xref: /linux/drivers/rtc/interface.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/rtc.h>
22 
23 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
24 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
25 
26 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
27 {
28 	time64_t secs;
29 
30 	if (!rtc->offset_secs)
31 		return;
32 
33 	secs = rtc_tm_to_time64(tm);
34 
35 	/*
36 	 * Since the reading time values from RTC device are always in the RTC
37 	 * original valid range, but we need to skip the overlapped region
38 	 * between expanded range and original range, which is no need to add
39 	 * the offset.
40 	 */
41 	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
42 	    (rtc->start_secs < rtc->range_min &&
43 	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
44 		return;
45 
46 	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
47 }
48 
49 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
50 {
51 	time64_t secs;
52 
53 	if (!rtc->offset_secs)
54 		return;
55 
56 	secs = rtc_tm_to_time64(tm);
57 
58 	/*
59 	 * If the setting time values are in the valid range of RTC hardware
60 	 * device, then no need to subtract the offset when setting time to RTC
61 	 * device. Otherwise we need to subtract the offset to make the time
62 	 * values are valid for RTC hardware device.
63 	 */
64 	if (secs >= rtc->range_min && secs <= rtc->range_max)
65 		return;
66 
67 	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
68 }
69 
70 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
71 {
72 	if (rtc->range_min != rtc->range_max) {
73 		time64_t time = rtc_tm_to_time64(tm);
74 		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
75 			rtc->range_min;
76 		time64_t range_max = rtc->set_start_time ?
77 			(rtc->start_secs + rtc->range_max - rtc->range_min) :
78 			rtc->range_max;
79 
80 		if (time < range_min || time > range_max)
81 			return -ERANGE;
82 	}
83 
84 	return 0;
85 }
86 
87 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
88 {
89 	int err;
90 	if (!rtc->ops)
91 		err = -ENODEV;
92 	else if (!rtc->ops->read_time)
93 		err = -EINVAL;
94 	else {
95 		memset(tm, 0, sizeof(struct rtc_time));
96 		err = rtc->ops->read_time(rtc->dev.parent, tm);
97 		if (err < 0) {
98 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
99 				err);
100 			return err;
101 		}
102 
103 		rtc_add_offset(rtc, tm);
104 
105 		err = rtc_valid_tm(tm);
106 		if (err < 0)
107 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
108 	}
109 	return err;
110 }
111 
112 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
113 {
114 	int err;
115 
116 	err = mutex_lock_interruptible(&rtc->ops_lock);
117 	if (err)
118 		return err;
119 
120 	err = __rtc_read_time(rtc, tm);
121 	mutex_unlock(&rtc->ops_lock);
122 
123 	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
124 	return err;
125 }
126 EXPORT_SYMBOL_GPL(rtc_read_time);
127 
128 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
129 {
130 	int err;
131 
132 	err = rtc_valid_tm(tm);
133 	if (err != 0)
134 		return err;
135 
136 	err = rtc_valid_range(rtc, tm);
137 	if (err)
138 		return err;
139 
140 	rtc_subtract_offset(rtc, tm);
141 
142 	err = mutex_lock_interruptible(&rtc->ops_lock);
143 	if (err)
144 		return err;
145 
146 	if (!rtc->ops)
147 		err = -ENODEV;
148 	else if (rtc->ops->set_time)
149 		err = rtc->ops->set_time(rtc->dev.parent, tm);
150 	else if (rtc->ops->set_mmss64) {
151 		time64_t secs64 = rtc_tm_to_time64(tm);
152 
153 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
154 	} else if (rtc->ops->set_mmss) {
155 		time64_t secs64 = rtc_tm_to_time64(tm);
156 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
157 	} else
158 		err = -EINVAL;
159 
160 	pm_stay_awake(rtc->dev.parent);
161 	mutex_unlock(&rtc->ops_lock);
162 	/* A timer might have just expired */
163 	schedule_work(&rtc->irqwork);
164 
165 	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
166 	return err;
167 }
168 EXPORT_SYMBOL_GPL(rtc_set_time);
169 
170 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
171 {
172 	int err;
173 
174 	err = mutex_lock_interruptible(&rtc->ops_lock);
175 	if (err)
176 		return err;
177 
178 	if (rtc->ops == NULL)
179 		err = -ENODEV;
180 	else if (!rtc->ops->read_alarm)
181 		err = -EINVAL;
182 	else {
183 		alarm->enabled = 0;
184 		alarm->pending = 0;
185 		alarm->time.tm_sec = -1;
186 		alarm->time.tm_min = -1;
187 		alarm->time.tm_hour = -1;
188 		alarm->time.tm_mday = -1;
189 		alarm->time.tm_mon = -1;
190 		alarm->time.tm_year = -1;
191 		alarm->time.tm_wday = -1;
192 		alarm->time.tm_yday = -1;
193 		alarm->time.tm_isdst = -1;
194 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
195 	}
196 
197 	mutex_unlock(&rtc->ops_lock);
198 
199 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
200 	return err;
201 }
202 
203 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
204 {
205 	int err;
206 	struct rtc_time before, now;
207 	int first_time = 1;
208 	time64_t t_now, t_alm;
209 	enum { none, day, month, year } missing = none;
210 	unsigned days;
211 
212 	/* The lower level RTC driver may return -1 in some fields,
213 	 * creating invalid alarm->time values, for reasons like:
214 	 *
215 	 *   - The hardware may not be capable of filling them in;
216 	 *     many alarms match only on time-of-day fields, not
217 	 *     day/month/year calendar data.
218 	 *
219 	 *   - Some hardware uses illegal values as "wildcard" match
220 	 *     values, which non-Linux firmware (like a BIOS) may try
221 	 *     to set up as e.g. "alarm 15 minutes after each hour".
222 	 *     Linux uses only oneshot alarms.
223 	 *
224 	 * When we see that here, we deal with it by using values from
225 	 * a current RTC timestamp for any missing (-1) values.  The
226 	 * RTC driver prevents "periodic alarm" modes.
227 	 *
228 	 * But this can be racey, because some fields of the RTC timestamp
229 	 * may have wrapped in the interval since we read the RTC alarm,
230 	 * which would lead to us inserting inconsistent values in place
231 	 * of the -1 fields.
232 	 *
233 	 * Reading the alarm and timestamp in the reverse sequence
234 	 * would have the same race condition, and not solve the issue.
235 	 *
236 	 * So, we must first read the RTC timestamp,
237 	 * then read the RTC alarm value,
238 	 * and then read a second RTC timestamp.
239 	 *
240 	 * If any fields of the second timestamp have changed
241 	 * when compared with the first timestamp, then we know
242 	 * our timestamp may be inconsistent with that used by
243 	 * the low-level rtc_read_alarm_internal() function.
244 	 *
245 	 * So, when the two timestamps disagree, we just loop and do
246 	 * the process again to get a fully consistent set of values.
247 	 *
248 	 * This could all instead be done in the lower level driver,
249 	 * but since more than one lower level RTC implementation needs it,
250 	 * then it's probably best best to do it here instead of there..
251 	 */
252 
253 	/* Get the "before" timestamp */
254 	err = rtc_read_time(rtc, &before);
255 	if (err < 0)
256 		return err;
257 	do {
258 		if (!first_time)
259 			memcpy(&before, &now, sizeof(struct rtc_time));
260 		first_time = 0;
261 
262 		/* get the RTC alarm values, which may be incomplete */
263 		err = rtc_read_alarm_internal(rtc, alarm);
264 		if (err)
265 			return err;
266 
267 		/* full-function RTCs won't have such missing fields */
268 		if (rtc_valid_tm(&alarm->time) == 0) {
269 			rtc_add_offset(rtc, &alarm->time);
270 			return 0;
271 		}
272 
273 		/* get the "after" timestamp, to detect wrapped fields */
274 		err = rtc_read_time(rtc, &now);
275 		if (err < 0)
276 			return err;
277 
278 		/* note that tm_sec is a "don't care" value here: */
279 	} while (   before.tm_min   != now.tm_min
280 		 || before.tm_hour  != now.tm_hour
281 		 || before.tm_mon   != now.tm_mon
282 		 || before.tm_year  != now.tm_year);
283 
284 	/* Fill in the missing alarm fields using the timestamp; we
285 	 * know there's at least one since alarm->time is invalid.
286 	 */
287 	if (alarm->time.tm_sec == -1)
288 		alarm->time.tm_sec = now.tm_sec;
289 	if (alarm->time.tm_min == -1)
290 		alarm->time.tm_min = now.tm_min;
291 	if (alarm->time.tm_hour == -1)
292 		alarm->time.tm_hour = now.tm_hour;
293 
294 	/* For simplicity, only support date rollover for now */
295 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
296 		alarm->time.tm_mday = now.tm_mday;
297 		missing = day;
298 	}
299 	if ((unsigned)alarm->time.tm_mon >= 12) {
300 		alarm->time.tm_mon = now.tm_mon;
301 		if (missing == none)
302 			missing = month;
303 	}
304 	if (alarm->time.tm_year == -1) {
305 		alarm->time.tm_year = now.tm_year;
306 		if (missing == none)
307 			missing = year;
308 	}
309 
310 	/* Can't proceed if alarm is still invalid after replacing
311 	 * missing fields.
312 	 */
313 	err = rtc_valid_tm(&alarm->time);
314 	if (err)
315 		goto done;
316 
317 	/* with luck, no rollover is needed */
318 	t_now = rtc_tm_to_time64(&now);
319 	t_alm = rtc_tm_to_time64(&alarm->time);
320 	if (t_now < t_alm)
321 		goto done;
322 
323 	switch (missing) {
324 
325 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
326 	 * that will trigger at 5am will do so at 5am Tuesday, which
327 	 * could also be in the next month or year.  This is a common
328 	 * case, especially for PCs.
329 	 */
330 	case day:
331 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
332 		t_alm += 24 * 60 * 60;
333 		rtc_time64_to_tm(t_alm, &alarm->time);
334 		break;
335 
336 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
337 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
338 	 * may end up in the month after that!  Many newer PCs support
339 	 * this type of alarm.
340 	 */
341 	case month:
342 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
343 		do {
344 			if (alarm->time.tm_mon < 11)
345 				alarm->time.tm_mon++;
346 			else {
347 				alarm->time.tm_mon = 0;
348 				alarm->time.tm_year++;
349 			}
350 			days = rtc_month_days(alarm->time.tm_mon,
351 					alarm->time.tm_year);
352 		} while (days < alarm->time.tm_mday);
353 		break;
354 
355 	/* Year rollover ... easy except for leap years! */
356 	case year:
357 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
358 		do {
359 			alarm->time.tm_year++;
360 		} while (!is_leap_year(alarm->time.tm_year + 1900)
361 			&& rtc_valid_tm(&alarm->time) != 0);
362 		break;
363 
364 	default:
365 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
366 	}
367 
368 	err = rtc_valid_tm(&alarm->time);
369 
370 done:
371 	if (err)
372 		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n", &alarm->time);
373 
374 	return err;
375 }
376 
377 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
378 {
379 	int err;
380 
381 	err = mutex_lock_interruptible(&rtc->ops_lock);
382 	if (err)
383 		return err;
384 	if (rtc->ops == NULL)
385 		err = -ENODEV;
386 	else if (!rtc->ops->read_alarm)
387 		err = -EINVAL;
388 	else {
389 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
390 		alarm->enabled = rtc->aie_timer.enabled;
391 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
392 	}
393 	mutex_unlock(&rtc->ops_lock);
394 
395 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
396 	return err;
397 }
398 EXPORT_SYMBOL_GPL(rtc_read_alarm);
399 
400 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
401 {
402 	struct rtc_time tm;
403 	time64_t now, scheduled;
404 	int err;
405 
406 	err = rtc_valid_tm(&alarm->time);
407 	if (err)
408 		return err;
409 
410 	scheduled = rtc_tm_to_time64(&alarm->time);
411 
412 	/* Make sure we're not setting alarms in the past */
413 	err = __rtc_read_time(rtc, &tm);
414 	if (err)
415 		return err;
416 	now = rtc_tm_to_time64(&tm);
417 	if (scheduled <= now)
418 		return -ETIME;
419 	/*
420 	 * XXX - We just checked to make sure the alarm time is not
421 	 * in the past, but there is still a race window where if
422 	 * the is alarm set for the next second and the second ticks
423 	 * over right here, before we set the alarm.
424 	 */
425 
426 	rtc_subtract_offset(rtc, &alarm->time);
427 
428 	if (!rtc->ops)
429 		err = -ENODEV;
430 	else if (!rtc->ops->set_alarm)
431 		err = -EINVAL;
432 	else
433 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
434 
435 	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
436 	return err;
437 }
438 
439 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
440 {
441 	int err;
442 
443 	if (!rtc->ops)
444 		return -ENODEV;
445 	else if (!rtc->ops->set_alarm)
446 		return -EINVAL;
447 
448 	err = rtc_valid_tm(&alarm->time);
449 	if (err != 0)
450 		return err;
451 
452 	err = rtc_valid_range(rtc, &alarm->time);
453 	if (err)
454 		return err;
455 
456 	err = mutex_lock_interruptible(&rtc->ops_lock);
457 	if (err)
458 		return err;
459 	if (rtc->aie_timer.enabled)
460 		rtc_timer_remove(rtc, &rtc->aie_timer);
461 
462 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
463 	rtc->aie_timer.period = 0;
464 	if (alarm->enabled)
465 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
466 
467 	mutex_unlock(&rtc->ops_lock);
468 
469 	return err;
470 }
471 EXPORT_SYMBOL_GPL(rtc_set_alarm);
472 
473 /* Called once per device from rtc_device_register */
474 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
475 {
476 	int err;
477 	struct rtc_time now;
478 
479 	err = rtc_valid_tm(&alarm->time);
480 	if (err != 0)
481 		return err;
482 
483 	err = rtc_read_time(rtc, &now);
484 	if (err)
485 		return err;
486 
487 	err = mutex_lock_interruptible(&rtc->ops_lock);
488 	if (err)
489 		return err;
490 
491 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
492 	rtc->aie_timer.period = 0;
493 
494 	/* Alarm has to be enabled & in the future for us to enqueue it */
495 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
496 			 rtc->aie_timer.node.expires)) {
497 
498 		rtc->aie_timer.enabled = 1;
499 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
500 		trace_rtc_timer_enqueue(&rtc->aie_timer);
501 	}
502 	mutex_unlock(&rtc->ops_lock);
503 	return err;
504 }
505 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
506 
507 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
508 {
509 	int err = mutex_lock_interruptible(&rtc->ops_lock);
510 	if (err)
511 		return err;
512 
513 	if (rtc->aie_timer.enabled != enabled) {
514 		if (enabled)
515 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
516 		else
517 			rtc_timer_remove(rtc, &rtc->aie_timer);
518 	}
519 
520 	if (err)
521 		/* nothing */;
522 	else if (!rtc->ops)
523 		err = -ENODEV;
524 	else if (!rtc->ops->alarm_irq_enable)
525 		err = -EINVAL;
526 	else
527 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
528 
529 	mutex_unlock(&rtc->ops_lock);
530 
531 	trace_rtc_alarm_irq_enable(enabled, err);
532 	return err;
533 }
534 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
535 
536 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
537 {
538 	int err = mutex_lock_interruptible(&rtc->ops_lock);
539 	if (err)
540 		return err;
541 
542 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
543 	if (enabled == 0 && rtc->uie_irq_active) {
544 		mutex_unlock(&rtc->ops_lock);
545 		return rtc_dev_update_irq_enable_emul(rtc, 0);
546 	}
547 #endif
548 	/* make sure we're changing state */
549 	if (rtc->uie_rtctimer.enabled == enabled)
550 		goto out;
551 
552 	if (rtc->uie_unsupported) {
553 		err = -EINVAL;
554 		goto out;
555 	}
556 
557 	if (enabled) {
558 		struct rtc_time tm;
559 		ktime_t now, onesec;
560 
561 		__rtc_read_time(rtc, &tm);
562 		onesec = ktime_set(1, 0);
563 		now = rtc_tm_to_ktime(tm);
564 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
565 		rtc->uie_rtctimer.period = ktime_set(1, 0);
566 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
567 	} else
568 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
569 
570 out:
571 	mutex_unlock(&rtc->ops_lock);
572 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
573 	/*
574 	 * Enable emulation if the driver did not provide
575 	 * the update_irq_enable function pointer or if returned
576 	 * -EINVAL to signal that it has been configured without
577 	 * interrupts or that are not available at the moment.
578 	 */
579 	if (err == -EINVAL)
580 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
581 #endif
582 	return err;
583 
584 }
585 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
586 
587 
588 /**
589  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
590  * @rtc: pointer to the rtc device
591  *
592  * This function is called when an AIE, UIE or PIE mode interrupt
593  * has occurred (or been emulated).
594  *
595  */
596 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
597 {
598 	unsigned long flags;
599 
600 	/* mark one irq of the appropriate mode */
601 	spin_lock_irqsave(&rtc->irq_lock, flags);
602 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
603 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
604 
605 	wake_up_interruptible(&rtc->irq_queue);
606 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
607 }
608 
609 
610 /**
611  * rtc_aie_update_irq - AIE mode rtctimer hook
612  * @rtc: pointer to the rtc_device
613  *
614  * This functions is called when the aie_timer expires.
615  */
616 void rtc_aie_update_irq(struct rtc_device *rtc)
617 {
618 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
619 }
620 
621 
622 /**
623  * rtc_uie_update_irq - UIE mode rtctimer hook
624  * @rtc: pointer to the rtc_device
625  *
626  * This functions is called when the uie_timer expires.
627  */
628 void rtc_uie_update_irq(struct rtc_device *rtc)
629 {
630 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
631 }
632 
633 
634 /**
635  * rtc_pie_update_irq - PIE mode hrtimer hook
636  * @timer: pointer to the pie mode hrtimer
637  *
638  * This function is used to emulate PIE mode interrupts
639  * using an hrtimer. This function is called when the periodic
640  * hrtimer expires.
641  */
642 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
643 {
644 	struct rtc_device *rtc;
645 	ktime_t period;
646 	int count;
647 	rtc = container_of(timer, struct rtc_device, pie_timer);
648 
649 	period = NSEC_PER_SEC / rtc->irq_freq;
650 	count = hrtimer_forward_now(timer, period);
651 
652 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
653 
654 	return HRTIMER_RESTART;
655 }
656 
657 /**
658  * rtc_update_irq - Triggered when a RTC interrupt occurs.
659  * @rtc: the rtc device
660  * @num: how many irqs are being reported (usually one)
661  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
662  * Context: any
663  */
664 void rtc_update_irq(struct rtc_device *rtc,
665 		unsigned long num, unsigned long events)
666 {
667 	if (IS_ERR_OR_NULL(rtc))
668 		return;
669 
670 	pm_stay_awake(rtc->dev.parent);
671 	schedule_work(&rtc->irqwork);
672 }
673 EXPORT_SYMBOL_GPL(rtc_update_irq);
674 
675 static int __rtc_match(struct device *dev, const void *data)
676 {
677 	const char *name = data;
678 
679 	if (strcmp(dev_name(dev), name) == 0)
680 		return 1;
681 	return 0;
682 }
683 
684 struct rtc_device *rtc_class_open(const char *name)
685 {
686 	struct device *dev;
687 	struct rtc_device *rtc = NULL;
688 
689 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
690 	if (dev)
691 		rtc = to_rtc_device(dev);
692 
693 	if (rtc) {
694 		if (!try_module_get(rtc->owner)) {
695 			put_device(dev);
696 			rtc = NULL;
697 		}
698 	}
699 
700 	return rtc;
701 }
702 EXPORT_SYMBOL_GPL(rtc_class_open);
703 
704 void rtc_class_close(struct rtc_device *rtc)
705 {
706 	module_put(rtc->owner);
707 	put_device(&rtc->dev);
708 }
709 EXPORT_SYMBOL_GPL(rtc_class_close);
710 
711 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
712 {
713 	/*
714 	 * We always cancel the timer here first, because otherwise
715 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
716 	 * when we manage to start the timer before the callback
717 	 * returns HRTIMER_RESTART.
718 	 *
719 	 * We cannot use hrtimer_cancel() here as a running callback
720 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
721 	 * would spin forever.
722 	 */
723 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
724 		return -1;
725 
726 	if (enabled) {
727 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
728 
729 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
730 	}
731 	return 0;
732 }
733 
734 /**
735  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
736  * @rtc: the rtc device
737  * @enabled: true to enable periodic IRQs
738  * Context: any
739  *
740  * Note that rtc_irq_set_freq() should previously have been used to
741  * specify the desired frequency of periodic IRQ.
742  */
743 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
744 {
745 	int err = 0;
746 
747 	while (rtc_update_hrtimer(rtc, enabled) < 0)
748 		cpu_relax();
749 
750 	rtc->pie_enabled = enabled;
751 
752 	trace_rtc_irq_set_state(enabled, err);
753 	return err;
754 }
755 
756 /**
757  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
758  * @rtc: the rtc device
759  * @freq: positive frequency
760  * Context: any
761  *
762  * Note that rtc_irq_set_state() is used to enable or disable the
763  * periodic IRQs.
764  */
765 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
766 {
767 	int err = 0;
768 
769 	if (freq <= 0 || freq > RTC_MAX_FREQ)
770 		return -EINVAL;
771 
772 	rtc->irq_freq = freq;
773 	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
774 		cpu_relax();
775 
776 	trace_rtc_irq_set_freq(freq, err);
777 	return err;
778 }
779 
780 /**
781  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
782  * @rtc rtc device
783  * @timer timer being added.
784  *
785  * Enqueues a timer onto the rtc devices timerqueue and sets
786  * the next alarm event appropriately.
787  *
788  * Sets the enabled bit on the added timer.
789  *
790  * Must hold ops_lock for proper serialization of timerqueue
791  */
792 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
793 {
794 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
795 	struct rtc_time tm;
796 	ktime_t now;
797 
798 	timer->enabled = 1;
799 	__rtc_read_time(rtc, &tm);
800 	now = rtc_tm_to_ktime(tm);
801 
802 	/* Skip over expired timers */
803 	while (next) {
804 		if (next->expires >= now)
805 			break;
806 		next = timerqueue_iterate_next(next);
807 	}
808 
809 	timerqueue_add(&rtc->timerqueue, &timer->node);
810 	trace_rtc_timer_enqueue(timer);
811 	if (!next || ktime_before(timer->node.expires, next->expires)) {
812 		struct rtc_wkalrm alarm;
813 		int err;
814 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
815 		alarm.enabled = 1;
816 		err = __rtc_set_alarm(rtc, &alarm);
817 		if (err == -ETIME) {
818 			pm_stay_awake(rtc->dev.parent);
819 			schedule_work(&rtc->irqwork);
820 		} else if (err) {
821 			timerqueue_del(&rtc->timerqueue, &timer->node);
822 			trace_rtc_timer_dequeue(timer);
823 			timer->enabled = 0;
824 			return err;
825 		}
826 	}
827 	return 0;
828 }
829 
830 static void rtc_alarm_disable(struct rtc_device *rtc)
831 {
832 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
833 		return;
834 
835 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
836 	trace_rtc_alarm_irq_enable(0, 0);
837 }
838 
839 /**
840  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
841  * @rtc rtc device
842  * @timer timer being removed.
843  *
844  * Removes a timer onto the rtc devices timerqueue and sets
845  * the next alarm event appropriately.
846  *
847  * Clears the enabled bit on the removed timer.
848  *
849  * Must hold ops_lock for proper serialization of timerqueue
850  */
851 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
852 {
853 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
854 	timerqueue_del(&rtc->timerqueue, &timer->node);
855 	trace_rtc_timer_dequeue(timer);
856 	timer->enabled = 0;
857 	if (next == &timer->node) {
858 		struct rtc_wkalrm alarm;
859 		int err;
860 		next = timerqueue_getnext(&rtc->timerqueue);
861 		if (!next) {
862 			rtc_alarm_disable(rtc);
863 			return;
864 		}
865 		alarm.time = rtc_ktime_to_tm(next->expires);
866 		alarm.enabled = 1;
867 		err = __rtc_set_alarm(rtc, &alarm);
868 		if (err == -ETIME) {
869 			pm_stay_awake(rtc->dev.parent);
870 			schedule_work(&rtc->irqwork);
871 		}
872 	}
873 }
874 
875 /**
876  * rtc_timer_do_work - Expires rtc timers
877  * @rtc rtc device
878  * @timer timer being removed.
879  *
880  * Expires rtc timers. Reprograms next alarm event if needed.
881  * Called via worktask.
882  *
883  * Serializes access to timerqueue via ops_lock mutex
884  */
885 void rtc_timer_do_work(struct work_struct *work)
886 {
887 	struct rtc_timer *timer;
888 	struct timerqueue_node *next;
889 	ktime_t now;
890 	struct rtc_time tm;
891 
892 	struct rtc_device *rtc =
893 		container_of(work, struct rtc_device, irqwork);
894 
895 	mutex_lock(&rtc->ops_lock);
896 again:
897 	__rtc_read_time(rtc, &tm);
898 	now = rtc_tm_to_ktime(tm);
899 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
900 		if (next->expires > now)
901 			break;
902 
903 		/* expire timer */
904 		timer = container_of(next, struct rtc_timer, node);
905 		timerqueue_del(&rtc->timerqueue, &timer->node);
906 		trace_rtc_timer_dequeue(timer);
907 		timer->enabled = 0;
908 		if (timer->func)
909 			timer->func(timer->rtc);
910 
911 		trace_rtc_timer_fired(timer);
912 		/* Re-add/fwd periodic timers */
913 		if (ktime_to_ns(timer->period)) {
914 			timer->node.expires = ktime_add(timer->node.expires,
915 							timer->period);
916 			timer->enabled = 1;
917 			timerqueue_add(&rtc->timerqueue, &timer->node);
918 			trace_rtc_timer_enqueue(timer);
919 		}
920 	}
921 
922 	/* Set next alarm */
923 	if (next) {
924 		struct rtc_wkalrm alarm;
925 		int err;
926 		int retry = 3;
927 
928 		alarm.time = rtc_ktime_to_tm(next->expires);
929 		alarm.enabled = 1;
930 reprogram:
931 		err = __rtc_set_alarm(rtc, &alarm);
932 		if (err == -ETIME)
933 			goto again;
934 		else if (err) {
935 			if (retry-- > 0)
936 				goto reprogram;
937 
938 			timer = container_of(next, struct rtc_timer, node);
939 			timerqueue_del(&rtc->timerqueue, &timer->node);
940 			trace_rtc_timer_dequeue(timer);
941 			timer->enabled = 0;
942 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
943 			goto again;
944 		}
945 	} else
946 		rtc_alarm_disable(rtc);
947 
948 	pm_relax(rtc->dev.parent);
949 	mutex_unlock(&rtc->ops_lock);
950 }
951 
952 
953 /* rtc_timer_init - Initializes an rtc_timer
954  * @timer: timer to be intiialized
955  * @f: function pointer to be called when timer fires
956  * @rtc: pointer to the rtc_device
957  *
958  * Kernel interface to initializing an rtc_timer.
959  */
960 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
961 		    struct rtc_device *rtc)
962 {
963 	timerqueue_init(&timer->node);
964 	timer->enabled = 0;
965 	timer->func = f;
966 	timer->rtc = rtc;
967 }
968 
969 /* rtc_timer_start - Sets an rtc_timer to fire in the future
970  * @ rtc: rtc device to be used
971  * @ timer: timer being set
972  * @ expires: time at which to expire the timer
973  * @ period: period that the timer will recur
974  *
975  * Kernel interface to set an rtc_timer
976  */
977 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
978 			ktime_t expires, ktime_t period)
979 {
980 	int ret = 0;
981 	mutex_lock(&rtc->ops_lock);
982 	if (timer->enabled)
983 		rtc_timer_remove(rtc, timer);
984 
985 	timer->node.expires = expires;
986 	timer->period = period;
987 
988 	ret = rtc_timer_enqueue(rtc, timer);
989 
990 	mutex_unlock(&rtc->ops_lock);
991 	return ret;
992 }
993 
994 /* rtc_timer_cancel - Stops an rtc_timer
995  * @ rtc: rtc device to be used
996  * @ timer: timer being set
997  *
998  * Kernel interface to cancel an rtc_timer
999  */
1000 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1001 {
1002 	mutex_lock(&rtc->ops_lock);
1003 	if (timer->enabled)
1004 		rtc_timer_remove(rtc, timer);
1005 	mutex_unlock(&rtc->ops_lock);
1006 }
1007 
1008 /**
1009  * rtc_read_offset - Read the amount of rtc offset in parts per billion
1010  * @ rtc: rtc device to be used
1011  * @ offset: the offset in parts per billion
1012  *
1013  * see below for details.
1014  *
1015  * Kernel interface to read rtc clock offset
1016  * Returns 0 on success, or a negative number on error.
1017  * If read_offset() is not implemented for the rtc, return -EINVAL
1018  */
1019 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1020 {
1021 	int ret;
1022 
1023 	if (!rtc->ops)
1024 		return -ENODEV;
1025 
1026 	if (!rtc->ops->read_offset)
1027 		return -EINVAL;
1028 
1029 	mutex_lock(&rtc->ops_lock);
1030 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1031 	mutex_unlock(&rtc->ops_lock);
1032 
1033 	trace_rtc_read_offset(*offset, ret);
1034 	return ret;
1035 }
1036 
1037 /**
1038  * rtc_set_offset - Adjusts the duration of the average second
1039  * @ rtc: rtc device to be used
1040  * @ offset: the offset in parts per billion
1041  *
1042  * Some rtc's allow an adjustment to the average duration of a second
1043  * to compensate for differences in the actual clock rate due to temperature,
1044  * the crystal, capacitor, etc.
1045  *
1046  * The adjustment applied is as follows:
1047  *   t = t0 * (1 + offset * 1e-9)
1048  * where t0 is the measured length of 1 RTC second with offset = 0
1049  *
1050  * Kernel interface to adjust an rtc clock offset.
1051  * Return 0 on success, or a negative number on error.
1052  * If the rtc offset is not setable (or not implemented), return -EINVAL
1053  */
1054 int rtc_set_offset(struct rtc_device *rtc, long offset)
1055 {
1056 	int ret;
1057 
1058 	if (!rtc->ops)
1059 		return -ENODEV;
1060 
1061 	if (!rtc->ops->set_offset)
1062 		return -EINVAL;
1063 
1064 	mutex_lock(&rtc->ops_lock);
1065 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1066 	mutex_unlock(&rtc->ops_lock);
1067 
1068 	trace_rtc_set_offset(offset, ret);
1069 	return ret;
1070 }
1071