xref: /linux/drivers/rtc/class.c (revision effa76856f2d7111f8c44de49f15ebdfccea8ccc)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * RTC subsystem, base class
4   *
5   * Copyright (C) 2005 Tower Technologies
6   * Author: Alessandro Zummo <a.zummo@towertech.it>
7   *
8   * class skeleton from drivers/hwmon/hwmon.c
9   */
10  
11  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12  
13  #include <linux/module.h>
14  #include <linux/of.h>
15  #include <linux/rtc.h>
16  #include <linux/kdev_t.h>
17  #include <linux/idr.h>
18  #include <linux/slab.h>
19  #include <linux/workqueue.h>
20  
21  #include "rtc-core.h"
22  
23  static DEFINE_IDA(rtc_ida);
24  struct class *rtc_class;
25  
26  static void rtc_device_release(struct device *dev)
27  {
28  	struct rtc_device *rtc = to_rtc_device(dev);
29  	struct timerqueue_head *head = &rtc->timerqueue;
30  	struct timerqueue_node *node;
31  
32  	mutex_lock(&rtc->ops_lock);
33  	while ((node = timerqueue_getnext(head)))
34  		timerqueue_del(head, node);
35  	mutex_unlock(&rtc->ops_lock);
36  
37  	cancel_work_sync(&rtc->irqwork);
38  
39  	ida_free(&rtc_ida, rtc->id);
40  	mutex_destroy(&rtc->ops_lock);
41  	kfree(rtc);
42  }
43  
44  #ifdef CONFIG_RTC_HCTOSYS_DEVICE
45  /* Result of the last RTC to system clock attempt. */
46  int rtc_hctosys_ret = -ENODEV;
47  
48  /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
49   * whether it stores the most close value or the value with partial
50   * seconds truncated. However, it is important that we use it to store
51   * the truncated value. This is because otherwise it is necessary,
52   * in an rtc sync function, to read both xtime.tv_sec and
53   * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
54   * of >32bits is not possible. So storing the most close value would
55   * slow down the sync API. So here we have the truncated value and
56   * the best guess is to add 0.5s.
57   */
58  
59  static void rtc_hctosys(struct rtc_device *rtc)
60  {
61  	int err;
62  	struct rtc_time tm;
63  	struct timespec64 tv64 = {
64  		.tv_nsec = NSEC_PER_SEC >> 1,
65  	};
66  
67  	err = rtc_read_time(rtc, &tm);
68  	if (err) {
69  		dev_err(rtc->dev.parent,
70  			"hctosys: unable to read the hardware clock\n");
71  		goto err_read;
72  	}
73  
74  	tv64.tv_sec = rtc_tm_to_time64(&tm);
75  
76  #if BITS_PER_LONG == 32
77  	if (tv64.tv_sec > INT_MAX) {
78  		err = -ERANGE;
79  		goto err_read;
80  	}
81  #endif
82  
83  	err = do_settimeofday64(&tv64);
84  
85  	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
86  		 &tm, (long long)tv64.tv_sec);
87  
88  err_read:
89  	rtc_hctosys_ret = err;
90  }
91  #endif
92  
93  #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
94  /*
95   * On suspend(), measure the delta between one RTC and the
96   * system's wall clock; restore it on resume().
97   */
98  
99  static struct timespec64 old_rtc, old_system, old_delta;
100  
101  static int rtc_suspend(struct device *dev)
102  {
103  	struct rtc_device	*rtc = to_rtc_device(dev);
104  	struct rtc_time		tm;
105  	struct timespec64	delta, delta_delta;
106  	int err;
107  
108  	if (timekeeping_rtc_skipsuspend())
109  		return 0;
110  
111  	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
112  		return 0;
113  
114  	/* snapshot the current RTC and system time at suspend*/
115  	err = rtc_read_time(rtc, &tm);
116  	if (err < 0) {
117  		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
118  		return 0;
119  	}
120  
121  	ktime_get_real_ts64(&old_system);
122  	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
123  
124  	/*
125  	 * To avoid drift caused by repeated suspend/resumes,
126  	 * which each can add ~1 second drift error,
127  	 * try to compensate so the difference in system time
128  	 * and rtc time stays close to constant.
129  	 */
130  	delta = timespec64_sub(old_system, old_rtc);
131  	delta_delta = timespec64_sub(delta, old_delta);
132  	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
133  		/*
134  		 * if delta_delta is too large, assume time correction
135  		 * has occurred and set old_delta to the current delta.
136  		 */
137  		old_delta = delta;
138  	} else {
139  		/* Otherwise try to adjust old_system to compensate */
140  		old_system = timespec64_sub(old_system, delta_delta);
141  	}
142  
143  	return 0;
144  }
145  
146  static int rtc_resume(struct device *dev)
147  {
148  	struct rtc_device	*rtc = to_rtc_device(dev);
149  	struct rtc_time		tm;
150  	struct timespec64	new_system, new_rtc;
151  	struct timespec64	sleep_time;
152  	int err;
153  
154  	if (timekeeping_rtc_skipresume())
155  		return 0;
156  
157  	rtc_hctosys_ret = -ENODEV;
158  	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
159  		return 0;
160  
161  	/* snapshot the current rtc and system time at resume */
162  	ktime_get_real_ts64(&new_system);
163  	err = rtc_read_time(rtc, &tm);
164  	if (err < 0) {
165  		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
166  		return 0;
167  	}
168  
169  	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
170  	new_rtc.tv_nsec = 0;
171  
172  	if (new_rtc.tv_sec < old_rtc.tv_sec) {
173  		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
174  		return 0;
175  	}
176  
177  	/* calculate the RTC time delta (sleep time)*/
178  	sleep_time = timespec64_sub(new_rtc, old_rtc);
179  
180  	/*
181  	 * Since these RTC suspend/resume handlers are not called
182  	 * at the very end of suspend or the start of resume,
183  	 * some run-time may pass on either sides of the sleep time
184  	 * so subtract kernel run-time between rtc_suspend to rtc_resume
185  	 * to keep things accurate.
186  	 */
187  	sleep_time = timespec64_sub(sleep_time,
188  				    timespec64_sub(new_system, old_system));
189  
190  	if (sleep_time.tv_sec >= 0)
191  		timekeeping_inject_sleeptime64(&sleep_time);
192  	rtc_hctosys_ret = 0;
193  	return 0;
194  }
195  
196  static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
197  #define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
198  #else
199  #define RTC_CLASS_DEV_PM_OPS	NULL
200  #endif
201  
202  /* Ensure the caller will set the id before releasing the device */
203  static struct rtc_device *rtc_allocate_device(void)
204  {
205  	struct rtc_device *rtc;
206  
207  	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
208  	if (!rtc)
209  		return NULL;
210  
211  	device_initialize(&rtc->dev);
212  
213  	/*
214  	 * Drivers can revise this default after allocating the device.
215  	 * The default is what most RTCs do: Increment seconds exactly one
216  	 * second after the write happened. This adds a default transport
217  	 * time of 5ms which is at least halfways close to reality.
218  	 */
219  	rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
220  
221  	rtc->irq_freq = 1;
222  	rtc->max_user_freq = 64;
223  	rtc->dev.class = rtc_class;
224  	rtc->dev.groups = rtc_get_dev_attribute_groups();
225  	rtc->dev.release = rtc_device_release;
226  
227  	mutex_init(&rtc->ops_lock);
228  	spin_lock_init(&rtc->irq_lock);
229  	init_waitqueue_head(&rtc->irq_queue);
230  
231  	/* Init timerqueue */
232  	timerqueue_init_head(&rtc->timerqueue);
233  	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
234  	/* Init aie timer */
235  	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
236  	/* Init uie timer */
237  	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
238  	/* Init pie timer */
239  	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
240  	rtc->pie_timer.function = rtc_pie_update_irq;
241  	rtc->pie_enabled = 0;
242  
243  	set_bit(RTC_FEATURE_ALARM, rtc->features);
244  	set_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features);
245  
246  	return rtc;
247  }
248  
249  static int rtc_device_get_id(struct device *dev)
250  {
251  	int of_id = -1, id = -1;
252  
253  	if (dev->of_node)
254  		of_id = of_alias_get_id(dev->of_node, "rtc");
255  	else if (dev->parent && dev->parent->of_node)
256  		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
257  
258  	if (of_id >= 0) {
259  		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
260  		if (id < 0)
261  			dev_warn(dev, "/aliases ID %d not available\n", of_id);
262  	}
263  
264  	if (id < 0)
265  		id = ida_alloc(&rtc_ida, GFP_KERNEL);
266  
267  	return id;
268  }
269  
270  static void rtc_device_get_offset(struct rtc_device *rtc)
271  {
272  	time64_t range_secs;
273  	u32 start_year;
274  	int ret;
275  
276  	/*
277  	 * If RTC driver did not implement the range of RTC hardware device,
278  	 * then we can not expand the RTC range by adding or subtracting one
279  	 * offset.
280  	 */
281  	if (rtc->range_min == rtc->range_max)
282  		return;
283  
284  	ret = device_property_read_u32(rtc->dev.parent, "start-year",
285  				       &start_year);
286  	if (!ret) {
287  		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
288  		rtc->set_start_time = true;
289  	}
290  
291  	/*
292  	 * If user did not implement the start time for RTC driver, then no
293  	 * need to expand the RTC range.
294  	 */
295  	if (!rtc->set_start_time)
296  		return;
297  
298  	range_secs = rtc->range_max - rtc->range_min + 1;
299  
300  	/*
301  	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
302  	 * supported by RTC hardware or the maximum seconds of new expanded
303  	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
304  	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
305  	 * RTC hardware will be mapped to start_secs by adding one offset, so
306  	 * the offset seconds calculation formula should be:
307  	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
308  	 *
309  	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
310  	 * supported by RTC hardware, then there is one region is overlapped
311  	 * between the original RTC hardware range and the new expanded range,
312  	 * and this overlapped region do not need to be mapped into the new
313  	 * expanded range due to it is valid for RTC device. So the minimum
314  	 * seconds of RTC hardware (rtc->range_min) should be mapped to
315  	 * rtc->range_max + 1, then the offset seconds formula should be:
316  	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
317  	 *
318  	 * If the start_secs is less than the minimum seconds (rtc->range_min),
319  	 * which is similar to case 2. So the start_secs should be mapped to
320  	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
321  	 * offset seconds formula should be:
322  	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
323  	 *
324  	 * Otherwise the offset seconds should be 0.
325  	 */
326  	if (rtc->start_secs > rtc->range_max ||
327  	    rtc->start_secs + range_secs - 1 < rtc->range_min)
328  		rtc->offset_secs = rtc->start_secs - rtc->range_min;
329  	else if (rtc->start_secs > rtc->range_min)
330  		rtc->offset_secs = range_secs;
331  	else if (rtc->start_secs < rtc->range_min)
332  		rtc->offset_secs = -range_secs;
333  	else
334  		rtc->offset_secs = 0;
335  }
336  
337  static void devm_rtc_unregister_device(void *data)
338  {
339  	struct rtc_device *rtc = data;
340  
341  	mutex_lock(&rtc->ops_lock);
342  	/*
343  	 * Remove innards of this RTC, then disable it, before
344  	 * letting any rtc_class_open() users access it again
345  	 */
346  	rtc_proc_del_device(rtc);
347  	if (!test_bit(RTC_NO_CDEV, &rtc->flags))
348  		cdev_device_del(&rtc->char_dev, &rtc->dev);
349  	rtc->ops = NULL;
350  	mutex_unlock(&rtc->ops_lock);
351  }
352  
353  static void devm_rtc_release_device(void *res)
354  {
355  	struct rtc_device *rtc = res;
356  
357  	put_device(&rtc->dev);
358  }
359  
360  struct rtc_device *devm_rtc_allocate_device(struct device *dev)
361  {
362  	struct rtc_device *rtc;
363  	int id, err;
364  
365  	id = rtc_device_get_id(dev);
366  	if (id < 0)
367  		return ERR_PTR(id);
368  
369  	rtc = rtc_allocate_device();
370  	if (!rtc) {
371  		ida_free(&rtc_ida, id);
372  		return ERR_PTR(-ENOMEM);
373  	}
374  
375  	rtc->id = id;
376  	rtc->dev.parent = dev;
377  	err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
378  	if (err)
379  		return ERR_PTR(err);
380  
381  	err = dev_set_name(&rtc->dev, "rtc%d", id);
382  	if (err)
383  		return ERR_PTR(err);
384  
385  	return rtc;
386  }
387  EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
388  
389  int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
390  {
391  	struct rtc_wkalrm alrm;
392  	int err;
393  
394  	if (!rtc->ops) {
395  		dev_dbg(&rtc->dev, "no ops set\n");
396  		return -EINVAL;
397  	}
398  
399  	if (!rtc->ops->set_alarm)
400  		clear_bit(RTC_FEATURE_ALARM, rtc->features);
401  
402  	if (rtc->ops->set_offset)
403  		set_bit(RTC_FEATURE_CORRECTION, rtc->features);
404  
405  	rtc->owner = owner;
406  	rtc_device_get_offset(rtc);
407  
408  	/* Check to see if there is an ALARM already set in hw */
409  	err = __rtc_read_alarm(rtc, &alrm);
410  	if (!err && !rtc_valid_tm(&alrm.time))
411  		rtc_initialize_alarm(rtc, &alrm);
412  
413  	rtc_dev_prepare(rtc);
414  
415  	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
416  	if (err) {
417  		set_bit(RTC_NO_CDEV, &rtc->flags);
418  		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
419  			 MAJOR(rtc->dev.devt), rtc->id);
420  	} else {
421  		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
422  			MAJOR(rtc->dev.devt), rtc->id);
423  	}
424  
425  	rtc_proc_add_device(rtc);
426  
427  	dev_info(rtc->dev.parent, "registered as %s\n",
428  		 dev_name(&rtc->dev));
429  
430  #ifdef CONFIG_RTC_HCTOSYS_DEVICE
431  	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
432  		rtc_hctosys(rtc);
433  #endif
434  
435  	return devm_add_action_or_reset(rtc->dev.parent,
436  					devm_rtc_unregister_device, rtc);
437  }
438  EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
439  
440  /**
441   * devm_rtc_device_register - resource managed rtc_device_register()
442   * @dev: the device to register
443   * @name: the name of the device (unused)
444   * @ops: the rtc operations structure
445   * @owner: the module owner
446   *
447   * @return a struct rtc on success, or an ERR_PTR on error
448   *
449   * Managed rtc_device_register(). The rtc_device returned from this function
450   * are automatically freed on driver detach.
451   * This function is deprecated, use devm_rtc_allocate_device and
452   * rtc_register_device instead
453   */
454  struct rtc_device *devm_rtc_device_register(struct device *dev,
455  					    const char *name,
456  					    const struct rtc_class_ops *ops,
457  					    struct module *owner)
458  {
459  	struct rtc_device *rtc;
460  	int err;
461  
462  	rtc = devm_rtc_allocate_device(dev);
463  	if (IS_ERR(rtc))
464  		return rtc;
465  
466  	rtc->ops = ops;
467  
468  	err = __devm_rtc_register_device(owner, rtc);
469  	if (err)
470  		return ERR_PTR(err);
471  
472  	return rtc;
473  }
474  EXPORT_SYMBOL_GPL(devm_rtc_device_register);
475  
476  static int __init rtc_init(void)
477  {
478  	rtc_class = class_create(THIS_MODULE, "rtc");
479  	if (IS_ERR(rtc_class)) {
480  		pr_err("couldn't create class\n");
481  		return PTR_ERR(rtc_class);
482  	}
483  	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
484  	rtc_dev_init();
485  	return 0;
486  }
487  subsys_initcall(rtc_init);
488