1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RTC subsystem, interface functions 4 * 5 * Copyright (C) 2005 Tower Technologies 6 * Author: Alessandro Zummo <a.zummo@towertech.it> 7 * 8 * based on arch/arm/common/rtctime.c 9 */ 10 11 #include <linux/rtc.h> 12 #include <linux/sched.h> 13 #include <linux/module.h> 14 #include <linux/log2.h> 15 #include <linux/workqueue.h> 16 17 #define CREATE_TRACE_POINTS 18 #include <trace/events/rtc.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 time64_t secs; 26 27 if (!rtc->offset_secs) 28 return; 29 30 secs = rtc_tm_to_time64(tm); 31 32 /* 33 * Since the reading time values from RTC device are always in the RTC 34 * original valid range, but we need to skip the overlapped region 35 * between expanded range and original range, which is no need to add 36 * the offset. 37 */ 38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || 39 (rtc->start_secs < rtc->range_min && 40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) 41 return; 42 43 rtc_time64_to_tm(secs + rtc->offset_secs, tm); 44 } 45 46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) 47 { 48 time64_t secs; 49 50 if (!rtc->offset_secs) 51 return; 52 53 secs = rtc_tm_to_time64(tm); 54 55 /* 56 * If the setting time values are in the valid range of RTC hardware 57 * device, then no need to subtract the offset when setting time to RTC 58 * device. Otherwise we need to subtract the offset to make the time 59 * values are valid for RTC hardware device. 60 */ 61 if (secs >= rtc->range_min && secs <= rtc->range_max) 62 return; 63 64 rtc_time64_to_tm(secs - rtc->offset_secs, tm); 65 } 66 67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) 68 { 69 if (rtc->range_min != rtc->range_max) { 70 time64_t time = rtc_tm_to_time64(tm); 71 time64_t range_min = rtc->set_start_time ? rtc->start_secs : 72 rtc->range_min; 73 timeu64_t range_max = rtc->set_start_time ? 74 (rtc->start_secs + rtc->range_max - rtc->range_min) : 75 rtc->range_max; 76 77 if (time < range_min || time > range_max) 78 return -ERANGE; 79 } 80 81 return 0; 82 } 83 84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 85 { 86 int err; 87 88 if (!rtc->ops) { 89 err = -ENODEV; 90 } else if (!rtc->ops->read_time) { 91 err = -EINVAL; 92 } else { 93 memset(tm, 0, sizeof(struct rtc_time)); 94 err = rtc->ops->read_time(rtc->dev.parent, tm); 95 if (err < 0) { 96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", 97 err); 98 return err; 99 } 100 101 rtc_add_offset(rtc, tm); 102 103 err = rtc_valid_tm(tm); 104 if (err < 0) 105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); 106 } 107 return err; 108 } 109 110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 111 { 112 int err; 113 114 err = mutex_lock_interruptible(&rtc->ops_lock); 115 if (err) 116 return err; 117 118 err = __rtc_read_time(rtc, tm); 119 mutex_unlock(&rtc->ops_lock); 120 121 trace_rtc_read_time(rtc_tm_to_time64(tm), err); 122 return err; 123 } 124 EXPORT_SYMBOL_GPL(rtc_read_time); 125 126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 127 { 128 int err, uie; 129 130 err = rtc_valid_tm(tm); 131 if (err != 0) 132 return err; 133 134 err = rtc_valid_range(rtc, tm); 135 if (err) 136 return err; 137 138 rtc_subtract_offset(rtc, tm); 139 140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 141 uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active; 142 #else 143 uie = rtc->uie_rtctimer.enabled; 144 #endif 145 if (uie) { 146 err = rtc_update_irq_enable(rtc, 0); 147 if (err) 148 return err; 149 } 150 151 err = mutex_lock_interruptible(&rtc->ops_lock); 152 if (err) 153 return err; 154 155 if (!rtc->ops) 156 err = -ENODEV; 157 else if (rtc->ops->set_time) 158 err = rtc->ops->set_time(rtc->dev.parent, tm); 159 else 160 err = -EINVAL; 161 162 pm_stay_awake(rtc->dev.parent); 163 mutex_unlock(&rtc->ops_lock); 164 /* A timer might have just expired */ 165 schedule_work(&rtc->irqwork); 166 167 if (uie) { 168 err = rtc_update_irq_enable(rtc, 1); 169 if (err) 170 return err; 171 } 172 173 trace_rtc_set_time(rtc_tm_to_time64(tm), err); 174 return err; 175 } 176 EXPORT_SYMBOL_GPL(rtc_set_time); 177 178 static int rtc_read_alarm_internal(struct rtc_device *rtc, 179 struct rtc_wkalrm *alarm) 180 { 181 int err; 182 183 err = mutex_lock_interruptible(&rtc->ops_lock); 184 if (err) 185 return err; 186 187 if (!rtc->ops) { 188 err = -ENODEV; 189 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) { 190 err = -EINVAL; 191 } else { 192 alarm->enabled = 0; 193 alarm->pending = 0; 194 alarm->time.tm_sec = -1; 195 alarm->time.tm_min = -1; 196 alarm->time.tm_hour = -1; 197 alarm->time.tm_mday = -1; 198 alarm->time.tm_mon = -1; 199 alarm->time.tm_year = -1; 200 alarm->time.tm_wday = -1; 201 alarm->time.tm_yday = -1; 202 alarm->time.tm_isdst = -1; 203 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 204 } 205 206 mutex_unlock(&rtc->ops_lock); 207 208 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 209 return err; 210 } 211 212 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 213 { 214 int err; 215 struct rtc_time before, now; 216 int first_time = 1; 217 time64_t t_now, t_alm; 218 enum { none, day, month, year } missing = none; 219 unsigned int days; 220 221 /* The lower level RTC driver may return -1 in some fields, 222 * creating invalid alarm->time values, for reasons like: 223 * 224 * - The hardware may not be capable of filling them in; 225 * many alarms match only on time-of-day fields, not 226 * day/month/year calendar data. 227 * 228 * - Some hardware uses illegal values as "wildcard" match 229 * values, which non-Linux firmware (like a BIOS) may try 230 * to set up as e.g. "alarm 15 minutes after each hour". 231 * Linux uses only oneshot alarms. 232 * 233 * When we see that here, we deal with it by using values from 234 * a current RTC timestamp for any missing (-1) values. The 235 * RTC driver prevents "periodic alarm" modes. 236 * 237 * But this can be racey, because some fields of the RTC timestamp 238 * may have wrapped in the interval since we read the RTC alarm, 239 * which would lead to us inserting inconsistent values in place 240 * of the -1 fields. 241 * 242 * Reading the alarm and timestamp in the reverse sequence 243 * would have the same race condition, and not solve the issue. 244 * 245 * So, we must first read the RTC timestamp, 246 * then read the RTC alarm value, 247 * and then read a second RTC timestamp. 248 * 249 * If any fields of the second timestamp have changed 250 * when compared with the first timestamp, then we know 251 * our timestamp may be inconsistent with that used by 252 * the low-level rtc_read_alarm_internal() function. 253 * 254 * So, when the two timestamps disagree, we just loop and do 255 * the process again to get a fully consistent set of values. 256 * 257 * This could all instead be done in the lower level driver, 258 * but since more than one lower level RTC implementation needs it, 259 * then it's probably best best to do it here instead of there.. 260 */ 261 262 /* Get the "before" timestamp */ 263 err = rtc_read_time(rtc, &before); 264 if (err < 0) 265 return err; 266 do { 267 if (!first_time) 268 memcpy(&before, &now, sizeof(struct rtc_time)); 269 first_time = 0; 270 271 /* get the RTC alarm values, which may be incomplete */ 272 err = rtc_read_alarm_internal(rtc, alarm); 273 if (err) 274 return err; 275 276 /* full-function RTCs won't have such missing fields */ 277 if (rtc_valid_tm(&alarm->time) == 0) { 278 rtc_add_offset(rtc, &alarm->time); 279 return 0; 280 } 281 282 /* get the "after" timestamp, to detect wrapped fields */ 283 err = rtc_read_time(rtc, &now); 284 if (err < 0) 285 return err; 286 287 /* note that tm_sec is a "don't care" value here: */ 288 } while (before.tm_min != now.tm_min || 289 before.tm_hour != now.tm_hour || 290 before.tm_mon != now.tm_mon || 291 before.tm_year != now.tm_year); 292 293 /* Fill in the missing alarm fields using the timestamp; we 294 * know there's at least one since alarm->time is invalid. 295 */ 296 if (alarm->time.tm_sec == -1) 297 alarm->time.tm_sec = now.tm_sec; 298 if (alarm->time.tm_min == -1) 299 alarm->time.tm_min = now.tm_min; 300 if (alarm->time.tm_hour == -1) 301 alarm->time.tm_hour = now.tm_hour; 302 303 /* For simplicity, only support date rollover for now */ 304 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 305 alarm->time.tm_mday = now.tm_mday; 306 missing = day; 307 } 308 if ((unsigned int)alarm->time.tm_mon >= 12) { 309 alarm->time.tm_mon = now.tm_mon; 310 if (missing == none) 311 missing = month; 312 } 313 if (alarm->time.tm_year == -1) { 314 alarm->time.tm_year = now.tm_year; 315 if (missing == none) 316 missing = year; 317 } 318 319 /* Can't proceed if alarm is still invalid after replacing 320 * missing fields. 321 */ 322 err = rtc_valid_tm(&alarm->time); 323 if (err) 324 goto done; 325 326 /* with luck, no rollover is needed */ 327 t_now = rtc_tm_to_time64(&now); 328 t_alm = rtc_tm_to_time64(&alarm->time); 329 if (t_now < t_alm) 330 goto done; 331 332 switch (missing) { 333 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 334 * that will trigger at 5am will do so at 5am Tuesday, which 335 * could also be in the next month or year. This is a common 336 * case, especially for PCs. 337 */ 338 case day: 339 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 340 t_alm += 24 * 60 * 60; 341 rtc_time64_to_tm(t_alm, &alarm->time); 342 break; 343 344 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 345 * be next month. An alarm matching on the 30th, 29th, or 28th 346 * may end up in the month after that! Many newer PCs support 347 * this type of alarm. 348 */ 349 case month: 350 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 351 do { 352 if (alarm->time.tm_mon < 11) { 353 alarm->time.tm_mon++; 354 } else { 355 alarm->time.tm_mon = 0; 356 alarm->time.tm_year++; 357 } 358 days = rtc_month_days(alarm->time.tm_mon, 359 alarm->time.tm_year); 360 } while (days < alarm->time.tm_mday); 361 break; 362 363 /* Year rollover ... easy except for leap years! */ 364 case year: 365 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 366 do { 367 alarm->time.tm_year++; 368 } while (!is_leap_year(alarm->time.tm_year + 1900) && 369 rtc_valid_tm(&alarm->time) != 0); 370 break; 371 372 default: 373 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 374 } 375 376 err = rtc_valid_tm(&alarm->time); 377 378 done: 379 if (err) 380 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n", 381 &alarm->time); 382 383 return err; 384 } 385 386 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 387 { 388 int err; 389 390 err = mutex_lock_interruptible(&rtc->ops_lock); 391 if (err) 392 return err; 393 if (!rtc->ops) { 394 err = -ENODEV; 395 } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) { 396 err = -EINVAL; 397 } else { 398 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 399 alarm->enabled = rtc->aie_timer.enabled; 400 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 401 } 402 mutex_unlock(&rtc->ops_lock); 403 404 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 405 return err; 406 } 407 EXPORT_SYMBOL_GPL(rtc_read_alarm); 408 409 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 410 { 411 struct rtc_time tm; 412 time64_t now, scheduled; 413 int err; 414 415 err = rtc_valid_tm(&alarm->time); 416 if (err) 417 return err; 418 419 scheduled = rtc_tm_to_time64(&alarm->time); 420 421 /* Make sure we're not setting alarms in the past */ 422 err = __rtc_read_time(rtc, &tm); 423 if (err) 424 return err; 425 now = rtc_tm_to_time64(&tm); 426 if (scheduled <= now) 427 return -ETIME; 428 /* 429 * XXX - We just checked to make sure the alarm time is not 430 * in the past, but there is still a race window where if 431 * the is alarm set for the next second and the second ticks 432 * over right here, before we set the alarm. 433 */ 434 435 rtc_subtract_offset(rtc, &alarm->time); 436 437 if (!rtc->ops) 438 err = -ENODEV; 439 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 440 err = -EINVAL; 441 else 442 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 443 444 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); 445 return err; 446 } 447 448 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 449 { 450 int err; 451 452 if (!rtc->ops) 453 return -ENODEV; 454 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) 455 return -EINVAL; 456 457 err = rtc_valid_tm(&alarm->time); 458 if (err != 0) 459 return err; 460 461 err = rtc_valid_range(rtc, &alarm->time); 462 if (err) 463 return err; 464 465 err = mutex_lock_interruptible(&rtc->ops_lock); 466 if (err) 467 return err; 468 if (rtc->aie_timer.enabled) 469 rtc_timer_remove(rtc, &rtc->aie_timer); 470 471 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 472 rtc->aie_timer.period = 0; 473 if (alarm->enabled) 474 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 475 476 mutex_unlock(&rtc->ops_lock); 477 478 return err; 479 } 480 EXPORT_SYMBOL_GPL(rtc_set_alarm); 481 482 /* Called once per device from rtc_device_register */ 483 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 484 { 485 int err; 486 struct rtc_time now; 487 488 err = rtc_valid_tm(&alarm->time); 489 if (err != 0) 490 return err; 491 492 err = rtc_read_time(rtc, &now); 493 if (err) 494 return err; 495 496 err = mutex_lock_interruptible(&rtc->ops_lock); 497 if (err) 498 return err; 499 500 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 501 rtc->aie_timer.period = 0; 502 503 /* Alarm has to be enabled & in the future for us to enqueue it */ 504 if (alarm->enabled && (rtc_tm_to_ktime(now) < 505 rtc->aie_timer.node.expires)) { 506 rtc->aie_timer.enabled = 1; 507 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 508 trace_rtc_timer_enqueue(&rtc->aie_timer); 509 } 510 mutex_unlock(&rtc->ops_lock); 511 return err; 512 } 513 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 514 515 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 516 { 517 int err; 518 519 err = mutex_lock_interruptible(&rtc->ops_lock); 520 if (err) 521 return err; 522 523 if (rtc->aie_timer.enabled != enabled) { 524 if (enabled) 525 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 526 else 527 rtc_timer_remove(rtc, &rtc->aie_timer); 528 } 529 530 if (err) 531 /* nothing */; 532 else if (!rtc->ops) 533 err = -ENODEV; 534 else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) 535 err = -EINVAL; 536 else 537 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 538 539 mutex_unlock(&rtc->ops_lock); 540 541 trace_rtc_alarm_irq_enable(enabled, err); 542 return err; 543 } 544 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 545 546 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 547 { 548 int err; 549 550 err = mutex_lock_interruptible(&rtc->ops_lock); 551 if (err) 552 return err; 553 554 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 555 if (enabled == 0 && rtc->uie_irq_active) { 556 mutex_unlock(&rtc->ops_lock); 557 return rtc_dev_update_irq_enable_emul(rtc, 0); 558 } 559 #endif 560 /* make sure we're changing state */ 561 if (rtc->uie_rtctimer.enabled == enabled) 562 goto out; 563 564 if (rtc->uie_unsupported || !test_bit(RTC_FEATURE_ALARM, rtc->features)) { 565 mutex_unlock(&rtc->ops_lock); 566 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 567 return rtc_dev_update_irq_enable_emul(rtc, enabled); 568 #else 569 return -EINVAL; 570 #endif 571 } 572 573 if (enabled) { 574 struct rtc_time tm; 575 ktime_t now, onesec; 576 577 err = __rtc_read_time(rtc, &tm); 578 if (err) 579 goto out; 580 onesec = ktime_set(1, 0); 581 now = rtc_tm_to_ktime(tm); 582 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 583 rtc->uie_rtctimer.period = ktime_set(1, 0); 584 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 585 } else { 586 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 587 } 588 589 out: 590 mutex_unlock(&rtc->ops_lock); 591 592 return err; 593 } 594 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 595 596 /** 597 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 598 * @rtc: pointer to the rtc device 599 * @num: number of occurence of the event 600 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF 601 * 602 * This function is called when an AIE, UIE or PIE mode interrupt 603 * has occurred (or been emulated). 604 * 605 */ 606 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 607 { 608 unsigned long flags; 609 610 /* mark one irq of the appropriate mode */ 611 spin_lock_irqsave(&rtc->irq_lock, flags); 612 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode); 613 spin_unlock_irqrestore(&rtc->irq_lock, flags); 614 615 wake_up_interruptible(&rtc->irq_queue); 616 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 617 } 618 619 /** 620 * rtc_aie_update_irq - AIE mode rtctimer hook 621 * @rtc: pointer to the rtc_device 622 * 623 * This functions is called when the aie_timer expires. 624 */ 625 void rtc_aie_update_irq(struct rtc_device *rtc) 626 { 627 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 628 } 629 630 /** 631 * rtc_uie_update_irq - UIE mode rtctimer hook 632 * @rtc: pointer to the rtc_device 633 * 634 * This functions is called when the uie_timer expires. 635 */ 636 void rtc_uie_update_irq(struct rtc_device *rtc) 637 { 638 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 639 } 640 641 /** 642 * rtc_pie_update_irq - PIE mode hrtimer hook 643 * @timer: pointer to the pie mode hrtimer 644 * 645 * This function is used to emulate PIE mode interrupts 646 * using an hrtimer. This function is called when the periodic 647 * hrtimer expires. 648 */ 649 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 650 { 651 struct rtc_device *rtc; 652 ktime_t period; 653 u64 count; 654 655 rtc = container_of(timer, struct rtc_device, pie_timer); 656 657 period = NSEC_PER_SEC / rtc->irq_freq; 658 count = hrtimer_forward_now(timer, period); 659 660 rtc_handle_legacy_irq(rtc, count, RTC_PF); 661 662 return HRTIMER_RESTART; 663 } 664 665 /** 666 * rtc_update_irq - Triggered when a RTC interrupt occurs. 667 * @rtc: the rtc device 668 * @num: how many irqs are being reported (usually one) 669 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 670 * Context: any 671 */ 672 void rtc_update_irq(struct rtc_device *rtc, 673 unsigned long num, unsigned long events) 674 { 675 if (IS_ERR_OR_NULL(rtc)) 676 return; 677 678 pm_stay_awake(rtc->dev.parent); 679 schedule_work(&rtc->irqwork); 680 } 681 EXPORT_SYMBOL_GPL(rtc_update_irq); 682 683 struct rtc_device *rtc_class_open(const char *name) 684 { 685 struct device *dev; 686 struct rtc_device *rtc = NULL; 687 688 dev = class_find_device_by_name(rtc_class, name); 689 if (dev) 690 rtc = to_rtc_device(dev); 691 692 if (rtc) { 693 if (!try_module_get(rtc->owner)) { 694 put_device(dev); 695 rtc = NULL; 696 } 697 } 698 699 return rtc; 700 } 701 EXPORT_SYMBOL_GPL(rtc_class_open); 702 703 void rtc_class_close(struct rtc_device *rtc) 704 { 705 module_put(rtc->owner); 706 put_device(&rtc->dev); 707 } 708 EXPORT_SYMBOL_GPL(rtc_class_close); 709 710 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 711 { 712 /* 713 * We always cancel the timer here first, because otherwise 714 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 715 * when we manage to start the timer before the callback 716 * returns HRTIMER_RESTART. 717 * 718 * We cannot use hrtimer_cancel() here as a running callback 719 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 720 * would spin forever. 721 */ 722 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 723 return -1; 724 725 if (enabled) { 726 ktime_t period = NSEC_PER_SEC / rtc->irq_freq; 727 728 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 729 } 730 return 0; 731 } 732 733 /** 734 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 735 * @rtc: the rtc device 736 * @enabled: true to enable periodic IRQs 737 * Context: any 738 * 739 * Note that rtc_irq_set_freq() should previously have been used to 740 * specify the desired frequency of periodic IRQ. 741 */ 742 int rtc_irq_set_state(struct rtc_device *rtc, int enabled) 743 { 744 int err = 0; 745 746 while (rtc_update_hrtimer(rtc, enabled) < 0) 747 cpu_relax(); 748 749 rtc->pie_enabled = enabled; 750 751 trace_rtc_irq_set_state(enabled, err); 752 return err; 753 } 754 755 /** 756 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 757 * @rtc: the rtc device 758 * @freq: positive frequency 759 * Context: any 760 * 761 * Note that rtc_irq_set_state() is used to enable or disable the 762 * periodic IRQs. 763 */ 764 int rtc_irq_set_freq(struct rtc_device *rtc, int freq) 765 { 766 int err = 0; 767 768 if (freq <= 0 || freq > RTC_MAX_FREQ) 769 return -EINVAL; 770 771 rtc->irq_freq = freq; 772 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) 773 cpu_relax(); 774 775 trace_rtc_irq_set_freq(freq, err); 776 return err; 777 } 778 779 /** 780 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 781 * @rtc: rtc device 782 * @timer: timer being added. 783 * 784 * Enqueues a timer onto the rtc devices timerqueue and sets 785 * the next alarm event appropriately. 786 * 787 * Sets the enabled bit on the added timer. 788 * 789 * Must hold ops_lock for proper serialization of timerqueue 790 */ 791 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 792 { 793 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 794 struct rtc_time tm; 795 ktime_t now; 796 797 timer->enabled = 1; 798 __rtc_read_time(rtc, &tm); 799 now = rtc_tm_to_ktime(tm); 800 801 /* Skip over expired timers */ 802 while (next) { 803 if (next->expires >= now) 804 break; 805 next = timerqueue_iterate_next(next); 806 } 807 808 timerqueue_add(&rtc->timerqueue, &timer->node); 809 trace_rtc_timer_enqueue(timer); 810 if (!next || ktime_before(timer->node.expires, next->expires)) { 811 struct rtc_wkalrm alarm; 812 int err; 813 814 alarm.time = rtc_ktime_to_tm(timer->node.expires); 815 alarm.enabled = 1; 816 err = __rtc_set_alarm(rtc, &alarm); 817 if (err == -ETIME) { 818 pm_stay_awake(rtc->dev.parent); 819 schedule_work(&rtc->irqwork); 820 } else if (err) { 821 timerqueue_del(&rtc->timerqueue, &timer->node); 822 trace_rtc_timer_dequeue(timer); 823 timer->enabled = 0; 824 return err; 825 } 826 } 827 return 0; 828 } 829 830 static void rtc_alarm_disable(struct rtc_device *rtc) 831 { 832 if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) 833 return; 834 835 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 836 trace_rtc_alarm_irq_enable(0, 0); 837 } 838 839 /** 840 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 841 * @rtc: rtc device 842 * @timer: timer being removed. 843 * 844 * Removes a timer onto the rtc devices timerqueue and sets 845 * the next alarm event appropriately. 846 * 847 * Clears the enabled bit on the removed timer. 848 * 849 * Must hold ops_lock for proper serialization of timerqueue 850 */ 851 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 852 { 853 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 854 855 timerqueue_del(&rtc->timerqueue, &timer->node); 856 trace_rtc_timer_dequeue(timer); 857 timer->enabled = 0; 858 if (next == &timer->node) { 859 struct rtc_wkalrm alarm; 860 int err; 861 862 next = timerqueue_getnext(&rtc->timerqueue); 863 if (!next) { 864 rtc_alarm_disable(rtc); 865 return; 866 } 867 alarm.time = rtc_ktime_to_tm(next->expires); 868 alarm.enabled = 1; 869 err = __rtc_set_alarm(rtc, &alarm); 870 if (err == -ETIME) { 871 pm_stay_awake(rtc->dev.parent); 872 schedule_work(&rtc->irqwork); 873 } 874 } 875 } 876 877 /** 878 * rtc_timer_do_work - Expires rtc timers 879 * @work: work item 880 * 881 * Expires rtc timers. Reprograms next alarm event if needed. 882 * Called via worktask. 883 * 884 * Serializes access to timerqueue via ops_lock mutex 885 */ 886 void rtc_timer_do_work(struct work_struct *work) 887 { 888 struct rtc_timer *timer; 889 struct timerqueue_node *next; 890 ktime_t now; 891 struct rtc_time tm; 892 893 struct rtc_device *rtc = 894 container_of(work, struct rtc_device, irqwork); 895 896 mutex_lock(&rtc->ops_lock); 897 again: 898 __rtc_read_time(rtc, &tm); 899 now = rtc_tm_to_ktime(tm); 900 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 901 if (next->expires > now) 902 break; 903 904 /* expire timer */ 905 timer = container_of(next, struct rtc_timer, node); 906 timerqueue_del(&rtc->timerqueue, &timer->node); 907 trace_rtc_timer_dequeue(timer); 908 timer->enabled = 0; 909 if (timer->func) 910 timer->func(timer->rtc); 911 912 trace_rtc_timer_fired(timer); 913 /* Re-add/fwd periodic timers */ 914 if (ktime_to_ns(timer->period)) { 915 timer->node.expires = ktime_add(timer->node.expires, 916 timer->period); 917 timer->enabled = 1; 918 timerqueue_add(&rtc->timerqueue, &timer->node); 919 trace_rtc_timer_enqueue(timer); 920 } 921 } 922 923 /* Set next alarm */ 924 if (next) { 925 struct rtc_wkalrm alarm; 926 int err; 927 int retry = 3; 928 929 alarm.time = rtc_ktime_to_tm(next->expires); 930 alarm.enabled = 1; 931 reprogram: 932 err = __rtc_set_alarm(rtc, &alarm); 933 if (err == -ETIME) { 934 goto again; 935 } else if (err) { 936 if (retry-- > 0) 937 goto reprogram; 938 939 timer = container_of(next, struct rtc_timer, node); 940 timerqueue_del(&rtc->timerqueue, &timer->node); 941 trace_rtc_timer_dequeue(timer); 942 timer->enabled = 0; 943 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 944 goto again; 945 } 946 } else { 947 rtc_alarm_disable(rtc); 948 } 949 950 pm_relax(rtc->dev.parent); 951 mutex_unlock(&rtc->ops_lock); 952 } 953 954 /* rtc_timer_init - Initializes an rtc_timer 955 * @timer: timer to be intiialized 956 * @f: function pointer to be called when timer fires 957 * @rtc: pointer to the rtc_device 958 * 959 * Kernel interface to initializing an rtc_timer. 960 */ 961 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r), 962 struct rtc_device *rtc) 963 { 964 timerqueue_init(&timer->node); 965 timer->enabled = 0; 966 timer->func = f; 967 timer->rtc = rtc; 968 } 969 970 /* rtc_timer_start - Sets an rtc_timer to fire in the future 971 * @ rtc: rtc device to be used 972 * @ timer: timer being set 973 * @ expires: time at which to expire the timer 974 * @ period: period that the timer will recur 975 * 976 * Kernel interface to set an rtc_timer 977 */ 978 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 979 ktime_t expires, ktime_t period) 980 { 981 int ret = 0; 982 983 mutex_lock(&rtc->ops_lock); 984 if (timer->enabled) 985 rtc_timer_remove(rtc, timer); 986 987 timer->node.expires = expires; 988 timer->period = period; 989 990 ret = rtc_timer_enqueue(rtc, timer); 991 992 mutex_unlock(&rtc->ops_lock); 993 return ret; 994 } 995 996 /* rtc_timer_cancel - Stops an rtc_timer 997 * @ rtc: rtc device to be used 998 * @ timer: timer being set 999 * 1000 * Kernel interface to cancel an rtc_timer 1001 */ 1002 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 1003 { 1004 mutex_lock(&rtc->ops_lock); 1005 if (timer->enabled) 1006 rtc_timer_remove(rtc, timer); 1007 mutex_unlock(&rtc->ops_lock); 1008 } 1009 1010 /** 1011 * rtc_read_offset - Read the amount of rtc offset in parts per billion 1012 * @rtc: rtc device to be used 1013 * @offset: the offset in parts per billion 1014 * 1015 * see below for details. 1016 * 1017 * Kernel interface to read rtc clock offset 1018 * Returns 0 on success, or a negative number on error. 1019 * If read_offset() is not implemented for the rtc, return -EINVAL 1020 */ 1021 int rtc_read_offset(struct rtc_device *rtc, long *offset) 1022 { 1023 int ret; 1024 1025 if (!rtc->ops) 1026 return -ENODEV; 1027 1028 if (!rtc->ops->read_offset) 1029 return -EINVAL; 1030 1031 mutex_lock(&rtc->ops_lock); 1032 ret = rtc->ops->read_offset(rtc->dev.parent, offset); 1033 mutex_unlock(&rtc->ops_lock); 1034 1035 trace_rtc_read_offset(*offset, ret); 1036 return ret; 1037 } 1038 1039 /** 1040 * rtc_set_offset - Adjusts the duration of the average second 1041 * @rtc: rtc device to be used 1042 * @offset: the offset in parts per billion 1043 * 1044 * Some rtc's allow an adjustment to the average duration of a second 1045 * to compensate for differences in the actual clock rate due to temperature, 1046 * the crystal, capacitor, etc. 1047 * 1048 * The adjustment applied is as follows: 1049 * t = t0 * (1 + offset * 1e-9) 1050 * where t0 is the measured length of 1 RTC second with offset = 0 1051 * 1052 * Kernel interface to adjust an rtc clock offset. 1053 * Return 0 on success, or a negative number on error. 1054 * If the rtc offset is not setable (or not implemented), return -EINVAL 1055 */ 1056 int rtc_set_offset(struct rtc_device *rtc, long offset) 1057 { 1058 int ret; 1059 1060 if (!rtc->ops) 1061 return -ENODEV; 1062 1063 if (!rtc->ops->set_offset) 1064 return -EINVAL; 1065 1066 mutex_lock(&rtc->ops_lock); 1067 ret = rtc->ops->set_offset(rtc->dev.parent, offset); 1068 mutex_unlock(&rtc->ops_lock); 1069 1070 trace_rtc_set_offset(offset, ret); 1071 return ret; 1072 } 1073