xref: /linux/drivers/rtc/class.c (revision 26f53f23957f996daa7328f96263011c09cf8552)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * RTC subsystem, base class
4   *
5   * Copyright (C) 2005 Tower Technologies
6   * Author: Alessandro Zummo <a.zummo@towertech.it>
7   *
8   * class skeleton from drivers/hwmon/hwmon.c
9   */
10  
11  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12  
13  #include <linux/module.h>
14  #include <linux/of.h>
15  #include <linux/rtc.h>
16  #include <linux/kdev_t.h>
17  #include <linux/idr.h>
18  #include <linux/slab.h>
19  #include <linux/workqueue.h>
20  
21  #include "rtc-core.h"
22  
23  static DEFINE_IDA(rtc_ida);
24  
25  static void rtc_device_release(struct device *dev)
26  {
27  	struct rtc_device *rtc = to_rtc_device(dev);
28  	struct timerqueue_head *head = &rtc->timerqueue;
29  	struct timerqueue_node *node;
30  
31  	mutex_lock(&rtc->ops_lock);
32  	while ((node = timerqueue_getnext(head)))
33  		timerqueue_del(head, node);
34  	mutex_unlock(&rtc->ops_lock);
35  
36  	cancel_work_sync(&rtc->irqwork);
37  
38  	ida_free(&rtc_ida, rtc->id);
39  	mutex_destroy(&rtc->ops_lock);
40  	kfree(rtc);
41  }
42  
43  #ifdef CONFIG_RTC_HCTOSYS_DEVICE
44  /* Result of the last RTC to system clock attempt. */
45  int rtc_hctosys_ret = -ENODEV;
46  
47  /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
48   * whether it stores the most close value or the value with partial
49   * seconds truncated. However, it is important that we use it to store
50   * the truncated value. This is because otherwise it is necessary,
51   * in an rtc sync function, to read both xtime.tv_sec and
52   * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
53   * of >32bits is not possible. So storing the most close value would
54   * slow down the sync API. So here we have the truncated value and
55   * the best guess is to add 0.5s.
56   */
57  
58  static void rtc_hctosys(struct rtc_device *rtc)
59  {
60  	int err;
61  	struct rtc_time tm;
62  	struct timespec64 tv64 = {
63  		.tv_nsec = NSEC_PER_SEC >> 1,
64  	};
65  
66  	err = rtc_read_time(rtc, &tm);
67  	if (err) {
68  		dev_err(rtc->dev.parent,
69  			"hctosys: unable to read the hardware clock\n");
70  		goto err_read;
71  	}
72  
73  	tv64.tv_sec = rtc_tm_to_time64(&tm);
74  
75  #if BITS_PER_LONG == 32
76  	if (tv64.tv_sec > INT_MAX) {
77  		err = -ERANGE;
78  		goto err_read;
79  	}
80  #endif
81  
82  	err = do_settimeofday64(&tv64);
83  
84  	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
85  		 &tm, (long long)tv64.tv_sec);
86  
87  err_read:
88  	rtc_hctosys_ret = err;
89  }
90  #endif
91  
92  #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
93  /*
94   * On suspend(), measure the delta between one RTC and the
95   * system's wall clock; restore it on resume().
96   */
97  
98  static struct timespec64 old_rtc, old_system, old_delta;
99  
100  static int rtc_suspend(struct device *dev)
101  {
102  	struct rtc_device	*rtc = to_rtc_device(dev);
103  	struct rtc_time		tm;
104  	struct timespec64	delta, delta_delta;
105  	int err;
106  
107  	if (timekeeping_rtc_skipsuspend())
108  		return 0;
109  
110  	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
111  		return 0;
112  
113  	/* snapshot the current RTC and system time at suspend*/
114  	err = rtc_read_time(rtc, &tm);
115  	if (err < 0) {
116  		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
117  		return 0;
118  	}
119  
120  	ktime_get_real_ts64(&old_system);
121  	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
122  
123  	/*
124  	 * To avoid drift caused by repeated suspend/resumes,
125  	 * which each can add ~1 second drift error,
126  	 * try to compensate so the difference in system time
127  	 * and rtc time stays close to constant.
128  	 */
129  	delta = timespec64_sub(old_system, old_rtc);
130  	delta_delta = timespec64_sub(delta, old_delta);
131  	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
132  		/*
133  		 * if delta_delta is too large, assume time correction
134  		 * has occurred and set old_delta to the current delta.
135  		 */
136  		old_delta = delta;
137  	} else {
138  		/* Otherwise try to adjust old_system to compensate */
139  		old_system = timespec64_sub(old_system, delta_delta);
140  	}
141  
142  	return 0;
143  }
144  
145  static int rtc_resume(struct device *dev)
146  {
147  	struct rtc_device	*rtc = to_rtc_device(dev);
148  	struct rtc_time		tm;
149  	struct timespec64	new_system, new_rtc;
150  	struct timespec64	sleep_time;
151  	int err;
152  
153  	if (timekeeping_rtc_skipresume())
154  		return 0;
155  
156  	rtc_hctosys_ret = -ENODEV;
157  	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
158  		return 0;
159  
160  	/* snapshot the current rtc and system time at resume */
161  	ktime_get_real_ts64(&new_system);
162  	err = rtc_read_time(rtc, &tm);
163  	if (err < 0) {
164  		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
165  		return 0;
166  	}
167  
168  	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
169  	new_rtc.tv_nsec = 0;
170  
171  	if (new_rtc.tv_sec < old_rtc.tv_sec) {
172  		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
173  		return 0;
174  	}
175  
176  	/* calculate the RTC time delta (sleep time)*/
177  	sleep_time = timespec64_sub(new_rtc, old_rtc);
178  
179  	/*
180  	 * Since these RTC suspend/resume handlers are not called
181  	 * at the very end of suspend or the start of resume,
182  	 * some run-time may pass on either sides of the sleep time
183  	 * so subtract kernel run-time between rtc_suspend to rtc_resume
184  	 * to keep things accurate.
185  	 */
186  	sleep_time = timespec64_sub(sleep_time,
187  				    timespec64_sub(new_system, old_system));
188  
189  	if (sleep_time.tv_sec >= 0)
190  		timekeeping_inject_sleeptime64(&sleep_time);
191  	rtc_hctosys_ret = 0;
192  	return 0;
193  }
194  
195  static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
196  #define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
197  #else
198  #define RTC_CLASS_DEV_PM_OPS	NULL
199  #endif
200  
201  const struct class rtc_class = {
202  	.name = "rtc",
203  	.pm = RTC_CLASS_DEV_PM_OPS,
204  };
205  
206  /* Ensure the caller will set the id before releasing the device */
207  static struct rtc_device *rtc_allocate_device(void)
208  {
209  	struct rtc_device *rtc;
210  
211  	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
212  	if (!rtc)
213  		return NULL;
214  
215  	device_initialize(&rtc->dev);
216  
217  	/*
218  	 * Drivers can revise this default after allocating the device.
219  	 * The default is what most RTCs do: Increment seconds exactly one
220  	 * second after the write happened. This adds a default transport
221  	 * time of 5ms which is at least halfways close to reality.
222  	 */
223  	rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
224  
225  	rtc->irq_freq = 1;
226  	rtc->max_user_freq = 64;
227  	rtc->dev.class = &rtc_class;
228  	rtc->dev.groups = rtc_get_dev_attribute_groups();
229  	rtc->dev.release = rtc_device_release;
230  
231  	mutex_init(&rtc->ops_lock);
232  	spin_lock_init(&rtc->irq_lock);
233  	init_waitqueue_head(&rtc->irq_queue);
234  
235  	/* Init timerqueue */
236  	timerqueue_init_head(&rtc->timerqueue);
237  	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
238  	/* Init aie timer */
239  	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
240  	/* Init uie timer */
241  	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
242  	/* Init pie timer */
243  	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
244  	rtc->pie_timer.function = rtc_pie_update_irq;
245  	rtc->pie_enabled = 0;
246  
247  	set_bit(RTC_FEATURE_ALARM, rtc->features);
248  	set_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features);
249  
250  	return rtc;
251  }
252  
253  static int rtc_device_get_id(struct device *dev)
254  {
255  	int of_id = -1, id = -1;
256  
257  	if (dev->of_node)
258  		of_id = of_alias_get_id(dev->of_node, "rtc");
259  	else if (dev->parent && dev->parent->of_node)
260  		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
261  
262  	if (of_id >= 0) {
263  		id = ida_alloc_range(&rtc_ida, of_id, of_id, GFP_KERNEL);
264  		if (id < 0)
265  			dev_warn(dev, "/aliases ID %d not available\n", of_id);
266  	}
267  
268  	if (id < 0)
269  		id = ida_alloc(&rtc_ida, GFP_KERNEL);
270  
271  	return id;
272  }
273  
274  static void rtc_device_get_offset(struct rtc_device *rtc)
275  {
276  	time64_t range_secs;
277  	u32 start_year;
278  	int ret;
279  
280  	/*
281  	 * If RTC driver did not implement the range of RTC hardware device,
282  	 * then we can not expand the RTC range by adding or subtracting one
283  	 * offset.
284  	 */
285  	if (rtc->range_min == rtc->range_max)
286  		return;
287  
288  	ret = device_property_read_u32(rtc->dev.parent, "start-year",
289  				       &start_year);
290  	if (!ret) {
291  		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
292  		rtc->set_start_time = true;
293  	}
294  
295  	/*
296  	 * If user did not implement the start time for RTC driver, then no
297  	 * need to expand the RTC range.
298  	 */
299  	if (!rtc->set_start_time)
300  		return;
301  
302  	range_secs = rtc->range_max - rtc->range_min + 1;
303  
304  	/*
305  	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
306  	 * supported by RTC hardware or the maximum seconds of new expanded
307  	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
308  	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
309  	 * RTC hardware will be mapped to start_secs by adding one offset, so
310  	 * the offset seconds calculation formula should be:
311  	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
312  	 *
313  	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
314  	 * supported by RTC hardware, then there is one region is overlapped
315  	 * between the original RTC hardware range and the new expanded range,
316  	 * and this overlapped region do not need to be mapped into the new
317  	 * expanded range due to it is valid for RTC device. So the minimum
318  	 * seconds of RTC hardware (rtc->range_min) should be mapped to
319  	 * rtc->range_max + 1, then the offset seconds formula should be:
320  	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
321  	 *
322  	 * If the start_secs is less than the minimum seconds (rtc->range_min),
323  	 * which is similar to case 2. So the start_secs should be mapped to
324  	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
325  	 * offset seconds formula should be:
326  	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
327  	 *
328  	 * Otherwise the offset seconds should be 0.
329  	 */
330  	if (rtc->start_secs > rtc->range_max ||
331  	    rtc->start_secs + range_secs - 1 < rtc->range_min)
332  		rtc->offset_secs = rtc->start_secs - rtc->range_min;
333  	else if (rtc->start_secs > rtc->range_min)
334  		rtc->offset_secs = range_secs;
335  	else if (rtc->start_secs < rtc->range_min)
336  		rtc->offset_secs = -range_secs;
337  	else
338  		rtc->offset_secs = 0;
339  }
340  
341  static void devm_rtc_unregister_device(void *data)
342  {
343  	struct rtc_device *rtc = data;
344  
345  	mutex_lock(&rtc->ops_lock);
346  	/*
347  	 * Remove innards of this RTC, then disable it, before
348  	 * letting any rtc_class_open() users access it again
349  	 */
350  	rtc_proc_del_device(rtc);
351  	if (!test_bit(RTC_NO_CDEV, &rtc->flags))
352  		cdev_device_del(&rtc->char_dev, &rtc->dev);
353  	rtc->ops = NULL;
354  	mutex_unlock(&rtc->ops_lock);
355  }
356  
357  static void devm_rtc_release_device(void *res)
358  {
359  	struct rtc_device *rtc = res;
360  
361  	put_device(&rtc->dev);
362  }
363  
364  struct rtc_device *devm_rtc_allocate_device(struct device *dev)
365  {
366  	struct rtc_device *rtc;
367  	int id, err;
368  
369  	id = rtc_device_get_id(dev);
370  	if (id < 0)
371  		return ERR_PTR(id);
372  
373  	rtc = rtc_allocate_device();
374  	if (!rtc) {
375  		ida_free(&rtc_ida, id);
376  		return ERR_PTR(-ENOMEM);
377  	}
378  
379  	rtc->id = id;
380  	rtc->dev.parent = dev;
381  	err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
382  	if (err)
383  		return ERR_PTR(err);
384  
385  	err = dev_set_name(&rtc->dev, "rtc%d", id);
386  	if (err)
387  		return ERR_PTR(err);
388  
389  	return rtc;
390  }
391  EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
392  
393  int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
394  {
395  	struct rtc_wkalrm alrm;
396  	int err;
397  
398  	if (!rtc->ops) {
399  		dev_dbg(&rtc->dev, "no ops set\n");
400  		return -EINVAL;
401  	}
402  
403  	if (!rtc->ops->set_alarm)
404  		clear_bit(RTC_FEATURE_ALARM, rtc->features);
405  
406  	if (rtc->ops->set_offset)
407  		set_bit(RTC_FEATURE_CORRECTION, rtc->features);
408  
409  	rtc->owner = owner;
410  	rtc_device_get_offset(rtc);
411  
412  	/* Check to see if there is an ALARM already set in hw */
413  	err = __rtc_read_alarm(rtc, &alrm);
414  	if (!err && !rtc_valid_tm(&alrm.time))
415  		rtc_initialize_alarm(rtc, &alrm);
416  
417  	rtc_dev_prepare(rtc);
418  
419  	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
420  	if (err) {
421  		set_bit(RTC_NO_CDEV, &rtc->flags);
422  		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
423  			 MAJOR(rtc->dev.devt), rtc->id);
424  	} else {
425  		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
426  			MAJOR(rtc->dev.devt), rtc->id);
427  	}
428  
429  	rtc_proc_add_device(rtc);
430  
431  	dev_info(rtc->dev.parent, "registered as %s\n",
432  		 dev_name(&rtc->dev));
433  
434  #ifdef CONFIG_RTC_HCTOSYS_DEVICE
435  	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
436  		rtc_hctosys(rtc);
437  #endif
438  
439  	return devm_add_action_or_reset(rtc->dev.parent,
440  					devm_rtc_unregister_device, rtc);
441  }
442  EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
443  
444  /**
445   * devm_rtc_device_register - resource managed rtc_device_register()
446   * @dev: the device to register
447   * @name: the name of the device (unused)
448   * @ops: the rtc operations structure
449   * @owner: the module owner
450   *
451   * @return a struct rtc on success, or an ERR_PTR on error
452   *
453   * Managed rtc_device_register(). The rtc_device returned from this function
454   * are automatically freed on driver detach.
455   * This function is deprecated, use devm_rtc_allocate_device and
456   * rtc_register_device instead
457   */
458  struct rtc_device *devm_rtc_device_register(struct device *dev,
459  					    const char *name,
460  					    const struct rtc_class_ops *ops,
461  					    struct module *owner)
462  {
463  	struct rtc_device *rtc;
464  	int err;
465  
466  	rtc = devm_rtc_allocate_device(dev);
467  	if (IS_ERR(rtc))
468  		return rtc;
469  
470  	rtc->ops = ops;
471  
472  	err = __devm_rtc_register_device(owner, rtc);
473  	if (err)
474  		return ERR_PTR(err);
475  
476  	return rtc;
477  }
478  EXPORT_SYMBOL_GPL(devm_rtc_device_register);
479  
480  static int __init rtc_init(void)
481  {
482  	int err;
483  
484  	err = class_register(&rtc_class);
485  	if (err)
486  		return err;
487  
488  	rtc_dev_init();
489  
490  	return 0;
491  }
492  subsys_initcall(rtc_init);
493