xref: /linux/drivers/rtc/interface.c (revision 04c71976500352d02f60616d2b960267d8c5fe24)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/log2.h>
16 
17 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
18 {
19 	int err;
20 
21 	err = mutex_lock_interruptible(&rtc->ops_lock);
22 	if (err)
23 		return -EBUSY;
24 
25 	if (!rtc->ops)
26 		err = -ENODEV;
27 	else if (!rtc->ops->read_time)
28 		err = -EINVAL;
29 	else {
30 		memset(tm, 0, sizeof(struct rtc_time));
31 		err = rtc->ops->read_time(rtc->dev.parent, tm);
32 	}
33 
34 	mutex_unlock(&rtc->ops_lock);
35 	return err;
36 }
37 EXPORT_SYMBOL_GPL(rtc_read_time);
38 
39 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
40 {
41 	int err;
42 
43 	err = rtc_valid_tm(tm);
44 	if (err != 0)
45 		return err;
46 
47 	err = mutex_lock_interruptible(&rtc->ops_lock);
48 	if (err)
49 		return -EBUSY;
50 
51 	if (!rtc->ops)
52 		err = -ENODEV;
53 	else if (!rtc->ops->set_time)
54 		err = -EINVAL;
55 	else
56 		err = rtc->ops->set_time(rtc->dev.parent, tm);
57 
58 	mutex_unlock(&rtc->ops_lock);
59 	return err;
60 }
61 EXPORT_SYMBOL_GPL(rtc_set_time);
62 
63 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
64 {
65 	int err;
66 
67 	err = mutex_lock_interruptible(&rtc->ops_lock);
68 	if (err)
69 		return -EBUSY;
70 
71 	if (!rtc->ops)
72 		err = -ENODEV;
73 	else if (rtc->ops->set_mmss)
74 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
75 	else if (rtc->ops->read_time && rtc->ops->set_time) {
76 		struct rtc_time new, old;
77 
78 		err = rtc->ops->read_time(rtc->dev.parent, &old);
79 		if (err == 0) {
80 			rtc_time_to_tm(secs, &new);
81 
82 			/*
83 			 * avoid writing when we're going to change the day of
84 			 * the month. We will retry in the next minute. This
85 			 * basically means that if the RTC must not drift
86 			 * by more than 1 minute in 11 minutes.
87 			 */
88 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
89 				(new.tm_hour == 23 && new.tm_min == 59)))
90 				err = rtc->ops->set_time(rtc->dev.parent,
91 						&new);
92 		}
93 	}
94 	else
95 		err = -EINVAL;
96 
97 	mutex_unlock(&rtc->ops_lock);
98 
99 	return err;
100 }
101 EXPORT_SYMBOL_GPL(rtc_set_mmss);
102 
103 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
104 {
105 	int err;
106 
107 	err = mutex_lock_interruptible(&rtc->ops_lock);
108 	if (err)
109 		return -EBUSY;
110 
111 	if (rtc->ops == NULL)
112 		err = -ENODEV;
113 	else if (!rtc->ops->read_alarm)
114 		err = -EINVAL;
115 	else {
116 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
117 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
118 	}
119 
120 	mutex_unlock(&rtc->ops_lock);
121 	return err;
122 }
123 
124 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
125 {
126 	int err;
127 	struct rtc_time before, now;
128 	int first_time = 1;
129 
130 	/* The lower level RTC driver may not be capable of filling
131 	 * in all fields of the rtc_time struct (eg. rtc-cmos),
132 	 * and so might instead return -1 in some fields.
133 	 * We deal with that here by grabbing a current RTC timestamp
134 	 * and using values from that for any missing (-1) values.
135 	 *
136 	 * But this can be racey, because some fields of the RTC timestamp
137 	 * may have wrapped in the interval since we read the RTC alarm,
138 	 * which would lead to us inserting inconsistent values in place
139 	 * of the -1 fields.
140 	 *
141 	 * Reading the alarm and timestamp in the reverse sequence
142 	 * would have the same race condition, and not solve the issue.
143 	 *
144 	 * So, we must first read the RTC timestamp,
145 	 * then read the RTC alarm value,
146 	 * and then read a second RTC timestamp.
147 	 *
148 	 * If any fields of the second timestamp have changed
149 	 * when compared with the first timestamp, then we know
150 	 * our timestamp may be inconsistent with that used by
151 	 * the low-level rtc_read_alarm_internal() function.
152 	 *
153 	 * So, when the two timestamps disagree, we just loop and do
154 	 * the process again to get a fully consistent set of values.
155 	 *
156 	 * This could all instead be done in the lower level driver,
157 	 * but since more than one lower level RTC implementation needs it,
158 	 * then it's probably best best to do it here instead of there..
159 	 */
160 
161 	/* Get the "before" timestamp */
162 	err = rtc_read_time(rtc, &before);
163 	if (err < 0)
164 		return err;
165 	do {
166 		if (!first_time)
167 			memcpy(&before, &now, sizeof(struct rtc_time));
168 		first_time = 0;
169 
170 		/* get the RTC alarm values, which may be incomplete */
171 		err = rtc_read_alarm_internal(rtc, alarm);
172 		if (err)
173 			return err;
174 		if (!alarm->enabled)
175 			return 0;
176 
177 		/* get the "after" timestamp, to detect wrapped fields */
178 		err = rtc_read_time(rtc, &now);
179 		if (err < 0)
180 			return err;
181 
182 		/* note that tm_sec is a "don't care" value here: */
183 	} while (   before.tm_min   != now.tm_min
184 		 || before.tm_hour  != now.tm_hour
185 		 || before.tm_mon   != now.tm_mon
186 		 || before.tm_year  != now.tm_year
187 		 || before.tm_isdst != now.tm_isdst);
188 
189 	/* Fill in any missing alarm fields using the timestamp */
190 	if (alarm->time.tm_sec == -1)
191 		alarm->time.tm_sec = now.tm_sec;
192 	if (alarm->time.tm_min == -1)
193 		alarm->time.tm_min = now.tm_min;
194 	if (alarm->time.tm_hour == -1)
195 		alarm->time.tm_hour = now.tm_hour;
196 	if (alarm->time.tm_mday == -1)
197 		alarm->time.tm_mday = now.tm_mday;
198 	if (alarm->time.tm_mon == -1)
199 		alarm->time.tm_mon = now.tm_mon;
200 	if (alarm->time.tm_year == -1)
201 		alarm->time.tm_year = now.tm_year;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(rtc_read_alarm);
205 
206 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
207 {
208 	int err;
209 
210 	err = rtc_valid_tm(&alarm->time);
211 	if (err != 0)
212 		return err;
213 
214 	err = mutex_lock_interruptible(&rtc->ops_lock);
215 	if (err)
216 		return -EBUSY;
217 
218 	if (!rtc->ops)
219 		err = -ENODEV;
220 	else if (!rtc->ops->set_alarm)
221 		err = -EINVAL;
222 	else
223 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
224 
225 	mutex_unlock(&rtc->ops_lock);
226 	return err;
227 }
228 EXPORT_SYMBOL_GPL(rtc_set_alarm);
229 
230 /**
231  * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
232  * @rtc: the rtc device
233  * @num: how many irqs are being reported (usually one)
234  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
235  * Context: in_interrupt(), irqs blocked
236  */
237 void rtc_update_irq(struct rtc_device *rtc,
238 		unsigned long num, unsigned long events)
239 {
240 	spin_lock(&rtc->irq_lock);
241 	rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
242 	spin_unlock(&rtc->irq_lock);
243 
244 	spin_lock(&rtc->irq_task_lock);
245 	if (rtc->irq_task)
246 		rtc->irq_task->func(rtc->irq_task->private_data);
247 	spin_unlock(&rtc->irq_task_lock);
248 
249 	wake_up_interruptible(&rtc->irq_queue);
250 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
251 }
252 EXPORT_SYMBOL_GPL(rtc_update_irq);
253 
254 struct rtc_device *rtc_class_open(char *name)
255 {
256 	struct device *dev;
257 	struct rtc_device *rtc = NULL;
258 
259 	down(&rtc_class->sem);
260 	list_for_each_entry(dev, &rtc_class->devices, node) {
261 		if (strncmp(dev->bus_id, name, BUS_ID_SIZE) == 0) {
262 			dev = get_device(dev);
263 			if (dev)
264 				rtc = to_rtc_device(dev);
265 			break;
266 		}
267 	}
268 
269 	if (rtc) {
270 		if (!try_module_get(rtc->owner)) {
271 			put_device(dev);
272 			rtc = NULL;
273 		}
274 	}
275 	up(&rtc_class->sem);
276 
277 	return rtc;
278 }
279 EXPORT_SYMBOL_GPL(rtc_class_open);
280 
281 void rtc_class_close(struct rtc_device *rtc)
282 {
283 	module_put(rtc->owner);
284 	put_device(&rtc->dev);
285 }
286 EXPORT_SYMBOL_GPL(rtc_class_close);
287 
288 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
289 {
290 	int retval = -EBUSY;
291 
292 	if (task == NULL || task->func == NULL)
293 		return -EINVAL;
294 
295 	/* Cannot register while the char dev is in use */
296 	if (!(mutex_trylock(&rtc->char_lock)))
297 		return -EBUSY;
298 
299 	spin_lock_irq(&rtc->irq_task_lock);
300 	if (rtc->irq_task == NULL) {
301 		rtc->irq_task = task;
302 		retval = 0;
303 	}
304 	spin_unlock_irq(&rtc->irq_task_lock);
305 
306 	mutex_unlock(&rtc->char_lock);
307 
308 	return retval;
309 }
310 EXPORT_SYMBOL_GPL(rtc_irq_register);
311 
312 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
313 {
314 	spin_lock_irq(&rtc->irq_task_lock);
315 	if (rtc->irq_task == task)
316 		rtc->irq_task = NULL;
317 	spin_unlock_irq(&rtc->irq_task_lock);
318 }
319 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
320 
321 /**
322  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
323  * @rtc: the rtc device
324  * @task: currently registered with rtc_irq_register()
325  * @enabled: true to enable periodic IRQs
326  * Context: any
327  *
328  * Note that rtc_irq_set_freq() should previously have been used to
329  * specify the desired frequency of periodic IRQ task->func() callbacks.
330  */
331 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
332 {
333 	int err = 0;
334 	unsigned long flags;
335 
336 	if (rtc->ops->irq_set_state == NULL)
337 		return -ENXIO;
338 
339 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
340 	if (rtc->irq_task != NULL && task == NULL)
341 		err = -EBUSY;
342 	if (rtc->irq_task != task)
343 		err = -EACCES;
344 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
345 
346 	if (err == 0)
347 		err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
348 
349 	return err;
350 }
351 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
352 
353 /**
354  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
355  * @rtc: the rtc device
356  * @task: currently registered with rtc_irq_register()
357  * @freq: positive frequency with which task->func() will be called
358  * Context: any
359  *
360  * Note that rtc_irq_set_state() is used to enable or disable the
361  * periodic IRQs.
362  */
363 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
364 {
365 	int err = 0;
366 	unsigned long flags;
367 
368 	if (rtc->ops->irq_set_freq == NULL)
369 		return -ENXIO;
370 
371 	if (!is_power_of_2(freq))
372 		return -EINVAL;
373 
374 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
375 	if (rtc->irq_task != NULL && task == NULL)
376 		err = -EBUSY;
377 	if (rtc->irq_task != task)
378 		err = -EACCES;
379 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
380 
381 	if (err == 0) {
382 		err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
383 		if (err == 0)
384 			rtc->irq_freq = freq;
385 	}
386 	return err;
387 }
388 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
389