1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Virtio-based remote processor messaging bus 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 */ 11 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/dma-mapping.h> 15 #include <linux/idr.h> 16 #include <linux/jiffies.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/of_device.h> 21 #include <linux/rpmsg.h> 22 #include <linux/scatterlist.h> 23 #include <linux/slab.h> 24 #include <linux/sched.h> 25 #include <linux/virtio.h> 26 #include <linux/virtio_byteorder.h> 27 #include <linux/virtio_ids.h> 28 #include <linux/virtio_config.h> 29 #include <linux/wait.h> 30 31 #include "rpmsg_internal.h" 32 33 /** 34 * struct virtproc_info - virtual remote processor state 35 * @vdev: the virtio device 36 * @rvq: rx virtqueue 37 * @svq: tx virtqueue 38 * @rbufs: kernel address of rx buffers 39 * @sbufs: kernel address of tx buffers 40 * @num_bufs: total number of buffers for rx and tx 41 * @buf_size: size of one rx or tx buffer 42 * @last_sbuf: index of last tx buffer used 43 * @bufs_dma: dma base addr of the buffers 44 * @tx_lock: protects svq, sbufs and sleepers, to allow concurrent senders. 45 * sending a message might require waking up a dozing remote 46 * processor, which involves sleeping, hence the mutex. 47 * @endpoints: idr of local endpoints, allows fast retrieval 48 * @endpoints_lock: lock of the endpoints set 49 * @sendq: wait queue of sending contexts waiting for a tx buffers 50 * @sleepers: number of senders that are waiting for a tx buffer 51 * @ns_ept: the bus's name service endpoint 52 * 53 * This structure stores the rpmsg state of a given virtio remote processor 54 * device (there might be several virtio proc devices for each physical 55 * remote processor). 56 */ 57 struct virtproc_info { 58 struct virtio_device *vdev; 59 struct virtqueue *rvq, *svq; 60 void *rbufs, *sbufs; 61 unsigned int num_bufs; 62 unsigned int buf_size; 63 int last_sbuf; 64 dma_addr_t bufs_dma; 65 struct mutex tx_lock; 66 struct idr endpoints; 67 struct mutex endpoints_lock; 68 wait_queue_head_t sendq; 69 atomic_t sleepers; 70 struct rpmsg_endpoint *ns_ept; 71 }; 72 73 /* The feature bitmap for virtio rpmsg */ 74 #define VIRTIO_RPMSG_F_NS 0 /* RP supports name service notifications */ 75 76 /** 77 * struct rpmsg_hdr - common header for all rpmsg messages 78 * @src: source address 79 * @dst: destination address 80 * @reserved: reserved for future use 81 * @len: length of payload (in bytes) 82 * @flags: message flags 83 * @data: @len bytes of message payload data 84 * 85 * Every message sent(/received) on the rpmsg bus begins with this header. 86 */ 87 struct rpmsg_hdr { 88 __virtio32 src; 89 __virtio32 dst; 90 __virtio32 reserved; 91 __virtio16 len; 92 __virtio16 flags; 93 u8 data[]; 94 } __packed; 95 96 /** 97 * struct rpmsg_ns_msg - dynamic name service announcement message 98 * @name: name of remote service that is published 99 * @addr: address of remote service that is published 100 * @flags: indicates whether service is created or destroyed 101 * 102 * This message is sent across to publish a new service, or announce 103 * about its removal. When we receive these messages, an appropriate 104 * rpmsg channel (i.e device) is created/destroyed. In turn, the ->probe() 105 * or ->remove() handler of the appropriate rpmsg driver will be invoked 106 * (if/as-soon-as one is registered). 107 */ 108 struct rpmsg_ns_msg { 109 char name[RPMSG_NAME_SIZE]; 110 __virtio32 addr; 111 __virtio32 flags; 112 } __packed; 113 114 /** 115 * enum rpmsg_ns_flags - dynamic name service announcement flags 116 * 117 * @RPMSG_NS_CREATE: a new remote service was just created 118 * @RPMSG_NS_DESTROY: a known remote service was just destroyed 119 */ 120 enum rpmsg_ns_flags { 121 RPMSG_NS_CREATE = 0, 122 RPMSG_NS_DESTROY = 1, 123 }; 124 125 /** 126 * struct virtio_rpmsg_channel - rpmsg channel descriptor 127 * @rpdev: the rpmsg channel device 128 * @vrp: the virtio remote processor device this channel belongs to 129 * 130 * This structure stores the channel that links the rpmsg device to the virtio 131 * remote processor device. 132 */ 133 struct virtio_rpmsg_channel { 134 struct rpmsg_device rpdev; 135 136 struct virtproc_info *vrp; 137 }; 138 139 #define to_virtio_rpmsg_channel(_rpdev) \ 140 container_of(_rpdev, struct virtio_rpmsg_channel, rpdev) 141 142 /* 143 * We're allocating buffers of 512 bytes each for communications. The 144 * number of buffers will be computed from the number of buffers supported 145 * by the vring, upto a maximum of 512 buffers (256 in each direction). 146 * 147 * Each buffer will have 16 bytes for the msg header and 496 bytes for 148 * the payload. 149 * 150 * This will utilize a maximum total space of 256KB for the buffers. 151 * 152 * We might also want to add support for user-provided buffers in time. 153 * This will allow bigger buffer size flexibility, and can also be used 154 * to achieve zero-copy messaging. 155 * 156 * Note that these numbers are purely a decision of this driver - we 157 * can change this without changing anything in the firmware of the remote 158 * processor. 159 */ 160 #define MAX_RPMSG_NUM_BUFS (512) 161 #define MAX_RPMSG_BUF_SIZE (512) 162 163 /* 164 * Local addresses are dynamically allocated on-demand. 165 * We do not dynamically assign addresses from the low 1024 range, 166 * in order to reserve that address range for predefined services. 167 */ 168 #define RPMSG_RESERVED_ADDRESSES (1024) 169 170 /* Address 53 is reserved for advertising remote services */ 171 #define RPMSG_NS_ADDR (53) 172 173 static void virtio_rpmsg_destroy_ept(struct rpmsg_endpoint *ept); 174 static int virtio_rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len); 175 static int virtio_rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len, 176 u32 dst); 177 static int virtio_rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src, 178 u32 dst, void *data, int len); 179 static int virtio_rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len); 180 static int virtio_rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data, 181 int len, u32 dst); 182 static int virtio_rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src, 183 u32 dst, void *data, int len); 184 185 static const struct rpmsg_endpoint_ops virtio_endpoint_ops = { 186 .destroy_ept = virtio_rpmsg_destroy_ept, 187 .send = virtio_rpmsg_send, 188 .sendto = virtio_rpmsg_sendto, 189 .send_offchannel = virtio_rpmsg_send_offchannel, 190 .trysend = virtio_rpmsg_trysend, 191 .trysendto = virtio_rpmsg_trysendto, 192 .trysend_offchannel = virtio_rpmsg_trysend_offchannel, 193 }; 194 195 /** 196 * rpmsg_sg_init - initialize scatterlist according to cpu address location 197 * @sg: scatterlist to fill 198 * @cpu_addr: virtual address of the buffer 199 * @len: buffer length 200 * 201 * An internal function filling scatterlist according to virtual address 202 * location (in vmalloc or in kernel). 203 */ 204 static void 205 rpmsg_sg_init(struct scatterlist *sg, void *cpu_addr, unsigned int len) 206 { 207 if (is_vmalloc_addr(cpu_addr)) { 208 sg_init_table(sg, 1); 209 sg_set_page(sg, vmalloc_to_page(cpu_addr), len, 210 offset_in_page(cpu_addr)); 211 } else { 212 WARN_ON(!virt_addr_valid(cpu_addr)); 213 sg_init_one(sg, cpu_addr, len); 214 } 215 } 216 217 /** 218 * __ept_release() - deallocate an rpmsg endpoint 219 * @kref: the ept's reference count 220 * 221 * This function deallocates an ept, and is invoked when its @kref refcount 222 * drops to zero. 223 * 224 * Never invoke this function directly! 225 */ 226 static void __ept_release(struct kref *kref) 227 { 228 struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint, 229 refcount); 230 /* 231 * At this point no one holds a reference to ept anymore, 232 * so we can directly free it 233 */ 234 kfree(ept); 235 } 236 237 /* for more info, see below documentation of rpmsg_create_ept() */ 238 static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp, 239 struct rpmsg_device *rpdev, 240 rpmsg_rx_cb_t cb, 241 void *priv, u32 addr) 242 { 243 int id_min, id_max, id; 244 struct rpmsg_endpoint *ept; 245 struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev; 246 247 ept = kzalloc(sizeof(*ept), GFP_KERNEL); 248 if (!ept) 249 return NULL; 250 251 kref_init(&ept->refcount); 252 mutex_init(&ept->cb_lock); 253 254 ept->rpdev = rpdev; 255 ept->cb = cb; 256 ept->priv = priv; 257 ept->ops = &virtio_endpoint_ops; 258 259 /* do we need to allocate a local address ? */ 260 if (addr == RPMSG_ADDR_ANY) { 261 id_min = RPMSG_RESERVED_ADDRESSES; 262 id_max = 0; 263 } else { 264 id_min = addr; 265 id_max = addr + 1; 266 } 267 268 mutex_lock(&vrp->endpoints_lock); 269 270 /* bind the endpoint to an rpmsg address (and allocate one if needed) */ 271 id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL); 272 if (id < 0) { 273 dev_err(dev, "idr_alloc failed: %d\n", id); 274 goto free_ept; 275 } 276 ept->addr = id; 277 278 mutex_unlock(&vrp->endpoints_lock); 279 280 return ept; 281 282 free_ept: 283 mutex_unlock(&vrp->endpoints_lock); 284 kref_put(&ept->refcount, __ept_release); 285 return NULL; 286 } 287 288 static struct rpmsg_endpoint *virtio_rpmsg_create_ept(struct rpmsg_device *rpdev, 289 rpmsg_rx_cb_t cb, 290 void *priv, 291 struct rpmsg_channel_info chinfo) 292 { 293 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 294 295 return __rpmsg_create_ept(vch->vrp, rpdev, cb, priv, chinfo.src); 296 } 297 298 /** 299 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint 300 * @vrp: virtproc which owns this ept 301 * @ept: endpoing to destroy 302 * 303 * An internal function which destroy an ept without assuming it is 304 * bound to an rpmsg channel. This is needed for handling the internal 305 * name service endpoint, which isn't bound to an rpmsg channel. 306 * See also __rpmsg_create_ept(). 307 */ 308 static void 309 __rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept) 310 { 311 /* make sure new inbound messages can't find this ept anymore */ 312 mutex_lock(&vrp->endpoints_lock); 313 idr_remove(&vrp->endpoints, ept->addr); 314 mutex_unlock(&vrp->endpoints_lock); 315 316 /* make sure in-flight inbound messages won't invoke cb anymore */ 317 mutex_lock(&ept->cb_lock); 318 ept->cb = NULL; 319 mutex_unlock(&ept->cb_lock); 320 321 kref_put(&ept->refcount, __ept_release); 322 } 323 324 static void virtio_rpmsg_destroy_ept(struct rpmsg_endpoint *ept) 325 { 326 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(ept->rpdev); 327 328 __rpmsg_destroy_ept(vch->vrp, ept); 329 } 330 331 static int virtio_rpmsg_announce_create(struct rpmsg_device *rpdev) 332 { 333 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 334 struct virtproc_info *vrp = vch->vrp; 335 struct device *dev = &rpdev->dev; 336 int err = 0; 337 338 /* need to tell remote processor's name service about this channel ? */ 339 if (rpdev->announce && rpdev->ept && 340 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 341 struct rpmsg_ns_msg nsm; 342 343 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 344 nsm.addr = cpu_to_virtio32(vrp->vdev, rpdev->ept->addr); 345 nsm.flags = cpu_to_virtio32(vrp->vdev, RPMSG_NS_CREATE); 346 347 err = rpmsg_sendto(rpdev->ept, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 348 if (err) 349 dev_err(dev, "failed to announce service %d\n", err); 350 } 351 352 return err; 353 } 354 355 static int virtio_rpmsg_announce_destroy(struct rpmsg_device *rpdev) 356 { 357 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 358 struct virtproc_info *vrp = vch->vrp; 359 struct device *dev = &rpdev->dev; 360 int err = 0; 361 362 /* tell remote processor's name service we're removing this channel */ 363 if (rpdev->announce && rpdev->ept && 364 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 365 struct rpmsg_ns_msg nsm; 366 367 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 368 nsm.addr = cpu_to_virtio32(vrp->vdev, rpdev->ept->addr); 369 nsm.flags = cpu_to_virtio32(vrp->vdev, RPMSG_NS_DESTROY); 370 371 err = rpmsg_sendto(rpdev->ept, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 372 if (err) 373 dev_err(dev, "failed to announce service %d\n", err); 374 } 375 376 return err; 377 } 378 379 static const struct rpmsg_device_ops virtio_rpmsg_ops = { 380 .create_ept = virtio_rpmsg_create_ept, 381 .announce_create = virtio_rpmsg_announce_create, 382 .announce_destroy = virtio_rpmsg_announce_destroy, 383 }; 384 385 static void virtio_rpmsg_release_device(struct device *dev) 386 { 387 struct rpmsg_device *rpdev = to_rpmsg_device(dev); 388 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 389 390 kfree(vch); 391 } 392 393 /* 394 * create an rpmsg channel using its name and address info. 395 * this function will be used to create both static and dynamic 396 * channels. 397 */ 398 static struct rpmsg_device *rpmsg_create_channel(struct virtproc_info *vrp, 399 struct rpmsg_channel_info *chinfo) 400 { 401 struct virtio_rpmsg_channel *vch; 402 struct rpmsg_device *rpdev; 403 struct device *tmp, *dev = &vrp->vdev->dev; 404 int ret; 405 406 /* make sure a similar channel doesn't already exist */ 407 tmp = rpmsg_find_device(dev, chinfo); 408 if (tmp) { 409 /* decrement the matched device's refcount back */ 410 put_device(tmp); 411 dev_err(dev, "channel %s:%x:%x already exist\n", 412 chinfo->name, chinfo->src, chinfo->dst); 413 return NULL; 414 } 415 416 vch = kzalloc(sizeof(*vch), GFP_KERNEL); 417 if (!vch) 418 return NULL; 419 420 /* Link the channel to our vrp */ 421 vch->vrp = vrp; 422 423 /* Assign public information to the rpmsg_device */ 424 rpdev = &vch->rpdev; 425 rpdev->src = chinfo->src; 426 rpdev->dst = chinfo->dst; 427 rpdev->ops = &virtio_rpmsg_ops; 428 429 /* 430 * rpmsg server channels has predefined local address (for now), 431 * and their existence needs to be announced remotely 432 */ 433 rpdev->announce = rpdev->src != RPMSG_ADDR_ANY; 434 435 strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE); 436 437 rpdev->dev.parent = &vrp->vdev->dev; 438 rpdev->dev.release = virtio_rpmsg_release_device; 439 ret = rpmsg_register_device(rpdev); 440 if (ret) 441 return NULL; 442 443 return rpdev; 444 } 445 446 /* super simple buffer "allocator" that is just enough for now */ 447 static void *get_a_tx_buf(struct virtproc_info *vrp) 448 { 449 unsigned int len; 450 void *ret; 451 452 /* support multiple concurrent senders */ 453 mutex_lock(&vrp->tx_lock); 454 455 /* 456 * either pick the next unused tx buffer 457 * (half of our buffers are used for sending messages) 458 */ 459 if (vrp->last_sbuf < vrp->num_bufs / 2) 460 ret = vrp->sbufs + vrp->buf_size * vrp->last_sbuf++; 461 /* or recycle a used one */ 462 else 463 ret = virtqueue_get_buf(vrp->svq, &len); 464 465 mutex_unlock(&vrp->tx_lock); 466 467 return ret; 468 } 469 470 /** 471 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed 472 * @vrp: virtual remote processor state 473 * 474 * This function is called before a sender is blocked, waiting for 475 * a tx buffer to become available. 476 * 477 * If we already have blocking senders, this function merely increases 478 * the "sleepers" reference count, and exits. 479 * 480 * Otherwise, if this is the first sender to block, we also enable 481 * virtio's tx callbacks, so we'd be immediately notified when a tx 482 * buffer is consumed (we rely on virtio's tx callback in order 483 * to wake up sleeping senders as soon as a tx buffer is used by the 484 * remote processor). 485 */ 486 static void rpmsg_upref_sleepers(struct virtproc_info *vrp) 487 { 488 /* support multiple concurrent senders */ 489 mutex_lock(&vrp->tx_lock); 490 491 /* are we the first sleeping context waiting for tx buffers ? */ 492 if (atomic_inc_return(&vrp->sleepers) == 1) 493 /* enable "tx-complete" interrupts before dozing off */ 494 virtqueue_enable_cb(vrp->svq); 495 496 mutex_unlock(&vrp->tx_lock); 497 } 498 499 /** 500 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed 501 * @vrp: virtual remote processor state 502 * 503 * This function is called after a sender, that waited for a tx buffer 504 * to become available, is unblocked. 505 * 506 * If we still have blocking senders, this function merely decreases 507 * the "sleepers" reference count, and exits. 508 * 509 * Otherwise, if there are no more blocking senders, we also disable 510 * virtio's tx callbacks, to avoid the overhead incurred with handling 511 * those (now redundant) interrupts. 512 */ 513 static void rpmsg_downref_sleepers(struct virtproc_info *vrp) 514 { 515 /* support multiple concurrent senders */ 516 mutex_lock(&vrp->tx_lock); 517 518 /* are we the last sleeping context waiting for tx buffers ? */ 519 if (atomic_dec_and_test(&vrp->sleepers)) 520 /* disable "tx-complete" interrupts */ 521 virtqueue_disable_cb(vrp->svq); 522 523 mutex_unlock(&vrp->tx_lock); 524 } 525 526 /** 527 * rpmsg_send_offchannel_raw() - send a message across to the remote processor 528 * @rpdev: the rpmsg channel 529 * @src: source address 530 * @dst: destination address 531 * @data: payload of message 532 * @len: length of payload 533 * @wait: indicates whether caller should block in case no TX buffers available 534 * 535 * This function is the base implementation for all of the rpmsg sending API. 536 * 537 * It will send @data of length @len to @dst, and say it's from @src. The 538 * message will be sent to the remote processor which the @rpdev channel 539 * belongs to. 540 * 541 * The message is sent using one of the TX buffers that are available for 542 * communication with this remote processor. 543 * 544 * If @wait is true, the caller will be blocked until either a TX buffer is 545 * available, or 15 seconds elapses (we don't want callers to 546 * sleep indefinitely due to misbehaving remote processors), and in that 547 * case -ERESTARTSYS is returned. The number '15' itself was picked 548 * arbitrarily; there's little point in asking drivers to provide a timeout 549 * value themselves. 550 * 551 * Otherwise, if @wait is false, and there are no TX buffers available, 552 * the function will immediately fail, and -ENOMEM will be returned. 553 * 554 * Normally drivers shouldn't use this function directly; instead, drivers 555 * should use the appropriate rpmsg_{try}send{to, _offchannel} API 556 * (see include/linux/rpmsg.h). 557 * 558 * Returns 0 on success and an appropriate error value on failure. 559 */ 560 static int rpmsg_send_offchannel_raw(struct rpmsg_device *rpdev, 561 u32 src, u32 dst, 562 void *data, int len, bool wait) 563 { 564 struct virtio_rpmsg_channel *vch = to_virtio_rpmsg_channel(rpdev); 565 struct virtproc_info *vrp = vch->vrp; 566 struct device *dev = &rpdev->dev; 567 struct scatterlist sg; 568 struct rpmsg_hdr *msg; 569 int err; 570 571 /* bcasting isn't allowed */ 572 if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) { 573 dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst); 574 return -EINVAL; 575 } 576 577 /* 578 * We currently use fixed-sized buffers, and therefore the payload 579 * length is limited. 580 * 581 * One of the possible improvements here is either to support 582 * user-provided buffers (and then we can also support zero-copy 583 * messaging), or to improve the buffer allocator, to support 584 * variable-length buffer sizes. 585 */ 586 if (len > vrp->buf_size - sizeof(struct rpmsg_hdr)) { 587 dev_err(dev, "message is too big (%d)\n", len); 588 return -EMSGSIZE; 589 } 590 591 /* grab a buffer */ 592 msg = get_a_tx_buf(vrp); 593 if (!msg && !wait) 594 return -ENOMEM; 595 596 /* no free buffer ? wait for one (but bail after 15 seconds) */ 597 while (!msg) { 598 /* enable "tx-complete" interrupts, if not already enabled */ 599 rpmsg_upref_sleepers(vrp); 600 601 /* 602 * sleep until a free buffer is available or 15 secs elapse. 603 * the timeout period is not configurable because there's 604 * little point in asking drivers to specify that. 605 * if later this happens to be required, it'd be easy to add. 606 */ 607 err = wait_event_interruptible_timeout(vrp->sendq, 608 (msg = get_a_tx_buf(vrp)), 609 msecs_to_jiffies(15000)); 610 611 /* disable "tx-complete" interrupts if we're the last sleeper */ 612 rpmsg_downref_sleepers(vrp); 613 614 /* timeout ? */ 615 if (!err) { 616 dev_err(dev, "timeout waiting for a tx buffer\n"); 617 return -ERESTARTSYS; 618 } 619 } 620 621 msg->len = cpu_to_virtio16(vrp->vdev, len); 622 msg->flags = 0; 623 msg->src = cpu_to_virtio32(vrp->vdev, src); 624 msg->dst = cpu_to_virtio32(vrp->vdev, dst); 625 msg->reserved = 0; 626 memcpy(msg->data, data, len); 627 628 dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n", 629 src, dst, len, msg->flags, msg->reserved); 630 #if defined(CONFIG_DYNAMIC_DEBUG) 631 dynamic_hex_dump("rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1, 632 msg, sizeof(*msg) + len, true); 633 #endif 634 635 rpmsg_sg_init(&sg, msg, sizeof(*msg) + len); 636 637 mutex_lock(&vrp->tx_lock); 638 639 /* add message to the remote processor's virtqueue */ 640 err = virtqueue_add_outbuf(vrp->svq, &sg, 1, msg, GFP_KERNEL); 641 if (err) { 642 /* 643 * need to reclaim the buffer here, otherwise it's lost 644 * (memory won't leak, but rpmsg won't use it again for TX). 645 * this will wait for a buffer management overhaul. 646 */ 647 dev_err(dev, "virtqueue_add_outbuf failed: %d\n", err); 648 goto out; 649 } 650 651 /* tell the remote processor it has a pending message to read */ 652 virtqueue_kick(vrp->svq); 653 out: 654 mutex_unlock(&vrp->tx_lock); 655 return err; 656 } 657 658 static int virtio_rpmsg_send(struct rpmsg_endpoint *ept, void *data, int len) 659 { 660 struct rpmsg_device *rpdev = ept->rpdev; 661 u32 src = ept->addr, dst = rpdev->dst; 662 663 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); 664 } 665 666 static int virtio_rpmsg_sendto(struct rpmsg_endpoint *ept, void *data, int len, 667 u32 dst) 668 { 669 struct rpmsg_device *rpdev = ept->rpdev; 670 u32 src = ept->addr; 671 672 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); 673 } 674 675 static int virtio_rpmsg_send_offchannel(struct rpmsg_endpoint *ept, u32 src, 676 u32 dst, void *data, int len) 677 { 678 struct rpmsg_device *rpdev = ept->rpdev; 679 680 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, true); 681 } 682 683 static int virtio_rpmsg_trysend(struct rpmsg_endpoint *ept, void *data, int len) 684 { 685 struct rpmsg_device *rpdev = ept->rpdev; 686 u32 src = ept->addr, dst = rpdev->dst; 687 688 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); 689 } 690 691 static int virtio_rpmsg_trysendto(struct rpmsg_endpoint *ept, void *data, 692 int len, u32 dst) 693 { 694 struct rpmsg_device *rpdev = ept->rpdev; 695 u32 src = ept->addr; 696 697 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); 698 } 699 700 static int virtio_rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, u32 src, 701 u32 dst, void *data, int len) 702 { 703 struct rpmsg_device *rpdev = ept->rpdev; 704 705 return rpmsg_send_offchannel_raw(rpdev, src, dst, data, len, false); 706 } 707 708 static int rpmsg_recv_single(struct virtproc_info *vrp, struct device *dev, 709 struct rpmsg_hdr *msg, unsigned int len) 710 { 711 struct rpmsg_endpoint *ept; 712 struct scatterlist sg; 713 unsigned int msg_len = virtio16_to_cpu(vrp->vdev, msg->len); 714 int err; 715 716 dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n", 717 virtio32_to_cpu(vrp->vdev, msg->src), 718 virtio32_to_cpu(vrp->vdev, msg->dst), msg_len, 719 virtio16_to_cpu(vrp->vdev, msg->flags), 720 virtio32_to_cpu(vrp->vdev, msg->reserved)); 721 #if defined(CONFIG_DYNAMIC_DEBUG) 722 dynamic_hex_dump("rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1, 723 msg, sizeof(*msg) + msg_len, true); 724 #endif 725 726 /* 727 * We currently use fixed-sized buffers, so trivially sanitize 728 * the reported payload length. 729 */ 730 if (len > vrp->buf_size || 731 msg_len > (len - sizeof(struct rpmsg_hdr))) { 732 dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg_len); 733 return -EINVAL; 734 } 735 736 /* use the dst addr to fetch the callback of the appropriate user */ 737 mutex_lock(&vrp->endpoints_lock); 738 739 ept = idr_find(&vrp->endpoints, virtio32_to_cpu(vrp->vdev, msg->dst)); 740 741 /* let's make sure no one deallocates ept while we use it */ 742 if (ept) 743 kref_get(&ept->refcount); 744 745 mutex_unlock(&vrp->endpoints_lock); 746 747 if (ept) { 748 /* make sure ept->cb doesn't go away while we use it */ 749 mutex_lock(&ept->cb_lock); 750 751 if (ept->cb) 752 ept->cb(ept->rpdev, msg->data, msg_len, ept->priv, 753 virtio32_to_cpu(vrp->vdev, msg->src)); 754 755 mutex_unlock(&ept->cb_lock); 756 757 /* farewell, ept, we don't need you anymore */ 758 kref_put(&ept->refcount, __ept_release); 759 } else 760 dev_warn(dev, "msg received with no recipient\n"); 761 762 /* publish the real size of the buffer */ 763 rpmsg_sg_init(&sg, msg, vrp->buf_size); 764 765 /* add the buffer back to the remote processor's virtqueue */ 766 err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, msg, GFP_KERNEL); 767 if (err < 0) { 768 dev_err(dev, "failed to add a virtqueue buffer: %d\n", err); 769 return err; 770 } 771 772 return 0; 773 } 774 775 /* called when an rx buffer is used, and it's time to digest a message */ 776 static void rpmsg_recv_done(struct virtqueue *rvq) 777 { 778 struct virtproc_info *vrp = rvq->vdev->priv; 779 struct device *dev = &rvq->vdev->dev; 780 struct rpmsg_hdr *msg; 781 unsigned int len, msgs_received = 0; 782 int err; 783 784 msg = virtqueue_get_buf(rvq, &len); 785 if (!msg) { 786 dev_err(dev, "uhm, incoming signal, but no used buffer ?\n"); 787 return; 788 } 789 790 while (msg) { 791 err = rpmsg_recv_single(vrp, dev, msg, len); 792 if (err) 793 break; 794 795 msgs_received++; 796 797 msg = virtqueue_get_buf(rvq, &len); 798 } 799 800 dev_dbg(dev, "Received %u messages\n", msgs_received); 801 802 /* tell the remote processor we added another available rx buffer */ 803 if (msgs_received) 804 virtqueue_kick(vrp->rvq); 805 } 806 807 /* 808 * This is invoked whenever the remote processor completed processing 809 * a TX msg we just sent it, and the buffer is put back to the used ring. 810 * 811 * Normally, though, we suppress this "tx complete" interrupt in order to 812 * avoid the incurred overhead. 813 */ 814 static void rpmsg_xmit_done(struct virtqueue *svq) 815 { 816 struct virtproc_info *vrp = svq->vdev->priv; 817 818 dev_dbg(&svq->vdev->dev, "%s\n", __func__); 819 820 /* wake up potential senders that are waiting for a tx buffer */ 821 wake_up_interruptible(&vrp->sendq); 822 } 823 824 /* invoked when a name service announcement arrives */ 825 static int rpmsg_ns_cb(struct rpmsg_device *rpdev, void *data, int len, 826 void *priv, u32 src) 827 { 828 struct rpmsg_ns_msg *msg = data; 829 struct rpmsg_device *newch; 830 struct rpmsg_channel_info chinfo; 831 struct virtproc_info *vrp = priv; 832 struct device *dev = &vrp->vdev->dev; 833 int ret; 834 835 #if defined(CONFIG_DYNAMIC_DEBUG) 836 dynamic_hex_dump("NS announcement: ", DUMP_PREFIX_NONE, 16, 1, 837 data, len, true); 838 #endif 839 840 if (len != sizeof(*msg)) { 841 dev_err(dev, "malformed ns msg (%d)\n", len); 842 return -EINVAL; 843 } 844 845 /* 846 * the name service ept does _not_ belong to a real rpmsg channel, 847 * and is handled by the rpmsg bus itself. 848 * for sanity reasons, make sure a valid rpdev has _not_ sneaked 849 * in somehow. 850 */ 851 if (rpdev) { 852 dev_err(dev, "anomaly: ns ept has an rpdev handle\n"); 853 return -EINVAL; 854 } 855 856 /* don't trust the remote processor for null terminating the name */ 857 msg->name[RPMSG_NAME_SIZE - 1] = '\0'; 858 859 strncpy(chinfo.name, msg->name, sizeof(chinfo.name)); 860 chinfo.src = RPMSG_ADDR_ANY; 861 chinfo.dst = virtio32_to_cpu(vrp->vdev, msg->addr); 862 863 dev_info(dev, "%sing channel %s addr 0x%x\n", 864 virtio32_to_cpu(vrp->vdev, msg->flags) & RPMSG_NS_DESTROY ? 865 "destroy" : "creat", msg->name, chinfo.dst); 866 867 if (virtio32_to_cpu(vrp->vdev, msg->flags) & RPMSG_NS_DESTROY) { 868 ret = rpmsg_unregister_device(&vrp->vdev->dev, &chinfo); 869 if (ret) 870 dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret); 871 } else { 872 newch = rpmsg_create_channel(vrp, &chinfo); 873 if (!newch) 874 dev_err(dev, "rpmsg_create_channel failed\n"); 875 } 876 877 return 0; 878 } 879 880 static int rpmsg_probe(struct virtio_device *vdev) 881 { 882 vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done }; 883 static const char * const names[] = { "input", "output" }; 884 struct virtqueue *vqs[2]; 885 struct virtproc_info *vrp; 886 void *bufs_va; 887 int err = 0, i; 888 size_t total_buf_space; 889 bool notify; 890 891 vrp = kzalloc(sizeof(*vrp), GFP_KERNEL); 892 if (!vrp) 893 return -ENOMEM; 894 895 vrp->vdev = vdev; 896 897 idr_init(&vrp->endpoints); 898 mutex_init(&vrp->endpoints_lock); 899 mutex_init(&vrp->tx_lock); 900 init_waitqueue_head(&vrp->sendq); 901 902 /* We expect two virtqueues, rx and tx (and in this order) */ 903 err = virtio_find_vqs(vdev, 2, vqs, vq_cbs, names, NULL); 904 if (err) 905 goto free_vrp; 906 907 vrp->rvq = vqs[0]; 908 vrp->svq = vqs[1]; 909 910 /* we expect symmetric tx/rx vrings */ 911 WARN_ON(virtqueue_get_vring_size(vrp->rvq) != 912 virtqueue_get_vring_size(vrp->svq)); 913 914 /* we need less buffers if vrings are small */ 915 if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2) 916 vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2; 917 else 918 vrp->num_bufs = MAX_RPMSG_NUM_BUFS; 919 920 vrp->buf_size = MAX_RPMSG_BUF_SIZE; 921 922 total_buf_space = vrp->num_bufs * vrp->buf_size; 923 924 /* allocate coherent memory for the buffers */ 925 bufs_va = dma_alloc_coherent(vdev->dev.parent, 926 total_buf_space, &vrp->bufs_dma, 927 GFP_KERNEL); 928 if (!bufs_va) { 929 err = -ENOMEM; 930 goto vqs_del; 931 } 932 933 dev_dbg(&vdev->dev, "buffers: va %pK, dma %pad\n", 934 bufs_va, &vrp->bufs_dma); 935 936 /* half of the buffers is dedicated for RX */ 937 vrp->rbufs = bufs_va; 938 939 /* and half is dedicated for TX */ 940 vrp->sbufs = bufs_va + total_buf_space / 2; 941 942 /* set up the receive buffers */ 943 for (i = 0; i < vrp->num_bufs / 2; i++) { 944 struct scatterlist sg; 945 void *cpu_addr = vrp->rbufs + i * vrp->buf_size; 946 947 rpmsg_sg_init(&sg, cpu_addr, vrp->buf_size); 948 949 err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr, 950 GFP_KERNEL); 951 WARN_ON(err); /* sanity check; this can't really happen */ 952 } 953 954 /* suppress "tx-complete" interrupts */ 955 virtqueue_disable_cb(vrp->svq); 956 957 vdev->priv = vrp; 958 959 /* if supported by the remote processor, enable the name service */ 960 if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) { 961 /* a dedicated endpoint handles the name service msgs */ 962 vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb, 963 vrp, RPMSG_NS_ADDR); 964 if (!vrp->ns_ept) { 965 dev_err(&vdev->dev, "failed to create the ns ept\n"); 966 err = -ENOMEM; 967 goto free_coherent; 968 } 969 } 970 971 /* 972 * Prepare to kick but don't notify yet - we can't do this before 973 * device is ready. 974 */ 975 notify = virtqueue_kick_prepare(vrp->rvq); 976 977 /* From this point on, we can notify and get callbacks. */ 978 virtio_device_ready(vdev); 979 980 /* tell the remote processor it can start sending messages */ 981 /* 982 * this might be concurrent with callbacks, but we are only 983 * doing notify, not a full kick here, so that's ok. 984 */ 985 if (notify) 986 virtqueue_notify(vrp->rvq); 987 988 dev_info(&vdev->dev, "rpmsg host is online\n"); 989 990 return 0; 991 992 free_coherent: 993 dma_free_coherent(vdev->dev.parent, total_buf_space, 994 bufs_va, vrp->bufs_dma); 995 vqs_del: 996 vdev->config->del_vqs(vrp->vdev); 997 free_vrp: 998 kfree(vrp); 999 return err; 1000 } 1001 1002 static int rpmsg_remove_device(struct device *dev, void *data) 1003 { 1004 device_unregister(dev); 1005 1006 return 0; 1007 } 1008 1009 static void rpmsg_remove(struct virtio_device *vdev) 1010 { 1011 struct virtproc_info *vrp = vdev->priv; 1012 size_t total_buf_space = vrp->num_bufs * vrp->buf_size; 1013 int ret; 1014 1015 vdev->config->reset(vdev); 1016 1017 ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device); 1018 if (ret) 1019 dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret); 1020 1021 if (vrp->ns_ept) 1022 __rpmsg_destroy_ept(vrp, vrp->ns_ept); 1023 1024 idr_destroy(&vrp->endpoints); 1025 1026 vdev->config->del_vqs(vrp->vdev); 1027 1028 dma_free_coherent(vdev->dev.parent, total_buf_space, 1029 vrp->rbufs, vrp->bufs_dma); 1030 1031 kfree(vrp); 1032 } 1033 1034 static struct virtio_device_id id_table[] = { 1035 { VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID }, 1036 { 0 }, 1037 }; 1038 1039 static unsigned int features[] = { 1040 VIRTIO_RPMSG_F_NS, 1041 }; 1042 1043 static struct virtio_driver virtio_ipc_driver = { 1044 .feature_table = features, 1045 .feature_table_size = ARRAY_SIZE(features), 1046 .driver.name = KBUILD_MODNAME, 1047 .driver.owner = THIS_MODULE, 1048 .id_table = id_table, 1049 .probe = rpmsg_probe, 1050 .remove = rpmsg_remove, 1051 }; 1052 1053 static int __init rpmsg_init(void) 1054 { 1055 int ret; 1056 1057 ret = register_virtio_driver(&virtio_ipc_driver); 1058 if (ret) 1059 pr_err("failed to register virtio driver: %d\n", ret); 1060 1061 return ret; 1062 } 1063 subsys_initcall(rpmsg_init); 1064 1065 static void __exit rpmsg_fini(void) 1066 { 1067 unregister_virtio_driver(&virtio_ipc_driver); 1068 } 1069 module_exit(rpmsg_fini); 1070 1071 MODULE_DEVICE_TABLE(virtio, id_table); 1072 MODULE_DESCRIPTION("Virtio-based remote processor messaging bus"); 1073 MODULE_LICENSE("GPL v2"); 1074