xref: /linux/drivers/rtc/interface.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 		if (err < 0) {
34 			dev_err(&rtc->dev, "read_time: fail to read\n");
35 			return err;
36 		}
37 
38 		err = rtc_valid_tm(tm);
39 		if (err < 0)
40 			dev_err(&rtc->dev, "read_time: rtc_time isn't valid\n");
41 	}
42 	return err;
43 }
44 
45 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
46 {
47 	int err;
48 
49 	err = mutex_lock_interruptible(&rtc->ops_lock);
50 	if (err)
51 		return err;
52 
53 	err = __rtc_read_time(rtc, tm);
54 	mutex_unlock(&rtc->ops_lock);
55 	return err;
56 }
57 EXPORT_SYMBOL_GPL(rtc_read_time);
58 
59 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
60 {
61 	int err;
62 
63 	err = rtc_valid_tm(tm);
64 	if (err != 0)
65 		return err;
66 
67 	err = mutex_lock_interruptible(&rtc->ops_lock);
68 	if (err)
69 		return err;
70 
71 	if (!rtc->ops)
72 		err = -ENODEV;
73 	else if (rtc->ops->set_time)
74 		err = rtc->ops->set_time(rtc->dev.parent, tm);
75 	else if (rtc->ops->set_mmss) {
76 		time64_t secs64 = rtc_tm_to_time64(tm);
77 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
78 	} else
79 		err = -EINVAL;
80 
81 	pm_stay_awake(rtc->dev.parent);
82 	mutex_unlock(&rtc->ops_lock);
83 	/* A timer might have just expired */
84 	schedule_work(&rtc->irqwork);
85 	return err;
86 }
87 EXPORT_SYMBOL_GPL(rtc_set_time);
88 
89 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
90 {
91 	int err;
92 
93 	err = mutex_lock_interruptible(&rtc->ops_lock);
94 	if (err)
95 		return err;
96 
97 	if (!rtc->ops)
98 		err = -ENODEV;
99 	else if (rtc->ops->set_mmss)
100 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
101 	else if (rtc->ops->read_time && rtc->ops->set_time) {
102 		struct rtc_time new, old;
103 
104 		err = rtc->ops->read_time(rtc->dev.parent, &old);
105 		if (err == 0) {
106 			rtc_time64_to_tm(secs, &new);
107 
108 			/*
109 			 * avoid writing when we're going to change the day of
110 			 * the month. We will retry in the next minute. This
111 			 * basically means that if the RTC must not drift
112 			 * by more than 1 minute in 11 minutes.
113 			 */
114 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
115 				(new.tm_hour == 23 && new.tm_min == 59)))
116 				err = rtc->ops->set_time(rtc->dev.parent,
117 						&new);
118 		}
119 	} else {
120 		err = -EINVAL;
121 	}
122 
123 	pm_stay_awake(rtc->dev.parent);
124 	mutex_unlock(&rtc->ops_lock);
125 	/* A timer might have just expired */
126 	schedule_work(&rtc->irqwork);
127 
128 	return err;
129 }
130 EXPORT_SYMBOL_GPL(rtc_set_mmss);
131 
132 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
133 {
134 	int err;
135 
136 	err = mutex_lock_interruptible(&rtc->ops_lock);
137 	if (err)
138 		return err;
139 
140 	if (rtc->ops == NULL)
141 		err = -ENODEV;
142 	else if (!rtc->ops->read_alarm)
143 		err = -EINVAL;
144 	else {
145 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
146 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
147 	}
148 
149 	mutex_unlock(&rtc->ops_lock);
150 	return err;
151 }
152 
153 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
154 {
155 	int err;
156 	struct rtc_time before, now;
157 	int first_time = 1;
158 	time64_t t_now, t_alm;
159 	enum { none, day, month, year } missing = none;
160 	unsigned days;
161 
162 	/* The lower level RTC driver may return -1 in some fields,
163 	 * creating invalid alarm->time values, for reasons like:
164 	 *
165 	 *   - The hardware may not be capable of filling them in;
166 	 *     many alarms match only on time-of-day fields, not
167 	 *     day/month/year calendar data.
168 	 *
169 	 *   - Some hardware uses illegal values as "wildcard" match
170 	 *     values, which non-Linux firmware (like a BIOS) may try
171 	 *     to set up as e.g. "alarm 15 minutes after each hour".
172 	 *     Linux uses only oneshot alarms.
173 	 *
174 	 * When we see that here, we deal with it by using values from
175 	 * a current RTC timestamp for any missing (-1) values.  The
176 	 * RTC driver prevents "periodic alarm" modes.
177 	 *
178 	 * But this can be racey, because some fields of the RTC timestamp
179 	 * may have wrapped in the interval since we read the RTC alarm,
180 	 * which would lead to us inserting inconsistent values in place
181 	 * of the -1 fields.
182 	 *
183 	 * Reading the alarm and timestamp in the reverse sequence
184 	 * would have the same race condition, and not solve the issue.
185 	 *
186 	 * So, we must first read the RTC timestamp,
187 	 * then read the RTC alarm value,
188 	 * and then read a second RTC timestamp.
189 	 *
190 	 * If any fields of the second timestamp have changed
191 	 * when compared with the first timestamp, then we know
192 	 * our timestamp may be inconsistent with that used by
193 	 * the low-level rtc_read_alarm_internal() function.
194 	 *
195 	 * So, when the two timestamps disagree, we just loop and do
196 	 * the process again to get a fully consistent set of values.
197 	 *
198 	 * This could all instead be done in the lower level driver,
199 	 * but since more than one lower level RTC implementation needs it,
200 	 * then it's probably best best to do it here instead of there..
201 	 */
202 
203 	/* Get the "before" timestamp */
204 	err = rtc_read_time(rtc, &before);
205 	if (err < 0)
206 		return err;
207 	do {
208 		if (!first_time)
209 			memcpy(&before, &now, sizeof(struct rtc_time));
210 		first_time = 0;
211 
212 		/* get the RTC alarm values, which may be incomplete */
213 		err = rtc_read_alarm_internal(rtc, alarm);
214 		if (err)
215 			return err;
216 
217 		/* full-function RTCs won't have such missing fields */
218 		if (rtc_valid_tm(&alarm->time) == 0)
219 			return 0;
220 
221 		/* get the "after" timestamp, to detect wrapped fields */
222 		err = rtc_read_time(rtc, &now);
223 		if (err < 0)
224 			return err;
225 
226 		/* note that tm_sec is a "don't care" value here: */
227 	} while (   before.tm_min   != now.tm_min
228 		 || before.tm_hour  != now.tm_hour
229 		 || before.tm_mon   != now.tm_mon
230 		 || before.tm_year  != now.tm_year);
231 
232 	/* Fill in the missing alarm fields using the timestamp; we
233 	 * know there's at least one since alarm->time is invalid.
234 	 */
235 	if (alarm->time.tm_sec == -1)
236 		alarm->time.tm_sec = now.tm_sec;
237 	if (alarm->time.tm_min == -1)
238 		alarm->time.tm_min = now.tm_min;
239 	if (alarm->time.tm_hour == -1)
240 		alarm->time.tm_hour = now.tm_hour;
241 
242 	/* For simplicity, only support date rollover for now */
243 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
244 		alarm->time.tm_mday = now.tm_mday;
245 		missing = day;
246 	}
247 	if ((unsigned)alarm->time.tm_mon >= 12) {
248 		alarm->time.tm_mon = now.tm_mon;
249 		if (missing == none)
250 			missing = month;
251 	}
252 	if (alarm->time.tm_year == -1) {
253 		alarm->time.tm_year = now.tm_year;
254 		if (missing == none)
255 			missing = year;
256 	}
257 
258 	/* with luck, no rollover is needed */
259 	t_now = rtc_tm_to_time64(&now);
260 	t_alm = rtc_tm_to_time64(&alarm->time);
261 	if (t_now < t_alm)
262 		goto done;
263 
264 	switch (missing) {
265 
266 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
267 	 * that will trigger at 5am will do so at 5am Tuesday, which
268 	 * could also be in the next month or year.  This is a common
269 	 * case, especially for PCs.
270 	 */
271 	case day:
272 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
273 		t_alm += 24 * 60 * 60;
274 		rtc_time64_to_tm(t_alm, &alarm->time);
275 		break;
276 
277 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
278 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
279 	 * may end up in the month after that!  Many newer PCs support
280 	 * this type of alarm.
281 	 */
282 	case month:
283 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
284 		do {
285 			if (alarm->time.tm_mon < 11)
286 				alarm->time.tm_mon++;
287 			else {
288 				alarm->time.tm_mon = 0;
289 				alarm->time.tm_year++;
290 			}
291 			days = rtc_month_days(alarm->time.tm_mon,
292 					alarm->time.tm_year);
293 		} while (days < alarm->time.tm_mday);
294 		break;
295 
296 	/* Year rollover ... easy except for leap years! */
297 	case year:
298 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
299 		do {
300 			alarm->time.tm_year++;
301 		} while (!is_leap_year(alarm->time.tm_year + 1900)
302 			&& rtc_valid_tm(&alarm->time) != 0);
303 		break;
304 
305 	default:
306 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
307 	}
308 
309 done:
310 	err = rtc_valid_tm(&alarm->time);
311 
312 	if (err) {
313 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
314 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
315 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
316 			alarm->time.tm_sec);
317 	}
318 
319 	return err;
320 }
321 
322 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
323 {
324 	int err;
325 
326 	err = mutex_lock_interruptible(&rtc->ops_lock);
327 	if (err)
328 		return err;
329 	if (rtc->ops == NULL)
330 		err = -ENODEV;
331 	else if (!rtc->ops->read_alarm)
332 		err = -EINVAL;
333 	else {
334 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
335 		alarm->enabled = rtc->aie_timer.enabled;
336 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
337 	}
338 	mutex_unlock(&rtc->ops_lock);
339 
340 	return err;
341 }
342 EXPORT_SYMBOL_GPL(rtc_read_alarm);
343 
344 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
345 {
346 	struct rtc_time tm;
347 	time64_t now, scheduled;
348 	int err;
349 
350 	err = rtc_valid_tm(&alarm->time);
351 	if (err)
352 		return err;
353 	scheduled = rtc_tm_to_time64(&alarm->time);
354 
355 	/* Make sure we're not setting alarms in the past */
356 	err = __rtc_read_time(rtc, &tm);
357 	if (err)
358 		return err;
359 	now = rtc_tm_to_time64(&tm);
360 	if (scheduled <= now)
361 		return -ETIME;
362 	/*
363 	 * XXX - We just checked to make sure the alarm time is not
364 	 * in the past, but there is still a race window where if
365 	 * the is alarm set for the next second and the second ticks
366 	 * over right here, before we set the alarm.
367 	 */
368 
369 	if (!rtc->ops)
370 		err = -ENODEV;
371 	else if (!rtc->ops->set_alarm)
372 		err = -EINVAL;
373 	else
374 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
375 
376 	return err;
377 }
378 
379 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
380 {
381 	int err;
382 
383 	err = rtc_valid_tm(&alarm->time);
384 	if (err != 0)
385 		return err;
386 
387 	err = mutex_lock_interruptible(&rtc->ops_lock);
388 	if (err)
389 		return err;
390 	if (rtc->aie_timer.enabled)
391 		rtc_timer_remove(rtc, &rtc->aie_timer);
392 
393 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
394 	rtc->aie_timer.period = ktime_set(0, 0);
395 	if (alarm->enabled)
396 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
397 
398 	mutex_unlock(&rtc->ops_lock);
399 	return err;
400 }
401 EXPORT_SYMBOL_GPL(rtc_set_alarm);
402 
403 /* Called once per device from rtc_device_register */
404 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
405 {
406 	int err;
407 	struct rtc_time now;
408 
409 	err = rtc_valid_tm(&alarm->time);
410 	if (err != 0)
411 		return err;
412 
413 	err = rtc_read_time(rtc, &now);
414 	if (err)
415 		return err;
416 
417 	err = mutex_lock_interruptible(&rtc->ops_lock);
418 	if (err)
419 		return err;
420 
421 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
422 	rtc->aie_timer.period = ktime_set(0, 0);
423 
424 	/* Alarm has to be enabled & in the futrure for us to enqueue it */
425 	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
426 			 rtc->aie_timer.node.expires.tv64)) {
427 
428 		rtc->aie_timer.enabled = 1;
429 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
430 	}
431 	mutex_unlock(&rtc->ops_lock);
432 	return err;
433 }
434 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
435 
436 
437 
438 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
439 {
440 	int err = mutex_lock_interruptible(&rtc->ops_lock);
441 	if (err)
442 		return err;
443 
444 	if (rtc->aie_timer.enabled != enabled) {
445 		if (enabled)
446 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
447 		else
448 			rtc_timer_remove(rtc, &rtc->aie_timer);
449 	}
450 
451 	if (err)
452 		/* nothing */;
453 	else if (!rtc->ops)
454 		err = -ENODEV;
455 	else if (!rtc->ops->alarm_irq_enable)
456 		err = -EINVAL;
457 	else
458 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
459 
460 	mutex_unlock(&rtc->ops_lock);
461 	return err;
462 }
463 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
464 
465 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
466 {
467 	int err = mutex_lock_interruptible(&rtc->ops_lock);
468 	if (err)
469 		return err;
470 
471 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
472 	if (enabled == 0 && rtc->uie_irq_active) {
473 		mutex_unlock(&rtc->ops_lock);
474 		return rtc_dev_update_irq_enable_emul(rtc, 0);
475 	}
476 #endif
477 	/* make sure we're changing state */
478 	if (rtc->uie_rtctimer.enabled == enabled)
479 		goto out;
480 
481 	if (rtc->uie_unsupported) {
482 		err = -EINVAL;
483 		goto out;
484 	}
485 
486 	if (enabled) {
487 		struct rtc_time tm;
488 		ktime_t now, onesec;
489 
490 		__rtc_read_time(rtc, &tm);
491 		onesec = ktime_set(1, 0);
492 		now = rtc_tm_to_ktime(tm);
493 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
494 		rtc->uie_rtctimer.period = ktime_set(1, 0);
495 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
496 	} else
497 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
498 
499 out:
500 	mutex_unlock(&rtc->ops_lock);
501 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
502 	/*
503 	 * Enable emulation if the driver did not provide
504 	 * the update_irq_enable function pointer or if returned
505 	 * -EINVAL to signal that it has been configured without
506 	 * interrupts or that are not available at the moment.
507 	 */
508 	if (err == -EINVAL)
509 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
510 #endif
511 	return err;
512 
513 }
514 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
515 
516 
517 /**
518  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
519  * @rtc: pointer to the rtc device
520  *
521  * This function is called when an AIE, UIE or PIE mode interrupt
522  * has occurred (or been emulated).
523  *
524  * Triggers the registered irq_task function callback.
525  */
526 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
527 {
528 	unsigned long flags;
529 
530 	/* mark one irq of the appropriate mode */
531 	spin_lock_irqsave(&rtc->irq_lock, flags);
532 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
533 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
534 
535 	/* call the task func */
536 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
537 	if (rtc->irq_task)
538 		rtc->irq_task->func(rtc->irq_task->private_data);
539 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
540 
541 	wake_up_interruptible(&rtc->irq_queue);
542 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
543 }
544 
545 
546 /**
547  * rtc_aie_update_irq - AIE mode rtctimer hook
548  * @private: pointer to the rtc_device
549  *
550  * This functions is called when the aie_timer expires.
551  */
552 void rtc_aie_update_irq(void *private)
553 {
554 	struct rtc_device *rtc = (struct rtc_device *)private;
555 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
556 }
557 
558 
559 /**
560  * rtc_uie_update_irq - UIE mode rtctimer hook
561  * @private: pointer to the rtc_device
562  *
563  * This functions is called when the uie_timer expires.
564  */
565 void rtc_uie_update_irq(void *private)
566 {
567 	struct rtc_device *rtc = (struct rtc_device *)private;
568 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
569 }
570 
571 
572 /**
573  * rtc_pie_update_irq - PIE mode hrtimer hook
574  * @timer: pointer to the pie mode hrtimer
575  *
576  * This function is used to emulate PIE mode interrupts
577  * using an hrtimer. This function is called when the periodic
578  * hrtimer expires.
579  */
580 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
581 {
582 	struct rtc_device *rtc;
583 	ktime_t period;
584 	int count;
585 	rtc = container_of(timer, struct rtc_device, pie_timer);
586 
587 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
588 	count = hrtimer_forward_now(timer, period);
589 
590 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
591 
592 	return HRTIMER_RESTART;
593 }
594 
595 /**
596  * rtc_update_irq - Triggered when a RTC interrupt occurs.
597  * @rtc: the rtc device
598  * @num: how many irqs are being reported (usually one)
599  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
600  * Context: any
601  */
602 void rtc_update_irq(struct rtc_device *rtc,
603 		unsigned long num, unsigned long events)
604 {
605 	if (unlikely(IS_ERR_OR_NULL(rtc)))
606 		return;
607 
608 	pm_stay_awake(rtc->dev.parent);
609 	schedule_work(&rtc->irqwork);
610 }
611 EXPORT_SYMBOL_GPL(rtc_update_irq);
612 
613 static int __rtc_match(struct device *dev, const void *data)
614 {
615 	const char *name = data;
616 
617 	if (strcmp(dev_name(dev), name) == 0)
618 		return 1;
619 	return 0;
620 }
621 
622 struct rtc_device *rtc_class_open(const char *name)
623 {
624 	struct device *dev;
625 	struct rtc_device *rtc = NULL;
626 
627 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
628 	if (dev)
629 		rtc = to_rtc_device(dev);
630 
631 	if (rtc) {
632 		if (!try_module_get(rtc->owner)) {
633 			put_device(dev);
634 			rtc = NULL;
635 		}
636 	}
637 
638 	return rtc;
639 }
640 EXPORT_SYMBOL_GPL(rtc_class_open);
641 
642 void rtc_class_close(struct rtc_device *rtc)
643 {
644 	module_put(rtc->owner);
645 	put_device(&rtc->dev);
646 }
647 EXPORT_SYMBOL_GPL(rtc_class_close);
648 
649 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
650 {
651 	int retval = -EBUSY;
652 
653 	if (task == NULL || task->func == NULL)
654 		return -EINVAL;
655 
656 	/* Cannot register while the char dev is in use */
657 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
658 		return -EBUSY;
659 
660 	spin_lock_irq(&rtc->irq_task_lock);
661 	if (rtc->irq_task == NULL) {
662 		rtc->irq_task = task;
663 		retval = 0;
664 	}
665 	spin_unlock_irq(&rtc->irq_task_lock);
666 
667 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
668 
669 	return retval;
670 }
671 EXPORT_SYMBOL_GPL(rtc_irq_register);
672 
673 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
674 {
675 	spin_lock_irq(&rtc->irq_task_lock);
676 	if (rtc->irq_task == task)
677 		rtc->irq_task = NULL;
678 	spin_unlock_irq(&rtc->irq_task_lock);
679 }
680 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
681 
682 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
683 {
684 	/*
685 	 * We always cancel the timer here first, because otherwise
686 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
687 	 * when we manage to start the timer before the callback
688 	 * returns HRTIMER_RESTART.
689 	 *
690 	 * We cannot use hrtimer_cancel() here as a running callback
691 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
692 	 * would spin forever.
693 	 */
694 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
695 		return -1;
696 
697 	if (enabled) {
698 		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
699 
700 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
701 	}
702 	return 0;
703 }
704 
705 /**
706  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
707  * @rtc: the rtc device
708  * @task: currently registered with rtc_irq_register()
709  * @enabled: true to enable periodic IRQs
710  * Context: any
711  *
712  * Note that rtc_irq_set_freq() should previously have been used to
713  * specify the desired frequency of periodic IRQ task->func() callbacks.
714  */
715 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
716 {
717 	int err = 0;
718 	unsigned long flags;
719 
720 retry:
721 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
722 	if (rtc->irq_task != NULL && task == NULL)
723 		err = -EBUSY;
724 	else if (rtc->irq_task != task)
725 		err = -EACCES;
726 	else {
727 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
728 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
729 			cpu_relax();
730 			goto retry;
731 		}
732 		rtc->pie_enabled = enabled;
733 	}
734 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
735 	return err;
736 }
737 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
738 
739 /**
740  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
741  * @rtc: the rtc device
742  * @task: currently registered with rtc_irq_register()
743  * @freq: positive frequency with which task->func() will be called
744  * Context: any
745  *
746  * Note that rtc_irq_set_state() is used to enable or disable the
747  * periodic IRQs.
748  */
749 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
750 {
751 	int err = 0;
752 	unsigned long flags;
753 
754 	if (freq <= 0 || freq > RTC_MAX_FREQ)
755 		return -EINVAL;
756 retry:
757 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
758 	if (rtc->irq_task != NULL && task == NULL)
759 		err = -EBUSY;
760 	else if (rtc->irq_task != task)
761 		err = -EACCES;
762 	else {
763 		rtc->irq_freq = freq;
764 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
765 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
766 			cpu_relax();
767 			goto retry;
768 		}
769 	}
770 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
771 	return err;
772 }
773 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
774 
775 /**
776  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
777  * @rtc rtc device
778  * @timer timer being added.
779  *
780  * Enqueues a timer onto the rtc devices timerqueue and sets
781  * the next alarm event appropriately.
782  *
783  * Sets the enabled bit on the added timer.
784  *
785  * Must hold ops_lock for proper serialization of timerqueue
786  */
787 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
788 {
789 	timer->enabled = 1;
790 	timerqueue_add(&rtc->timerqueue, &timer->node);
791 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
792 		struct rtc_wkalrm alarm;
793 		int err;
794 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
795 		alarm.enabled = 1;
796 		err = __rtc_set_alarm(rtc, &alarm);
797 		if (err == -ETIME) {
798 			pm_stay_awake(rtc->dev.parent);
799 			schedule_work(&rtc->irqwork);
800 		} else if (err) {
801 			timerqueue_del(&rtc->timerqueue, &timer->node);
802 			timer->enabled = 0;
803 			return err;
804 		}
805 	}
806 	return 0;
807 }
808 
809 static void rtc_alarm_disable(struct rtc_device *rtc)
810 {
811 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
812 		return;
813 
814 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
815 }
816 
817 /**
818  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
819  * @rtc rtc device
820  * @timer timer being removed.
821  *
822  * Removes a timer onto the rtc devices timerqueue and sets
823  * the next alarm event appropriately.
824  *
825  * Clears the enabled bit on the removed timer.
826  *
827  * Must hold ops_lock for proper serialization of timerqueue
828  */
829 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
830 {
831 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
832 	timerqueue_del(&rtc->timerqueue, &timer->node);
833 	timer->enabled = 0;
834 	if (next == &timer->node) {
835 		struct rtc_wkalrm alarm;
836 		int err;
837 		next = timerqueue_getnext(&rtc->timerqueue);
838 		if (!next) {
839 			rtc_alarm_disable(rtc);
840 			return;
841 		}
842 		alarm.time = rtc_ktime_to_tm(next->expires);
843 		alarm.enabled = 1;
844 		err = __rtc_set_alarm(rtc, &alarm);
845 		if (err == -ETIME) {
846 			pm_stay_awake(rtc->dev.parent);
847 			schedule_work(&rtc->irqwork);
848 		}
849 	}
850 }
851 
852 /**
853  * rtc_timer_do_work - Expires rtc timers
854  * @rtc rtc device
855  * @timer timer being removed.
856  *
857  * Expires rtc timers. Reprograms next alarm event if needed.
858  * Called via worktask.
859  *
860  * Serializes access to timerqueue via ops_lock mutex
861  */
862 void rtc_timer_do_work(struct work_struct *work)
863 {
864 	struct rtc_timer *timer;
865 	struct timerqueue_node *next;
866 	ktime_t now;
867 	struct rtc_time tm;
868 
869 	struct rtc_device *rtc =
870 		container_of(work, struct rtc_device, irqwork);
871 
872 	mutex_lock(&rtc->ops_lock);
873 again:
874 	__rtc_read_time(rtc, &tm);
875 	now = rtc_tm_to_ktime(tm);
876 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
877 		if (next->expires.tv64 > now.tv64)
878 			break;
879 
880 		/* expire timer */
881 		timer = container_of(next, struct rtc_timer, node);
882 		timerqueue_del(&rtc->timerqueue, &timer->node);
883 		timer->enabled = 0;
884 		if (timer->task.func)
885 			timer->task.func(timer->task.private_data);
886 
887 		/* Re-add/fwd periodic timers */
888 		if (ktime_to_ns(timer->period)) {
889 			timer->node.expires = ktime_add(timer->node.expires,
890 							timer->period);
891 			timer->enabled = 1;
892 			timerqueue_add(&rtc->timerqueue, &timer->node);
893 		}
894 	}
895 
896 	/* Set next alarm */
897 	if (next) {
898 		struct rtc_wkalrm alarm;
899 		int err;
900 		int retry = 3;
901 
902 		alarm.time = rtc_ktime_to_tm(next->expires);
903 		alarm.enabled = 1;
904 reprogram:
905 		err = __rtc_set_alarm(rtc, &alarm);
906 		if (err == -ETIME)
907 			goto again;
908 		else if (err) {
909 			if (retry-- > 0)
910 				goto reprogram;
911 
912 			timer = container_of(next, struct rtc_timer, node);
913 			timerqueue_del(&rtc->timerqueue, &timer->node);
914 			timer->enabled = 0;
915 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
916 			goto again;
917 		}
918 	} else
919 		rtc_alarm_disable(rtc);
920 
921 	pm_relax(rtc->dev.parent);
922 	mutex_unlock(&rtc->ops_lock);
923 }
924 
925 
926 /* rtc_timer_init - Initializes an rtc_timer
927  * @timer: timer to be intiialized
928  * @f: function pointer to be called when timer fires
929  * @data: private data passed to function pointer
930  *
931  * Kernel interface to initializing an rtc_timer.
932  */
933 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
934 {
935 	timerqueue_init(&timer->node);
936 	timer->enabled = 0;
937 	timer->task.func = f;
938 	timer->task.private_data = data;
939 }
940 
941 /* rtc_timer_start - Sets an rtc_timer to fire in the future
942  * @ rtc: rtc device to be used
943  * @ timer: timer being set
944  * @ expires: time at which to expire the timer
945  * @ period: period that the timer will recur
946  *
947  * Kernel interface to set an rtc_timer
948  */
949 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
950 			ktime_t expires, ktime_t period)
951 {
952 	int ret = 0;
953 	mutex_lock(&rtc->ops_lock);
954 	if (timer->enabled)
955 		rtc_timer_remove(rtc, timer);
956 
957 	timer->node.expires = expires;
958 	timer->period = period;
959 
960 	ret = rtc_timer_enqueue(rtc, timer);
961 
962 	mutex_unlock(&rtc->ops_lock);
963 	return ret;
964 }
965 
966 /* rtc_timer_cancel - Stops an rtc_timer
967  * @ rtc: rtc device to be used
968  * @ timer: timer being set
969  *
970  * Kernel interface to cancel an rtc_timer
971  */
972 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
973 {
974 	int ret = 0;
975 	mutex_lock(&rtc->ops_lock);
976 	if (timer->enabled)
977 		rtc_timer_remove(rtc, timer);
978 	mutex_unlock(&rtc->ops_lock);
979 	return ret;
980 }
981 
982 
983