1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Virtio-based remote processor messaging bus 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 */ 11 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/dma-mapping.h> 15 #include <linux/idr.h> 16 #include <linux/jiffies.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/of_device.h> 21 #include <linux/rpmsg.h> 22 #include <linux/rpmsg/byteorder.h> 23 #include <linux/rpmsg/ns.h> 24 #include <linux/scatterlist.h> 25 #include <linux/slab.h> 26 #include <linux/sched.h> 27 #include <linux/virtio.h> 28 #include <linux/virtio_ids.h> 29 #include <linux/virtio_config.h> 30 #include <linux/wait.h> 31 32 #include "rpmsg_internal.h" 33 34 /** 35 * struct virtproc_info - virtual remote processor state 36 * @vdev: the virtio device 37 * @rvq: rx virtqueue 38 * @svq: tx virtqueue 39 * @rbufs: kernel address of rx buffers 40 * @sbufs: kernel address of tx buffers 41 * @num_bufs: total number of buffers for rx and tx 42 * @buf_size: size of one rx or tx buffer 43 * @last_sbuf: index of last tx buffer used 44 * @bufs_dma: dma base addr of the buffers 45 * @tx_lock: protects svq, sbufs and sleepers, to allow concurrent senders. 46 * sending a message might require waking up a dozing remote 47 * processor, which involves sleeping, hence the mutex. 48 * @endpoints: idr of local endpoints, allows fast retrieval 49 * @endpoints_lock: lock of the endpoints set 50 * @sendq: wait queue of sending contexts waiting for a tx buffers 51 * @sleepers: number of senders that are waiting for a tx buffer 52 * 53 * This structure stores the rpmsg state of a given virtio remote processor 54 * device (there might be several virtio proc devices for each physical 55 * remote processor). 56 */ 57 struct virtproc_info { 58 struct virtio_device *vdev; 59 struct virtqueue *rvq, *svq; 60 void *rbufs, *sbufs; 61 unsigned int num_bufs; 62 unsigned int buf_size; 63 int last_sbuf; 64 dma_addr_t bufs_dma; 65 struct mutex tx_lock; 66 struct idr endpoints; 67 struct mutex endpoints_lock; 68 wait_queue_head_t sendq; 69 atomic_t sleepers; 70 }; 71 72 /* The feature bitmap for virtio rpmsg */ 73 #define VIRTIO_RPMSG_F_NS 0 /* RP supports name service notifications */ 74 75 /** 76 * struct rpmsg_hdr - common header for all rpmsg messages 77 * @src: source address 78 * @dst: destination address 79 * @reserved: reserved for future use 80 * @len: length of payload (in bytes) 81 * @flags: message flags 82 * @data: @len bytes of message payload data 83 * 84 * Every message sent(/received) on the rpmsg bus begins with this header. 85 */ 86 struct rpmsg_hdr { 87 __rpmsg32 src; 88 __rpmsg32 dst; 89 __rpmsg32 reserved; 90 __rpmsg16 len; 91 __rpmsg16 flags; 92 u8 data[]; 93 } __packed; 94 95 96 /** 97 * struct virtio_rpmsg_channel - rpmsg channel descriptor 98 * @rpdev: the rpmsg channel device 99 * @vrp: the virtio remote processor device this channel belongs to 100 * 101 * This structure stores the channel that links the rpmsg device to the virtio 102 * remote processor device. 103 */ 104 struct virtio_rpmsg_channel { 105 struct rpmsg_device rpdev; 106 107 struct virtproc_info *vrp; 108 }; 109 110 #define to_virtio_rpmsg_channel(_rpdev) \ 111 container_of(_rpdev, struct virtio_rpmsg_channel, rpdev) 112 113 /* 114 * We're allocating buffers of 512 bytes each for communications. The 115 * number of buffers will be computed from the number of buffers supported 116 * by the vring, upto a maximum of 512 buffers (256 in each direction). 117 * 118 * Each buffer will have 16 bytes for the msg header and 496 bytes for 119 * the payload. 120 * 121 * This will utilize a maximum total space of 256KB for the buffers. 122 * 123 * We might also want to add support for user-provided buffers in time. 124 * This will allow bigger buffer size flexibility, and can also be used 125 * to achieve zero-copy messaging. 126 * 127 * Note that these numbers are purely a decision of this driver - we 128 * can change this without changing anything in the firmware of the remote 129 * processor. 130 */ 131 #define MAX_RPMSG_NUM_BUFS (512) 132 #define MAX_RPMSG_BUF_SIZE (512) 133 134 /* 135 * Local addresses are dynamically allocated on-demand. 136 * We do not dynamically assign addresses from the low 1024 range, 137 * in order to reserve that address range for predefined services. 138 */ 139 #define RPMSG_RESERVED_ADDRESSES (1024) 140 141 static void virtio_rpmsg_destroy_ept(struct rpmsg_endpoint *ept); 142 static int virtio_rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len); 143 static int virtio_rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len, 144 u32 dst); 145 static int virtio_rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src, 146 u32 dst, void *data, int len); 147 static int virtio_rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len); 148 static int virtio_rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data, 149 int len, u32 dst); 150 static int virtio_rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src, 151 u32 dst, void *data, int len); 152 static struct rpmsg_device *__rpmsg_create_channel(struct virtproc_info *vrp, 153 struct rpmsg_channel_info *chinfo); 154 155 static const struct rpmsg_endpoint_ops virtio_endpoint_ops = { 156 .destroy_ept = virtio_rpmsg_destroy_ept, 157 .send = virtio_rpmsg_send, 158 .sendto = virtio_rpmsg_sendto, 159 .send_offchannel = virtio_rpmsg_send_offchannel, 160 .trysend = virtio_rpmsg_trysend, 161 .trysendto = virtio_rpmsg_trysendto, 162 .trysend_offchannel = virtio_rpmsg_trysend_offchannel, 163 }; 164 165 /** 166 * rpmsg_sg_init - initialize scatterlist according to cpu address location 167 * @sg: scatterlist to fill 168 * @cpu_addr: virtual address of the buffer 169 * @len: buffer length 170 * 171 * An internal function filling scatterlist according to virtual address 172 * location (in vmalloc or in kernel). 173 */ 174 static void 175 rpmsg_sg_init(struct scatterlist *sg, void *cpu_addr, unsigned int len) 176 { 177 if (is_vmalloc_addr(cpu_addr)) { 178 sg_init_table(sg, 1); 179 sg_set_page(sg, vmalloc_to_page(cpu_addr), len, 180 offset_in_page(cpu_addr)); 181 } else { 182 WARN_ON(!virt_addr_valid(cpu_addr)); 183 sg_init_one(sg, cpu_addr, len); 184 } 185 } 186 187 /** 188 * __ept_release() - deallocate an rpmsg endpoint 189 * @kref: the ept's reference count 190 * 191 * This function deallocates an ept, and is invoked when its @kref refcount 192 * drops to zero. 193 * 194 * Never invoke this function directly! 195 */ 196 static void __ept_release(struct kref *kref) 197 { 198 struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint, 199 refcount); 200 /* 201 * At this point no one holds a reference to ept anymore, 202 * so we can directly free it 203 */ 204 kfree(ept); 205 } 206 207 /* for more info, see below documentation of rpmsg_create_ept() */ 208 static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp, 209 struct rpmsg_device *rpdev, 210 rpmsg_rx_cb_t cb, 211 void *priv, u32 addr) 212 { 213 int id_min, id_max, id; 214 struct rpmsg_endpoint *ept; 215 struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev; 216 217 ept = kzalloc(sizeof(*ept), GFP_KERNEL); 218 if (!ept) 219 return NULL; 220 221 kref_init(&ept->refcount); 222 mutex_init(&ept->cb_lock); 223 224 ept->rpdev = rpdev; 225 ept->cb = cb; 226 ept->priv = priv; 227 ept->ops = &virtio_endpoint_ops; 228 229 /* do we need to allocate a local address ? */ 230 if (addr == RPMSG_ADDR_ANY) { 231 id_min = RPMSG_RESERVED_ADDRESSES; 232 id_max = 0; 233 } else { 234 id_min = addr; 235 id_max = addr + 1; 236 } 237 238 mutex_lock(&vrp->endpoints_lock); 239 240 /* bind the endpoint to an rpmsg address (and allocate one if needed) */ 241 id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL); 242 if (id < 0) { 243 dev_err(dev, "idr_alloc failed: %d\n", id); 244 goto free_ept; 245 } 246 ept->addr = id; 247 248 mutex_unlock(&vrp->endpoints_lock); 249 250 return ept; 251 252 free_ept: 253 mutex_unlock(&vrp->endpoints_lock); 254 kref_put(&ept->refcount, __ept_release); 255 return NULL; 256 } 257 258 static struct rpmsg_device *virtio_rpmsg_create_channel(struct rpmsg_device *rpdev, 259 struct rpmsg_channel_info *chinfo) 260 { 261 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 262 struct virtproc_info *vrp = vch->vrp; 263 264 return __rpmsg_create_channel(vrp, chinfo); 265 } 266 267 static int virtio_rpmsg_release_channel(struct rpmsg_device *rpdev, 268 struct rpmsg_channel_info *chinfo) 269 { 270 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 271 struct virtproc_info *vrp = vch->vrp; 272 273 return rpmsg_unregister_device(&vrp->vdev->dev, chinfo); 274 } 275 276 static struct rpmsg_endpoint *virtio_rpmsg_create_ept(struct rpmsg_device *rpdev, 277 rpmsg_rx_cb_t cb, 278 void *priv, 279 struct rpmsg_channel_info chinfo) 280 { 281 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 282 283 return __rpmsg_create_ept(vch->vrp, rpdev, cb, priv, chinfo.src); 284 } 285 286 /** 287 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint 288 * @vrp: virtproc which owns this ept 289 * @ept: endpoing to destroy 290 * 291 * An internal function which destroy an ept without assuming it is 292 * bound to an rpmsg channel. This is needed for handling the internal 293 * name service endpoint, which isn't bound to an rpmsg channel. 294 * See also __rpmsg_create_ept(). 295 */ 296 static void 297 __rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept) 298 { 299 /* make sure new inbound messages can't find this ept anymore */ 300 mutex_lock(&vrp->endpoints_lock); 301 idr_remove(&vrp->endpoints, ept->addr); 302 mutex_unlock(&vrp->endpoints_lock); 303 304 /* make sure in-flight inbound messages won't invoke cb anymore */ 305 mutex_lock(&ept->cb_lock); 306 ept->cb = NULL; 307 mutex_unlock(&ept->cb_lock); 308 309 kref_put(&ept->refcount, __ept_release); 310 } 311 312 static void virtio_rpmsg_destroy_ept(struct rpmsg_endpoint *ept) 313 { 314 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(ept->rpdev); 315 316 __rpmsg_destroy_ept(vch->vrp, ept); 317 } 318 319 static int virtio_rpmsg_announce_create(struct rpmsg_device *rpdev) 320 { 321 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 322 struct virtproc_info *vrp = vch->vrp; 323 struct device *dev = &rpdev->dev; 324 int err = 0; 325 326 /* need to tell remote processor's name service about this channel ? */ 327 if (rpdev->announce && rpdev->ept && 328 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 329 struct rpmsg_ns_msg nsm; 330 331 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 332 nsm.addr = cpu_to_rpmsg32(rpdev, rpdev->ept->addr); 333 nsm.flags = cpu_to_rpmsg32(rpdev, RPMSG_NS_CREATE); 334 335 err = rpmsg_sendto(rpdev->ept, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 336 if (err) 337 dev_err(dev, "failed to announce service %d\n", err); 338 } 339 340 return err; 341 } 342 343 static int virtio_rpmsg_announce_destroy(struct rpmsg_device *rpdev) 344 { 345 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 346 struct virtproc_info *vrp = vch->vrp; 347 struct device *dev = &rpdev->dev; 348 int err = 0; 349 350 /* tell remote processor's name service we're removing this channel */ 351 if (rpdev->announce && rpdev->ept && 352 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 353 struct rpmsg_ns_msg nsm; 354 355 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 356 nsm.addr = cpu_to_rpmsg32(rpdev, rpdev->ept->addr); 357 nsm.flags = cpu_to_rpmsg32(rpdev, RPMSG_NS_DESTROY); 358 359 err = rpmsg_sendto(rpdev->ept, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 360 if (err) 361 dev_err(dev, "failed to announce service %d\n", err); 362 } 363 364 return err; 365 } 366 367 static const struct rpmsg_device_ops virtio_rpmsg_ops = { 368 .create_channel = virtio_rpmsg_create_channel, 369 .release_channel = virtio_rpmsg_release_channel, 370 .create_ept = virtio_rpmsg_create_ept, 371 .announce_create = virtio_rpmsg_announce_create, 372 .announce_destroy = virtio_rpmsg_announce_destroy, 373 }; 374 375 static void virtio_rpmsg_release_device(struct device *dev) 376 { 377 struct rpmsg_device *rpdev = to_rpmsg_device(dev); 378 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 379 380 kfree(vch); 381 } 382 383 /* 384 * create an rpmsg channel using its name and address info. 385 * this function will be used to create both static and dynamic 386 * channels. 387 */ 388 static struct rpmsg_device *__rpmsg_create_channel(struct virtproc_info *vrp, 389 struct rpmsg_channel_info *chinfo) 390 { 391 struct virtio_rpmsg_channel *vch; 392 struct rpmsg_device *rpdev; 393 struct device *tmp, *dev = &vrp->vdev->dev; 394 int ret; 395 396 /* make sure a similar channel doesn't already exist */ 397 tmp = rpmsg_find_device(dev, chinfo); 398 if (tmp) { 399 /* decrement the matched device's refcount back */ 400 put_device(tmp); 401 dev_err(dev, "channel %s:%x:%x already exist\n", 402 chinfo->name, chinfo->src, chinfo->dst); 403 return NULL; 404 } 405 406 vch = kzalloc(sizeof(*vch), GFP_KERNEL); 407 if (!vch) 408 return NULL; 409 410 /* Link the channel to our vrp */ 411 vch->vrp = vrp; 412 413 /* Assign public information to the rpmsg_device */ 414 rpdev = &vch->rpdev; 415 rpdev->src = chinfo->src; 416 rpdev->dst = chinfo->dst; 417 rpdev->ops = &virtio_rpmsg_ops; 418 rpdev->little_endian = virtio_is_little_endian(vrp->vdev); 419 420 /* 421 * rpmsg server channels has predefined local address (for now), 422 * and their existence needs to be announced remotely 423 */ 424 rpdev->announce = rpdev->src != RPMSG_ADDR_ANY; 425 426 strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE); 427 428 rpdev->dev.parent = &vrp->vdev->dev; 429 rpdev->dev.release = virtio_rpmsg_release_device; 430 ret = rpmsg_register_device(rpdev); 431 if (ret) 432 return NULL; 433 434 return rpdev; 435 } 436 437 /* super simple buffer "allocator" that is just enough for now */ 438 static void *get_a_tx_buf(struct virtproc_info *vrp) 439 { 440 unsigned int len; 441 void *ret; 442 443 /* support multiple concurrent senders */ 444 mutex_lock(&vrp->tx_lock); 445 446 /* 447 * either pick the next unused tx buffer 448 * (half of our buffers are used for sending messages) 449 */ 450 if (vrp->last_sbuf < vrp->num_bufs / 2) 451 ret = vrp->sbufs + vrp->buf_size * vrp->last_sbuf++; 452 /* or recycle a used one */ 453 else 454 ret = virtqueue_get_buf(vrp->svq, &len); 455 456 mutex_unlock(&vrp->tx_lock); 457 458 return ret; 459 } 460 461 /** 462 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed 463 * @vrp: virtual remote processor state 464 * 465 * This function is called before a sender is blocked, waiting for 466 * a tx buffer to become available. 467 * 468 * If we already have blocking senders, this function merely increases 469 * the "sleepers" reference count, and exits. 470 * 471 * Otherwise, if this is the first sender to block, we also enable 472 * virtio's tx callbacks, so we'd be immediately notified when a tx 473 * buffer is consumed (we rely on virtio's tx callback in order 474 * to wake up sleeping senders as soon as a tx buffer is used by the 475 * remote processor). 476 */ 477 static void rpmsg_upref_sleepers(struct virtproc_info *vrp) 478 { 479 /* support multiple concurrent senders */ 480 mutex_lock(&vrp->tx_lock); 481 482 /* are we the first sleeping context waiting for tx buffers ? */ 483 if (atomic_inc_return(&vrp->sleepers) == 1) 484 /* enable "tx-complete" interrupts before dozing off */ 485 virtqueue_enable_cb(vrp->svq); 486 487 mutex_unlock(&vrp->tx_lock); 488 } 489 490 /** 491 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed 492 * @vrp: virtual remote processor state 493 * 494 * This function is called after a sender, that waited for a tx buffer 495 * to become available, is unblocked. 496 * 497 * If we still have blocking senders, this function merely decreases 498 * the "sleepers" reference count, and exits. 499 * 500 * Otherwise, if there are no more blocking senders, we also disable 501 * virtio's tx callbacks, to avoid the overhead incurred with handling 502 * those (now redundant) interrupts. 503 */ 504 static void rpmsg_downref_sleepers(struct virtproc_info *vrp) 505 { 506 /* support multiple concurrent senders */ 507 mutex_lock(&vrp->tx_lock); 508 509 /* are we the last sleeping context waiting for tx buffers ? */ 510 if (atomic_dec_and_test(&vrp->sleepers)) 511 /* disable "tx-complete" interrupts */ 512 virtqueue_disable_cb(vrp->svq); 513 514 mutex_unlock(&vrp->tx_lock); 515 } 516 517 /** 518 * rpmsg_send_offchannel_raw() - send a message across to the remote processor 519 * @rpdev: the rpmsg channel 520 * @src: source address 521 * @dst: destination address 522 * @data: payload of message 523 * @len: length of payload 524 * @wait: indicates whether caller should block in case no TX buffers available 525 * 526 * This function is the base implementation for all of the rpmsg sending API. 527 * 528 * It will send @data of length @len to @dst, and say it's from @src. The 529 * message will be sent to the remote processor which the @rpdev channel 530 * belongs to. 531 * 532 * The message is sent using one of the TX buffers that are available for 533 * communication with this remote processor. 534 * 535 * If @wait is true, the caller will be blocked until either a TX buffer is 536 * available, or 15 seconds elapses (we don't want callers to 537 * sleep indefinitely due to misbehaving remote processors), and in that 538 * case -ERESTARTSYS is returned. The number '15' itself was picked 539 * arbitrarily; there's little point in asking drivers to provide a timeout 540 * value themselves. 541 * 542 * Otherwise, if @wait is false, and there are no TX buffers available, 543 * the function will immediately fail, and -ENOMEM will be returned. 544 * 545 * Normally drivers shouldn't use this function directly; instead, drivers 546 * should use the appropriate rpmsg_{try}send{to, _offchannel} API 547 * (see include/linux/rpmsg.h). 548 * 549 * Returns 0 on success and an appropriate error value on failure. 550 */ 551 static int rpmsg_send_offchannel_raw(struct rpmsg_device *rpdev, 552 u32 src, u32 dst, 553 void *data, int len, bool wait) 554 { 555 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 556 struct virtproc_info *vrp = vch->vrp; 557 struct device *dev = &rpdev->dev; 558 struct scatterlist sg; 559 struct rpmsg_hdr *msg; 560 int err; 561 562 /* bcasting isn't allowed */ 563 if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) { 564 dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst); 565 return -EINVAL; 566 } 567 568 /* 569 * We currently use fixed-sized buffers, and therefore the payload 570 * length is limited. 571 * 572 * One of the possible improvements here is either to support 573 * user-provided buffers (and then we can also support zero-copy 574 * messaging), or to improve the buffer allocator, to support 575 * variable-length buffer sizes. 576 */ 577 if (len > vrp->buf_size - sizeof(struct rpmsg_hdr)) { 578 dev_err(dev, "message is too big (%d)\n", len); 579 return -EMSGSIZE; 580 } 581 582 /* grab a buffer */ 583 msg = get_a_tx_buf(vrp); 584 if (!msg && !wait) 585 return -ENOMEM; 586 587 /* no free buffer ? wait for one (but bail after 15 seconds) */ 588 while (!msg) { 589 /* enable "tx-complete" interrupts, if not already enabled */ 590 rpmsg_upref_sleepers(vrp); 591 592 /* 593 * sleep until a free buffer is available or 15 secs elapse. 594 * the timeout period is not configurable because there's 595 * little point in asking drivers to specify that. 596 * if later this happens to be required, it'd be easy to add. 597 */ 598 err = wait_event_interruptible_timeout(vrp->sendq, 599 (msg = get_a_tx_buf(vrp)), 600 msecs_to_jiffies(15000)); 601 602 /* disable "tx-complete" interrupts if we're the last sleeper */ 603 rpmsg_downref_sleepers(vrp); 604 605 /* timeout ? */ 606 if (!err) { 607 dev_err(dev, "timeout waiting for a tx buffer\n"); 608 return -ERESTARTSYS; 609 } 610 } 611 612 msg->len = cpu_to_rpmsg16(rpdev, len); 613 msg->flags = 0; 614 msg->src = cpu_to_rpmsg32(rpdev, src); 615 msg->dst = cpu_to_rpmsg32(rpdev, dst); 616 msg->reserved = 0; 617 memcpy(msg->data, data, len); 618 619 dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n", 620 src, dst, len, msg->flags, msg->reserved); 621 #if defined(CONFIG_DYNAMIC_DEBUG) 622 dynamic_hex_dump("rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1, 623 msg, sizeof(*msg) + len, true); 624 #endif 625 626 rpmsg_sg_init(&sg, msg, sizeof(*msg) + len); 627 628 mutex_lock(&vrp->tx_lock); 629 630 /* add message to the remote processor's virtqueue */ 631 err = virtqueue_add_outbuf(vrp->svq, &sg, 1, msg, GFP_KERNEL); 632 if (err) { 633 /* 634 * need to reclaim the buffer here, otherwise it's lost 635 * (memory won't leak, but rpmsg won't use it again for TX). 636 * this will wait for a buffer management overhaul. 637 */ 638 dev_err(dev, "virtqueue_add_outbuf failed: %d\n", err); 639 goto out; 640 } 641 642 /* tell the remote processor it has a pending message to read */ 643 virtqueue_kick(vrp->svq); 644 out: 645 mutex_unlock(&vrp->tx_lock); 646 return err; 647 } 648 649 static int virtio_rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len) 650 { 651 struct rpmsg_device *rpdev = ept->rpdev; 652 u32 src = ept->addr, dst = rpdev->dst; 653 654 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); 655 } 656 657 static int virtio_rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len, 658 u32 dst) 659 { 660 struct rpmsg_device *rpdev = ept->rpdev; 661 u32 src = ept->addr; 662 663 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); 664 } 665 666 static int virtio_rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src, 667 u32 dst, void *data, int len) 668 { 669 struct rpmsg_device *rpdev = ept->rpdev; 670 671 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); 672 } 673 674 static int virtio_rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len) 675 { 676 struct rpmsg_device *rpdev = ept->rpdev; 677 u32 src = ept->addr, dst = rpdev->dst; 678 679 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); 680 } 681 682 static int virtio_rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data, 683 int len, u32 dst) 684 { 685 struct rpmsg_device *rpdev = ept->rpdev; 686 u32 src = ept->addr; 687 688 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); 689 } 690 691 static int virtio_rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src, 692 u32 dst, void *data, int len) 693 { 694 struct rpmsg_device *rpdev = ept->rpdev; 695 696 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); 697 } 698 699 static int rpmsg_recv_single(struct virtproc_info *vrp, struct device *dev, 700 struct rpmsg_hdr *msg, unsigned int len) 701 { 702 struct rpmsg_endpoint *ept; 703 struct scatterlist sg; 704 bool little_endian = virtio_is_little_endian(vrp->vdev); 705 unsigned int msg_len = __rpmsg16_to_cpu(little_endian, msg->len); 706 int err; 707 708 dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n", 709 __rpmsg32_to_cpu(little_endian, msg->src), 710 __rpmsg32_to_cpu(little_endian, msg->dst), msg_len, 711 __rpmsg16_to_cpu(little_endian, msg->flags), 712 __rpmsg32_to_cpu(little_endian, msg->reserved)); 713 #if defined(CONFIG_DYNAMIC_DEBUG) 714 dynamic_hex_dump("rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1, 715 msg, sizeof(*msg) + msg_len, true); 716 #endif 717 718 /* 719 * We currently use fixed-sized buffers, so trivially sanitize 720 * the reported payload length. 721 */ 722 if (len > vrp->buf_size || 723 msg_len > (len - sizeof(struct rpmsg_hdr))) { 724 dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg_len); 725 return -EINVAL; 726 } 727 728 /* use the dst addr to fetch the callback of the appropriate user */ 729 mutex_lock(&vrp->endpoints_lock); 730 731 ept = idr_find(&vrp->endpoints, __rpmsg32_to_cpu(little_endian, msg->dst)); 732 733 /* let's make sure no one deallocates ept while we use it */ 734 if (ept) 735 kref_get(&ept->refcount); 736 737 mutex_unlock(&vrp->endpoints_lock); 738 739 if (ept) { 740 /* make sure ept->cb doesn't go away while we use it */ 741 mutex_lock(&ept->cb_lock); 742 743 if (ept->cb) 744 ept->cb(ept->rpdev, msg->data, msg_len, ept->priv, 745 __rpmsg32_to_cpu(little_endian, msg->src)); 746 747 mutex_unlock(&ept->cb_lock); 748 749 /* farewell, ept, we don't need you anymore */ 750 kref_put(&ept->refcount, __ept_release); 751 } else 752 dev_warn(dev, "msg received with no recipient\n"); 753 754 /* publish the real size of the buffer */ 755 rpmsg_sg_init(&sg, msg, vrp->buf_size); 756 757 /* add the buffer back to the remote processor's virtqueue */ 758 err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, msg, GFP_KERNEL); 759 if (err < 0) { 760 dev_err(dev, "failed to add a virtqueue buffer: %d\n", err); 761 return err; 762 } 763 764 return 0; 765 } 766 767 /* called when an rx buffer is used, and it's time to digest a message */ 768 static void rpmsg_recv_done(struct virtqueue *rvq) 769 { 770 struct virtproc_info *vrp = rvq->vdev->priv; 771 struct device *dev = &rvq->vdev->dev; 772 struct rpmsg_hdr *msg; 773 unsigned int len, msgs_received = 0; 774 int err; 775 776 msg = virtqueue_get_buf(rvq, &len); 777 if (!msg) { 778 dev_err(dev, "uhm, incoming signal, but no used buffer ?\n"); 779 return; 780 } 781 782 while (msg) { 783 err = rpmsg_recv_single(vrp, dev, msg, len); 784 if (err) 785 break; 786 787 msgs_received++; 788 789 msg = virtqueue_get_buf(rvq, &len); 790 } 791 792 dev_dbg(dev, "Received %u messages\n", msgs_received); 793 794 /* tell the remote processor we added another available rx buffer */ 795 if (msgs_received) 796 virtqueue_kick(vrp->rvq); 797 } 798 799 /* 800 * This is invoked whenever the remote processor completed processing 801 * a TX msg we just sent it, and the buffer is put back to the used ring. 802 * 803 * Normally, though, we suppress this "tx complete" interrupt in order to 804 * avoid the incurred overhead. 805 */ 806 static void rpmsg_xmit_done(struct virtqueue *svq) 807 { 808 struct virtproc_info *vrp = svq->vdev->priv; 809 810 dev_dbg(&svq->vdev->dev, "%s\n", __func__); 811 812 /* wake up potential senders that are waiting for a tx buffer */ 813 wake_up_interruptible(&vrp->sendq); 814 } 815 816 static int rpmsg_probe(struct virtio_device *vdev) 817 { 818 vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done }; 819 static const char * const names[] = { "input", "output" }; 820 struct virtqueue *vqs[2]; 821 struct virtproc_info *vrp; 822 struct virtio_rpmsg_channel *vch; 823 struct rpmsg_device *rpdev_ns; 824 void *bufs_va; 825 int err = 0, i; 826 size_t total_buf_space; 827 bool notify; 828 829 vrp = kzalloc(sizeof(*vrp), GFP_KERNEL); 830 if (!vrp) 831 return -ENOMEM; 832 833 vrp->vdev = vdev; 834 835 idr_init(&vrp->endpoints); 836 mutex_init(&vrp->endpoints_lock); 837 mutex_init(&vrp->tx_lock); 838 init_waitqueue_head(&vrp->sendq); 839 840 /* We expect two virtqueues, rx and tx (and in this order) */ 841 err = virtio_find_vqs(vdev, 2, vqs, vq_cbs, names, NULL); 842 if (err) 843 goto free_vrp; 844 845 vrp->rvq = vqs[0]; 846 vrp->svq = vqs[1]; 847 848 /* we expect symmetric tx/rx vrings */ 849 WARN_ON(virtqueue_get_vring_size(vrp->rvq) != 850 virtqueue_get_vring_size(vrp->svq)); 851 852 /* we need less buffers if vrings are small */ 853 if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2) 854 vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2; 855 else 856 vrp->num_bufs = MAX_RPMSG_NUM_BUFS; 857 858 vrp->buf_size = MAX_RPMSG_BUF_SIZE; 859 860 total_buf_space = vrp->num_bufs * vrp->buf_size; 861 862 /* allocate coherent memory for the buffers */ 863 bufs_va = dma_alloc_coherent(vdev->dev.parent, 864 total_buf_space, &vrp->bufs_dma, 865 GFP_KERNEL); 866 if (!bufs_va) { 867 err = -ENOMEM; 868 goto vqs_del; 869 } 870 871 dev_dbg(&vdev->dev, "buffers: va %pK, dma %pad\n", 872 bufs_va, &vrp->bufs_dma); 873 874 /* half of the buffers is dedicated for RX */ 875 vrp->rbufs = bufs_va; 876 877 /* and half is dedicated for TX */ 878 vrp->sbufs = bufs_va + total_buf_space / 2; 879 880 /* set up the receive buffers */ 881 for (i = 0; i < vrp->num_bufs / 2; i++) { 882 struct scatterlist sg; 883 void *cpu_addr = vrp->rbufs + i * vrp->buf_size; 884 885 rpmsg_sg_init(&sg, cpu_addr, vrp->buf_size); 886 887 err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr, 888 GFP_KERNEL); 889 WARN_ON(err); /* sanity check; this can't really happen */ 890 } 891 892 /* suppress "tx-complete" interrupts */ 893 virtqueue_disable_cb(vrp->svq); 894 895 vdev->priv = vrp; 896 897 /* if supported by the remote processor, enable the name service */ 898 if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) { 899 vch = kzalloc(sizeof(*vch), GFP_KERNEL); 900 if (!vch) { 901 err = -ENOMEM; 902 goto free_coherent; 903 } 904 905 /* Link the channel to our vrp */ 906 vch->vrp = vrp; 907 908 /* Assign public information to the rpmsg_device */ 909 rpdev_ns = &vch->rpdev; 910 rpdev_ns->ops = &virtio_rpmsg_ops; 911 rpdev_ns->little_endian = virtio_is_little_endian(vrp->vdev); 912 913 rpdev_ns->dev.parent = &vrp->vdev->dev; 914 rpdev_ns->dev.release = virtio_rpmsg_release_device; 915 916 err = rpmsg_ns_register_device(rpdev_ns); 917 if (err) 918 goto free_coherent; 919 } 920 921 /* 922 * Prepare to kick but don't notify yet - we can't do this before 923 * device is ready. 924 */ 925 notify = virtqueue_kick_prepare(vrp->rvq); 926 927 /* From this point on, we can notify and get callbacks. */ 928 virtio_device_ready(vdev); 929 930 /* tell the remote processor it can start sending messages */ 931 /* 932 * this might be concurrent with callbacks, but we are only 933 * doing notify, not a full kick here, so that's ok. 934 */ 935 if (notify) 936 virtqueue_notify(vrp->rvq); 937 938 dev_info(&vdev->dev, "rpmsg host is online\n"); 939 940 return 0; 941 942 free_coherent: 943 kfree(vch); 944 dma_free_coherent(vdev->dev.parent, total_buf_space, 945 bufs_va, vrp->bufs_dma); 946 vqs_del: 947 vdev->config->del_vqs(vrp->vdev); 948 free_vrp: 949 kfree(vrp); 950 return err; 951 } 952 953 static int rpmsg_remove_device(struct device *dev, void *data) 954 { 955 device_unregister(dev); 956 957 return 0; 958 } 959 960 static void rpmsg_remove(struct virtio_device *vdev) 961 { 962 struct virtproc_info *vrp = vdev->priv; 963 size_t total_buf_space = vrp->num_bufs * vrp->buf_size; 964 int ret; 965 966 vdev->config->reset(vdev); 967 968 ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device); 969 if (ret) 970 dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret); 971 972 idr_destroy(&vrp->endpoints); 973 974 vdev->config->del_vqs(vrp->vdev); 975 976 dma_free_coherent(vdev->dev.parent, total_buf_space, 977 vrp->rbufs, vrp->bufs_dma); 978 979 kfree(vrp); 980 } 981 982 static struct virtio_device_id id_table[] = { 983 { VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID }, 984 { 0 }, 985 }; 986 987 static unsigned int features[] = { 988 VIRTIO_RPMSG_F_NS, 989 }; 990 991 static struct virtio_driver virtio_ipc_driver = { 992 .feature_table = features, 993 .feature_table_size = ARRAY_SIZE(features), 994 .driver.name = KBUILD_MODNAME, 995 .driver.owner = THIS_MODULE, 996 .id_table = id_table, 997 .probe = rpmsg_probe, 998 .remove = rpmsg_remove, 999 }; 1000 1001 static int __init rpmsg_init(void) 1002 { 1003 int ret; 1004 1005 ret = register_virtio_driver(&virtio_ipc_driver); 1006 if (ret) 1007 pr_err("failed to register virtio driver: %d\n", ret); 1008 1009 return ret; 1010 } 1011 subsys_initcall(rpmsg_init); 1012 1013 static void __exit rpmsg_fini(void) 1014 { 1015 unregister_virtio_driver(&virtio_ipc_driver); 1016 } 1017 module_exit(rpmsg_fini); 1018 1019 MODULE_DEVICE_TABLE(virtio, id_table); 1020 MODULE_DESCRIPTION("Virtio-based remote processor messaging bus"); 1021 MODULE_LICENSE("GPL v2"); 1022