1 /* 2 * RTC subsystem, base class 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * class skeleton from drivers/hwmon/hwmon.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/of.h> 18 #include <linux/rtc.h> 19 #include <linux/kdev_t.h> 20 #include <linux/idr.h> 21 #include <linux/slab.h> 22 #include <linux/workqueue.h> 23 24 #include "rtc-core.h" 25 26 27 static DEFINE_IDA(rtc_ida); 28 struct class *rtc_class; 29 30 static void rtc_device_release(struct device *dev) 31 { 32 struct rtc_device *rtc = to_rtc_device(dev); 33 ida_simple_remove(&rtc_ida, rtc->id); 34 kfree(rtc); 35 } 36 37 #ifdef CONFIG_RTC_HCTOSYS_DEVICE 38 /* Result of the last RTC to system clock attempt. */ 39 int rtc_hctosys_ret = -ENODEV; 40 #endif 41 42 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 43 /* 44 * On suspend(), measure the delta between one RTC and the 45 * system's wall clock; restore it on resume(). 46 */ 47 48 static struct timespec64 old_rtc, old_system, old_delta; 49 50 51 static int rtc_suspend(struct device *dev) 52 { 53 struct rtc_device *rtc = to_rtc_device(dev); 54 struct rtc_time tm; 55 struct timespec64 delta, delta_delta; 56 int err; 57 58 if (timekeeping_rtc_skipsuspend()) 59 return 0; 60 61 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 62 return 0; 63 64 /* snapshot the current RTC and system time at suspend*/ 65 err = rtc_read_time(rtc, &tm); 66 if (err < 0) { 67 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 68 return 0; 69 } 70 71 getnstimeofday64(&old_system); 72 old_rtc.tv_sec = rtc_tm_to_time64(&tm); 73 74 75 /* 76 * To avoid drift caused by repeated suspend/resumes, 77 * which each can add ~1 second drift error, 78 * try to compensate so the difference in system time 79 * and rtc time stays close to constant. 80 */ 81 delta = timespec64_sub(old_system, old_rtc); 82 delta_delta = timespec64_sub(delta, old_delta); 83 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) { 84 /* 85 * if delta_delta is too large, assume time correction 86 * has occured and set old_delta to the current delta. 87 */ 88 old_delta = delta; 89 } else { 90 /* Otherwise try to adjust old_system to compensate */ 91 old_system = timespec64_sub(old_system, delta_delta); 92 } 93 94 return 0; 95 } 96 97 static int rtc_resume(struct device *dev) 98 { 99 struct rtc_device *rtc = to_rtc_device(dev); 100 struct rtc_time tm; 101 struct timespec64 new_system, new_rtc; 102 struct timespec64 sleep_time; 103 int err; 104 105 if (timekeeping_rtc_skipresume()) 106 return 0; 107 108 rtc_hctosys_ret = -ENODEV; 109 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 110 return 0; 111 112 /* snapshot the current rtc and system time at resume */ 113 getnstimeofday64(&new_system); 114 err = rtc_read_time(rtc, &tm); 115 if (err < 0) { 116 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 117 return 0; 118 } 119 120 new_rtc.tv_sec = rtc_tm_to_time64(&tm); 121 new_rtc.tv_nsec = 0; 122 123 if (new_rtc.tv_sec < old_rtc.tv_sec) { 124 pr_debug("%s: time travel!\n", dev_name(&rtc->dev)); 125 return 0; 126 } 127 128 /* calculate the RTC time delta (sleep time)*/ 129 sleep_time = timespec64_sub(new_rtc, old_rtc); 130 131 /* 132 * Since these RTC suspend/resume handlers are not called 133 * at the very end of suspend or the start of resume, 134 * some run-time may pass on either sides of the sleep time 135 * so subtract kernel run-time between rtc_suspend to rtc_resume 136 * to keep things accurate. 137 */ 138 sleep_time = timespec64_sub(sleep_time, 139 timespec64_sub(new_system, old_system)); 140 141 if (sleep_time.tv_sec >= 0) 142 timekeeping_inject_sleeptime64(&sleep_time); 143 rtc_hctosys_ret = 0; 144 return 0; 145 } 146 147 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume); 148 #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops) 149 #else 150 #define RTC_CLASS_DEV_PM_OPS NULL 151 #endif 152 153 /* Ensure the caller will set the id before releasing the device */ 154 static struct rtc_device *rtc_allocate_device(void) 155 { 156 struct rtc_device *rtc; 157 158 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); 159 if (!rtc) 160 return NULL; 161 162 device_initialize(&rtc->dev); 163 164 /* Drivers can revise this default after allocating the device. */ 165 rtc->set_offset_nsec = NSEC_PER_SEC / 2; 166 167 rtc->irq_freq = 1; 168 rtc->max_user_freq = 64; 169 rtc->dev.class = rtc_class; 170 rtc->dev.groups = rtc_get_dev_attribute_groups(); 171 rtc->dev.release = rtc_device_release; 172 173 mutex_init(&rtc->ops_lock); 174 spin_lock_init(&rtc->irq_lock); 175 spin_lock_init(&rtc->irq_task_lock); 176 init_waitqueue_head(&rtc->irq_queue); 177 178 /* Init timerqueue */ 179 timerqueue_init_head(&rtc->timerqueue); 180 INIT_WORK(&rtc->irqwork, rtc_timer_do_work); 181 /* Init aie timer */ 182 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc); 183 /* Init uie timer */ 184 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc); 185 /* Init pie timer */ 186 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 187 rtc->pie_timer.function = rtc_pie_update_irq; 188 rtc->pie_enabled = 0; 189 190 return rtc; 191 } 192 193 static int rtc_device_get_id(struct device *dev) 194 { 195 int of_id = -1, id = -1; 196 197 if (dev->of_node) 198 of_id = of_alias_get_id(dev->of_node, "rtc"); 199 else if (dev->parent && dev->parent->of_node) 200 of_id = of_alias_get_id(dev->parent->of_node, "rtc"); 201 202 if (of_id >= 0) { 203 id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL); 204 if (id < 0) 205 dev_warn(dev, "/aliases ID %d not available\n", of_id); 206 } 207 208 if (id < 0) 209 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL); 210 211 return id; 212 } 213 214 static void rtc_device_get_offset(struct rtc_device *rtc) 215 { 216 time64_t range_secs; 217 u32 start_year; 218 int ret; 219 220 /* 221 * If RTC driver did not implement the range of RTC hardware device, 222 * then we can not expand the RTC range by adding or subtracting one 223 * offset. 224 */ 225 if (rtc->range_min == rtc->range_max) 226 return; 227 228 ret = device_property_read_u32(rtc->dev.parent, "start-year", 229 &start_year); 230 if (!ret) { 231 rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0); 232 rtc->set_start_time = true; 233 } 234 235 /* 236 * If user did not implement the start time for RTC driver, then no 237 * need to expand the RTC range. 238 */ 239 if (!rtc->set_start_time) 240 return; 241 242 range_secs = rtc->range_max - rtc->range_min + 1; 243 244 /* 245 * If the start_secs is larger than the maximum seconds (rtc->range_max) 246 * supported by RTC hardware or the maximum seconds of new expanded 247 * range (start_secs + rtc->range_max - rtc->range_min) is less than 248 * rtc->range_min, which means the minimum seconds (rtc->range_min) of 249 * RTC hardware will be mapped to start_secs by adding one offset, so 250 * the offset seconds calculation formula should be: 251 * rtc->offset_secs = rtc->start_secs - rtc->range_min; 252 * 253 * If the start_secs is larger than the minimum seconds (rtc->range_min) 254 * supported by RTC hardware, then there is one region is overlapped 255 * between the original RTC hardware range and the new expanded range, 256 * and this overlapped region do not need to be mapped into the new 257 * expanded range due to it is valid for RTC device. So the minimum 258 * seconds of RTC hardware (rtc->range_min) should be mapped to 259 * rtc->range_max + 1, then the offset seconds formula should be: 260 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1; 261 * 262 * If the start_secs is less than the minimum seconds (rtc->range_min), 263 * which is similar to case 2. So the start_secs should be mapped to 264 * start_secs + rtc->range_max - rtc->range_min + 1, then the 265 * offset seconds formula should be: 266 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1); 267 * 268 * Otherwise the offset seconds should be 0. 269 */ 270 if (rtc->start_secs > rtc->range_max || 271 rtc->start_secs + range_secs - 1 < rtc->range_min) 272 rtc->offset_secs = rtc->start_secs - rtc->range_min; 273 else if (rtc->start_secs > rtc->range_min) 274 rtc->offset_secs = range_secs; 275 else if (rtc->start_secs < rtc->range_min) 276 rtc->offset_secs = -range_secs; 277 else 278 rtc->offset_secs = 0; 279 } 280 281 /** 282 * rtc_device_register - register w/ RTC class 283 * @dev: the device to register 284 * 285 * rtc_device_unregister() must be called when the class device is no 286 * longer needed. 287 * 288 * Returns the pointer to the new struct class device. 289 */ 290 struct rtc_device *rtc_device_register(const char *name, struct device *dev, 291 const struct rtc_class_ops *ops, 292 struct module *owner) 293 { 294 struct rtc_device *rtc; 295 struct rtc_wkalrm alrm; 296 int id, err; 297 298 id = rtc_device_get_id(dev); 299 if (id < 0) { 300 err = id; 301 goto exit; 302 } 303 304 rtc = rtc_allocate_device(); 305 if (!rtc) { 306 err = -ENOMEM; 307 goto exit_ida; 308 } 309 310 rtc->id = id; 311 rtc->ops = ops; 312 rtc->owner = owner; 313 rtc->dev.parent = dev; 314 315 dev_set_name(&rtc->dev, "rtc%d", id); 316 317 rtc_device_get_offset(rtc); 318 319 /* Check to see if there is an ALARM already set in hw */ 320 err = __rtc_read_alarm(rtc, &alrm); 321 322 if (!err && !rtc_valid_tm(&alrm.time)) 323 rtc_initialize_alarm(rtc, &alrm); 324 325 rtc_dev_prepare(rtc); 326 327 err = cdev_device_add(&rtc->char_dev, &rtc->dev); 328 if (err) { 329 dev_warn(&rtc->dev, "%s: failed to add char device %d:%d\n", 330 name, MAJOR(rtc->dev.devt), rtc->id); 331 332 /* This will free both memory and the ID */ 333 put_device(&rtc->dev); 334 goto exit; 335 } else { 336 dev_dbg(&rtc->dev, "%s: dev (%d:%d)\n", name, 337 MAJOR(rtc->dev.devt), rtc->id); 338 } 339 340 rtc_proc_add_device(rtc); 341 342 dev_info(dev, "rtc core: registered %s as %s\n", 343 name, dev_name(&rtc->dev)); 344 345 return rtc; 346 347 exit_ida: 348 ida_simple_remove(&rtc_ida, id); 349 350 exit: 351 dev_err(dev, "rtc core: unable to register %s, err = %d\n", 352 name, err); 353 return ERR_PTR(err); 354 } 355 EXPORT_SYMBOL_GPL(rtc_device_register); 356 357 358 /** 359 * rtc_device_unregister - removes the previously registered RTC class device 360 * 361 * @rtc: the RTC class device to destroy 362 */ 363 void rtc_device_unregister(struct rtc_device *rtc) 364 { 365 mutex_lock(&rtc->ops_lock); 366 /* 367 * Remove innards of this RTC, then disable it, before 368 * letting any rtc_class_open() users access it again 369 */ 370 rtc_proc_del_device(rtc); 371 cdev_device_del(&rtc->char_dev, &rtc->dev); 372 rtc->ops = NULL; 373 mutex_unlock(&rtc->ops_lock); 374 put_device(&rtc->dev); 375 } 376 EXPORT_SYMBOL_GPL(rtc_device_unregister); 377 378 static void devm_rtc_device_release(struct device *dev, void *res) 379 { 380 struct rtc_device *rtc = *(struct rtc_device **)res; 381 382 rtc_nvmem_unregister(rtc); 383 rtc_device_unregister(rtc); 384 } 385 386 static int devm_rtc_device_match(struct device *dev, void *res, void *data) 387 { 388 struct rtc **r = res; 389 390 return *r == data; 391 } 392 393 /** 394 * devm_rtc_device_register - resource managed rtc_device_register() 395 * @dev: the device to register 396 * @name: the name of the device 397 * @ops: the rtc operations structure 398 * @owner: the module owner 399 * 400 * @return a struct rtc on success, or an ERR_PTR on error 401 * 402 * Managed rtc_device_register(). The rtc_device returned from this function 403 * are automatically freed on driver detach. See rtc_device_register() 404 * for more information. 405 */ 406 407 struct rtc_device *devm_rtc_device_register(struct device *dev, 408 const char *name, 409 const struct rtc_class_ops *ops, 410 struct module *owner) 411 { 412 struct rtc_device **ptr, *rtc; 413 414 ptr = devres_alloc(devm_rtc_device_release, sizeof(*ptr), GFP_KERNEL); 415 if (!ptr) 416 return ERR_PTR(-ENOMEM); 417 418 rtc = rtc_device_register(name, dev, ops, owner); 419 if (!IS_ERR(rtc)) { 420 *ptr = rtc; 421 devres_add(dev, ptr); 422 } else { 423 devres_free(ptr); 424 } 425 426 return rtc; 427 } 428 EXPORT_SYMBOL_GPL(devm_rtc_device_register); 429 430 /** 431 * devm_rtc_device_unregister - resource managed devm_rtc_device_unregister() 432 * @dev: the device to unregister 433 * @rtc: the RTC class device to unregister 434 * 435 * Deallocated a rtc allocated with devm_rtc_device_register(). Normally this 436 * function will not need to be called and the resource management code will 437 * ensure that the resource is freed. 438 */ 439 void devm_rtc_device_unregister(struct device *dev, struct rtc_device *rtc) 440 { 441 int rc; 442 443 rc = devres_release(dev, devm_rtc_device_release, 444 devm_rtc_device_match, rtc); 445 WARN_ON(rc); 446 } 447 EXPORT_SYMBOL_GPL(devm_rtc_device_unregister); 448 449 static void devm_rtc_release_device(struct device *dev, void *res) 450 { 451 struct rtc_device *rtc = *(struct rtc_device **)res; 452 453 rtc_nvmem_unregister(rtc); 454 455 if (rtc->registered) 456 rtc_device_unregister(rtc); 457 else 458 put_device(&rtc->dev); 459 } 460 461 struct rtc_device *devm_rtc_allocate_device(struct device *dev) 462 { 463 struct rtc_device **ptr, *rtc; 464 int id, err; 465 466 id = rtc_device_get_id(dev); 467 if (id < 0) 468 return ERR_PTR(id); 469 470 ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL); 471 if (!ptr) { 472 err = -ENOMEM; 473 goto exit_ida; 474 } 475 476 rtc = rtc_allocate_device(); 477 if (!rtc) { 478 err = -ENOMEM; 479 goto exit_devres; 480 } 481 482 *ptr = rtc; 483 devres_add(dev, ptr); 484 485 rtc->id = id; 486 rtc->dev.parent = dev; 487 dev_set_name(&rtc->dev, "rtc%d", id); 488 489 return rtc; 490 491 exit_devres: 492 devres_free(ptr); 493 exit_ida: 494 ida_simple_remove(&rtc_ida, id); 495 return ERR_PTR(err); 496 } 497 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device); 498 499 int __rtc_register_device(struct module *owner, struct rtc_device *rtc) 500 { 501 struct rtc_wkalrm alrm; 502 int err; 503 504 if (!rtc->ops) 505 return -EINVAL; 506 507 rtc->owner = owner; 508 rtc_device_get_offset(rtc); 509 510 /* Check to see if there is an ALARM already set in hw */ 511 err = __rtc_read_alarm(rtc, &alrm); 512 if (!err && !rtc_valid_tm(&alrm.time)) 513 rtc_initialize_alarm(rtc, &alrm); 514 515 rtc_dev_prepare(rtc); 516 517 err = cdev_device_add(&rtc->char_dev, &rtc->dev); 518 if (err) 519 dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n", 520 MAJOR(rtc->dev.devt), rtc->id); 521 else 522 dev_dbg(rtc->dev.parent, "char device (%d:%d)\n", 523 MAJOR(rtc->dev.devt), rtc->id); 524 525 rtc_proc_add_device(rtc); 526 527 rtc->registered = true; 528 dev_info(rtc->dev.parent, "registered as %s\n", 529 dev_name(&rtc->dev)); 530 531 return 0; 532 } 533 EXPORT_SYMBOL_GPL(__rtc_register_device); 534 535 static int __init rtc_init(void) 536 { 537 rtc_class = class_create(THIS_MODULE, "rtc"); 538 if (IS_ERR(rtc_class)) { 539 pr_err("couldn't create class\n"); 540 return PTR_ERR(rtc_class); 541 } 542 rtc_class->pm = RTC_CLASS_DEV_PM_OPS; 543 rtc_dev_init(); 544 return 0; 545 } 546 subsys_initcall(rtc_init); 547