xref: /linux/drivers/rtc/interface.c (revision 23c48a124b469cee2eb0c75e6d22d366d1caa118)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC subsystem, interface functions
4  *
5  * Copyright (C) 2005 Tower Technologies
6  * Author: Alessandro Zummo <a.zummo@towertech.it>
7  *
8  * based on arch/arm/common/rtctime.c
9  */
10 
11 #include <linux/rtc.h>
12 #include <linux/sched.h>
13 #include <linux/module.h>
14 #include <linux/log2.h>
15 #include <linux/workqueue.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/rtc.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	time64_t secs;
26 
27 	if (!rtc->offset_secs)
28 		return;
29 
30 	secs = rtc_tm_to_time64(tm);
31 
32 	/*
33 	 * Since the reading time values from RTC device are always in the RTC
34 	 * original valid range, but we need to skip the overlapped region
35 	 * between expanded range and original range, which is no need to add
36 	 * the offset.
37 	 */
38 	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 	    (rtc->start_secs < rtc->range_min &&
40 	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 		return;
42 
43 	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
44 }
45 
46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	time64_t secs;
49 
50 	if (!rtc->offset_secs)
51 		return;
52 
53 	secs = rtc_tm_to_time64(tm);
54 
55 	/*
56 	 * If the setting time values are in the valid range of RTC hardware
57 	 * device, then no need to subtract the offset when setting time to RTC
58 	 * device. Otherwise we need to subtract the offset to make the time
59 	 * values are valid for RTC hardware device.
60 	 */
61 	if (secs >= rtc->range_min && secs <= rtc->range_max)
62 		return;
63 
64 	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
65 }
66 
67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
68 {
69 	if (rtc->range_min != rtc->range_max) {
70 		time64_t time = rtc_tm_to_time64(tm);
71 		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 			rtc->range_min;
73 		timeu64_t range_max = rtc->set_start_time ?
74 			(rtc->start_secs + rtc->range_max - rtc->range_min) :
75 			rtc->range_max;
76 
77 		if (time < range_min || time > range_max)
78 			return -ERANGE;
79 	}
80 
81 	return 0;
82 }
83 
84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
85 {
86 	int err;
87 
88 	if (!rtc->ops) {
89 		err = -ENODEV;
90 	} else if (!rtc->ops->read_time) {
91 		err = -EINVAL;
92 	} else {
93 		memset(tm, 0, sizeof(struct rtc_time));
94 		err = rtc->ops->read_time(rtc->dev.parent, tm);
95 		if (err < 0) {
96 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 				err);
98 			return err;
99 		}
100 
101 		rtc_add_offset(rtc, tm);
102 
103 		err = rtc_valid_tm(tm);
104 		if (err < 0)
105 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
106 	}
107 	return err;
108 }
109 
110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
111 {
112 	int err;
113 
114 	err = mutex_lock_interruptible(&rtc->ops_lock);
115 	if (err)
116 		return err;
117 
118 	err = __rtc_read_time(rtc, tm);
119 	mutex_unlock(&rtc->ops_lock);
120 
121 	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 	return err;
123 }
124 EXPORT_SYMBOL_GPL(rtc_read_time);
125 
126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
127 {
128 	int err, uie;
129 
130 	err = rtc_valid_tm(tm);
131 	if (err != 0)
132 		return err;
133 
134 	err = rtc_valid_range(rtc, tm);
135 	if (err)
136 		return err;
137 
138 	rtc_subtract_offset(rtc, tm);
139 
140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
141 	uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
142 #else
143 	uie = rtc->uie_rtctimer.enabled;
144 #endif
145 	if (uie) {
146 		err = rtc_update_irq_enable(rtc, 0);
147 		if (err)
148 			return err;
149 	}
150 
151 	err = mutex_lock_interruptible(&rtc->ops_lock);
152 	if (err)
153 		return err;
154 
155 	if (!rtc->ops)
156 		err = -ENODEV;
157 	else if (rtc->ops->set_time)
158 		err = rtc->ops->set_time(rtc->dev.parent, tm);
159 	else
160 		err = -EINVAL;
161 
162 	pm_stay_awake(rtc->dev.parent);
163 	mutex_unlock(&rtc->ops_lock);
164 	/* A timer might have just expired */
165 	schedule_work(&rtc->irqwork);
166 
167 	if (uie) {
168 		err = rtc_update_irq_enable(rtc, 1);
169 		if (err)
170 			return err;
171 	}
172 
173 	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
174 	return err;
175 }
176 EXPORT_SYMBOL_GPL(rtc_set_time);
177 
178 static int rtc_read_alarm_internal(struct rtc_device *rtc,
179 				   struct rtc_wkalrm *alarm)
180 {
181 	int err;
182 
183 	err = mutex_lock_interruptible(&rtc->ops_lock);
184 	if (err)
185 		return err;
186 
187 	if (!rtc->ops) {
188 		err = -ENODEV;
189 	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
190 		err = -EINVAL;
191 	} else {
192 		alarm->enabled = 0;
193 		alarm->pending = 0;
194 		alarm->time.tm_sec = -1;
195 		alarm->time.tm_min = -1;
196 		alarm->time.tm_hour = -1;
197 		alarm->time.tm_mday = -1;
198 		alarm->time.tm_mon = -1;
199 		alarm->time.tm_year = -1;
200 		alarm->time.tm_wday = -1;
201 		alarm->time.tm_yday = -1;
202 		alarm->time.tm_isdst = -1;
203 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
204 	}
205 
206 	mutex_unlock(&rtc->ops_lock);
207 
208 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
209 	return err;
210 }
211 
212 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
213 {
214 	int err;
215 	struct rtc_time before, now;
216 	int first_time = 1;
217 	time64_t t_now, t_alm;
218 	enum { none, day, month, year } missing = none;
219 	unsigned int days;
220 
221 	/* The lower level RTC driver may return -1 in some fields,
222 	 * creating invalid alarm->time values, for reasons like:
223 	 *
224 	 *   - The hardware may not be capable of filling them in;
225 	 *     many alarms match only on time-of-day fields, not
226 	 *     day/month/year calendar data.
227 	 *
228 	 *   - Some hardware uses illegal values as "wildcard" match
229 	 *     values, which non-Linux firmware (like a BIOS) may try
230 	 *     to set up as e.g. "alarm 15 minutes after each hour".
231 	 *     Linux uses only oneshot alarms.
232 	 *
233 	 * When we see that here, we deal with it by using values from
234 	 * a current RTC timestamp for any missing (-1) values.  The
235 	 * RTC driver prevents "periodic alarm" modes.
236 	 *
237 	 * But this can be racey, because some fields of the RTC timestamp
238 	 * may have wrapped in the interval since we read the RTC alarm,
239 	 * which would lead to us inserting inconsistent values in place
240 	 * of the -1 fields.
241 	 *
242 	 * Reading the alarm and timestamp in the reverse sequence
243 	 * would have the same race condition, and not solve the issue.
244 	 *
245 	 * So, we must first read the RTC timestamp,
246 	 * then read the RTC alarm value,
247 	 * and then read a second RTC timestamp.
248 	 *
249 	 * If any fields of the second timestamp have changed
250 	 * when compared with the first timestamp, then we know
251 	 * our timestamp may be inconsistent with that used by
252 	 * the low-level rtc_read_alarm_internal() function.
253 	 *
254 	 * So, when the two timestamps disagree, we just loop and do
255 	 * the process again to get a fully consistent set of values.
256 	 *
257 	 * This could all instead be done in the lower level driver,
258 	 * but since more than one lower level RTC implementation needs it,
259 	 * then it's probably best best to do it here instead of there..
260 	 */
261 
262 	/* Get the "before" timestamp */
263 	err = rtc_read_time(rtc, &before);
264 	if (err < 0)
265 		return err;
266 	do {
267 		if (!first_time)
268 			memcpy(&before, &now, sizeof(struct rtc_time));
269 		first_time = 0;
270 
271 		/* get the RTC alarm values, which may be incomplete */
272 		err = rtc_read_alarm_internal(rtc, alarm);
273 		if (err)
274 			return err;
275 
276 		/* full-function RTCs won't have such missing fields */
277 		if (rtc_valid_tm(&alarm->time) == 0) {
278 			rtc_add_offset(rtc, &alarm->time);
279 			return 0;
280 		}
281 
282 		/* get the "after" timestamp, to detect wrapped fields */
283 		err = rtc_read_time(rtc, &now);
284 		if (err < 0)
285 			return err;
286 
287 		/* note that tm_sec is a "don't care" value here: */
288 	} while (before.tm_min  != now.tm_min ||
289 		 before.tm_hour != now.tm_hour ||
290 		 before.tm_mon  != now.tm_mon ||
291 		 before.tm_year != now.tm_year);
292 
293 	/* Fill in the missing alarm fields using the timestamp; we
294 	 * know there's at least one since alarm->time is invalid.
295 	 */
296 	if (alarm->time.tm_sec == -1)
297 		alarm->time.tm_sec = now.tm_sec;
298 	if (alarm->time.tm_min == -1)
299 		alarm->time.tm_min = now.tm_min;
300 	if (alarm->time.tm_hour == -1)
301 		alarm->time.tm_hour = now.tm_hour;
302 
303 	/* For simplicity, only support date rollover for now */
304 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
305 		alarm->time.tm_mday = now.tm_mday;
306 		missing = day;
307 	}
308 	if ((unsigned int)alarm->time.tm_mon >= 12) {
309 		alarm->time.tm_mon = now.tm_mon;
310 		if (missing == none)
311 			missing = month;
312 	}
313 	if (alarm->time.tm_year == -1) {
314 		alarm->time.tm_year = now.tm_year;
315 		if (missing == none)
316 			missing = year;
317 	}
318 
319 	/* Can't proceed if alarm is still invalid after replacing
320 	 * missing fields.
321 	 */
322 	err = rtc_valid_tm(&alarm->time);
323 	if (err)
324 		goto done;
325 
326 	/* with luck, no rollover is needed */
327 	t_now = rtc_tm_to_time64(&now);
328 	t_alm = rtc_tm_to_time64(&alarm->time);
329 	if (t_now < t_alm)
330 		goto done;
331 
332 	switch (missing) {
333 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
334 	 * that will trigger at 5am will do so at 5am Tuesday, which
335 	 * could also be in the next month or year.  This is a common
336 	 * case, especially for PCs.
337 	 */
338 	case day:
339 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
340 		t_alm += 24 * 60 * 60;
341 		rtc_time64_to_tm(t_alm, &alarm->time);
342 		break;
343 
344 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
345 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
346 	 * may end up in the month after that!  Many newer PCs support
347 	 * this type of alarm.
348 	 */
349 	case month:
350 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
351 		do {
352 			if (alarm->time.tm_mon < 11) {
353 				alarm->time.tm_mon++;
354 			} else {
355 				alarm->time.tm_mon = 0;
356 				alarm->time.tm_year++;
357 			}
358 			days = rtc_month_days(alarm->time.tm_mon,
359 					      alarm->time.tm_year);
360 		} while (days < alarm->time.tm_mday);
361 		break;
362 
363 	/* Year rollover ... easy except for leap years! */
364 	case year:
365 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
366 		do {
367 			alarm->time.tm_year++;
368 		} while (!is_leap_year(alarm->time.tm_year + 1900) &&
369 			 rtc_valid_tm(&alarm->time) != 0);
370 		break;
371 
372 	default:
373 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
374 	}
375 
376 	err = rtc_valid_tm(&alarm->time);
377 
378 done:
379 	if (err)
380 		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
381 			 &alarm->time);
382 
383 	return err;
384 }
385 
386 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
387 {
388 	int err;
389 
390 	err = mutex_lock_interruptible(&rtc->ops_lock);
391 	if (err)
392 		return err;
393 	if (!rtc->ops) {
394 		err = -ENODEV;
395 	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
396 		err = -EINVAL;
397 	} else {
398 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
399 		alarm->enabled = rtc->aie_timer.enabled;
400 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
401 	}
402 	mutex_unlock(&rtc->ops_lock);
403 
404 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
405 	return err;
406 }
407 EXPORT_SYMBOL_GPL(rtc_read_alarm);
408 
409 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
410 {
411 	struct rtc_time tm;
412 	time64_t now, scheduled;
413 	int err;
414 
415 	err = rtc_valid_tm(&alarm->time);
416 	if (err)
417 		return err;
418 
419 	scheduled = rtc_tm_to_time64(&alarm->time);
420 
421 	/* Make sure we're not setting alarms in the past */
422 	err = __rtc_read_time(rtc, &tm);
423 	if (err)
424 		return err;
425 	now = rtc_tm_to_time64(&tm);
426 
427 	if (scheduled <= now)
428 		return -ETIME;
429 	/*
430 	 * XXX - We just checked to make sure the alarm time is not
431 	 * in the past, but there is still a race window where if
432 	 * the is alarm set for the next second and the second ticks
433 	 * over right here, before we set the alarm.
434 	 */
435 
436 	rtc_subtract_offset(rtc, &alarm->time);
437 
438 	if (!rtc->ops)
439 		err = -ENODEV;
440 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
441 		err = -EINVAL;
442 	else
443 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
444 
445 	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
446 	return err;
447 }
448 
449 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
450 {
451 	ktime_t alarm_time;
452 	int err;
453 
454 	if (!rtc->ops)
455 		return -ENODEV;
456 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
457 		return -EINVAL;
458 
459 	err = rtc_valid_tm(&alarm->time);
460 	if (err != 0)
461 		return err;
462 
463 	err = rtc_valid_range(rtc, &alarm->time);
464 	if (err)
465 		return err;
466 
467 	err = mutex_lock_interruptible(&rtc->ops_lock);
468 	if (err)
469 		return err;
470 	if (rtc->aie_timer.enabled)
471 		rtc_timer_remove(rtc, &rtc->aie_timer);
472 
473 	alarm_time = rtc_tm_to_ktime(alarm->time);
474 	/*
475 	 * Round down so we never miss a deadline, checking for past deadline is
476 	 * done in __rtc_set_alarm
477 	 */
478 	if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features))
479 		alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC);
480 
481 	rtc->aie_timer.node.expires = alarm_time;
482 	rtc->aie_timer.period = 0;
483 	if (alarm->enabled)
484 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
485 
486 	mutex_unlock(&rtc->ops_lock);
487 
488 	return err;
489 }
490 EXPORT_SYMBOL_GPL(rtc_set_alarm);
491 
492 /* Called once per device from rtc_device_register */
493 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
494 {
495 	int err;
496 	struct rtc_time now;
497 
498 	err = rtc_valid_tm(&alarm->time);
499 	if (err != 0)
500 		return err;
501 
502 	err = rtc_read_time(rtc, &now);
503 	if (err)
504 		return err;
505 
506 	err = mutex_lock_interruptible(&rtc->ops_lock);
507 	if (err)
508 		return err;
509 
510 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
511 	rtc->aie_timer.period = 0;
512 
513 	/* Alarm has to be enabled & in the future for us to enqueue it */
514 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
515 			 rtc->aie_timer.node.expires)) {
516 		rtc->aie_timer.enabled = 1;
517 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
518 		trace_rtc_timer_enqueue(&rtc->aie_timer);
519 	}
520 	mutex_unlock(&rtc->ops_lock);
521 	return err;
522 }
523 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
524 
525 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
526 {
527 	int err;
528 
529 	err = mutex_lock_interruptible(&rtc->ops_lock);
530 	if (err)
531 		return err;
532 
533 	if (rtc->aie_timer.enabled != enabled) {
534 		if (enabled)
535 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
536 		else
537 			rtc_timer_remove(rtc, &rtc->aie_timer);
538 	}
539 
540 	if (err)
541 		/* nothing */;
542 	else if (!rtc->ops)
543 		err = -ENODEV;
544 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
545 		err = -EINVAL;
546 	else
547 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
548 
549 	mutex_unlock(&rtc->ops_lock);
550 
551 	trace_rtc_alarm_irq_enable(enabled, err);
552 	return err;
553 }
554 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
555 
556 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
557 {
558 	int err;
559 
560 	err = mutex_lock_interruptible(&rtc->ops_lock);
561 	if (err)
562 		return err;
563 
564 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
565 	if (enabled == 0 && rtc->uie_irq_active) {
566 		mutex_unlock(&rtc->ops_lock);
567 		return rtc_dev_update_irq_enable_emul(rtc, 0);
568 	}
569 #endif
570 	/* make sure we're changing state */
571 	if (rtc->uie_rtctimer.enabled == enabled)
572 		goto out;
573 
574 	if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) ||
575 	    !test_bit(RTC_FEATURE_ALARM, rtc->features)) {
576 		mutex_unlock(&rtc->ops_lock);
577 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
578 		return rtc_dev_update_irq_enable_emul(rtc, enabled);
579 #else
580 		return -EINVAL;
581 #endif
582 	}
583 
584 	if (enabled) {
585 		struct rtc_time tm;
586 		ktime_t now, onesec;
587 
588 		err = __rtc_read_time(rtc, &tm);
589 		if (err)
590 			goto out;
591 		onesec = ktime_set(1, 0);
592 		now = rtc_tm_to_ktime(tm);
593 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
594 		rtc->uie_rtctimer.period = ktime_set(1, 0);
595 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
596 	} else {
597 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
598 	}
599 
600 out:
601 	mutex_unlock(&rtc->ops_lock);
602 
603 	return err;
604 }
605 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
606 
607 /**
608  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
609  * @rtc: pointer to the rtc device
610  * @num: number of occurence of the event
611  * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
612  *
613  * This function is called when an AIE, UIE or PIE mode interrupt
614  * has occurred (or been emulated).
615  *
616  */
617 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
618 {
619 	unsigned long flags;
620 
621 	/* mark one irq of the appropriate mode */
622 	spin_lock_irqsave(&rtc->irq_lock, flags);
623 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
624 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
625 
626 	wake_up_interruptible(&rtc->irq_queue);
627 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
628 }
629 
630 /**
631  * rtc_aie_update_irq - AIE mode rtctimer hook
632  * @rtc: pointer to the rtc_device
633  *
634  * This functions is called when the aie_timer expires.
635  */
636 void rtc_aie_update_irq(struct rtc_device *rtc)
637 {
638 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
639 }
640 
641 /**
642  * rtc_uie_update_irq - UIE mode rtctimer hook
643  * @rtc: pointer to the rtc_device
644  *
645  * This functions is called when the uie_timer expires.
646  */
647 void rtc_uie_update_irq(struct rtc_device *rtc)
648 {
649 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
650 }
651 
652 /**
653  * rtc_pie_update_irq - PIE mode hrtimer hook
654  * @timer: pointer to the pie mode hrtimer
655  *
656  * This function is used to emulate PIE mode interrupts
657  * using an hrtimer. This function is called when the periodic
658  * hrtimer expires.
659  */
660 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
661 {
662 	struct rtc_device *rtc;
663 	ktime_t period;
664 	u64 count;
665 
666 	rtc = container_of(timer, struct rtc_device, pie_timer);
667 
668 	period = NSEC_PER_SEC / rtc->irq_freq;
669 	count = hrtimer_forward_now(timer, period);
670 
671 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
672 
673 	return HRTIMER_RESTART;
674 }
675 
676 /**
677  * rtc_update_irq - Triggered when a RTC interrupt occurs.
678  * @rtc: the rtc device
679  * @num: how many irqs are being reported (usually one)
680  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
681  * Context: any
682  */
683 void rtc_update_irq(struct rtc_device *rtc,
684 		    unsigned long num, unsigned long events)
685 {
686 	if (IS_ERR_OR_NULL(rtc))
687 		return;
688 
689 	pm_stay_awake(rtc->dev.parent);
690 	schedule_work(&rtc->irqwork);
691 }
692 EXPORT_SYMBOL_GPL(rtc_update_irq);
693 
694 struct rtc_device *rtc_class_open(const char *name)
695 {
696 	struct device *dev;
697 	struct rtc_device *rtc = NULL;
698 
699 	dev = class_find_device_by_name(rtc_class, name);
700 	if (dev)
701 		rtc = to_rtc_device(dev);
702 
703 	if (rtc) {
704 		if (!try_module_get(rtc->owner)) {
705 			put_device(dev);
706 			rtc = NULL;
707 		}
708 	}
709 
710 	return rtc;
711 }
712 EXPORT_SYMBOL_GPL(rtc_class_open);
713 
714 void rtc_class_close(struct rtc_device *rtc)
715 {
716 	module_put(rtc->owner);
717 	put_device(&rtc->dev);
718 }
719 EXPORT_SYMBOL_GPL(rtc_class_close);
720 
721 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
722 {
723 	/*
724 	 * We always cancel the timer here first, because otherwise
725 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
726 	 * when we manage to start the timer before the callback
727 	 * returns HRTIMER_RESTART.
728 	 *
729 	 * We cannot use hrtimer_cancel() here as a running callback
730 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
731 	 * would spin forever.
732 	 */
733 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
734 		return -1;
735 
736 	if (enabled) {
737 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
738 
739 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
740 	}
741 	return 0;
742 }
743 
744 /**
745  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
746  * @rtc: the rtc device
747  * @enabled: true to enable periodic IRQs
748  * Context: any
749  *
750  * Note that rtc_irq_set_freq() should previously have been used to
751  * specify the desired frequency of periodic IRQ.
752  */
753 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
754 {
755 	int err = 0;
756 
757 	while (rtc_update_hrtimer(rtc, enabled) < 0)
758 		cpu_relax();
759 
760 	rtc->pie_enabled = enabled;
761 
762 	trace_rtc_irq_set_state(enabled, err);
763 	return err;
764 }
765 
766 /**
767  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
768  * @rtc: the rtc device
769  * @freq: positive frequency
770  * Context: any
771  *
772  * Note that rtc_irq_set_state() is used to enable or disable the
773  * periodic IRQs.
774  */
775 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
776 {
777 	int err = 0;
778 
779 	if (freq <= 0 || freq > RTC_MAX_FREQ)
780 		return -EINVAL;
781 
782 	rtc->irq_freq = freq;
783 	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
784 		cpu_relax();
785 
786 	trace_rtc_irq_set_freq(freq, err);
787 	return err;
788 }
789 
790 /**
791  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
792  * @rtc: rtc device
793  * @timer: timer being added.
794  *
795  * Enqueues a timer onto the rtc devices timerqueue and sets
796  * the next alarm event appropriately.
797  *
798  * Sets the enabled bit on the added timer.
799  *
800  * Must hold ops_lock for proper serialization of timerqueue
801  */
802 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
803 {
804 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
805 	struct rtc_time tm;
806 	ktime_t now;
807 	int err;
808 
809 	err = __rtc_read_time(rtc, &tm);
810 	if (err)
811 		return err;
812 
813 	timer->enabled = 1;
814 	now = rtc_tm_to_ktime(tm);
815 
816 	/* Skip over expired timers */
817 	while (next) {
818 		if (next->expires >= now)
819 			break;
820 		next = timerqueue_iterate_next(next);
821 	}
822 
823 	timerqueue_add(&rtc->timerqueue, &timer->node);
824 	trace_rtc_timer_enqueue(timer);
825 	if (!next || ktime_before(timer->node.expires, next->expires)) {
826 		struct rtc_wkalrm alarm;
827 
828 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
829 		alarm.enabled = 1;
830 		err = __rtc_set_alarm(rtc, &alarm);
831 		if (err == -ETIME) {
832 			pm_stay_awake(rtc->dev.parent);
833 			schedule_work(&rtc->irqwork);
834 		} else if (err) {
835 			timerqueue_del(&rtc->timerqueue, &timer->node);
836 			trace_rtc_timer_dequeue(timer);
837 			timer->enabled = 0;
838 			return err;
839 		}
840 	}
841 	return 0;
842 }
843 
844 static void rtc_alarm_disable(struct rtc_device *rtc)
845 {
846 	if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
847 		return;
848 
849 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
850 	trace_rtc_alarm_irq_enable(0, 0);
851 }
852 
853 /**
854  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
855  * @rtc: rtc device
856  * @timer: timer being removed.
857  *
858  * Removes a timer onto the rtc devices timerqueue and sets
859  * the next alarm event appropriately.
860  *
861  * Clears the enabled bit on the removed timer.
862  *
863  * Must hold ops_lock for proper serialization of timerqueue
864  */
865 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
866 {
867 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
868 
869 	timerqueue_del(&rtc->timerqueue, &timer->node);
870 	trace_rtc_timer_dequeue(timer);
871 	timer->enabled = 0;
872 	if (next == &timer->node) {
873 		struct rtc_wkalrm alarm;
874 		int err;
875 
876 		next = timerqueue_getnext(&rtc->timerqueue);
877 		if (!next) {
878 			rtc_alarm_disable(rtc);
879 			return;
880 		}
881 		alarm.time = rtc_ktime_to_tm(next->expires);
882 		alarm.enabled = 1;
883 		err = __rtc_set_alarm(rtc, &alarm);
884 		if (err == -ETIME) {
885 			pm_stay_awake(rtc->dev.parent);
886 			schedule_work(&rtc->irqwork);
887 		}
888 	}
889 }
890 
891 /**
892  * rtc_timer_do_work - Expires rtc timers
893  * @work: work item
894  *
895  * Expires rtc timers. Reprograms next alarm event if needed.
896  * Called via worktask.
897  *
898  * Serializes access to timerqueue via ops_lock mutex
899  */
900 void rtc_timer_do_work(struct work_struct *work)
901 {
902 	struct rtc_timer *timer;
903 	struct timerqueue_node *next;
904 	ktime_t now;
905 	struct rtc_time tm;
906 
907 	struct rtc_device *rtc =
908 		container_of(work, struct rtc_device, irqwork);
909 
910 	mutex_lock(&rtc->ops_lock);
911 again:
912 	__rtc_read_time(rtc, &tm);
913 	now = rtc_tm_to_ktime(tm);
914 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
915 		if (next->expires > now)
916 			break;
917 
918 		/* expire timer */
919 		timer = container_of(next, struct rtc_timer, node);
920 		timerqueue_del(&rtc->timerqueue, &timer->node);
921 		trace_rtc_timer_dequeue(timer);
922 		timer->enabled = 0;
923 		if (timer->func)
924 			timer->func(timer->rtc);
925 
926 		trace_rtc_timer_fired(timer);
927 		/* Re-add/fwd periodic timers */
928 		if (ktime_to_ns(timer->period)) {
929 			timer->node.expires = ktime_add(timer->node.expires,
930 							timer->period);
931 			timer->enabled = 1;
932 			timerqueue_add(&rtc->timerqueue, &timer->node);
933 			trace_rtc_timer_enqueue(timer);
934 		}
935 	}
936 
937 	/* Set next alarm */
938 	if (next) {
939 		struct rtc_wkalrm alarm;
940 		int err;
941 		int retry = 3;
942 
943 		alarm.time = rtc_ktime_to_tm(next->expires);
944 		alarm.enabled = 1;
945 reprogram:
946 		err = __rtc_set_alarm(rtc, &alarm);
947 		if (err == -ETIME) {
948 			goto again;
949 		} else if (err) {
950 			if (retry-- > 0)
951 				goto reprogram;
952 
953 			timer = container_of(next, struct rtc_timer, node);
954 			timerqueue_del(&rtc->timerqueue, &timer->node);
955 			trace_rtc_timer_dequeue(timer);
956 			timer->enabled = 0;
957 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
958 			goto again;
959 		}
960 	} else {
961 		rtc_alarm_disable(rtc);
962 	}
963 
964 	pm_relax(rtc->dev.parent);
965 	mutex_unlock(&rtc->ops_lock);
966 }
967 
968 /* rtc_timer_init - Initializes an rtc_timer
969  * @timer: timer to be intiialized
970  * @f: function pointer to be called when timer fires
971  * @rtc: pointer to the rtc_device
972  *
973  * Kernel interface to initializing an rtc_timer.
974  */
975 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
976 		    struct rtc_device *rtc)
977 {
978 	timerqueue_init(&timer->node);
979 	timer->enabled = 0;
980 	timer->func = f;
981 	timer->rtc = rtc;
982 }
983 
984 /* rtc_timer_start - Sets an rtc_timer to fire in the future
985  * @ rtc: rtc device to be used
986  * @ timer: timer being set
987  * @ expires: time at which to expire the timer
988  * @ period: period that the timer will recur
989  *
990  * Kernel interface to set an rtc_timer
991  */
992 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
993 		    ktime_t expires, ktime_t period)
994 {
995 	int ret = 0;
996 
997 	mutex_lock(&rtc->ops_lock);
998 	if (timer->enabled)
999 		rtc_timer_remove(rtc, timer);
1000 
1001 	timer->node.expires = expires;
1002 	timer->period = period;
1003 
1004 	ret = rtc_timer_enqueue(rtc, timer);
1005 
1006 	mutex_unlock(&rtc->ops_lock);
1007 	return ret;
1008 }
1009 
1010 /* rtc_timer_cancel - Stops an rtc_timer
1011  * @ rtc: rtc device to be used
1012  * @ timer: timer being set
1013  *
1014  * Kernel interface to cancel an rtc_timer
1015  */
1016 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1017 {
1018 	mutex_lock(&rtc->ops_lock);
1019 	if (timer->enabled)
1020 		rtc_timer_remove(rtc, timer);
1021 	mutex_unlock(&rtc->ops_lock);
1022 }
1023 
1024 /**
1025  * rtc_read_offset - Read the amount of rtc offset in parts per billion
1026  * @rtc: rtc device to be used
1027  * @offset: the offset in parts per billion
1028  *
1029  * see below for details.
1030  *
1031  * Kernel interface to read rtc clock offset
1032  * Returns 0 on success, or a negative number on error.
1033  * If read_offset() is not implemented for the rtc, return -EINVAL
1034  */
1035 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1036 {
1037 	int ret;
1038 
1039 	if (!rtc->ops)
1040 		return -ENODEV;
1041 
1042 	if (!rtc->ops->read_offset)
1043 		return -EINVAL;
1044 
1045 	mutex_lock(&rtc->ops_lock);
1046 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1047 	mutex_unlock(&rtc->ops_lock);
1048 
1049 	trace_rtc_read_offset(*offset, ret);
1050 	return ret;
1051 }
1052 
1053 /**
1054  * rtc_set_offset - Adjusts the duration of the average second
1055  * @rtc: rtc device to be used
1056  * @offset: the offset in parts per billion
1057  *
1058  * Some rtc's allow an adjustment to the average duration of a second
1059  * to compensate for differences in the actual clock rate due to temperature,
1060  * the crystal, capacitor, etc.
1061  *
1062  * The adjustment applied is as follows:
1063  *   t = t0 * (1 + offset * 1e-9)
1064  * where t0 is the measured length of 1 RTC second with offset = 0
1065  *
1066  * Kernel interface to adjust an rtc clock offset.
1067  * Return 0 on success, or a negative number on error.
1068  * If the rtc offset is not setable (or not implemented), return -EINVAL
1069  */
1070 int rtc_set_offset(struct rtc_device *rtc, long offset)
1071 {
1072 	int ret;
1073 
1074 	if (!rtc->ops)
1075 		return -ENODEV;
1076 
1077 	if (!rtc->ops->set_offset)
1078 		return -EINVAL;
1079 
1080 	mutex_lock(&rtc->ops_lock);
1081 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1082 	mutex_unlock(&rtc->ops_lock);
1083 
1084 	trace_rtc_set_offset(offset, ret);
1085 	return ret;
1086 }
1087