xref: /linux/drivers/rtc/interface.c (revision 0df2c90eba60791148cee1823c0bf5fc66e3465c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC subsystem, interface functions
4  *
5  * Copyright (C) 2005 Tower Technologies
6  * Author: Alessandro Zummo <a.zummo@towertech.it>
7  *
8  * based on arch/arm/common/rtctime.c
9  */
10 
11 #include <linux/rtc.h>
12 #include <linux/sched.h>
13 #include <linux/module.h>
14 #include <linux/log2.h>
15 #include <linux/workqueue.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/rtc.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	time64_t secs;
26 
27 	if (!rtc->offset_secs)
28 		return;
29 
30 	secs = rtc_tm_to_time64(tm);
31 
32 	/*
33 	 * Since the reading time values from RTC device are always in the RTC
34 	 * original valid range, but we need to skip the overlapped region
35 	 * between expanded range and original range, which is no need to add
36 	 * the offset.
37 	 */
38 	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 	    (rtc->start_secs < rtc->range_min &&
40 	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 		return;
42 
43 	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
44 }
45 
46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	time64_t secs;
49 
50 	if (!rtc->offset_secs)
51 		return;
52 
53 	secs = rtc_tm_to_time64(tm);
54 
55 	/*
56 	 * If the setting time values are in the valid range of RTC hardware
57 	 * device, then no need to subtract the offset when setting time to RTC
58 	 * device. Otherwise we need to subtract the offset to make the time
59 	 * values are valid for RTC hardware device.
60 	 */
61 	if (secs >= rtc->range_min && secs <= rtc->range_max)
62 		return;
63 
64 	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
65 }
66 
67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
68 {
69 	if (rtc->range_min != rtc->range_max) {
70 		time64_t time = rtc_tm_to_time64(tm);
71 		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 			rtc->range_min;
73 		time64_t range_max = rtc->set_start_time ?
74 			(rtc->start_secs + rtc->range_max - rtc->range_min) :
75 			rtc->range_max;
76 
77 		if (time < range_min || time > range_max)
78 			return -ERANGE;
79 	}
80 
81 	return 0;
82 }
83 
84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
85 {
86 	int err;
87 
88 	if (!rtc->ops) {
89 		err = -ENODEV;
90 	} else if (!rtc->ops->read_time) {
91 		err = -EINVAL;
92 	} else {
93 		memset(tm, 0, sizeof(struct rtc_time));
94 		err = rtc->ops->read_time(rtc->dev.parent, tm);
95 		if (err < 0) {
96 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 				err);
98 			return err;
99 		}
100 
101 		rtc_add_offset(rtc, tm);
102 
103 		err = rtc_valid_tm(tm);
104 		if (err < 0)
105 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
106 	}
107 	return err;
108 }
109 
110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
111 {
112 	int err;
113 
114 	err = mutex_lock_interruptible(&rtc->ops_lock);
115 	if (err)
116 		return err;
117 
118 	err = __rtc_read_time(rtc, tm);
119 	mutex_unlock(&rtc->ops_lock);
120 
121 	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 	return err;
123 }
124 EXPORT_SYMBOL_GPL(rtc_read_time);
125 
126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
127 {
128 	int err;
129 
130 	err = rtc_valid_tm(tm);
131 	if (err != 0)
132 		return err;
133 
134 	err = rtc_valid_range(rtc, tm);
135 	if (err)
136 		return err;
137 
138 	rtc_subtract_offset(rtc, tm);
139 
140 	err = mutex_lock_interruptible(&rtc->ops_lock);
141 	if (err)
142 		return err;
143 
144 	if (!rtc->ops)
145 		err = -ENODEV;
146 	else if (rtc->ops->set_time)
147 		err = rtc->ops->set_time(rtc->dev.parent, tm);
148 	else
149 		err = -EINVAL;
150 
151 	pm_stay_awake(rtc->dev.parent);
152 	mutex_unlock(&rtc->ops_lock);
153 	/* A timer might have just expired */
154 	schedule_work(&rtc->irqwork);
155 
156 	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
157 	return err;
158 }
159 EXPORT_SYMBOL_GPL(rtc_set_time);
160 
161 static int rtc_read_alarm_internal(struct rtc_device *rtc,
162 				   struct rtc_wkalrm *alarm)
163 {
164 	int err;
165 
166 	err = mutex_lock_interruptible(&rtc->ops_lock);
167 	if (err)
168 		return err;
169 
170 	if (!rtc->ops) {
171 		err = -ENODEV;
172 	} else if (!rtc->ops->read_alarm) {
173 		err = -EINVAL;
174 	} else {
175 		alarm->enabled = 0;
176 		alarm->pending = 0;
177 		alarm->time.tm_sec = -1;
178 		alarm->time.tm_min = -1;
179 		alarm->time.tm_hour = -1;
180 		alarm->time.tm_mday = -1;
181 		alarm->time.tm_mon = -1;
182 		alarm->time.tm_year = -1;
183 		alarm->time.tm_wday = -1;
184 		alarm->time.tm_yday = -1;
185 		alarm->time.tm_isdst = -1;
186 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
187 	}
188 
189 	mutex_unlock(&rtc->ops_lock);
190 
191 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
192 	return err;
193 }
194 
195 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
196 {
197 	int err;
198 	struct rtc_time before, now;
199 	int first_time = 1;
200 	time64_t t_now, t_alm;
201 	enum { none, day, month, year } missing = none;
202 	unsigned int days;
203 
204 	/* The lower level RTC driver may return -1 in some fields,
205 	 * creating invalid alarm->time values, for reasons like:
206 	 *
207 	 *   - The hardware may not be capable of filling them in;
208 	 *     many alarms match only on time-of-day fields, not
209 	 *     day/month/year calendar data.
210 	 *
211 	 *   - Some hardware uses illegal values as "wildcard" match
212 	 *     values, which non-Linux firmware (like a BIOS) may try
213 	 *     to set up as e.g. "alarm 15 minutes after each hour".
214 	 *     Linux uses only oneshot alarms.
215 	 *
216 	 * When we see that here, we deal with it by using values from
217 	 * a current RTC timestamp for any missing (-1) values.  The
218 	 * RTC driver prevents "periodic alarm" modes.
219 	 *
220 	 * But this can be racey, because some fields of the RTC timestamp
221 	 * may have wrapped in the interval since we read the RTC alarm,
222 	 * which would lead to us inserting inconsistent values in place
223 	 * of the -1 fields.
224 	 *
225 	 * Reading the alarm and timestamp in the reverse sequence
226 	 * would have the same race condition, and not solve the issue.
227 	 *
228 	 * So, we must first read the RTC timestamp,
229 	 * then read the RTC alarm value,
230 	 * and then read a second RTC timestamp.
231 	 *
232 	 * If any fields of the second timestamp have changed
233 	 * when compared with the first timestamp, then we know
234 	 * our timestamp may be inconsistent with that used by
235 	 * the low-level rtc_read_alarm_internal() function.
236 	 *
237 	 * So, when the two timestamps disagree, we just loop and do
238 	 * the process again to get a fully consistent set of values.
239 	 *
240 	 * This could all instead be done in the lower level driver,
241 	 * but since more than one lower level RTC implementation needs it,
242 	 * then it's probably best best to do it here instead of there..
243 	 */
244 
245 	/* Get the "before" timestamp */
246 	err = rtc_read_time(rtc, &before);
247 	if (err < 0)
248 		return err;
249 	do {
250 		if (!first_time)
251 			memcpy(&before, &now, sizeof(struct rtc_time));
252 		first_time = 0;
253 
254 		/* get the RTC alarm values, which may be incomplete */
255 		err = rtc_read_alarm_internal(rtc, alarm);
256 		if (err)
257 			return err;
258 
259 		/* full-function RTCs won't have such missing fields */
260 		if (rtc_valid_tm(&alarm->time) == 0) {
261 			rtc_add_offset(rtc, &alarm->time);
262 			return 0;
263 		}
264 
265 		/* get the "after" timestamp, to detect wrapped fields */
266 		err = rtc_read_time(rtc, &now);
267 		if (err < 0)
268 			return err;
269 
270 		/* note that tm_sec is a "don't care" value here: */
271 	} while (before.tm_min  != now.tm_min ||
272 		 before.tm_hour != now.tm_hour ||
273 		 before.tm_mon  != now.tm_mon ||
274 		 before.tm_year != now.tm_year);
275 
276 	/* Fill in the missing alarm fields using the timestamp; we
277 	 * know there's at least one since alarm->time is invalid.
278 	 */
279 	if (alarm->time.tm_sec == -1)
280 		alarm->time.tm_sec = now.tm_sec;
281 	if (alarm->time.tm_min == -1)
282 		alarm->time.tm_min = now.tm_min;
283 	if (alarm->time.tm_hour == -1)
284 		alarm->time.tm_hour = now.tm_hour;
285 
286 	/* For simplicity, only support date rollover for now */
287 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
288 		alarm->time.tm_mday = now.tm_mday;
289 		missing = day;
290 	}
291 	if ((unsigned int)alarm->time.tm_mon >= 12) {
292 		alarm->time.tm_mon = now.tm_mon;
293 		if (missing == none)
294 			missing = month;
295 	}
296 	if (alarm->time.tm_year == -1) {
297 		alarm->time.tm_year = now.tm_year;
298 		if (missing == none)
299 			missing = year;
300 	}
301 
302 	/* Can't proceed if alarm is still invalid after replacing
303 	 * missing fields.
304 	 */
305 	err = rtc_valid_tm(&alarm->time);
306 	if (err)
307 		goto done;
308 
309 	/* with luck, no rollover is needed */
310 	t_now = rtc_tm_to_time64(&now);
311 	t_alm = rtc_tm_to_time64(&alarm->time);
312 	if (t_now < t_alm)
313 		goto done;
314 
315 	switch (missing) {
316 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
317 	 * that will trigger at 5am will do so at 5am Tuesday, which
318 	 * could also be in the next month or year.  This is a common
319 	 * case, especially for PCs.
320 	 */
321 	case day:
322 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
323 		t_alm += 24 * 60 * 60;
324 		rtc_time64_to_tm(t_alm, &alarm->time);
325 		break;
326 
327 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
328 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
329 	 * may end up in the month after that!  Many newer PCs support
330 	 * this type of alarm.
331 	 */
332 	case month:
333 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
334 		do {
335 			if (alarm->time.tm_mon < 11) {
336 				alarm->time.tm_mon++;
337 			} else {
338 				alarm->time.tm_mon = 0;
339 				alarm->time.tm_year++;
340 			}
341 			days = rtc_month_days(alarm->time.tm_mon,
342 					      alarm->time.tm_year);
343 		} while (days < alarm->time.tm_mday);
344 		break;
345 
346 	/* Year rollover ... easy except for leap years! */
347 	case year:
348 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
349 		do {
350 			alarm->time.tm_year++;
351 		} while (!is_leap_year(alarm->time.tm_year + 1900) &&
352 			 rtc_valid_tm(&alarm->time) != 0);
353 		break;
354 
355 	default:
356 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
357 	}
358 
359 	err = rtc_valid_tm(&alarm->time);
360 
361 done:
362 	if (err)
363 		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
364 			 &alarm->time);
365 
366 	return err;
367 }
368 
369 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
370 {
371 	int err;
372 
373 	err = mutex_lock_interruptible(&rtc->ops_lock);
374 	if (err)
375 		return err;
376 	if (!rtc->ops) {
377 		err = -ENODEV;
378 	} else if (!rtc->ops->read_alarm) {
379 		err = -EINVAL;
380 	} else {
381 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
382 		alarm->enabled = rtc->aie_timer.enabled;
383 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
384 	}
385 	mutex_unlock(&rtc->ops_lock);
386 
387 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
388 	return err;
389 }
390 EXPORT_SYMBOL_GPL(rtc_read_alarm);
391 
392 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
393 {
394 	struct rtc_time tm;
395 	time64_t now, scheduled;
396 	int err;
397 
398 	err = rtc_valid_tm(&alarm->time);
399 	if (err)
400 		return err;
401 
402 	scheduled = rtc_tm_to_time64(&alarm->time);
403 
404 	/* Make sure we're not setting alarms in the past */
405 	err = __rtc_read_time(rtc, &tm);
406 	if (err)
407 		return err;
408 	now = rtc_tm_to_time64(&tm);
409 	if (scheduled <= now)
410 		return -ETIME;
411 	/*
412 	 * XXX - We just checked to make sure the alarm time is not
413 	 * in the past, but there is still a race window where if
414 	 * the is alarm set for the next second and the second ticks
415 	 * over right here, before we set the alarm.
416 	 */
417 
418 	rtc_subtract_offset(rtc, &alarm->time);
419 
420 	if (!rtc->ops)
421 		err = -ENODEV;
422 	else if (!rtc->ops->set_alarm)
423 		err = -EINVAL;
424 	else
425 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
426 
427 	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
428 	return err;
429 }
430 
431 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
432 {
433 	int err;
434 
435 	if (!rtc->ops)
436 		return -ENODEV;
437 	else if (!rtc->ops->set_alarm)
438 		return -EINVAL;
439 
440 	err = rtc_valid_tm(&alarm->time);
441 	if (err != 0)
442 		return err;
443 
444 	err = rtc_valid_range(rtc, &alarm->time);
445 	if (err)
446 		return err;
447 
448 	err = mutex_lock_interruptible(&rtc->ops_lock);
449 	if (err)
450 		return err;
451 	if (rtc->aie_timer.enabled)
452 		rtc_timer_remove(rtc, &rtc->aie_timer);
453 
454 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
455 	rtc->aie_timer.period = 0;
456 	if (alarm->enabled)
457 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
458 
459 	mutex_unlock(&rtc->ops_lock);
460 
461 	return err;
462 }
463 EXPORT_SYMBOL_GPL(rtc_set_alarm);
464 
465 /* Called once per device from rtc_device_register */
466 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
467 {
468 	int err;
469 	struct rtc_time now;
470 
471 	err = rtc_valid_tm(&alarm->time);
472 	if (err != 0)
473 		return err;
474 
475 	err = rtc_read_time(rtc, &now);
476 	if (err)
477 		return err;
478 
479 	err = mutex_lock_interruptible(&rtc->ops_lock);
480 	if (err)
481 		return err;
482 
483 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
484 	rtc->aie_timer.period = 0;
485 
486 	/* Alarm has to be enabled & in the future for us to enqueue it */
487 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
488 			 rtc->aie_timer.node.expires)) {
489 		rtc->aie_timer.enabled = 1;
490 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
491 		trace_rtc_timer_enqueue(&rtc->aie_timer);
492 	}
493 	mutex_unlock(&rtc->ops_lock);
494 	return err;
495 }
496 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
497 
498 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
499 {
500 	int err;
501 
502 	err = mutex_lock_interruptible(&rtc->ops_lock);
503 	if (err)
504 		return err;
505 
506 	if (rtc->aie_timer.enabled != enabled) {
507 		if (enabled)
508 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
509 		else
510 			rtc_timer_remove(rtc, &rtc->aie_timer);
511 	}
512 
513 	if (err)
514 		/* nothing */;
515 	else if (!rtc->ops)
516 		err = -ENODEV;
517 	else if (!rtc->ops->alarm_irq_enable)
518 		err = -EINVAL;
519 	else
520 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
521 
522 	mutex_unlock(&rtc->ops_lock);
523 
524 	trace_rtc_alarm_irq_enable(enabled, err);
525 	return err;
526 }
527 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
528 
529 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
530 {
531 	int err;
532 
533 	err = mutex_lock_interruptible(&rtc->ops_lock);
534 	if (err)
535 		return err;
536 
537 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
538 	if (enabled == 0 && rtc->uie_irq_active) {
539 		mutex_unlock(&rtc->ops_lock);
540 		return rtc_dev_update_irq_enable_emul(rtc, 0);
541 	}
542 #endif
543 	/* make sure we're changing state */
544 	if (rtc->uie_rtctimer.enabled == enabled)
545 		goto out;
546 
547 	if (rtc->uie_unsupported) {
548 		err = -EINVAL;
549 		goto out;
550 	}
551 
552 	if (enabled) {
553 		struct rtc_time tm;
554 		ktime_t now, onesec;
555 
556 		__rtc_read_time(rtc, &tm);
557 		onesec = ktime_set(1, 0);
558 		now = rtc_tm_to_ktime(tm);
559 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
560 		rtc->uie_rtctimer.period = ktime_set(1, 0);
561 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
562 	} else {
563 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
564 	}
565 
566 out:
567 	mutex_unlock(&rtc->ops_lock);
568 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
569 	/*
570 	 * Enable emulation if the driver returned -EINVAL to signal that it has
571 	 * been configured without interrupts or they are not available at the
572 	 * moment.
573 	 */
574 	if (err == -EINVAL)
575 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
576 #endif
577 	return err;
578 }
579 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
580 
581 /**
582  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
583  * @rtc: pointer to the rtc device
584  *
585  * This function is called when an AIE, UIE or PIE mode interrupt
586  * has occurred (or been emulated).
587  *
588  */
589 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
590 {
591 	unsigned long flags;
592 
593 	/* mark one irq of the appropriate mode */
594 	spin_lock_irqsave(&rtc->irq_lock, flags);
595 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
596 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
597 
598 	wake_up_interruptible(&rtc->irq_queue);
599 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
600 }
601 
602 /**
603  * rtc_aie_update_irq - AIE mode rtctimer hook
604  * @rtc: pointer to the rtc_device
605  *
606  * This functions is called when the aie_timer expires.
607  */
608 void rtc_aie_update_irq(struct rtc_device *rtc)
609 {
610 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
611 }
612 
613 /**
614  * rtc_uie_update_irq - UIE mode rtctimer hook
615  * @rtc: pointer to the rtc_device
616  *
617  * This functions is called when the uie_timer expires.
618  */
619 void rtc_uie_update_irq(struct rtc_device *rtc)
620 {
621 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
622 }
623 
624 /**
625  * rtc_pie_update_irq - PIE mode hrtimer hook
626  * @timer: pointer to the pie mode hrtimer
627  *
628  * This function is used to emulate PIE mode interrupts
629  * using an hrtimer. This function is called when the periodic
630  * hrtimer expires.
631  */
632 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
633 {
634 	struct rtc_device *rtc;
635 	ktime_t period;
636 	u64 count;
637 
638 	rtc = container_of(timer, struct rtc_device, pie_timer);
639 
640 	period = NSEC_PER_SEC / rtc->irq_freq;
641 	count = hrtimer_forward_now(timer, period);
642 
643 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
644 
645 	return HRTIMER_RESTART;
646 }
647 
648 /**
649  * rtc_update_irq - Triggered when a RTC interrupt occurs.
650  * @rtc: the rtc device
651  * @num: how many irqs are being reported (usually one)
652  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
653  * Context: any
654  */
655 void rtc_update_irq(struct rtc_device *rtc,
656 		    unsigned long num, unsigned long events)
657 {
658 	if (IS_ERR_OR_NULL(rtc))
659 		return;
660 
661 	pm_stay_awake(rtc->dev.parent);
662 	schedule_work(&rtc->irqwork);
663 }
664 EXPORT_SYMBOL_GPL(rtc_update_irq);
665 
666 struct rtc_device *rtc_class_open(const char *name)
667 {
668 	struct device *dev;
669 	struct rtc_device *rtc = NULL;
670 
671 	dev = class_find_device_by_name(rtc_class, name);
672 	if (dev)
673 		rtc = to_rtc_device(dev);
674 
675 	if (rtc) {
676 		if (!try_module_get(rtc->owner)) {
677 			put_device(dev);
678 			rtc = NULL;
679 		}
680 	}
681 
682 	return rtc;
683 }
684 EXPORT_SYMBOL_GPL(rtc_class_open);
685 
686 void rtc_class_close(struct rtc_device *rtc)
687 {
688 	module_put(rtc->owner);
689 	put_device(&rtc->dev);
690 }
691 EXPORT_SYMBOL_GPL(rtc_class_close);
692 
693 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
694 {
695 	/*
696 	 * We always cancel the timer here first, because otherwise
697 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
698 	 * when we manage to start the timer before the callback
699 	 * returns HRTIMER_RESTART.
700 	 *
701 	 * We cannot use hrtimer_cancel() here as a running callback
702 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
703 	 * would spin forever.
704 	 */
705 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
706 		return -1;
707 
708 	if (enabled) {
709 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
710 
711 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
712 	}
713 	return 0;
714 }
715 
716 /**
717  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
718  * @rtc: the rtc device
719  * @enabled: true to enable periodic IRQs
720  * Context: any
721  *
722  * Note that rtc_irq_set_freq() should previously have been used to
723  * specify the desired frequency of periodic IRQ.
724  */
725 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
726 {
727 	int err = 0;
728 
729 	while (rtc_update_hrtimer(rtc, enabled) < 0)
730 		cpu_relax();
731 
732 	rtc->pie_enabled = enabled;
733 
734 	trace_rtc_irq_set_state(enabled, err);
735 	return err;
736 }
737 
738 /**
739  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
740  * @rtc: the rtc device
741  * @freq: positive frequency
742  * Context: any
743  *
744  * Note that rtc_irq_set_state() is used to enable or disable the
745  * periodic IRQs.
746  */
747 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
748 {
749 	int err = 0;
750 
751 	if (freq <= 0 || freq > RTC_MAX_FREQ)
752 		return -EINVAL;
753 
754 	rtc->irq_freq = freq;
755 	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
756 		cpu_relax();
757 
758 	trace_rtc_irq_set_freq(freq, err);
759 	return err;
760 }
761 
762 /**
763  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
764  * @rtc rtc device
765  * @timer timer being added.
766  *
767  * Enqueues a timer onto the rtc devices timerqueue and sets
768  * the next alarm event appropriately.
769  *
770  * Sets the enabled bit on the added timer.
771  *
772  * Must hold ops_lock for proper serialization of timerqueue
773  */
774 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
775 {
776 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
777 	struct rtc_time tm;
778 	ktime_t now;
779 
780 	timer->enabled = 1;
781 	__rtc_read_time(rtc, &tm);
782 	now = rtc_tm_to_ktime(tm);
783 
784 	/* Skip over expired timers */
785 	while (next) {
786 		if (next->expires >= now)
787 			break;
788 		next = timerqueue_iterate_next(next);
789 	}
790 
791 	timerqueue_add(&rtc->timerqueue, &timer->node);
792 	trace_rtc_timer_enqueue(timer);
793 	if (!next || ktime_before(timer->node.expires, next->expires)) {
794 		struct rtc_wkalrm alarm;
795 		int err;
796 
797 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
798 		alarm.enabled = 1;
799 		err = __rtc_set_alarm(rtc, &alarm);
800 		if (err == -ETIME) {
801 			pm_stay_awake(rtc->dev.parent);
802 			schedule_work(&rtc->irqwork);
803 		} else if (err) {
804 			timerqueue_del(&rtc->timerqueue, &timer->node);
805 			trace_rtc_timer_dequeue(timer);
806 			timer->enabled = 0;
807 			return err;
808 		}
809 	}
810 	return 0;
811 }
812 
813 static void rtc_alarm_disable(struct rtc_device *rtc)
814 {
815 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
816 		return;
817 
818 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
819 	trace_rtc_alarm_irq_enable(0, 0);
820 }
821 
822 /**
823  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
824  * @rtc rtc device
825  * @timer timer being removed.
826  *
827  * Removes a timer onto the rtc devices timerqueue and sets
828  * the next alarm event appropriately.
829  *
830  * Clears the enabled bit on the removed timer.
831  *
832  * Must hold ops_lock for proper serialization of timerqueue
833  */
834 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
835 {
836 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
837 
838 	timerqueue_del(&rtc->timerqueue, &timer->node);
839 	trace_rtc_timer_dequeue(timer);
840 	timer->enabled = 0;
841 	if (next == &timer->node) {
842 		struct rtc_wkalrm alarm;
843 		int err;
844 
845 		next = timerqueue_getnext(&rtc->timerqueue);
846 		if (!next) {
847 			rtc_alarm_disable(rtc);
848 			return;
849 		}
850 		alarm.time = rtc_ktime_to_tm(next->expires);
851 		alarm.enabled = 1;
852 		err = __rtc_set_alarm(rtc, &alarm);
853 		if (err == -ETIME) {
854 			pm_stay_awake(rtc->dev.parent);
855 			schedule_work(&rtc->irqwork);
856 		}
857 	}
858 }
859 
860 /**
861  * rtc_timer_do_work - Expires rtc timers
862  * @rtc rtc device
863  * @timer timer being removed.
864  *
865  * Expires rtc timers. Reprograms next alarm event if needed.
866  * Called via worktask.
867  *
868  * Serializes access to timerqueue via ops_lock mutex
869  */
870 void rtc_timer_do_work(struct work_struct *work)
871 {
872 	struct rtc_timer *timer;
873 	struct timerqueue_node *next;
874 	ktime_t now;
875 	struct rtc_time tm;
876 
877 	struct rtc_device *rtc =
878 		container_of(work, struct rtc_device, irqwork);
879 
880 	mutex_lock(&rtc->ops_lock);
881 again:
882 	__rtc_read_time(rtc, &tm);
883 	now = rtc_tm_to_ktime(tm);
884 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
885 		if (next->expires > now)
886 			break;
887 
888 		/* expire timer */
889 		timer = container_of(next, struct rtc_timer, node);
890 		timerqueue_del(&rtc->timerqueue, &timer->node);
891 		trace_rtc_timer_dequeue(timer);
892 		timer->enabled = 0;
893 		if (timer->func)
894 			timer->func(timer->rtc);
895 
896 		trace_rtc_timer_fired(timer);
897 		/* Re-add/fwd periodic timers */
898 		if (ktime_to_ns(timer->period)) {
899 			timer->node.expires = ktime_add(timer->node.expires,
900 							timer->period);
901 			timer->enabled = 1;
902 			timerqueue_add(&rtc->timerqueue, &timer->node);
903 			trace_rtc_timer_enqueue(timer);
904 		}
905 	}
906 
907 	/* Set next alarm */
908 	if (next) {
909 		struct rtc_wkalrm alarm;
910 		int err;
911 		int retry = 3;
912 
913 		alarm.time = rtc_ktime_to_tm(next->expires);
914 		alarm.enabled = 1;
915 reprogram:
916 		err = __rtc_set_alarm(rtc, &alarm);
917 		if (err == -ETIME) {
918 			goto again;
919 		} else if (err) {
920 			if (retry-- > 0)
921 				goto reprogram;
922 
923 			timer = container_of(next, struct rtc_timer, node);
924 			timerqueue_del(&rtc->timerqueue, &timer->node);
925 			trace_rtc_timer_dequeue(timer);
926 			timer->enabled = 0;
927 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
928 			goto again;
929 		}
930 	} else {
931 		rtc_alarm_disable(rtc);
932 	}
933 
934 	pm_relax(rtc->dev.parent);
935 	mutex_unlock(&rtc->ops_lock);
936 }
937 
938 /* rtc_timer_init - Initializes an rtc_timer
939  * @timer: timer to be intiialized
940  * @f: function pointer to be called when timer fires
941  * @rtc: pointer to the rtc_device
942  *
943  * Kernel interface to initializing an rtc_timer.
944  */
945 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
946 		    struct rtc_device *rtc)
947 {
948 	timerqueue_init(&timer->node);
949 	timer->enabled = 0;
950 	timer->func = f;
951 	timer->rtc = rtc;
952 }
953 
954 /* rtc_timer_start - Sets an rtc_timer to fire in the future
955  * @ rtc: rtc device to be used
956  * @ timer: timer being set
957  * @ expires: time at which to expire the timer
958  * @ period: period that the timer will recur
959  *
960  * Kernel interface to set an rtc_timer
961  */
962 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
963 		    ktime_t expires, ktime_t period)
964 {
965 	int ret = 0;
966 
967 	mutex_lock(&rtc->ops_lock);
968 	if (timer->enabled)
969 		rtc_timer_remove(rtc, timer);
970 
971 	timer->node.expires = expires;
972 	timer->period = period;
973 
974 	ret = rtc_timer_enqueue(rtc, timer);
975 
976 	mutex_unlock(&rtc->ops_lock);
977 	return ret;
978 }
979 
980 /* rtc_timer_cancel - Stops an rtc_timer
981  * @ rtc: rtc device to be used
982  * @ timer: timer being set
983  *
984  * Kernel interface to cancel an rtc_timer
985  */
986 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
987 {
988 	mutex_lock(&rtc->ops_lock);
989 	if (timer->enabled)
990 		rtc_timer_remove(rtc, timer);
991 	mutex_unlock(&rtc->ops_lock);
992 }
993 
994 /**
995  * rtc_read_offset - Read the amount of rtc offset in parts per billion
996  * @ rtc: rtc device to be used
997  * @ offset: the offset in parts per billion
998  *
999  * see below for details.
1000  *
1001  * Kernel interface to read rtc clock offset
1002  * Returns 0 on success, or a negative number on error.
1003  * If read_offset() is not implemented for the rtc, return -EINVAL
1004  */
1005 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1006 {
1007 	int ret;
1008 
1009 	if (!rtc->ops)
1010 		return -ENODEV;
1011 
1012 	if (!rtc->ops->read_offset)
1013 		return -EINVAL;
1014 
1015 	mutex_lock(&rtc->ops_lock);
1016 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1017 	mutex_unlock(&rtc->ops_lock);
1018 
1019 	trace_rtc_read_offset(*offset, ret);
1020 	return ret;
1021 }
1022 
1023 /**
1024  * rtc_set_offset - Adjusts the duration of the average second
1025  * @ rtc: rtc device to be used
1026  * @ offset: the offset in parts per billion
1027  *
1028  * Some rtc's allow an adjustment to the average duration of a second
1029  * to compensate for differences in the actual clock rate due to temperature,
1030  * the crystal, capacitor, etc.
1031  *
1032  * The adjustment applied is as follows:
1033  *   t = t0 * (1 + offset * 1e-9)
1034  * where t0 is the measured length of 1 RTC second with offset = 0
1035  *
1036  * Kernel interface to adjust an rtc clock offset.
1037  * Return 0 on success, or a negative number on error.
1038  * If the rtc offset is not setable (or not implemented), return -EINVAL
1039  */
1040 int rtc_set_offset(struct rtc_device *rtc, long offset)
1041 {
1042 	int ret;
1043 
1044 	if (!rtc->ops)
1045 		return -ENODEV;
1046 
1047 	if (!rtc->ops->set_offset)
1048 		return -EINVAL;
1049 
1050 	mutex_lock(&rtc->ops_lock);
1051 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1052 	mutex_unlock(&rtc->ops_lock);
1053 
1054 	trace_rtc_set_offset(offset, ret);
1055 	return ret;
1056 }
1057