xref: /linux/drivers/rtc/interface.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 		if (err < 0) {
34 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
35 				err);
36 			return err;
37 		}
38 
39 		err = rtc_valid_tm(tm);
40 		if (err < 0)
41 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
42 	}
43 	return err;
44 }
45 
46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	int err;
49 
50 	err = mutex_lock_interruptible(&rtc->ops_lock);
51 	if (err)
52 		return err;
53 
54 	err = __rtc_read_time(rtc, tm);
55 	mutex_unlock(&rtc->ops_lock);
56 	return err;
57 }
58 EXPORT_SYMBOL_GPL(rtc_read_time);
59 
60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
61 {
62 	int err;
63 
64 	err = rtc_valid_tm(tm);
65 	if (err != 0)
66 		return err;
67 
68 	err = mutex_lock_interruptible(&rtc->ops_lock);
69 	if (err)
70 		return err;
71 
72 	if (!rtc->ops)
73 		err = -ENODEV;
74 	else if (rtc->ops->set_time)
75 		err = rtc->ops->set_time(rtc->dev.parent, tm);
76 	else if (rtc->ops->set_mmss64) {
77 		time64_t secs64 = rtc_tm_to_time64(tm);
78 
79 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
80 	} else if (rtc->ops->set_mmss) {
81 		time64_t secs64 = rtc_tm_to_time64(tm);
82 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
83 	} else
84 		err = -EINVAL;
85 
86 	pm_stay_awake(rtc->dev.parent);
87 	mutex_unlock(&rtc->ops_lock);
88 	/* A timer might have just expired */
89 	schedule_work(&rtc->irqwork);
90 	return err;
91 }
92 EXPORT_SYMBOL_GPL(rtc_set_time);
93 
94 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
95 {
96 	int err;
97 
98 	err = mutex_lock_interruptible(&rtc->ops_lock);
99 	if (err)
100 		return err;
101 
102 	if (rtc->ops == NULL)
103 		err = -ENODEV;
104 	else if (!rtc->ops->read_alarm)
105 		err = -EINVAL;
106 	else {
107 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
108 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
109 	}
110 
111 	mutex_unlock(&rtc->ops_lock);
112 	return err;
113 }
114 
115 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
116 {
117 	int err;
118 	struct rtc_time before, now;
119 	int first_time = 1;
120 	time64_t t_now, t_alm;
121 	enum { none, day, month, year } missing = none;
122 	unsigned days;
123 
124 	/* The lower level RTC driver may return -1 in some fields,
125 	 * creating invalid alarm->time values, for reasons like:
126 	 *
127 	 *   - The hardware may not be capable of filling them in;
128 	 *     many alarms match only on time-of-day fields, not
129 	 *     day/month/year calendar data.
130 	 *
131 	 *   - Some hardware uses illegal values as "wildcard" match
132 	 *     values, which non-Linux firmware (like a BIOS) may try
133 	 *     to set up as e.g. "alarm 15 minutes after each hour".
134 	 *     Linux uses only oneshot alarms.
135 	 *
136 	 * When we see that here, we deal with it by using values from
137 	 * a current RTC timestamp for any missing (-1) values.  The
138 	 * RTC driver prevents "periodic alarm" modes.
139 	 *
140 	 * But this can be racey, because some fields of the RTC timestamp
141 	 * may have wrapped in the interval since we read the RTC alarm,
142 	 * which would lead to us inserting inconsistent values in place
143 	 * of the -1 fields.
144 	 *
145 	 * Reading the alarm and timestamp in the reverse sequence
146 	 * would have the same race condition, and not solve the issue.
147 	 *
148 	 * So, we must first read the RTC timestamp,
149 	 * then read the RTC alarm value,
150 	 * and then read a second RTC timestamp.
151 	 *
152 	 * If any fields of the second timestamp have changed
153 	 * when compared with the first timestamp, then we know
154 	 * our timestamp may be inconsistent with that used by
155 	 * the low-level rtc_read_alarm_internal() function.
156 	 *
157 	 * So, when the two timestamps disagree, we just loop and do
158 	 * the process again to get a fully consistent set of values.
159 	 *
160 	 * This could all instead be done in the lower level driver,
161 	 * but since more than one lower level RTC implementation needs it,
162 	 * then it's probably best best to do it here instead of there..
163 	 */
164 
165 	/* Get the "before" timestamp */
166 	err = rtc_read_time(rtc, &before);
167 	if (err < 0)
168 		return err;
169 	do {
170 		if (!first_time)
171 			memcpy(&before, &now, sizeof(struct rtc_time));
172 		first_time = 0;
173 
174 		/* get the RTC alarm values, which may be incomplete */
175 		err = rtc_read_alarm_internal(rtc, alarm);
176 		if (err)
177 			return err;
178 
179 		/* full-function RTCs won't have such missing fields */
180 		if (rtc_valid_tm(&alarm->time) == 0)
181 			return 0;
182 
183 		/* get the "after" timestamp, to detect wrapped fields */
184 		err = rtc_read_time(rtc, &now);
185 		if (err < 0)
186 			return err;
187 
188 		/* note that tm_sec is a "don't care" value here: */
189 	} while (   before.tm_min   != now.tm_min
190 		 || before.tm_hour  != now.tm_hour
191 		 || before.tm_mon   != now.tm_mon
192 		 || before.tm_year  != now.tm_year);
193 
194 	/* Fill in the missing alarm fields using the timestamp; we
195 	 * know there's at least one since alarm->time is invalid.
196 	 */
197 	if (alarm->time.tm_sec == -1)
198 		alarm->time.tm_sec = now.tm_sec;
199 	if (alarm->time.tm_min == -1)
200 		alarm->time.tm_min = now.tm_min;
201 	if (alarm->time.tm_hour == -1)
202 		alarm->time.tm_hour = now.tm_hour;
203 
204 	/* For simplicity, only support date rollover for now */
205 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
206 		alarm->time.tm_mday = now.tm_mday;
207 		missing = day;
208 	}
209 	if ((unsigned)alarm->time.tm_mon >= 12) {
210 		alarm->time.tm_mon = now.tm_mon;
211 		if (missing == none)
212 			missing = month;
213 	}
214 	if (alarm->time.tm_year == -1) {
215 		alarm->time.tm_year = now.tm_year;
216 		if (missing == none)
217 			missing = year;
218 	}
219 
220 	/* with luck, no rollover is needed */
221 	t_now = rtc_tm_to_time64(&now);
222 	t_alm = rtc_tm_to_time64(&alarm->time);
223 	if (t_now < t_alm)
224 		goto done;
225 
226 	switch (missing) {
227 
228 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
229 	 * that will trigger at 5am will do so at 5am Tuesday, which
230 	 * could also be in the next month or year.  This is a common
231 	 * case, especially for PCs.
232 	 */
233 	case day:
234 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
235 		t_alm += 24 * 60 * 60;
236 		rtc_time64_to_tm(t_alm, &alarm->time);
237 		break;
238 
239 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
240 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
241 	 * may end up in the month after that!  Many newer PCs support
242 	 * this type of alarm.
243 	 */
244 	case month:
245 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
246 		do {
247 			if (alarm->time.tm_mon < 11)
248 				alarm->time.tm_mon++;
249 			else {
250 				alarm->time.tm_mon = 0;
251 				alarm->time.tm_year++;
252 			}
253 			days = rtc_month_days(alarm->time.tm_mon,
254 					alarm->time.tm_year);
255 		} while (days < alarm->time.tm_mday);
256 		break;
257 
258 	/* Year rollover ... easy except for leap years! */
259 	case year:
260 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
261 		do {
262 			alarm->time.tm_year++;
263 		} while (!is_leap_year(alarm->time.tm_year + 1900)
264 			&& rtc_valid_tm(&alarm->time) != 0);
265 		break;
266 
267 	default:
268 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
269 	}
270 
271 done:
272 	err = rtc_valid_tm(&alarm->time);
273 
274 	if (err) {
275 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
276 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
277 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
278 			alarm->time.tm_sec);
279 	}
280 
281 	return err;
282 }
283 
284 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
285 {
286 	int err;
287 
288 	err = mutex_lock_interruptible(&rtc->ops_lock);
289 	if (err)
290 		return err;
291 	if (rtc->ops == NULL)
292 		err = -ENODEV;
293 	else if (!rtc->ops->read_alarm)
294 		err = -EINVAL;
295 	else {
296 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
297 		alarm->enabled = rtc->aie_timer.enabled;
298 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
299 	}
300 	mutex_unlock(&rtc->ops_lock);
301 
302 	return err;
303 }
304 EXPORT_SYMBOL_GPL(rtc_read_alarm);
305 
306 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
307 {
308 	struct rtc_time tm;
309 	time64_t now, scheduled;
310 	int err;
311 
312 	err = rtc_valid_tm(&alarm->time);
313 	if (err)
314 		return err;
315 	scheduled = rtc_tm_to_time64(&alarm->time);
316 
317 	/* Make sure we're not setting alarms in the past */
318 	err = __rtc_read_time(rtc, &tm);
319 	if (err)
320 		return err;
321 	now = rtc_tm_to_time64(&tm);
322 	if (scheduled <= now)
323 		return -ETIME;
324 	/*
325 	 * XXX - We just checked to make sure the alarm time is not
326 	 * in the past, but there is still a race window where if
327 	 * the is alarm set for the next second and the second ticks
328 	 * over right here, before we set the alarm.
329 	 */
330 
331 	if (!rtc->ops)
332 		err = -ENODEV;
333 	else if (!rtc->ops->set_alarm)
334 		err = -EINVAL;
335 	else
336 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
337 
338 	return err;
339 }
340 
341 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
342 {
343 	int err;
344 
345 	err = rtc_valid_tm(&alarm->time);
346 	if (err != 0)
347 		return err;
348 
349 	err = mutex_lock_interruptible(&rtc->ops_lock);
350 	if (err)
351 		return err;
352 	if (rtc->aie_timer.enabled)
353 		rtc_timer_remove(rtc, &rtc->aie_timer);
354 
355 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
356 	rtc->aie_timer.period = ktime_set(0, 0);
357 	if (alarm->enabled)
358 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
359 
360 	mutex_unlock(&rtc->ops_lock);
361 	return err;
362 }
363 EXPORT_SYMBOL_GPL(rtc_set_alarm);
364 
365 /* Called once per device from rtc_device_register */
366 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
367 {
368 	int err;
369 	struct rtc_time now;
370 
371 	err = rtc_valid_tm(&alarm->time);
372 	if (err != 0)
373 		return err;
374 
375 	err = rtc_read_time(rtc, &now);
376 	if (err)
377 		return err;
378 
379 	err = mutex_lock_interruptible(&rtc->ops_lock);
380 	if (err)
381 		return err;
382 
383 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
384 	rtc->aie_timer.period = ktime_set(0, 0);
385 
386 	/* Alarm has to be enabled & in the futrure for us to enqueue it */
387 	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
388 			 rtc->aie_timer.node.expires.tv64)) {
389 
390 		rtc->aie_timer.enabled = 1;
391 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
392 	}
393 	mutex_unlock(&rtc->ops_lock);
394 	return err;
395 }
396 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
397 
398 
399 
400 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
401 {
402 	int err = mutex_lock_interruptible(&rtc->ops_lock);
403 	if (err)
404 		return err;
405 
406 	if (rtc->aie_timer.enabled != enabled) {
407 		if (enabled)
408 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
409 		else
410 			rtc_timer_remove(rtc, &rtc->aie_timer);
411 	}
412 
413 	if (err)
414 		/* nothing */;
415 	else if (!rtc->ops)
416 		err = -ENODEV;
417 	else if (!rtc->ops->alarm_irq_enable)
418 		err = -EINVAL;
419 	else
420 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
421 
422 	mutex_unlock(&rtc->ops_lock);
423 	return err;
424 }
425 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
426 
427 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
428 {
429 	int err = mutex_lock_interruptible(&rtc->ops_lock);
430 	if (err)
431 		return err;
432 
433 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
434 	if (enabled == 0 && rtc->uie_irq_active) {
435 		mutex_unlock(&rtc->ops_lock);
436 		return rtc_dev_update_irq_enable_emul(rtc, 0);
437 	}
438 #endif
439 	/* make sure we're changing state */
440 	if (rtc->uie_rtctimer.enabled == enabled)
441 		goto out;
442 
443 	if (rtc->uie_unsupported) {
444 		err = -EINVAL;
445 		goto out;
446 	}
447 
448 	if (enabled) {
449 		struct rtc_time tm;
450 		ktime_t now, onesec;
451 
452 		__rtc_read_time(rtc, &tm);
453 		onesec = ktime_set(1, 0);
454 		now = rtc_tm_to_ktime(tm);
455 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
456 		rtc->uie_rtctimer.period = ktime_set(1, 0);
457 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
458 	} else
459 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
460 
461 out:
462 	mutex_unlock(&rtc->ops_lock);
463 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
464 	/*
465 	 * Enable emulation if the driver did not provide
466 	 * the update_irq_enable function pointer or if returned
467 	 * -EINVAL to signal that it has been configured without
468 	 * interrupts or that are not available at the moment.
469 	 */
470 	if (err == -EINVAL)
471 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
472 #endif
473 	return err;
474 
475 }
476 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
477 
478 
479 /**
480  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
481  * @rtc: pointer to the rtc device
482  *
483  * This function is called when an AIE, UIE or PIE mode interrupt
484  * has occurred (or been emulated).
485  *
486  * Triggers the registered irq_task function callback.
487  */
488 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
489 {
490 	unsigned long flags;
491 
492 	/* mark one irq of the appropriate mode */
493 	spin_lock_irqsave(&rtc->irq_lock, flags);
494 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
495 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
496 
497 	/* call the task func */
498 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
499 	if (rtc->irq_task)
500 		rtc->irq_task->func(rtc->irq_task->private_data);
501 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
502 
503 	wake_up_interruptible(&rtc->irq_queue);
504 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
505 }
506 
507 
508 /**
509  * rtc_aie_update_irq - AIE mode rtctimer hook
510  * @private: pointer to the rtc_device
511  *
512  * This functions is called when the aie_timer expires.
513  */
514 void rtc_aie_update_irq(void *private)
515 {
516 	struct rtc_device *rtc = (struct rtc_device *)private;
517 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
518 }
519 
520 
521 /**
522  * rtc_uie_update_irq - UIE mode rtctimer hook
523  * @private: pointer to the rtc_device
524  *
525  * This functions is called when the uie_timer expires.
526  */
527 void rtc_uie_update_irq(void *private)
528 {
529 	struct rtc_device *rtc = (struct rtc_device *)private;
530 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
531 }
532 
533 
534 /**
535  * rtc_pie_update_irq - PIE mode hrtimer hook
536  * @timer: pointer to the pie mode hrtimer
537  *
538  * This function is used to emulate PIE mode interrupts
539  * using an hrtimer. This function is called when the periodic
540  * hrtimer expires.
541  */
542 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
543 {
544 	struct rtc_device *rtc;
545 	ktime_t period;
546 	int count;
547 	rtc = container_of(timer, struct rtc_device, pie_timer);
548 
549 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
550 	count = hrtimer_forward_now(timer, period);
551 
552 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
553 
554 	return HRTIMER_RESTART;
555 }
556 
557 /**
558  * rtc_update_irq - Triggered when a RTC interrupt occurs.
559  * @rtc: the rtc device
560  * @num: how many irqs are being reported (usually one)
561  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
562  * Context: any
563  */
564 void rtc_update_irq(struct rtc_device *rtc,
565 		unsigned long num, unsigned long events)
566 {
567 	if (IS_ERR_OR_NULL(rtc))
568 		return;
569 
570 	pm_stay_awake(rtc->dev.parent);
571 	schedule_work(&rtc->irqwork);
572 }
573 EXPORT_SYMBOL_GPL(rtc_update_irq);
574 
575 static int __rtc_match(struct device *dev, const void *data)
576 {
577 	const char *name = data;
578 
579 	if (strcmp(dev_name(dev), name) == 0)
580 		return 1;
581 	return 0;
582 }
583 
584 struct rtc_device *rtc_class_open(const char *name)
585 {
586 	struct device *dev;
587 	struct rtc_device *rtc = NULL;
588 
589 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
590 	if (dev)
591 		rtc = to_rtc_device(dev);
592 
593 	if (rtc) {
594 		if (!try_module_get(rtc->owner)) {
595 			put_device(dev);
596 			rtc = NULL;
597 		}
598 	}
599 
600 	return rtc;
601 }
602 EXPORT_SYMBOL_GPL(rtc_class_open);
603 
604 void rtc_class_close(struct rtc_device *rtc)
605 {
606 	module_put(rtc->owner);
607 	put_device(&rtc->dev);
608 }
609 EXPORT_SYMBOL_GPL(rtc_class_close);
610 
611 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
612 {
613 	int retval = -EBUSY;
614 
615 	if (task == NULL || task->func == NULL)
616 		return -EINVAL;
617 
618 	/* Cannot register while the char dev is in use */
619 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
620 		return -EBUSY;
621 
622 	spin_lock_irq(&rtc->irq_task_lock);
623 	if (rtc->irq_task == NULL) {
624 		rtc->irq_task = task;
625 		retval = 0;
626 	}
627 	spin_unlock_irq(&rtc->irq_task_lock);
628 
629 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
630 
631 	return retval;
632 }
633 EXPORT_SYMBOL_GPL(rtc_irq_register);
634 
635 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
636 {
637 	spin_lock_irq(&rtc->irq_task_lock);
638 	if (rtc->irq_task == task)
639 		rtc->irq_task = NULL;
640 	spin_unlock_irq(&rtc->irq_task_lock);
641 }
642 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
643 
644 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
645 {
646 	/*
647 	 * We always cancel the timer here first, because otherwise
648 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
649 	 * when we manage to start the timer before the callback
650 	 * returns HRTIMER_RESTART.
651 	 *
652 	 * We cannot use hrtimer_cancel() here as a running callback
653 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
654 	 * would spin forever.
655 	 */
656 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
657 		return -1;
658 
659 	if (enabled) {
660 		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
661 
662 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
663 	}
664 	return 0;
665 }
666 
667 /**
668  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
669  * @rtc: the rtc device
670  * @task: currently registered with rtc_irq_register()
671  * @enabled: true to enable periodic IRQs
672  * Context: any
673  *
674  * Note that rtc_irq_set_freq() should previously have been used to
675  * specify the desired frequency of periodic IRQ task->func() callbacks.
676  */
677 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
678 {
679 	int err = 0;
680 	unsigned long flags;
681 
682 retry:
683 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
684 	if (rtc->irq_task != NULL && task == NULL)
685 		err = -EBUSY;
686 	else if (rtc->irq_task != task)
687 		err = -EACCES;
688 	else {
689 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
690 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
691 			cpu_relax();
692 			goto retry;
693 		}
694 		rtc->pie_enabled = enabled;
695 	}
696 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
697 	return err;
698 }
699 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
700 
701 /**
702  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
703  * @rtc: the rtc device
704  * @task: currently registered with rtc_irq_register()
705  * @freq: positive frequency with which task->func() will be called
706  * Context: any
707  *
708  * Note that rtc_irq_set_state() is used to enable or disable the
709  * periodic IRQs.
710  */
711 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
712 {
713 	int err = 0;
714 	unsigned long flags;
715 
716 	if (freq <= 0 || freq > RTC_MAX_FREQ)
717 		return -EINVAL;
718 retry:
719 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
720 	if (rtc->irq_task != NULL && task == NULL)
721 		err = -EBUSY;
722 	else if (rtc->irq_task != task)
723 		err = -EACCES;
724 	else {
725 		rtc->irq_freq = freq;
726 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
727 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
728 			cpu_relax();
729 			goto retry;
730 		}
731 	}
732 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
733 	return err;
734 }
735 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
736 
737 /**
738  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
739  * @rtc rtc device
740  * @timer timer being added.
741  *
742  * Enqueues a timer onto the rtc devices timerqueue and sets
743  * the next alarm event appropriately.
744  *
745  * Sets the enabled bit on the added timer.
746  *
747  * Must hold ops_lock for proper serialization of timerqueue
748  */
749 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
750 {
751 	timer->enabled = 1;
752 	timerqueue_add(&rtc->timerqueue, &timer->node);
753 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
754 		struct rtc_wkalrm alarm;
755 		int err;
756 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
757 		alarm.enabled = 1;
758 		err = __rtc_set_alarm(rtc, &alarm);
759 		if (err == -ETIME) {
760 			pm_stay_awake(rtc->dev.parent);
761 			schedule_work(&rtc->irqwork);
762 		} else if (err) {
763 			timerqueue_del(&rtc->timerqueue, &timer->node);
764 			timer->enabled = 0;
765 			return err;
766 		}
767 	}
768 	return 0;
769 }
770 
771 static void rtc_alarm_disable(struct rtc_device *rtc)
772 {
773 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
774 		return;
775 
776 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
777 }
778 
779 /**
780  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
781  * @rtc rtc device
782  * @timer timer being removed.
783  *
784  * Removes a timer onto the rtc devices timerqueue and sets
785  * the next alarm event appropriately.
786  *
787  * Clears the enabled bit on the removed timer.
788  *
789  * Must hold ops_lock for proper serialization of timerqueue
790  */
791 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
792 {
793 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
794 	timerqueue_del(&rtc->timerqueue, &timer->node);
795 	timer->enabled = 0;
796 	if (next == &timer->node) {
797 		struct rtc_wkalrm alarm;
798 		int err;
799 		next = timerqueue_getnext(&rtc->timerqueue);
800 		if (!next) {
801 			rtc_alarm_disable(rtc);
802 			return;
803 		}
804 		alarm.time = rtc_ktime_to_tm(next->expires);
805 		alarm.enabled = 1;
806 		err = __rtc_set_alarm(rtc, &alarm);
807 		if (err == -ETIME) {
808 			pm_stay_awake(rtc->dev.parent);
809 			schedule_work(&rtc->irqwork);
810 		}
811 	}
812 }
813 
814 /**
815  * rtc_timer_do_work - Expires rtc timers
816  * @rtc rtc device
817  * @timer timer being removed.
818  *
819  * Expires rtc timers. Reprograms next alarm event if needed.
820  * Called via worktask.
821  *
822  * Serializes access to timerqueue via ops_lock mutex
823  */
824 void rtc_timer_do_work(struct work_struct *work)
825 {
826 	struct rtc_timer *timer;
827 	struct timerqueue_node *next;
828 	ktime_t now;
829 	struct rtc_time tm;
830 
831 	struct rtc_device *rtc =
832 		container_of(work, struct rtc_device, irqwork);
833 
834 	mutex_lock(&rtc->ops_lock);
835 again:
836 	__rtc_read_time(rtc, &tm);
837 	now = rtc_tm_to_ktime(tm);
838 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
839 		if (next->expires.tv64 > now.tv64)
840 			break;
841 
842 		/* expire timer */
843 		timer = container_of(next, struct rtc_timer, node);
844 		timerqueue_del(&rtc->timerqueue, &timer->node);
845 		timer->enabled = 0;
846 		if (timer->task.func)
847 			timer->task.func(timer->task.private_data);
848 
849 		/* Re-add/fwd periodic timers */
850 		if (ktime_to_ns(timer->period)) {
851 			timer->node.expires = ktime_add(timer->node.expires,
852 							timer->period);
853 			timer->enabled = 1;
854 			timerqueue_add(&rtc->timerqueue, &timer->node);
855 		}
856 	}
857 
858 	/* Set next alarm */
859 	if (next) {
860 		struct rtc_wkalrm alarm;
861 		int err;
862 		int retry = 3;
863 
864 		alarm.time = rtc_ktime_to_tm(next->expires);
865 		alarm.enabled = 1;
866 reprogram:
867 		err = __rtc_set_alarm(rtc, &alarm);
868 		if (err == -ETIME)
869 			goto again;
870 		else if (err) {
871 			if (retry-- > 0)
872 				goto reprogram;
873 
874 			timer = container_of(next, struct rtc_timer, node);
875 			timerqueue_del(&rtc->timerqueue, &timer->node);
876 			timer->enabled = 0;
877 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
878 			goto again;
879 		}
880 	} else
881 		rtc_alarm_disable(rtc);
882 
883 	pm_relax(rtc->dev.parent);
884 	mutex_unlock(&rtc->ops_lock);
885 }
886 
887 
888 /* rtc_timer_init - Initializes an rtc_timer
889  * @timer: timer to be intiialized
890  * @f: function pointer to be called when timer fires
891  * @data: private data passed to function pointer
892  *
893  * Kernel interface to initializing an rtc_timer.
894  */
895 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
896 {
897 	timerqueue_init(&timer->node);
898 	timer->enabled = 0;
899 	timer->task.func = f;
900 	timer->task.private_data = data;
901 }
902 
903 /* rtc_timer_start - Sets an rtc_timer to fire in the future
904  * @ rtc: rtc device to be used
905  * @ timer: timer being set
906  * @ expires: time at which to expire the timer
907  * @ period: period that the timer will recur
908  *
909  * Kernel interface to set an rtc_timer
910  */
911 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
912 			ktime_t expires, ktime_t period)
913 {
914 	int ret = 0;
915 	mutex_lock(&rtc->ops_lock);
916 	if (timer->enabled)
917 		rtc_timer_remove(rtc, timer);
918 
919 	timer->node.expires = expires;
920 	timer->period = period;
921 
922 	ret = rtc_timer_enqueue(rtc, timer);
923 
924 	mutex_unlock(&rtc->ops_lock);
925 	return ret;
926 }
927 
928 /* rtc_timer_cancel - Stops an rtc_timer
929  * @ rtc: rtc device to be used
930  * @ timer: timer being set
931  *
932  * Kernel interface to cancel an rtc_timer
933  */
934 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
935 {
936 	mutex_lock(&rtc->ops_lock);
937 	if (timer->enabled)
938 		rtc_timer_remove(rtc, timer);
939 	mutex_unlock(&rtc->ops_lock);
940 }
941 
942 /**
943  * rtc_read_offset - Read the amount of rtc offset in parts per billion
944  * @ rtc: rtc device to be used
945  * @ offset: the offset in parts per billion
946  *
947  * see below for details.
948  *
949  * Kernel interface to read rtc clock offset
950  * Returns 0 on success, or a negative number on error.
951  * If read_offset() is not implemented for the rtc, return -EINVAL
952  */
953 int rtc_read_offset(struct rtc_device *rtc, long *offset)
954 {
955 	int ret;
956 
957 	if (!rtc->ops)
958 		return -ENODEV;
959 
960 	if (!rtc->ops->read_offset)
961 		return -EINVAL;
962 
963 	mutex_lock(&rtc->ops_lock);
964 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
965 	mutex_unlock(&rtc->ops_lock);
966 	return ret;
967 }
968 
969 /**
970  * rtc_set_offset - Adjusts the duration of the average second
971  * @ rtc: rtc device to be used
972  * @ offset: the offset in parts per billion
973  *
974  * Some rtc's allow an adjustment to the average duration of a second
975  * to compensate for differences in the actual clock rate due to temperature,
976  * the crystal, capacitor, etc.
977  *
978  * Kernel interface to adjust an rtc clock offset.
979  * Return 0 on success, or a negative number on error.
980  * If the rtc offset is not setable (or not implemented), return -EINVAL
981  */
982 int rtc_set_offset(struct rtc_device *rtc, long offset)
983 {
984 	int ret;
985 
986 	if (!rtc->ops)
987 		return -ENODEV;
988 
989 	if (!rtc->ops->set_offset)
990 		return -EINVAL;
991 
992 	mutex_lock(&rtc->ops_lock);
993 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
994 	mutex_unlock(&rtc->ops_lock);
995 	return ret;
996 }
997