xref: /linux/drivers/rtc/interface.c (revision 2da572c959dd5815aef153cf62010b16a498a0d3)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 		if (err < 0) {
34 			dev_err(&rtc->dev, "read_time: fail to read\n");
35 			return err;
36 		}
37 
38 		err = rtc_valid_tm(tm);
39 		if (err < 0)
40 			dev_err(&rtc->dev, "read_time: rtc_time isn't valid\n");
41 	}
42 	return err;
43 }
44 
45 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
46 {
47 	int err;
48 
49 	err = mutex_lock_interruptible(&rtc->ops_lock);
50 	if (err)
51 		return err;
52 
53 	err = __rtc_read_time(rtc, tm);
54 	mutex_unlock(&rtc->ops_lock);
55 	return err;
56 }
57 EXPORT_SYMBOL_GPL(rtc_read_time);
58 
59 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
60 {
61 	int err;
62 
63 	err = rtc_valid_tm(tm);
64 	if (err != 0)
65 		return err;
66 
67 	err = mutex_lock_interruptible(&rtc->ops_lock);
68 	if (err)
69 		return err;
70 
71 	if (!rtc->ops)
72 		err = -ENODEV;
73 	else if (rtc->ops->set_time)
74 		err = rtc->ops->set_time(rtc->dev.parent, tm);
75 	else if (rtc->ops->set_mmss64) {
76 		time64_t secs64 = rtc_tm_to_time64(tm);
77 
78 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
79 	} else if (rtc->ops->set_mmss) {
80 		time64_t secs64 = rtc_tm_to_time64(tm);
81 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
82 	} else
83 		err = -EINVAL;
84 
85 	pm_stay_awake(rtc->dev.parent);
86 	mutex_unlock(&rtc->ops_lock);
87 	/* A timer might have just expired */
88 	schedule_work(&rtc->irqwork);
89 	return err;
90 }
91 EXPORT_SYMBOL_GPL(rtc_set_time);
92 
93 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
94 {
95 	int err;
96 
97 	err = mutex_lock_interruptible(&rtc->ops_lock);
98 	if (err)
99 		return err;
100 
101 	if (!rtc->ops)
102 		err = -ENODEV;
103 	else if (rtc->ops->set_mmss64)
104 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs);
105 	else if (rtc->ops->set_mmss)
106 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
107 	else if (rtc->ops->read_time && rtc->ops->set_time) {
108 		struct rtc_time new, old;
109 
110 		err = rtc->ops->read_time(rtc->dev.parent, &old);
111 		if (err == 0) {
112 			rtc_time64_to_tm(secs, &new);
113 
114 			/*
115 			 * avoid writing when we're going to change the day of
116 			 * the month. We will retry in the next minute. This
117 			 * basically means that if the RTC must not drift
118 			 * by more than 1 minute in 11 minutes.
119 			 */
120 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
121 				(new.tm_hour == 23 && new.tm_min == 59)))
122 				err = rtc->ops->set_time(rtc->dev.parent,
123 						&new);
124 		}
125 	} else {
126 		err = -EINVAL;
127 	}
128 
129 	pm_stay_awake(rtc->dev.parent);
130 	mutex_unlock(&rtc->ops_lock);
131 	/* A timer might have just expired */
132 	schedule_work(&rtc->irqwork);
133 
134 	return err;
135 }
136 EXPORT_SYMBOL_GPL(rtc_set_mmss);
137 
138 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
139 {
140 	int err;
141 
142 	err = mutex_lock_interruptible(&rtc->ops_lock);
143 	if (err)
144 		return err;
145 
146 	if (rtc->ops == NULL)
147 		err = -ENODEV;
148 	else if (!rtc->ops->read_alarm)
149 		err = -EINVAL;
150 	else {
151 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
152 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
153 	}
154 
155 	mutex_unlock(&rtc->ops_lock);
156 	return err;
157 }
158 
159 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
160 {
161 	int err;
162 	struct rtc_time before, now;
163 	int first_time = 1;
164 	time64_t t_now, t_alm;
165 	enum { none, day, month, year } missing = none;
166 	unsigned days;
167 
168 	/* The lower level RTC driver may return -1 in some fields,
169 	 * creating invalid alarm->time values, for reasons like:
170 	 *
171 	 *   - The hardware may not be capable of filling them in;
172 	 *     many alarms match only on time-of-day fields, not
173 	 *     day/month/year calendar data.
174 	 *
175 	 *   - Some hardware uses illegal values as "wildcard" match
176 	 *     values, which non-Linux firmware (like a BIOS) may try
177 	 *     to set up as e.g. "alarm 15 minutes after each hour".
178 	 *     Linux uses only oneshot alarms.
179 	 *
180 	 * When we see that here, we deal with it by using values from
181 	 * a current RTC timestamp for any missing (-1) values.  The
182 	 * RTC driver prevents "periodic alarm" modes.
183 	 *
184 	 * But this can be racey, because some fields of the RTC timestamp
185 	 * may have wrapped in the interval since we read the RTC alarm,
186 	 * which would lead to us inserting inconsistent values in place
187 	 * of the -1 fields.
188 	 *
189 	 * Reading the alarm and timestamp in the reverse sequence
190 	 * would have the same race condition, and not solve the issue.
191 	 *
192 	 * So, we must first read the RTC timestamp,
193 	 * then read the RTC alarm value,
194 	 * and then read a second RTC timestamp.
195 	 *
196 	 * If any fields of the second timestamp have changed
197 	 * when compared with the first timestamp, then we know
198 	 * our timestamp may be inconsistent with that used by
199 	 * the low-level rtc_read_alarm_internal() function.
200 	 *
201 	 * So, when the two timestamps disagree, we just loop and do
202 	 * the process again to get a fully consistent set of values.
203 	 *
204 	 * This could all instead be done in the lower level driver,
205 	 * but since more than one lower level RTC implementation needs it,
206 	 * then it's probably best best to do it here instead of there..
207 	 */
208 
209 	/* Get the "before" timestamp */
210 	err = rtc_read_time(rtc, &before);
211 	if (err < 0)
212 		return err;
213 	do {
214 		if (!first_time)
215 			memcpy(&before, &now, sizeof(struct rtc_time));
216 		first_time = 0;
217 
218 		/* get the RTC alarm values, which may be incomplete */
219 		err = rtc_read_alarm_internal(rtc, alarm);
220 		if (err)
221 			return err;
222 
223 		/* full-function RTCs won't have such missing fields */
224 		if (rtc_valid_tm(&alarm->time) == 0)
225 			return 0;
226 
227 		/* get the "after" timestamp, to detect wrapped fields */
228 		err = rtc_read_time(rtc, &now);
229 		if (err < 0)
230 			return err;
231 
232 		/* note that tm_sec is a "don't care" value here: */
233 	} while (   before.tm_min   != now.tm_min
234 		 || before.tm_hour  != now.tm_hour
235 		 || before.tm_mon   != now.tm_mon
236 		 || before.tm_year  != now.tm_year);
237 
238 	/* Fill in the missing alarm fields using the timestamp; we
239 	 * know there's at least one since alarm->time is invalid.
240 	 */
241 	if (alarm->time.tm_sec == -1)
242 		alarm->time.tm_sec = now.tm_sec;
243 	if (alarm->time.tm_min == -1)
244 		alarm->time.tm_min = now.tm_min;
245 	if (alarm->time.tm_hour == -1)
246 		alarm->time.tm_hour = now.tm_hour;
247 
248 	/* For simplicity, only support date rollover for now */
249 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
250 		alarm->time.tm_mday = now.tm_mday;
251 		missing = day;
252 	}
253 	if ((unsigned)alarm->time.tm_mon >= 12) {
254 		alarm->time.tm_mon = now.tm_mon;
255 		if (missing == none)
256 			missing = month;
257 	}
258 	if (alarm->time.tm_year == -1) {
259 		alarm->time.tm_year = now.tm_year;
260 		if (missing == none)
261 			missing = year;
262 	}
263 
264 	/* with luck, no rollover is needed */
265 	t_now = rtc_tm_to_time64(&now);
266 	t_alm = rtc_tm_to_time64(&alarm->time);
267 	if (t_now < t_alm)
268 		goto done;
269 
270 	switch (missing) {
271 
272 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
273 	 * that will trigger at 5am will do so at 5am Tuesday, which
274 	 * could also be in the next month or year.  This is a common
275 	 * case, especially for PCs.
276 	 */
277 	case day:
278 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
279 		t_alm += 24 * 60 * 60;
280 		rtc_time64_to_tm(t_alm, &alarm->time);
281 		break;
282 
283 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
284 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
285 	 * may end up in the month after that!  Many newer PCs support
286 	 * this type of alarm.
287 	 */
288 	case month:
289 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
290 		do {
291 			if (alarm->time.tm_mon < 11)
292 				alarm->time.tm_mon++;
293 			else {
294 				alarm->time.tm_mon = 0;
295 				alarm->time.tm_year++;
296 			}
297 			days = rtc_month_days(alarm->time.tm_mon,
298 					alarm->time.tm_year);
299 		} while (days < alarm->time.tm_mday);
300 		break;
301 
302 	/* Year rollover ... easy except for leap years! */
303 	case year:
304 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
305 		do {
306 			alarm->time.tm_year++;
307 		} while (!is_leap_year(alarm->time.tm_year + 1900)
308 			&& rtc_valid_tm(&alarm->time) != 0);
309 		break;
310 
311 	default:
312 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
313 	}
314 
315 done:
316 	err = rtc_valid_tm(&alarm->time);
317 
318 	if (err) {
319 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
320 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
321 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
322 			alarm->time.tm_sec);
323 	}
324 
325 	return err;
326 }
327 
328 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
329 {
330 	int err;
331 
332 	err = mutex_lock_interruptible(&rtc->ops_lock);
333 	if (err)
334 		return err;
335 	if (rtc->ops == NULL)
336 		err = -ENODEV;
337 	else if (!rtc->ops->read_alarm)
338 		err = -EINVAL;
339 	else {
340 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
341 		alarm->enabled = rtc->aie_timer.enabled;
342 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
343 	}
344 	mutex_unlock(&rtc->ops_lock);
345 
346 	return err;
347 }
348 EXPORT_SYMBOL_GPL(rtc_read_alarm);
349 
350 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
351 {
352 	struct rtc_time tm;
353 	time64_t now, scheduled;
354 	int err;
355 
356 	err = rtc_valid_tm(&alarm->time);
357 	if (err)
358 		return err;
359 	scheduled = rtc_tm_to_time64(&alarm->time);
360 
361 	/* Make sure we're not setting alarms in the past */
362 	err = __rtc_read_time(rtc, &tm);
363 	if (err)
364 		return err;
365 	now = rtc_tm_to_time64(&tm);
366 	if (scheduled <= now)
367 		return -ETIME;
368 	/*
369 	 * XXX - We just checked to make sure the alarm time is not
370 	 * in the past, but there is still a race window where if
371 	 * the is alarm set for the next second and the second ticks
372 	 * over right here, before we set the alarm.
373 	 */
374 
375 	if (!rtc->ops)
376 		err = -ENODEV;
377 	else if (!rtc->ops->set_alarm)
378 		err = -EINVAL;
379 	else
380 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
381 
382 	return err;
383 }
384 
385 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
386 {
387 	int err;
388 
389 	err = rtc_valid_tm(&alarm->time);
390 	if (err != 0)
391 		return err;
392 
393 	err = mutex_lock_interruptible(&rtc->ops_lock);
394 	if (err)
395 		return err;
396 	if (rtc->aie_timer.enabled)
397 		rtc_timer_remove(rtc, &rtc->aie_timer);
398 
399 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
400 	rtc->aie_timer.period = ktime_set(0, 0);
401 	if (alarm->enabled)
402 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
403 
404 	mutex_unlock(&rtc->ops_lock);
405 	return err;
406 }
407 EXPORT_SYMBOL_GPL(rtc_set_alarm);
408 
409 /* Called once per device from rtc_device_register */
410 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
411 {
412 	int err;
413 	struct rtc_time now;
414 
415 	err = rtc_valid_tm(&alarm->time);
416 	if (err != 0)
417 		return err;
418 
419 	err = rtc_read_time(rtc, &now);
420 	if (err)
421 		return err;
422 
423 	err = mutex_lock_interruptible(&rtc->ops_lock);
424 	if (err)
425 		return err;
426 
427 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
428 	rtc->aie_timer.period = ktime_set(0, 0);
429 
430 	/* Alarm has to be enabled & in the futrure for us to enqueue it */
431 	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
432 			 rtc->aie_timer.node.expires.tv64)) {
433 
434 		rtc->aie_timer.enabled = 1;
435 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
436 	}
437 	mutex_unlock(&rtc->ops_lock);
438 	return err;
439 }
440 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
441 
442 
443 
444 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
445 {
446 	int err = mutex_lock_interruptible(&rtc->ops_lock);
447 	if (err)
448 		return err;
449 
450 	if (rtc->aie_timer.enabled != enabled) {
451 		if (enabled)
452 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
453 		else
454 			rtc_timer_remove(rtc, &rtc->aie_timer);
455 	}
456 
457 	if (err)
458 		/* nothing */;
459 	else if (!rtc->ops)
460 		err = -ENODEV;
461 	else if (!rtc->ops->alarm_irq_enable)
462 		err = -EINVAL;
463 	else
464 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
465 
466 	mutex_unlock(&rtc->ops_lock);
467 	return err;
468 }
469 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
470 
471 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
472 {
473 	int err = mutex_lock_interruptible(&rtc->ops_lock);
474 	if (err)
475 		return err;
476 
477 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
478 	if (enabled == 0 && rtc->uie_irq_active) {
479 		mutex_unlock(&rtc->ops_lock);
480 		return rtc_dev_update_irq_enable_emul(rtc, 0);
481 	}
482 #endif
483 	/* make sure we're changing state */
484 	if (rtc->uie_rtctimer.enabled == enabled)
485 		goto out;
486 
487 	if (rtc->uie_unsupported) {
488 		err = -EINVAL;
489 		goto out;
490 	}
491 
492 	if (enabled) {
493 		struct rtc_time tm;
494 		ktime_t now, onesec;
495 
496 		__rtc_read_time(rtc, &tm);
497 		onesec = ktime_set(1, 0);
498 		now = rtc_tm_to_ktime(tm);
499 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
500 		rtc->uie_rtctimer.period = ktime_set(1, 0);
501 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
502 	} else
503 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
504 
505 out:
506 	mutex_unlock(&rtc->ops_lock);
507 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
508 	/*
509 	 * Enable emulation if the driver did not provide
510 	 * the update_irq_enable function pointer or if returned
511 	 * -EINVAL to signal that it has been configured without
512 	 * interrupts or that are not available at the moment.
513 	 */
514 	if (err == -EINVAL)
515 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
516 #endif
517 	return err;
518 
519 }
520 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
521 
522 
523 /**
524  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
525  * @rtc: pointer to the rtc device
526  *
527  * This function is called when an AIE, UIE or PIE mode interrupt
528  * has occurred (or been emulated).
529  *
530  * Triggers the registered irq_task function callback.
531  */
532 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
533 {
534 	unsigned long flags;
535 
536 	/* mark one irq of the appropriate mode */
537 	spin_lock_irqsave(&rtc->irq_lock, flags);
538 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
539 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
540 
541 	/* call the task func */
542 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
543 	if (rtc->irq_task)
544 		rtc->irq_task->func(rtc->irq_task->private_data);
545 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
546 
547 	wake_up_interruptible(&rtc->irq_queue);
548 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
549 }
550 
551 
552 /**
553  * rtc_aie_update_irq - AIE mode rtctimer hook
554  * @private: pointer to the rtc_device
555  *
556  * This functions is called when the aie_timer expires.
557  */
558 void rtc_aie_update_irq(void *private)
559 {
560 	struct rtc_device *rtc = (struct rtc_device *)private;
561 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
562 }
563 
564 
565 /**
566  * rtc_uie_update_irq - UIE mode rtctimer hook
567  * @private: pointer to the rtc_device
568  *
569  * This functions is called when the uie_timer expires.
570  */
571 void rtc_uie_update_irq(void *private)
572 {
573 	struct rtc_device *rtc = (struct rtc_device *)private;
574 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
575 }
576 
577 
578 /**
579  * rtc_pie_update_irq - PIE mode hrtimer hook
580  * @timer: pointer to the pie mode hrtimer
581  *
582  * This function is used to emulate PIE mode interrupts
583  * using an hrtimer. This function is called when the periodic
584  * hrtimer expires.
585  */
586 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
587 {
588 	struct rtc_device *rtc;
589 	ktime_t period;
590 	int count;
591 	rtc = container_of(timer, struct rtc_device, pie_timer);
592 
593 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
594 	count = hrtimer_forward_now(timer, period);
595 
596 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
597 
598 	return HRTIMER_RESTART;
599 }
600 
601 /**
602  * rtc_update_irq - Triggered when a RTC interrupt occurs.
603  * @rtc: the rtc device
604  * @num: how many irqs are being reported (usually one)
605  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
606  * Context: any
607  */
608 void rtc_update_irq(struct rtc_device *rtc,
609 		unsigned long num, unsigned long events)
610 {
611 	if (unlikely(IS_ERR_OR_NULL(rtc)))
612 		return;
613 
614 	pm_stay_awake(rtc->dev.parent);
615 	schedule_work(&rtc->irqwork);
616 }
617 EXPORT_SYMBOL_GPL(rtc_update_irq);
618 
619 static int __rtc_match(struct device *dev, const void *data)
620 {
621 	const char *name = data;
622 
623 	if (strcmp(dev_name(dev), name) == 0)
624 		return 1;
625 	return 0;
626 }
627 
628 struct rtc_device *rtc_class_open(const char *name)
629 {
630 	struct device *dev;
631 	struct rtc_device *rtc = NULL;
632 
633 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
634 	if (dev)
635 		rtc = to_rtc_device(dev);
636 
637 	if (rtc) {
638 		if (!try_module_get(rtc->owner)) {
639 			put_device(dev);
640 			rtc = NULL;
641 		}
642 	}
643 
644 	return rtc;
645 }
646 EXPORT_SYMBOL_GPL(rtc_class_open);
647 
648 void rtc_class_close(struct rtc_device *rtc)
649 {
650 	module_put(rtc->owner);
651 	put_device(&rtc->dev);
652 }
653 EXPORT_SYMBOL_GPL(rtc_class_close);
654 
655 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
656 {
657 	int retval = -EBUSY;
658 
659 	if (task == NULL || task->func == NULL)
660 		return -EINVAL;
661 
662 	/* Cannot register while the char dev is in use */
663 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
664 		return -EBUSY;
665 
666 	spin_lock_irq(&rtc->irq_task_lock);
667 	if (rtc->irq_task == NULL) {
668 		rtc->irq_task = task;
669 		retval = 0;
670 	}
671 	spin_unlock_irq(&rtc->irq_task_lock);
672 
673 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
674 
675 	return retval;
676 }
677 EXPORT_SYMBOL_GPL(rtc_irq_register);
678 
679 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
680 {
681 	spin_lock_irq(&rtc->irq_task_lock);
682 	if (rtc->irq_task == task)
683 		rtc->irq_task = NULL;
684 	spin_unlock_irq(&rtc->irq_task_lock);
685 }
686 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
687 
688 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
689 {
690 	/*
691 	 * We always cancel the timer here first, because otherwise
692 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
693 	 * when we manage to start the timer before the callback
694 	 * returns HRTIMER_RESTART.
695 	 *
696 	 * We cannot use hrtimer_cancel() here as a running callback
697 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
698 	 * would spin forever.
699 	 */
700 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
701 		return -1;
702 
703 	if (enabled) {
704 		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
705 
706 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
707 	}
708 	return 0;
709 }
710 
711 /**
712  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
713  * @rtc: the rtc device
714  * @task: currently registered with rtc_irq_register()
715  * @enabled: true to enable periodic IRQs
716  * Context: any
717  *
718  * Note that rtc_irq_set_freq() should previously have been used to
719  * specify the desired frequency of periodic IRQ task->func() callbacks.
720  */
721 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
722 {
723 	int err = 0;
724 	unsigned long flags;
725 
726 retry:
727 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
728 	if (rtc->irq_task != NULL && task == NULL)
729 		err = -EBUSY;
730 	else if (rtc->irq_task != task)
731 		err = -EACCES;
732 	else {
733 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
734 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
735 			cpu_relax();
736 			goto retry;
737 		}
738 		rtc->pie_enabled = enabled;
739 	}
740 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
741 	return err;
742 }
743 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
744 
745 /**
746  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
747  * @rtc: the rtc device
748  * @task: currently registered with rtc_irq_register()
749  * @freq: positive frequency with which task->func() will be called
750  * Context: any
751  *
752  * Note that rtc_irq_set_state() is used to enable or disable the
753  * periodic IRQs.
754  */
755 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
756 {
757 	int err = 0;
758 	unsigned long flags;
759 
760 	if (freq <= 0 || freq > RTC_MAX_FREQ)
761 		return -EINVAL;
762 retry:
763 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
764 	if (rtc->irq_task != NULL && task == NULL)
765 		err = -EBUSY;
766 	else if (rtc->irq_task != task)
767 		err = -EACCES;
768 	else {
769 		rtc->irq_freq = freq;
770 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
771 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
772 			cpu_relax();
773 			goto retry;
774 		}
775 	}
776 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
777 	return err;
778 }
779 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
780 
781 /**
782  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
783  * @rtc rtc device
784  * @timer timer being added.
785  *
786  * Enqueues a timer onto the rtc devices timerqueue and sets
787  * the next alarm event appropriately.
788  *
789  * Sets the enabled bit on the added timer.
790  *
791  * Must hold ops_lock for proper serialization of timerqueue
792  */
793 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
794 {
795 	timer->enabled = 1;
796 	timerqueue_add(&rtc->timerqueue, &timer->node);
797 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
798 		struct rtc_wkalrm alarm;
799 		int err;
800 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
801 		alarm.enabled = 1;
802 		err = __rtc_set_alarm(rtc, &alarm);
803 		if (err == -ETIME) {
804 			pm_stay_awake(rtc->dev.parent);
805 			schedule_work(&rtc->irqwork);
806 		} else if (err) {
807 			timerqueue_del(&rtc->timerqueue, &timer->node);
808 			timer->enabled = 0;
809 			return err;
810 		}
811 	}
812 	return 0;
813 }
814 
815 static void rtc_alarm_disable(struct rtc_device *rtc)
816 {
817 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
818 		return;
819 
820 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
821 }
822 
823 /**
824  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
825  * @rtc rtc device
826  * @timer timer being removed.
827  *
828  * Removes a timer onto the rtc devices timerqueue and sets
829  * the next alarm event appropriately.
830  *
831  * Clears the enabled bit on the removed timer.
832  *
833  * Must hold ops_lock for proper serialization of timerqueue
834  */
835 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
836 {
837 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
838 	timerqueue_del(&rtc->timerqueue, &timer->node);
839 	timer->enabled = 0;
840 	if (next == &timer->node) {
841 		struct rtc_wkalrm alarm;
842 		int err;
843 		next = timerqueue_getnext(&rtc->timerqueue);
844 		if (!next) {
845 			rtc_alarm_disable(rtc);
846 			return;
847 		}
848 		alarm.time = rtc_ktime_to_tm(next->expires);
849 		alarm.enabled = 1;
850 		err = __rtc_set_alarm(rtc, &alarm);
851 		if (err == -ETIME) {
852 			pm_stay_awake(rtc->dev.parent);
853 			schedule_work(&rtc->irqwork);
854 		}
855 	}
856 }
857 
858 /**
859  * rtc_timer_do_work - Expires rtc timers
860  * @rtc rtc device
861  * @timer timer being removed.
862  *
863  * Expires rtc timers. Reprograms next alarm event if needed.
864  * Called via worktask.
865  *
866  * Serializes access to timerqueue via ops_lock mutex
867  */
868 void rtc_timer_do_work(struct work_struct *work)
869 {
870 	struct rtc_timer *timer;
871 	struct timerqueue_node *next;
872 	ktime_t now;
873 	struct rtc_time tm;
874 
875 	struct rtc_device *rtc =
876 		container_of(work, struct rtc_device, irqwork);
877 
878 	mutex_lock(&rtc->ops_lock);
879 again:
880 	__rtc_read_time(rtc, &tm);
881 	now = rtc_tm_to_ktime(tm);
882 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
883 		if (next->expires.tv64 > now.tv64)
884 			break;
885 
886 		/* expire timer */
887 		timer = container_of(next, struct rtc_timer, node);
888 		timerqueue_del(&rtc->timerqueue, &timer->node);
889 		timer->enabled = 0;
890 		if (timer->task.func)
891 			timer->task.func(timer->task.private_data);
892 
893 		/* Re-add/fwd periodic timers */
894 		if (ktime_to_ns(timer->period)) {
895 			timer->node.expires = ktime_add(timer->node.expires,
896 							timer->period);
897 			timer->enabled = 1;
898 			timerqueue_add(&rtc->timerqueue, &timer->node);
899 		}
900 	}
901 
902 	/* Set next alarm */
903 	if (next) {
904 		struct rtc_wkalrm alarm;
905 		int err;
906 		int retry = 3;
907 
908 		alarm.time = rtc_ktime_to_tm(next->expires);
909 		alarm.enabled = 1;
910 reprogram:
911 		err = __rtc_set_alarm(rtc, &alarm);
912 		if (err == -ETIME)
913 			goto again;
914 		else if (err) {
915 			if (retry-- > 0)
916 				goto reprogram;
917 
918 			timer = container_of(next, struct rtc_timer, node);
919 			timerqueue_del(&rtc->timerqueue, &timer->node);
920 			timer->enabled = 0;
921 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
922 			goto again;
923 		}
924 	} else
925 		rtc_alarm_disable(rtc);
926 
927 	pm_relax(rtc->dev.parent);
928 	mutex_unlock(&rtc->ops_lock);
929 }
930 
931 
932 /* rtc_timer_init - Initializes an rtc_timer
933  * @timer: timer to be intiialized
934  * @f: function pointer to be called when timer fires
935  * @data: private data passed to function pointer
936  *
937  * Kernel interface to initializing an rtc_timer.
938  */
939 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
940 {
941 	timerqueue_init(&timer->node);
942 	timer->enabled = 0;
943 	timer->task.func = f;
944 	timer->task.private_data = data;
945 }
946 
947 /* rtc_timer_start - Sets an rtc_timer to fire in the future
948  * @ rtc: rtc device to be used
949  * @ timer: timer being set
950  * @ expires: time at which to expire the timer
951  * @ period: period that the timer will recur
952  *
953  * Kernel interface to set an rtc_timer
954  */
955 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
956 			ktime_t expires, ktime_t period)
957 {
958 	int ret = 0;
959 	mutex_lock(&rtc->ops_lock);
960 	if (timer->enabled)
961 		rtc_timer_remove(rtc, timer);
962 
963 	timer->node.expires = expires;
964 	timer->period = period;
965 
966 	ret = rtc_timer_enqueue(rtc, timer);
967 
968 	mutex_unlock(&rtc->ops_lock);
969 	return ret;
970 }
971 
972 /* rtc_timer_cancel - Stops an rtc_timer
973  * @ rtc: rtc device to be used
974  * @ timer: timer being set
975  *
976  * Kernel interface to cancel an rtc_timer
977  */
978 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
979 {
980 	int ret = 0;
981 	mutex_lock(&rtc->ops_lock);
982 	if (timer->enabled)
983 		rtc_timer_remove(rtc, timer);
984 	mutex_unlock(&rtc->ops_lock);
985 	return ret;
986 }
987 
988 
989