xref: /linux/drivers/rtc/class.c (revision 5bdd5fbb35ab0fe21bf2263106f51c5bee466a07)
1 /*
2  * RTC subsystem, base class
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * class skeleton from drivers/hwmon/hwmon.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/rtc.h>
19 #include <linux/kdev_t.h>
20 #include <linux/idr.h>
21 #include <linux/slab.h>
22 #include <linux/workqueue.h>
23 
24 #include "rtc-core.h"
25 
26 
27 static DEFINE_IDA(rtc_ida);
28 struct class *rtc_class;
29 
30 static void rtc_device_release(struct device *dev)
31 {
32 	struct rtc_device *rtc = to_rtc_device(dev);
33 	ida_simple_remove(&rtc_ida, rtc->id);
34 	kfree(rtc);
35 }
36 
37 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
38 /* Result of the last RTC to system clock attempt. */
39 int rtc_hctosys_ret = -ENODEV;
40 #endif
41 
42 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
43 /*
44  * On suspend(), measure the delta between one RTC and the
45  * system's wall clock; restore it on resume().
46  */
47 
48 static struct timespec64 old_rtc, old_system, old_delta;
49 
50 
51 static int rtc_suspend(struct device *dev)
52 {
53 	struct rtc_device	*rtc = to_rtc_device(dev);
54 	struct rtc_time		tm;
55 	struct timespec64	delta, delta_delta;
56 	int err;
57 
58 	if (timekeeping_rtc_skipsuspend())
59 		return 0;
60 
61 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
62 		return 0;
63 
64 	/* snapshot the current RTC and system time at suspend*/
65 	err = rtc_read_time(rtc, &tm);
66 	if (err < 0) {
67 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
68 		return 0;
69 	}
70 
71 	getnstimeofday64(&old_system);
72 	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
73 
74 
75 	/*
76 	 * To avoid drift caused by repeated suspend/resumes,
77 	 * which each can add ~1 second drift error,
78 	 * try to compensate so the difference in system time
79 	 * and rtc time stays close to constant.
80 	 */
81 	delta = timespec64_sub(old_system, old_rtc);
82 	delta_delta = timespec64_sub(delta, old_delta);
83 	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
84 		/*
85 		 * if delta_delta is too large, assume time correction
86 		 * has occured and set old_delta to the current delta.
87 		 */
88 		old_delta = delta;
89 	} else {
90 		/* Otherwise try to adjust old_system to compensate */
91 		old_system = timespec64_sub(old_system, delta_delta);
92 	}
93 
94 	return 0;
95 }
96 
97 static int rtc_resume(struct device *dev)
98 {
99 	struct rtc_device	*rtc = to_rtc_device(dev);
100 	struct rtc_time		tm;
101 	struct timespec64	new_system, new_rtc;
102 	struct timespec64	sleep_time;
103 	int err;
104 
105 	if (timekeeping_rtc_skipresume())
106 		return 0;
107 
108 	rtc_hctosys_ret = -ENODEV;
109 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
110 		return 0;
111 
112 	/* snapshot the current rtc and system time at resume */
113 	getnstimeofday64(&new_system);
114 	err = rtc_read_time(rtc, &tm);
115 	if (err < 0) {
116 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
117 		return 0;
118 	}
119 
120 	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
121 	new_rtc.tv_nsec = 0;
122 
123 	if (new_rtc.tv_sec < old_rtc.tv_sec) {
124 		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
125 		return 0;
126 	}
127 
128 	/* calculate the RTC time delta (sleep time)*/
129 	sleep_time = timespec64_sub(new_rtc, old_rtc);
130 
131 	/*
132 	 * Since these RTC suspend/resume handlers are not called
133 	 * at the very end of suspend or the start of resume,
134 	 * some run-time may pass on either sides of the sleep time
135 	 * so subtract kernel run-time between rtc_suspend to rtc_resume
136 	 * to keep things accurate.
137 	 */
138 	sleep_time = timespec64_sub(sleep_time,
139 			timespec64_sub(new_system, old_system));
140 
141 	if (sleep_time.tv_sec >= 0)
142 		timekeeping_inject_sleeptime64(&sleep_time);
143 	rtc_hctosys_ret = 0;
144 	return 0;
145 }
146 
147 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
148 #define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
149 #else
150 #define RTC_CLASS_DEV_PM_OPS	NULL
151 #endif
152 
153 /* Ensure the caller will set the id before releasing the device */
154 static struct rtc_device *rtc_allocate_device(void)
155 {
156 	struct rtc_device *rtc;
157 
158 	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
159 	if (!rtc)
160 		return NULL;
161 
162 	device_initialize(&rtc->dev);
163 
164 	/* Drivers can revise this default after allocating the device. */
165 	rtc->set_offset_nsec =  NSEC_PER_SEC / 2;
166 
167 	rtc->irq_freq = 1;
168 	rtc->max_user_freq = 64;
169 	rtc->dev.class = rtc_class;
170 	rtc->dev.groups = rtc_get_dev_attribute_groups();
171 	rtc->dev.release = rtc_device_release;
172 
173 	mutex_init(&rtc->ops_lock);
174 	spin_lock_init(&rtc->irq_lock);
175 	spin_lock_init(&rtc->irq_task_lock);
176 	init_waitqueue_head(&rtc->irq_queue);
177 
178 	/* Init timerqueue */
179 	timerqueue_init_head(&rtc->timerqueue);
180 	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
181 	/* Init aie timer */
182 	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc);
183 	/* Init uie timer */
184 	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc);
185 	/* Init pie timer */
186 	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 	rtc->pie_timer.function = rtc_pie_update_irq;
188 	rtc->pie_enabled = 0;
189 
190 	return rtc;
191 }
192 
193 static int rtc_device_get_id(struct device *dev)
194 {
195 	int of_id = -1, id = -1;
196 
197 	if (dev->of_node)
198 		of_id = of_alias_get_id(dev->of_node, "rtc");
199 	else if (dev->parent && dev->parent->of_node)
200 		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
201 
202 	if (of_id >= 0) {
203 		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
204 		if (id < 0)
205 			dev_warn(dev, "/aliases ID %d not available\n", of_id);
206 	}
207 
208 	if (id < 0)
209 		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
210 
211 	return id;
212 }
213 
214 static void rtc_device_get_offset(struct rtc_device *rtc)
215 {
216 	time64_t range_secs;
217 	u32 start_year;
218 	int ret;
219 
220 	/*
221 	 * If RTC driver did not implement the range of RTC hardware device,
222 	 * then we can not expand the RTC range by adding or subtracting one
223 	 * offset.
224 	 */
225 	if (rtc->range_min == rtc->range_max)
226 		return;
227 
228 	ret = device_property_read_u32(rtc->dev.parent, "start-year",
229 				       &start_year);
230 	if (!ret) {
231 		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
232 		rtc->set_start_time = true;
233 	}
234 
235 	/*
236 	 * If user did not implement the start time for RTC driver, then no
237 	 * need to expand the RTC range.
238 	 */
239 	if (!rtc->set_start_time)
240 		return;
241 
242 	range_secs = rtc->range_max - rtc->range_min + 1;
243 
244 	/*
245 	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
246 	 * supported by RTC hardware or the maximum seconds of new expanded
247 	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
248 	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
249 	 * RTC hardware will be mapped to start_secs by adding one offset, so
250 	 * the offset seconds calculation formula should be:
251 	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
252 	 *
253 	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
254 	 * supported by RTC hardware, then there is one region is overlapped
255 	 * between the original RTC hardware range and the new expanded range,
256 	 * and this overlapped region do not need to be mapped into the new
257 	 * expanded range due to it is valid for RTC device. So the minimum
258 	 * seconds of RTC hardware (rtc->range_min) should be mapped to
259 	 * rtc->range_max + 1, then the offset seconds formula should be:
260 	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
261 	 *
262 	 * If the start_secs is less than the minimum seconds (rtc->range_min),
263 	 * which is similar to case 2. So the start_secs should be mapped to
264 	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
265 	 * offset seconds formula should be:
266 	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
267 	 *
268 	 * Otherwise the offset seconds should be 0.
269 	 */
270 	if (rtc->start_secs > rtc->range_max ||
271 	    rtc->start_secs + range_secs - 1 < rtc->range_min)
272 		rtc->offset_secs = rtc->start_secs - rtc->range_min;
273 	else if (rtc->start_secs > rtc->range_min)
274 		rtc->offset_secs = range_secs;
275 	else if (rtc->start_secs < rtc->range_min)
276 		rtc->offset_secs = -range_secs;
277 	else
278 		rtc->offset_secs = 0;
279 }
280 
281 /**
282  * rtc_device_register - register w/ RTC class
283  * @dev: the device to register
284  *
285  * rtc_device_unregister() must be called when the class device is no
286  * longer needed.
287  *
288  * Returns the pointer to the new struct class device.
289  */
290 struct rtc_device *rtc_device_register(const char *name, struct device *dev,
291 					const struct rtc_class_ops *ops,
292 					struct module *owner)
293 {
294 	struct rtc_device *rtc;
295 	struct rtc_wkalrm alrm;
296 	int id, err;
297 
298 	id = rtc_device_get_id(dev);
299 	if (id < 0) {
300 		err = id;
301 		goto exit;
302 	}
303 
304 	rtc = rtc_allocate_device();
305 	if (!rtc) {
306 		err = -ENOMEM;
307 		goto exit_ida;
308 	}
309 
310 	rtc->id = id;
311 	rtc->ops = ops;
312 	rtc->owner = owner;
313 	rtc->dev.parent = dev;
314 
315 	dev_set_name(&rtc->dev, "rtc%d", id);
316 
317 	rtc_device_get_offset(rtc);
318 
319 	/* Check to see if there is an ALARM already set in hw */
320 	err = __rtc_read_alarm(rtc, &alrm);
321 
322 	if (!err && !rtc_valid_tm(&alrm.time))
323 		rtc_initialize_alarm(rtc, &alrm);
324 
325 	rtc_dev_prepare(rtc);
326 
327 	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
328 	if (err) {
329 		dev_warn(&rtc->dev, "%s: failed to add char device %d:%d\n",
330 			 name, MAJOR(rtc->dev.devt), rtc->id);
331 
332 		/* This will free both memory and the ID */
333 		put_device(&rtc->dev);
334 		goto exit;
335 	} else {
336 		dev_dbg(&rtc->dev, "%s: dev (%d:%d)\n", name,
337 			MAJOR(rtc->dev.devt), rtc->id);
338 	}
339 
340 	rtc_proc_add_device(rtc);
341 
342 	dev_info(dev, "rtc core: registered %s as %s\n",
343 			name, dev_name(&rtc->dev));
344 
345 	return rtc;
346 
347 exit_ida:
348 	ida_simple_remove(&rtc_ida, id);
349 
350 exit:
351 	dev_err(dev, "rtc core: unable to register %s, err = %d\n",
352 			name, err);
353 	return ERR_PTR(err);
354 }
355 EXPORT_SYMBOL_GPL(rtc_device_register);
356 
357 
358 /**
359  * rtc_device_unregister - removes the previously registered RTC class device
360  *
361  * @rtc: the RTC class device to destroy
362  */
363 void rtc_device_unregister(struct rtc_device *rtc)
364 {
365 	mutex_lock(&rtc->ops_lock);
366 	/*
367 	 * Remove innards of this RTC, then disable it, before
368 	 * letting any rtc_class_open() users access it again
369 	 */
370 	rtc_proc_del_device(rtc);
371 	cdev_device_del(&rtc->char_dev, &rtc->dev);
372 	rtc->ops = NULL;
373 	mutex_unlock(&rtc->ops_lock);
374 	put_device(&rtc->dev);
375 }
376 EXPORT_SYMBOL_GPL(rtc_device_unregister);
377 
378 static void devm_rtc_device_release(struct device *dev, void *res)
379 {
380 	struct rtc_device *rtc = *(struct rtc_device **)res;
381 
382 	rtc_nvmem_unregister(rtc);
383 	rtc_device_unregister(rtc);
384 }
385 
386 static int devm_rtc_device_match(struct device *dev, void *res, void *data)
387 {
388 	struct rtc **r = res;
389 
390 	return *r == data;
391 }
392 
393 /**
394  * devm_rtc_device_register - resource managed rtc_device_register()
395  * @dev: the device to register
396  * @name: the name of the device
397  * @ops: the rtc operations structure
398  * @owner: the module owner
399  *
400  * @return a struct rtc on success, or an ERR_PTR on error
401  *
402  * Managed rtc_device_register(). The rtc_device returned from this function
403  * are automatically freed on driver detach. See rtc_device_register()
404  * for more information.
405  */
406 
407 struct rtc_device *devm_rtc_device_register(struct device *dev,
408 					const char *name,
409 					const struct rtc_class_ops *ops,
410 					struct module *owner)
411 {
412 	struct rtc_device **ptr, *rtc;
413 
414 	ptr = devres_alloc(devm_rtc_device_release, sizeof(*ptr), GFP_KERNEL);
415 	if (!ptr)
416 		return ERR_PTR(-ENOMEM);
417 
418 	rtc = rtc_device_register(name, dev, ops, owner);
419 	if (!IS_ERR(rtc)) {
420 		*ptr = rtc;
421 		devres_add(dev, ptr);
422 	} else {
423 		devres_free(ptr);
424 	}
425 
426 	return rtc;
427 }
428 EXPORT_SYMBOL_GPL(devm_rtc_device_register);
429 
430 /**
431  * devm_rtc_device_unregister - resource managed devm_rtc_device_unregister()
432  * @dev: the device to unregister
433  * @rtc: the RTC class device to unregister
434  *
435  * Deallocated a rtc allocated with devm_rtc_device_register(). Normally this
436  * function will not need to be called and the resource management code will
437  * ensure that the resource is freed.
438  */
439 void devm_rtc_device_unregister(struct device *dev, struct rtc_device *rtc)
440 {
441 	int rc;
442 
443 	rc = devres_release(dev, devm_rtc_device_release,
444 				devm_rtc_device_match, rtc);
445 	WARN_ON(rc);
446 }
447 EXPORT_SYMBOL_GPL(devm_rtc_device_unregister);
448 
449 static void devm_rtc_release_device(struct device *dev, void *res)
450 {
451 	struct rtc_device *rtc = *(struct rtc_device **)res;
452 
453 	rtc_nvmem_unregister(rtc);
454 
455 	if (rtc->registered)
456 		rtc_device_unregister(rtc);
457 	else
458 		put_device(&rtc->dev);
459 }
460 
461 struct rtc_device *devm_rtc_allocate_device(struct device *dev)
462 {
463 	struct rtc_device **ptr, *rtc;
464 	int id, err;
465 
466 	id = rtc_device_get_id(dev);
467 	if (id < 0)
468 		return ERR_PTR(id);
469 
470 	ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
471 	if (!ptr) {
472 		err = -ENOMEM;
473 		goto exit_ida;
474 	}
475 
476 	rtc = rtc_allocate_device();
477 	if (!rtc) {
478 		err = -ENOMEM;
479 		goto exit_devres;
480 	}
481 
482 	*ptr = rtc;
483 	devres_add(dev, ptr);
484 
485 	rtc->id = id;
486 	rtc->dev.parent = dev;
487 	dev_set_name(&rtc->dev, "rtc%d", id);
488 
489 	return rtc;
490 
491 exit_devres:
492 	devres_free(ptr);
493 exit_ida:
494 	ida_simple_remove(&rtc_ida, id);
495 	return ERR_PTR(err);
496 }
497 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
498 
499 int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
500 {
501 	struct rtc_wkalrm alrm;
502 	int err;
503 
504 	if (!rtc->ops)
505 		return -EINVAL;
506 
507 	rtc->owner = owner;
508 	rtc_device_get_offset(rtc);
509 
510 	/* Check to see if there is an ALARM already set in hw */
511 	err = __rtc_read_alarm(rtc, &alrm);
512 	if (!err && !rtc_valid_tm(&alrm.time))
513 		rtc_initialize_alarm(rtc, &alrm);
514 
515 	rtc_dev_prepare(rtc);
516 
517 	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
518 	if (err)
519 		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
520 			 MAJOR(rtc->dev.devt), rtc->id);
521 	else
522 		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
523 			MAJOR(rtc->dev.devt), rtc->id);
524 
525 	rtc_proc_add_device(rtc);
526 
527 	rtc->registered = true;
528 	dev_info(rtc->dev.parent, "registered as %s\n",
529 		 dev_name(&rtc->dev));
530 
531 	return 0;
532 }
533 EXPORT_SYMBOL_GPL(__rtc_register_device);
534 
535 static int __init rtc_init(void)
536 {
537 	rtc_class = class_create(THIS_MODULE, "rtc");
538 	if (IS_ERR(rtc_class)) {
539 		pr_err("couldn't create class\n");
540 		return PTR_ERR(rtc_class);
541 	}
542 	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
543 	rtc_dev_init();
544 	return 0;
545 }
546 subsys_initcall(rtc_init);
547