809 
810 	err = __rtc_read_time(rtc, &tm);
811 	if (err)
812 		return err;
813 
814 	timer->enabled = 1;
815 	now = rtc_tm_to_ktime(tm);
816 
817 	/* Skip over expired timers */
818 	while (next) {
819 		if (next->expires >= now)
820 			break;
821 		next = timerqueue_iterate_next(next);
822 	}
823 
824 	timerqueue_add(&rtc->timerqueue, &timer->node);
825 	trace_rtc_timer_enqueue(timer);
826 	if (!next || ktime_before(timer->node.expires, next->expires)) {
827 		struct rtc_wkalrm alarm;
828 
829 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
830 		alarm.enabled = 1;
831 		err = __rtc_set_alarm(rtc, &alarm);
832 		if (err == -ETIME) {
833 			pm_stay_awake(rtc->dev.parent);
834 			schedule_work(&rtc->irqwork);
835 		} else if (err) {
836 			timerqueue_del(&rtc->timerqueue, &timer->node);
837 			trace_rtc_timer_dequeue(timer);
838 			timer->enabled = 0;
839 			return err;
840 		}
841 	}
842 	return 0;
843 }
844 
845 static void rtc_alarm_disable(struct rtc_device *rtc)
846 {
847 	if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
848 		return;
849 
850 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
851 	trace_rtc_alarm_irq_enable(0, 0);
852 }
853 
854 /**
855  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
856  * @rtc: rtc device
857  * @timer: timer being removed.
858  *
859  * Removes a timer onto the rtc devices timerqueue and sets
860  * the next alarm event appropriately.
861  *
862  * Clears the enabled bit on the removed timer.
863  *
864  * Must hold ops_lock for proper serialization of timerqueue
865  */
866 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
867 {
868 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
869 
870 	timerqueue_del(&rtc->timerqueue, &timer->node);
871 	trace_rtc_timer_dequeue(timer);
872 	timer->enabled = 0;
873 	if (next == &timer->node) {
874 		struct rtc_wkalrm alarm;
875 		int err;
876 
877 		next = timerqueue_getnext(&rtc->timerqueue);
878 		if (!next) {
879 			rtc_alarm_disable(rtc);
880 			return;
881 		}
882 		alarm.time = rtc_ktime_to_tm(next->expires);
883 		alarm.enabled = 1;
884 		err = __rtc_set_alarm(rtc, &alarm);
885 		if (err == -ETIME) {
886 			pm_stay_awake(rtc->dev.parent);
887 			schedule_work(&rtc->irqwork);
888 		}
889 	}
890 }
891 
892 /**
893  * rtc_timer_do_work - Expires rtc timers
894  * @work: work item
895  *
896  * Expires rtc timers. Reprograms next alarm event if needed.
897  * Called via worktask.
898  *
899  * Serializes access to timerqueue via ops_lock mutex
900  */
901 void rtc_timer_do_work(struct work_struct *work)
902 {
903 	struct rtc_timer *timer;
904 	struct timerqueue_node *next;
905 	ktime_t now;
906 	struct rtc_time tm;
907 
908 	struct rtc_device *rtc =
909 		container_of(work, struct rtc_device, irqwork);
910 
911 	mutex_lock(&rtc->ops_lock);
912 again:
913 	__rtc_read_time(rtc, &tm);
914 	now = rtc_tm_to_ktime(tm);
915 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
916 		if (next->expires > now)
917 			break;
918 
919 		/* expire timer */
920 		timer = container_of(next, struct rtc_timer, node);
921 		timerqueue_del(&rtc->timerqueue, &timer->node);
922 		trace_rtc_timer_dequeue(timer);
923 		timer->enabled = 0;
924 		if (timer->func)
925 			timer->func(timer->rtc);
926 
927 		trace_rtc_timer_fired(timer);
928 		/* Re-add/fwd periodic timers */
929 		if (ktime_to_ns(timer->period)) {
930 			timer->node.expires = ktime_add(timer->node.expires,
931 							timer->period);
932 			timer->enabled = 1;
933 			timerqueue_add(&rtc->timerqueue, &timer->node);
934 			trace_rtc_timer_enqueue(timer);
935 		}
936 	}
937 
938 	/* Set next alarm */
939 	if (next) {
940 		struct rtc_wkalrm alarm;
941 		int err;
942 		int retry = 3;
943 
944 		alarm.time = rtc_ktime_to_tm(next->expires);
945 		alarm.enabled = 1;
946 reprogram:
947 		err = __rtc_set_alarm(rtc, &alarm);
948 		if (err == -ETIME) {
949 			goto again;
950 		} else if (err) {
951 			if (retry-- > 0)
952 				goto reprogram;
953 
954 			timer = container_of(next, struct rtc_timer, node);
955 			timerqueue_del(&rtc->timerqueue, &timer->node);
956 			trace_rtc_timer_dequeue(timer);
957 			timer->enabled = 0;
958 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
959 			goto again;
960 		}
961 	} else {
962 		rtc_alarm_disable(rtc);
963 	}
964 
965 	pm_relax(rtc->dev.parent);
966 	mutex_unlock(&rtc->ops_lock);
967 }
968 
969 /* rtc_timer_init - Initializes an rtc_timer
970  * @timer: timer to be intiialized
971  * @f: function pointer to be called when timer fires
972  * @rtc: pointer to the rtc_device
973  *
974  * Kernel interface to initializing an rtc_timer.
975  */
976 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
977 		    struct rtc_device *rtc)
978 {
979 	timerqueue_init(&timer->node);
980 	timer->enabled = 0;
981 	timer->func = f;
982 	timer->rtc = rtc;
983 }
984 
985 /* rtc_timer_start - Sets an rtc_timer to fire in the future
986  * @ rtc: rtc device to be used
987  * @ timer: timer being set
988  * @ expires: time at which to expire the timer
989  * @ period: period that the timer will recur
990  *
991  * Kernel interface to set an rtc_timer
992  */
993 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
994 		    ktime_t expires, ktime_t period)
995 {
996 	int ret = 0;
997 
998 	mutex_lock(&rtc->ops_lock);
999 	if (timer->enabled)
1000 		rtc_timer_remove(rtc, timer);
1001 
1002 	timer->node.expires = expires;
1003 	timer->period = period;
1004 
1005 	ret = rtc_timer_enqueue(rtc, timer);
1006 
1007 	mutex_unlock(&rtc->ops_lock);
1008 	return ret;
1009 }
1010 
1011 /* rtc_timer_cancel - Stops an rtc_timer
1012  * @ rtc: rtc device to be used
1013  * @ timer: timer being set
1014  *
1015  * Kernel interface to cancel an rtc_timer
1016  */
1017 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1018 {
1019 	mutex_lock(&rtc->ops_lock);
1020 	if (timer->enabled)
1021 		rtc_timer_remove(rtc, timer);
1022 	mutex_unlock(&rtc->ops_lock);
1023 }
1024 
1025 /**
1026  * rtc_read_offset - Read the amount of rtc offset in parts per billion
1027  * @rtc: rtc device to be used
1028  * @offset: the offset in parts per billion
1029  *
1030  * see below for details.
1031  *
1032  * Kernel interface to read rtc clock offset
1033  * Returns 0 on success, or a negative number on error.
1034  * If read_offset() is not implemented for the rtc, return -EINVAL
1035  */
1036 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1037 {
1038 	int ret;
1039 
1040 	if (!rtc->ops)
1041 		return -ENODEV;
1042 
1043 	if (!rtc->ops->read_offset)
1044 		return -EINVAL;
1045 
1046 	mutex_lock(&rtc->ops_lock);
1047 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1048 	mutex_unlock(&rtc->ops_lock);
1049 
1050 	trace_rtc_read_offset(*offset, ret);
1051 	return ret;
1052 }
1053 
1054 /**
1055  * rtc_set_offset - Adjusts the duration of the average second
1056  * @rtc: rtc device to be used
1057  * @offset: the offset in parts per billion
1058  *
1059  * Some rtc's allow an adjustment to the average duration of a second
1060  * to compensate for differences in the actual clock rate due to temperature,
1061  * the crystal, capacitor, etc.
1062  *
1063  * The adjustment applied is as follows:
1064  *   t = t0 * (1 + offset * 1e-9)
1065  * where t0 is the measured length of 1 RTC second with offset = 0
1066  *
1067  * Kernel interface to adjust an rtc clock offset.
1068  * Return 0 on success, or a negative number on error.
1069  * If the rtc offset is not setable (or not implemented), return -EINVAL
1070  */
1071 int rtc_set_offset(struct rtc_device *rtc, long offset)
1072 {
1073 	int ret;
1074 
1075 	if (!rtc->ops)
1076 		return -ENODEV;
1077 
1078 	if (!rtc->ops->set_offset)
1079 		return -EINVAL;
1080 
1081 	mutex_lock(&rtc->ops_lock);
1082 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1083 	mutex_unlock(&rtc->ops_lock);
1084 
1085 	trace_rtc_set_offset(offset, ret);
1086 	return ret;
1087 }
1088