xref: /linux/drivers/rpmsg/virtio_rpmsg_bus.c (revision a138c883193a66c3aaee554c8f976f62469c66a7)
1 /*
2  * Virtio-based remote processor messaging bus
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  *
10  * This software is licensed under the terms of the GNU General Public
11  * License version 2, as published by the Free Software Foundation, and
12  * may be copied, distributed, and modified under those terms.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #define pr_fmt(fmt) "%s: " fmt, __func__
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/virtio.h>
25 #include <linux/virtio_ids.h>
26 #include <linux/virtio_config.h>
27 #include <linux/scatterlist.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/slab.h>
30 #include <linux/idr.h>
31 #include <linux/jiffies.h>
32 #include <linux/sched.h>
33 #include <linux/wait.h>
34 #include <linux/rpmsg.h>
35 #include <linux/mutex.h>
36 
37 /**
38  * struct virtproc_info - virtual remote processor state
39  * @vdev:	the virtio device
40  * @rvq:	rx virtqueue
41  * @svq:	tx virtqueue
42  * @rbufs:	kernel address of rx buffers
43  * @sbufs:	kernel address of tx buffers
44  * @num_bufs:	total number of buffers for rx and tx
45  * @last_sbuf:	index of last tx buffer used
46  * @bufs_dma:	dma base addr of the buffers
47  * @tx_lock:	protects svq, sbufs and sleepers, to allow concurrent senders.
48  *		sending a message might require waking up a dozing remote
49  *		processor, which involves sleeping, hence the mutex.
50  * @endpoints:	idr of local endpoints, allows fast retrieval
51  * @endpoints_lock: lock of the endpoints set
52  * @sendq:	wait queue of sending contexts waiting for a tx buffers
53  * @sleepers:	number of senders that are waiting for a tx buffer
54  * @ns_ept:	the bus's name service endpoint
55  *
56  * This structure stores the rpmsg state of a given virtio remote processor
57  * device (there might be several virtio proc devices for each physical
58  * remote processor).
59  */
60 struct virtproc_info {
61 	struct virtio_device *vdev;
62 	struct virtqueue *rvq, *svq;
63 	void *rbufs, *sbufs;
64 	unsigned int num_bufs;
65 	int last_sbuf;
66 	dma_addr_t bufs_dma;
67 	struct mutex tx_lock;
68 	struct idr endpoints;
69 	struct mutex endpoints_lock;
70 	wait_queue_head_t sendq;
71 	atomic_t sleepers;
72 	struct rpmsg_endpoint *ns_ept;
73 };
74 
75 /**
76  * struct rpmsg_channel_info - internal channel info representation
77  * @name: name of service
78  * @src: local address
79  * @dst: destination address
80  */
81 struct rpmsg_channel_info {
82 	char name[RPMSG_NAME_SIZE];
83 	u32 src;
84 	u32 dst;
85 };
86 
87 #define to_rpmsg_channel(d) container_of(d, struct rpmsg_channel, dev)
88 #define to_rpmsg_driver(d) container_of(d, struct rpmsg_driver, drv)
89 
90 /*
91  * We're allocating buffers of 512 bytes each for communications. The
92  * number of buffers will be computed from the number of buffers supported
93  * by the vring, upto a maximum of 512 buffers (256 in each direction).
94  *
95  * Each buffer will have 16 bytes for the msg header and 496 bytes for
96  * the payload.
97  *
98  * This will utilize a maximum total space of 256KB for the buffers.
99  *
100  * We might also want to add support for user-provided buffers in time.
101  * This will allow bigger buffer size flexibility, and can also be used
102  * to achieve zero-copy messaging.
103  *
104  * Note that these numbers are purely a decision of this driver - we
105  * can change this without changing anything in the firmware of the remote
106  * processor.
107  */
108 #define MAX_RPMSG_NUM_BUFS	(512)
109 #define RPMSG_BUF_SIZE		(512)
110 
111 /*
112  * Local addresses are dynamically allocated on-demand.
113  * We do not dynamically assign addresses from the low 1024 range,
114  * in order to reserve that address range for predefined services.
115  */
116 #define RPMSG_RESERVED_ADDRESSES	(1024)
117 
118 /* Address 53 is reserved for advertising remote services */
119 #define RPMSG_NS_ADDR			(53)
120 
121 /* sysfs show configuration fields */
122 #define rpmsg_show_attr(field, path, format_string)			\
123 static ssize_t								\
124 field##_show(struct device *dev,					\
125 			struct device_attribute *attr, char *buf)	\
126 {									\
127 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);		\
128 									\
129 	return sprintf(buf, format_string, rpdev->path);		\
130 }
131 
132 /* for more info, see Documentation/ABI/testing/sysfs-bus-rpmsg */
133 rpmsg_show_attr(name, id.name, "%s\n");
134 rpmsg_show_attr(src, src, "0x%x\n");
135 rpmsg_show_attr(dst, dst, "0x%x\n");
136 rpmsg_show_attr(announce, announce ? "true" : "false", "%s\n");
137 
138 /*
139  * Unique (and free running) index for rpmsg devices.
140  *
141  * Yeah, we're not recycling those numbers (yet?). will be easy
142  * to change if/when we want to.
143  */
144 static unsigned int rpmsg_dev_index;
145 
146 static ssize_t modalias_show(struct device *dev,
147 			     struct device_attribute *attr, char *buf)
148 {
149 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
150 
151 	return sprintf(buf, RPMSG_DEVICE_MODALIAS_FMT "\n", rpdev->id.name);
152 }
153 
154 static struct device_attribute rpmsg_dev_attrs[] = {
155 	__ATTR_RO(name),
156 	__ATTR_RO(modalias),
157 	__ATTR_RO(dst),
158 	__ATTR_RO(src),
159 	__ATTR_RO(announce),
160 	__ATTR_NULL
161 };
162 
163 /* rpmsg devices and drivers are matched using the service name */
164 static inline int rpmsg_id_match(const struct rpmsg_channel *rpdev,
165 				 const struct rpmsg_device_id *id)
166 {
167 	return strncmp(id->name, rpdev->id.name, RPMSG_NAME_SIZE) == 0;
168 }
169 
170 /* match rpmsg channel and rpmsg driver */
171 static int rpmsg_dev_match(struct device *dev, struct device_driver *drv)
172 {
173 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
174 	struct rpmsg_driver *rpdrv = to_rpmsg_driver(drv);
175 	const struct rpmsg_device_id *ids = rpdrv->id_table;
176 	unsigned int i;
177 
178 	for (i = 0; ids[i].name[0]; i++)
179 		if (rpmsg_id_match(rpdev, &ids[i]))
180 			return 1;
181 
182 	return 0;
183 }
184 
185 static int rpmsg_uevent(struct device *dev, struct kobj_uevent_env *env)
186 {
187 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
188 
189 	return add_uevent_var(env, "MODALIAS=" RPMSG_DEVICE_MODALIAS_FMT,
190 					rpdev->id.name);
191 }
192 
193 /**
194  * __ept_release() - deallocate an rpmsg endpoint
195  * @kref: the ept's reference count
196  *
197  * This function deallocates an ept, and is invoked when its @kref refcount
198  * drops to zero.
199  *
200  * Never invoke this function directly!
201  */
202 static void __ept_release(struct kref *kref)
203 {
204 	struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint,
205 						  refcount);
206 	/*
207 	 * At this point no one holds a reference to ept anymore,
208 	 * so we can directly free it
209 	 */
210 	kfree(ept);
211 }
212 
213 /* for more info, see below documentation of rpmsg_create_ept() */
214 static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp,
215 						 struct rpmsg_channel *rpdev,
216 						 rpmsg_rx_cb_t cb,
217 						 void *priv, u32 addr)
218 {
219 	int id_min, id_max, id;
220 	struct rpmsg_endpoint *ept;
221 	struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev;
222 
223 	ept = kzalloc(sizeof(*ept), GFP_KERNEL);
224 	if (!ept)
225 		return NULL;
226 
227 	kref_init(&ept->refcount);
228 	mutex_init(&ept->cb_lock);
229 
230 	ept->rpdev = rpdev;
231 	ept->cb = cb;
232 	ept->priv = priv;
233 
234 	/* do we need to allocate a local address ? */
235 	if (addr == RPMSG_ADDR_ANY) {
236 		id_min = RPMSG_RESERVED_ADDRESSES;
237 		id_max = 0;
238 	} else {
239 		id_min = addr;
240 		id_max = addr + 1;
241 	}
242 
243 	mutex_lock(&vrp->endpoints_lock);
244 
245 	/* bind the endpoint to an rpmsg address (and allocate one if needed) */
246 	id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL);
247 	if (id < 0) {
248 		dev_err(dev, "idr_alloc failed: %d\n", id);
249 		goto free_ept;
250 	}
251 	ept->addr = id;
252 
253 	mutex_unlock(&vrp->endpoints_lock);
254 
255 	return ept;
256 
257 free_ept:
258 	mutex_unlock(&vrp->endpoints_lock);
259 	kref_put(&ept->refcount, __ept_release);
260 	return NULL;
261 }
262 
263 /**
264  * rpmsg_create_ept() - create a new rpmsg_endpoint
265  * @rpdev: rpmsg channel device
266  * @cb: rx callback handler
267  * @priv: private data for the driver's use
268  * @addr: local rpmsg address to bind with @cb
269  *
270  * Every rpmsg address in the system is bound to an rx callback (so when
271  * inbound messages arrive, they are dispatched by the rpmsg bus using the
272  * appropriate callback handler) by means of an rpmsg_endpoint struct.
273  *
274  * This function allows drivers to create such an endpoint, and by that,
275  * bind a callback, and possibly some private data too, to an rpmsg address
276  * (either one that is known in advance, or one that will be dynamically
277  * assigned for them).
278  *
279  * Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint
280  * is already created for them when they are probed by the rpmsg bus
281  * (using the rx callback provided when they registered to the rpmsg bus).
282  *
283  * So things should just work for simple drivers: they already have an
284  * endpoint, their rx callback is bound to their rpmsg address, and when
285  * relevant inbound messages arrive (i.e. messages which their dst address
286  * equals to the src address of their rpmsg channel), the driver's handler
287  * is invoked to process it.
288  *
289  * That said, more complicated drivers might do need to allocate
290  * additional rpmsg addresses, and bind them to different rx callbacks.
291  * To accomplish that, those drivers need to call this function.
292  *
293  * Drivers should provide their @rpdev channel (so the new endpoint would belong
294  * to the same remote processor their channel belongs to), an rx callback
295  * function, an optional private data (which is provided back when the
296  * rx callback is invoked), and an address they want to bind with the
297  * callback. If @addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will
298  * dynamically assign them an available rpmsg address (drivers should have
299  * a very good reason why not to always use RPMSG_ADDR_ANY here).
300  *
301  * Returns a pointer to the endpoint on success, or NULL on error.
302  */
303 struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev,
304 					rpmsg_rx_cb_t cb, void *priv, u32 addr)
305 {
306 	return __rpmsg_create_ept(rpdev->vrp, rpdev, cb, priv, addr);
307 }
308 EXPORT_SYMBOL(rpmsg_create_ept);
309 
310 /**
311  * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
312  * @vrp: virtproc which owns this ept
313  * @ept: endpoing to destroy
314  *
315  * An internal function which destroy an ept without assuming it is
316  * bound to an rpmsg channel. This is needed for handling the internal
317  * name service endpoint, which isn't bound to an rpmsg channel.
318  * See also __rpmsg_create_ept().
319  */
320 static void
321 __rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept)
322 {
323 	/* make sure new inbound messages can't find this ept anymore */
324 	mutex_lock(&vrp->endpoints_lock);
325 	idr_remove(&vrp->endpoints, ept->addr);
326 	mutex_unlock(&vrp->endpoints_lock);
327 
328 	/* make sure in-flight inbound messages won't invoke cb anymore */
329 	mutex_lock(&ept->cb_lock);
330 	ept->cb = NULL;
331 	mutex_unlock(&ept->cb_lock);
332 
333 	kref_put(&ept->refcount, __ept_release);
334 }
335 
336 /**
337  * rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
338  * @ept: endpoing to destroy
339  *
340  * Should be used by drivers to destroy an rpmsg endpoint previously
341  * created with rpmsg_create_ept().
342  */
343 void rpmsg_destroy_ept(struct rpmsg_endpoint *ept)
344 {
345 	__rpmsg_destroy_ept(ept->rpdev->vrp, ept);
346 }
347 EXPORT_SYMBOL(rpmsg_destroy_ept);
348 
349 /*
350  * when an rpmsg driver is probed with a channel, we seamlessly create
351  * it an endpoint, binding its rx callback to a unique local rpmsg
352  * address.
353  *
354  * if we need to, we also announce about this channel to the remote
355  * processor (needed in case the driver is exposing an rpmsg service).
356  */
357 static int rpmsg_dev_probe(struct device *dev)
358 {
359 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
360 	struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
361 	struct virtproc_info *vrp = rpdev->vrp;
362 	struct rpmsg_endpoint *ept;
363 	int err;
364 
365 	ept = rpmsg_create_ept(rpdev, rpdrv->callback, NULL, rpdev->src);
366 	if (!ept) {
367 		dev_err(dev, "failed to create endpoint\n");
368 		err = -ENOMEM;
369 		goto out;
370 	}
371 
372 	rpdev->ept = ept;
373 	rpdev->src = ept->addr;
374 
375 	err = rpdrv->probe(rpdev);
376 	if (err) {
377 		dev_err(dev, "%s: failed: %d\n", __func__, err);
378 		rpmsg_destroy_ept(ept);
379 		goto out;
380 	}
381 
382 	/* need to tell remote processor's name service about this channel ? */
383 	if (rpdev->announce &&
384 	    virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
385 		struct rpmsg_ns_msg nsm;
386 
387 		strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
388 		nsm.addr = rpdev->src;
389 		nsm.flags = RPMSG_NS_CREATE;
390 
391 		err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
392 		if (err)
393 			dev_err(dev, "failed to announce service %d\n", err);
394 	}
395 
396 out:
397 	return err;
398 }
399 
400 static int rpmsg_dev_remove(struct device *dev)
401 {
402 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
403 	struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
404 	struct virtproc_info *vrp = rpdev->vrp;
405 	int err = 0;
406 
407 	/* tell remote processor's name service we're removing this channel */
408 	if (rpdev->announce &&
409 	    virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
410 		struct rpmsg_ns_msg nsm;
411 
412 		strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
413 		nsm.addr = rpdev->src;
414 		nsm.flags = RPMSG_NS_DESTROY;
415 
416 		err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
417 		if (err)
418 			dev_err(dev, "failed to announce service %d\n", err);
419 	}
420 
421 	rpdrv->remove(rpdev);
422 
423 	rpmsg_destroy_ept(rpdev->ept);
424 
425 	return err;
426 }
427 
428 static struct bus_type rpmsg_bus = {
429 	.name		= "rpmsg",
430 	.match		= rpmsg_dev_match,
431 	.dev_attrs	= rpmsg_dev_attrs,
432 	.uevent		= rpmsg_uevent,
433 	.probe		= rpmsg_dev_probe,
434 	.remove		= rpmsg_dev_remove,
435 };
436 
437 /**
438  * __register_rpmsg_driver() - register an rpmsg driver with the rpmsg bus
439  * @rpdrv: pointer to a struct rpmsg_driver
440  * @owner: owning module/driver
441  *
442  * Returns 0 on success, and an appropriate error value on failure.
443  */
444 int __register_rpmsg_driver(struct rpmsg_driver *rpdrv, struct module *owner)
445 {
446 	rpdrv->drv.bus = &rpmsg_bus;
447 	rpdrv->drv.owner = owner;
448 	return driver_register(&rpdrv->drv);
449 }
450 EXPORT_SYMBOL(__register_rpmsg_driver);
451 
452 /**
453  * unregister_rpmsg_driver() - unregister an rpmsg driver from the rpmsg bus
454  * @rpdrv: pointer to a struct rpmsg_driver
455  *
456  * Returns 0 on success, and an appropriate error value on failure.
457  */
458 void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv)
459 {
460 	driver_unregister(&rpdrv->drv);
461 }
462 EXPORT_SYMBOL(unregister_rpmsg_driver);
463 
464 static void rpmsg_release_device(struct device *dev)
465 {
466 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
467 
468 	kfree(rpdev);
469 }
470 
471 /*
472  * match an rpmsg channel with a channel info struct.
473  * this is used to make sure we're not creating rpmsg devices for channels
474  * that already exist.
475  */
476 static int rpmsg_channel_match(struct device *dev, void *data)
477 {
478 	struct rpmsg_channel_info *chinfo = data;
479 	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
480 
481 	if (chinfo->src != RPMSG_ADDR_ANY && chinfo->src != rpdev->src)
482 		return 0;
483 
484 	if (chinfo->dst != RPMSG_ADDR_ANY && chinfo->dst != rpdev->dst)
485 		return 0;
486 
487 	if (strncmp(chinfo->name, rpdev->id.name, RPMSG_NAME_SIZE))
488 		return 0;
489 
490 	/* found a match ! */
491 	return 1;
492 }
493 
494 /*
495  * create an rpmsg channel using its name and address info.
496  * this function will be used to create both static and dynamic
497  * channels.
498  */
499 static struct rpmsg_channel *rpmsg_create_channel(struct virtproc_info *vrp,
500 				struct rpmsg_channel_info *chinfo)
501 {
502 	struct rpmsg_channel *rpdev;
503 	struct device *tmp, *dev = &vrp->vdev->dev;
504 	int ret;
505 
506 	/* make sure a similar channel doesn't already exist */
507 	tmp = device_find_child(dev, chinfo, rpmsg_channel_match);
508 	if (tmp) {
509 		/* decrement the matched device's refcount back */
510 		put_device(tmp);
511 		dev_err(dev, "channel %s:%x:%x already exist\n",
512 				chinfo->name, chinfo->src, chinfo->dst);
513 		return NULL;
514 	}
515 
516 	rpdev = kzalloc(sizeof(*rpdev), GFP_KERNEL);
517 	if (!rpdev)
518 		return NULL;
519 
520 	rpdev->vrp = vrp;
521 	rpdev->src = chinfo->src;
522 	rpdev->dst = chinfo->dst;
523 
524 	/*
525 	 * rpmsg server channels has predefined local address (for now),
526 	 * and their existence needs to be announced remotely
527 	 */
528 	rpdev->announce = rpdev->src != RPMSG_ADDR_ANY;
529 
530 	strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE);
531 
532 	/* very simple device indexing plumbing which is enough for now */
533 	dev_set_name(&rpdev->dev, "rpmsg%d", rpmsg_dev_index++);
534 
535 	rpdev->dev.parent = &vrp->vdev->dev;
536 	rpdev->dev.bus = &rpmsg_bus;
537 	rpdev->dev.release = rpmsg_release_device;
538 
539 	ret = device_register(&rpdev->dev);
540 	if (ret) {
541 		dev_err(dev, "device_register failed: %d\n", ret);
542 		put_device(&rpdev->dev);
543 		return NULL;
544 	}
545 
546 	return rpdev;
547 }
548 
549 /*
550  * find an existing channel using its name + address properties,
551  * and destroy it
552  */
553 static int rpmsg_destroy_channel(struct virtproc_info *vrp,
554 				 struct rpmsg_channel_info *chinfo)
555 {
556 	struct virtio_device *vdev = vrp->vdev;
557 	struct device *dev;
558 
559 	dev = device_find_child(&vdev->dev, chinfo, rpmsg_channel_match);
560 	if (!dev)
561 		return -EINVAL;
562 
563 	device_unregister(dev);
564 
565 	put_device(dev);
566 
567 	return 0;
568 }
569 
570 /* super simple buffer "allocator" that is just enough for now */
571 static void *get_a_tx_buf(struct virtproc_info *vrp)
572 {
573 	unsigned int len;
574 	void *ret;
575 
576 	/* support multiple concurrent senders */
577 	mutex_lock(&vrp->tx_lock);
578 
579 	/*
580 	 * either pick the next unused tx buffer
581 	 * (half of our buffers are used for sending messages)
582 	 */
583 	if (vrp->last_sbuf < vrp->num_bufs / 2)
584 		ret = vrp->sbufs + RPMSG_BUF_SIZE * vrp->last_sbuf++;
585 	/* or recycle a used one */
586 	else
587 		ret = virtqueue_get_buf(vrp->svq, &len);
588 
589 	mutex_unlock(&vrp->tx_lock);
590 
591 	return ret;
592 }
593 
594 /**
595  * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed
596  * @vrp: virtual remote processor state
597  *
598  * This function is called before a sender is blocked, waiting for
599  * a tx buffer to become available.
600  *
601  * If we already have blocking senders, this function merely increases
602  * the "sleepers" reference count, and exits.
603  *
604  * Otherwise, if this is the first sender to block, we also enable
605  * virtio's tx callbacks, so we'd be immediately notified when a tx
606  * buffer is consumed (we rely on virtio's tx callback in order
607  * to wake up sleeping senders as soon as a tx buffer is used by the
608  * remote processor).
609  */
610 static void rpmsg_upref_sleepers(struct virtproc_info *vrp)
611 {
612 	/* support multiple concurrent senders */
613 	mutex_lock(&vrp->tx_lock);
614 
615 	/* are we the first sleeping context waiting for tx buffers ? */
616 	if (atomic_inc_return(&vrp->sleepers) == 1)
617 		/* enable "tx-complete" interrupts before dozing off */
618 		virtqueue_enable_cb(vrp->svq);
619 
620 	mutex_unlock(&vrp->tx_lock);
621 }
622 
623 /**
624  * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed
625  * @vrp: virtual remote processor state
626  *
627  * This function is called after a sender, that waited for a tx buffer
628  * to become available, is unblocked.
629  *
630  * If we still have blocking senders, this function merely decreases
631  * the "sleepers" reference count, and exits.
632  *
633  * Otherwise, if there are no more blocking senders, we also disable
634  * virtio's tx callbacks, to avoid the overhead incurred with handling
635  * those (now redundant) interrupts.
636  */
637 static void rpmsg_downref_sleepers(struct virtproc_info *vrp)
638 {
639 	/* support multiple concurrent senders */
640 	mutex_lock(&vrp->tx_lock);
641 
642 	/* are we the last sleeping context waiting for tx buffers ? */
643 	if (atomic_dec_and_test(&vrp->sleepers))
644 		/* disable "tx-complete" interrupts */
645 		virtqueue_disable_cb(vrp->svq);
646 
647 	mutex_unlock(&vrp->tx_lock);
648 }
649 
650 /**
651  * rpmsg_send_offchannel_raw() - send a message across to the remote processor
652  * @rpdev: the rpmsg channel
653  * @src: source address
654  * @dst: destination address
655  * @data: payload of message
656  * @len: length of payload
657  * @wait: indicates whether caller should block in case no TX buffers available
658  *
659  * This function is the base implementation for all of the rpmsg sending API.
660  *
661  * It will send @data of length @len to @dst, and say it's from @src. The
662  * message will be sent to the remote processor which the @rpdev channel
663  * belongs to.
664  *
665  * The message is sent using one of the TX buffers that are available for
666  * communication with this remote processor.
667  *
668  * If @wait is true, the caller will be blocked until either a TX buffer is
669  * available, or 15 seconds elapses (we don't want callers to
670  * sleep indefinitely due to misbehaving remote processors), and in that
671  * case -ERESTARTSYS is returned. The number '15' itself was picked
672  * arbitrarily; there's little point in asking drivers to provide a timeout
673  * value themselves.
674  *
675  * Otherwise, if @wait is false, and there are no TX buffers available,
676  * the function will immediately fail, and -ENOMEM will be returned.
677  *
678  * Normally drivers shouldn't use this function directly; instead, drivers
679  * should use the appropriate rpmsg_{try}send{to, _offchannel} API
680  * (see include/linux/rpmsg.h).
681  *
682  * Returns 0 on success and an appropriate error value on failure.
683  */
684 int rpmsg_send_offchannel_raw(struct rpmsg_channel *rpdev, u32 src, u32 dst,
685 			      void *data, int len, bool wait)
686 {
687 	struct virtproc_info *vrp = rpdev->vrp;
688 	struct device *dev = &rpdev->dev;
689 	struct scatterlist sg;
690 	struct rpmsg_hdr *msg;
691 	int err;
692 
693 	/* bcasting isn't allowed */
694 	if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) {
695 		dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst);
696 		return -EINVAL;
697 	}
698 
699 	/*
700 	 * We currently use fixed-sized buffers, and therefore the payload
701 	 * length is limited.
702 	 *
703 	 * One of the possible improvements here is either to support
704 	 * user-provided buffers (and then we can also support zero-copy
705 	 * messaging), or to improve the buffer allocator, to support
706 	 * variable-length buffer sizes.
707 	 */
708 	if (len > RPMSG_BUF_SIZE - sizeof(struct rpmsg_hdr)) {
709 		dev_err(dev, "message is too big (%d)\n", len);
710 		return -EMSGSIZE;
711 	}
712 
713 	/* grab a buffer */
714 	msg = get_a_tx_buf(vrp);
715 	if (!msg && !wait)
716 		return -ENOMEM;
717 
718 	/* no free buffer ? wait for one (but bail after 15 seconds) */
719 	while (!msg) {
720 		/* enable "tx-complete" interrupts, if not already enabled */
721 		rpmsg_upref_sleepers(vrp);
722 
723 		/*
724 		 * sleep until a free buffer is available or 15 secs elapse.
725 		 * the timeout period is not configurable because there's
726 		 * little point in asking drivers to specify that.
727 		 * if later this happens to be required, it'd be easy to add.
728 		 */
729 		err = wait_event_interruptible_timeout(vrp->sendq,
730 					(msg = get_a_tx_buf(vrp)),
731 					msecs_to_jiffies(15000));
732 
733 		/* disable "tx-complete" interrupts if we're the last sleeper */
734 		rpmsg_downref_sleepers(vrp);
735 
736 		/* timeout ? */
737 		if (!err) {
738 			dev_err(dev, "timeout waiting for a tx buffer\n");
739 			return -ERESTARTSYS;
740 		}
741 	}
742 
743 	msg->len = len;
744 	msg->flags = 0;
745 	msg->src = src;
746 	msg->dst = dst;
747 	msg->reserved = 0;
748 	memcpy(msg->data, data, len);
749 
750 	dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n",
751 		msg->src, msg->dst, msg->len, msg->flags, msg->reserved);
752 #if defined(CONFIG_DYNAMIC_DEBUG)
753 	dynamic_hex_dump("rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1,
754 			 msg, sizeof(*msg) + msg->len, true);
755 #endif
756 
757 	sg_init_one(&sg, msg, sizeof(*msg) + len);
758 
759 	mutex_lock(&vrp->tx_lock);
760 
761 	/* add message to the remote processor's virtqueue */
762 	err = virtqueue_add_outbuf(vrp->svq, &sg, 1, msg, GFP_KERNEL);
763 	if (err) {
764 		/*
765 		 * need to reclaim the buffer here, otherwise it's lost
766 		 * (memory won't leak, but rpmsg won't use it again for TX).
767 		 * this will wait for a buffer management overhaul.
768 		 */
769 		dev_err(dev, "virtqueue_add_outbuf failed: %d\n", err);
770 		goto out;
771 	}
772 
773 	/* tell the remote processor it has a pending message to read */
774 	virtqueue_kick(vrp->svq);
775 out:
776 	mutex_unlock(&vrp->tx_lock);
777 	return err;
778 }
779 EXPORT_SYMBOL(rpmsg_send_offchannel_raw);
780 
781 static int rpmsg_recv_single(struct virtproc_info *vrp, struct device *dev,
782 			     struct rpmsg_hdr *msg, unsigned int len)
783 {
784 	struct rpmsg_endpoint *ept;
785 	struct scatterlist sg;
786 	int err;
787 
788 	dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n",
789 		msg->src, msg->dst, msg->len, msg->flags, msg->reserved);
790 #if defined(CONFIG_DYNAMIC_DEBUG)
791 	dynamic_hex_dump("rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1,
792 			 msg, sizeof(*msg) + msg->len, true);
793 #endif
794 
795 	/*
796 	 * We currently use fixed-sized buffers, so trivially sanitize
797 	 * the reported payload length.
798 	 */
799 	if (len > RPMSG_BUF_SIZE ||
800 	    msg->len > (len - sizeof(struct rpmsg_hdr))) {
801 		dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg->len);
802 		return -EINVAL;
803 	}
804 
805 	/* use the dst addr to fetch the callback of the appropriate user */
806 	mutex_lock(&vrp->endpoints_lock);
807 
808 	ept = idr_find(&vrp->endpoints, msg->dst);
809 
810 	/* let's make sure no one deallocates ept while we use it */
811 	if (ept)
812 		kref_get(&ept->refcount);
813 
814 	mutex_unlock(&vrp->endpoints_lock);
815 
816 	if (ept) {
817 		/* make sure ept->cb doesn't go away while we use it */
818 		mutex_lock(&ept->cb_lock);
819 
820 		if (ept->cb)
821 			ept->cb(ept->rpdev, msg->data, msg->len, ept->priv,
822 				msg->src);
823 
824 		mutex_unlock(&ept->cb_lock);
825 
826 		/* farewell, ept, we don't need you anymore */
827 		kref_put(&ept->refcount, __ept_release);
828 	} else
829 		dev_warn(dev, "msg received with no recipient\n");
830 
831 	/* publish the real size of the buffer */
832 	sg_init_one(&sg, msg, RPMSG_BUF_SIZE);
833 
834 	/* add the buffer back to the remote processor's virtqueue */
835 	err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, msg, GFP_KERNEL);
836 	if (err < 0) {
837 		dev_err(dev, "failed to add a virtqueue buffer: %d\n", err);
838 		return err;
839 	}
840 
841 	return 0;
842 }
843 
844 /* called when an rx buffer is used, and it's time to digest a message */
845 static void rpmsg_recv_done(struct virtqueue *rvq)
846 {
847 	struct virtproc_info *vrp = rvq->vdev->priv;
848 	struct device *dev = &rvq->vdev->dev;
849 	struct rpmsg_hdr *msg;
850 	unsigned int len, msgs_received = 0;
851 	int err;
852 
853 	msg = virtqueue_get_buf(rvq, &len);
854 	if (!msg) {
855 		dev_err(dev, "uhm, incoming signal, but no used buffer ?\n");
856 		return;
857 	}
858 
859 	while (msg) {
860 		err = rpmsg_recv_single(vrp, dev, msg, len);
861 		if (err)
862 			break;
863 
864 		msgs_received++;
865 
866 		msg = virtqueue_get_buf(rvq, &len);
867 	}
868 
869 	dev_dbg(dev, "Received %u messages\n", msgs_received);
870 
871 	/* tell the remote processor we added another available rx buffer */
872 	if (msgs_received)
873 		virtqueue_kick(vrp->rvq);
874 }
875 
876 /*
877  * This is invoked whenever the remote processor completed processing
878  * a TX msg we just sent it, and the buffer is put back to the used ring.
879  *
880  * Normally, though, we suppress this "tx complete" interrupt in order to
881  * avoid the incurred overhead.
882  */
883 static void rpmsg_xmit_done(struct virtqueue *svq)
884 {
885 	struct virtproc_info *vrp = svq->vdev->priv;
886 
887 	dev_dbg(&svq->vdev->dev, "%s\n", __func__);
888 
889 	/* wake up potential senders that are waiting for a tx buffer */
890 	wake_up_interruptible(&vrp->sendq);
891 }
892 
893 /* invoked when a name service announcement arrives */
894 static void rpmsg_ns_cb(struct rpmsg_channel *rpdev, void *data, int len,
895 			void *priv, u32 src)
896 {
897 	struct rpmsg_ns_msg *msg = data;
898 	struct rpmsg_channel *newch;
899 	struct rpmsg_channel_info chinfo;
900 	struct virtproc_info *vrp = priv;
901 	struct device *dev = &vrp->vdev->dev;
902 	int ret;
903 
904 #if defined(CONFIG_DYNAMIC_DEBUG)
905 	dynamic_hex_dump("NS announcement: ", DUMP_PREFIX_NONE, 16, 1,
906 			 data, len, true);
907 #endif
908 
909 	if (len != sizeof(*msg)) {
910 		dev_err(dev, "malformed ns msg (%d)\n", len);
911 		return;
912 	}
913 
914 	/*
915 	 * the name service ept does _not_ belong to a real rpmsg channel,
916 	 * and is handled by the rpmsg bus itself.
917 	 * for sanity reasons, make sure a valid rpdev has _not_ sneaked
918 	 * in somehow.
919 	 */
920 	if (rpdev) {
921 		dev_err(dev, "anomaly: ns ept has an rpdev handle\n");
922 		return;
923 	}
924 
925 	/* don't trust the remote processor for null terminating the name */
926 	msg->name[RPMSG_NAME_SIZE - 1] = '\0';
927 
928 	dev_info(dev, "%sing channel %s addr 0x%x\n",
929 		 msg->flags & RPMSG_NS_DESTROY ? "destroy" : "creat",
930 		 msg->name, msg->addr);
931 
932 	strncpy(chinfo.name, msg->name, sizeof(chinfo.name));
933 	chinfo.src = RPMSG_ADDR_ANY;
934 	chinfo.dst = msg->addr;
935 
936 	if (msg->flags & RPMSG_NS_DESTROY) {
937 		ret = rpmsg_destroy_channel(vrp, &chinfo);
938 		if (ret)
939 			dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret);
940 	} else {
941 		newch = rpmsg_create_channel(vrp, &chinfo);
942 		if (!newch)
943 			dev_err(dev, "rpmsg_create_channel failed\n");
944 	}
945 }
946 
947 static int rpmsg_probe(struct virtio_device *vdev)
948 {
949 	vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done };
950 	static const char * const names[] = { "input", "output" };
951 	struct virtqueue *vqs[2];
952 	struct virtproc_info *vrp;
953 	void *bufs_va;
954 	int err = 0, i;
955 	size_t total_buf_space;
956 	bool notify;
957 
958 	vrp = kzalloc(sizeof(*vrp), GFP_KERNEL);
959 	if (!vrp)
960 		return -ENOMEM;
961 
962 	vrp->vdev = vdev;
963 
964 	idr_init(&vrp->endpoints);
965 	mutex_init(&vrp->endpoints_lock);
966 	mutex_init(&vrp->tx_lock);
967 	init_waitqueue_head(&vrp->sendq);
968 
969 	/* We expect two virtqueues, rx and tx (and in this order) */
970 	err = vdev->config->find_vqs(vdev, 2, vqs, vq_cbs, names);
971 	if (err)
972 		goto free_vrp;
973 
974 	vrp->rvq = vqs[0];
975 	vrp->svq = vqs[1];
976 
977 	/* we expect symmetric tx/rx vrings */
978 	WARN_ON(virtqueue_get_vring_size(vrp->rvq) !=
979 		virtqueue_get_vring_size(vrp->svq));
980 
981 	/* we need less buffers if vrings are small */
982 	if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2)
983 		vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2;
984 	else
985 		vrp->num_bufs = MAX_RPMSG_NUM_BUFS;
986 
987 	total_buf_space = vrp->num_bufs * RPMSG_BUF_SIZE;
988 
989 	/* allocate coherent memory for the buffers */
990 	bufs_va = dma_alloc_coherent(vdev->dev.parent->parent,
991 				     total_buf_space, &vrp->bufs_dma,
992 				     GFP_KERNEL);
993 	if (!bufs_va) {
994 		err = -ENOMEM;
995 		goto vqs_del;
996 	}
997 
998 	dev_dbg(&vdev->dev, "buffers: va %p, dma %pad\n",
999 		bufs_va, &vrp->bufs_dma);
1000 
1001 	/* half of the buffers is dedicated for RX */
1002 	vrp->rbufs = bufs_va;
1003 
1004 	/* and half is dedicated for TX */
1005 	vrp->sbufs = bufs_va + total_buf_space / 2;
1006 
1007 	/* set up the receive buffers */
1008 	for (i = 0; i < vrp->num_bufs / 2; i++) {
1009 		struct scatterlist sg;
1010 		void *cpu_addr = vrp->rbufs + i * RPMSG_BUF_SIZE;
1011 
1012 		sg_init_one(&sg, cpu_addr, RPMSG_BUF_SIZE);
1013 
1014 		err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr,
1015 					  GFP_KERNEL);
1016 		WARN_ON(err); /* sanity check; this can't really happen */
1017 	}
1018 
1019 	/* suppress "tx-complete" interrupts */
1020 	virtqueue_disable_cb(vrp->svq);
1021 
1022 	vdev->priv = vrp;
1023 
1024 	/* if supported by the remote processor, enable the name service */
1025 	if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) {
1026 		/* a dedicated endpoint handles the name service msgs */
1027 		vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb,
1028 						vrp, RPMSG_NS_ADDR);
1029 		if (!vrp->ns_ept) {
1030 			dev_err(&vdev->dev, "failed to create the ns ept\n");
1031 			err = -ENOMEM;
1032 			goto free_coherent;
1033 		}
1034 	}
1035 
1036 	/*
1037 	 * Prepare to kick but don't notify yet - we can't do this before
1038 	 * device is ready.
1039 	 */
1040 	notify = virtqueue_kick_prepare(vrp->rvq);
1041 
1042 	/* From this point on, we can notify and get callbacks. */
1043 	virtio_device_ready(vdev);
1044 
1045 	/* tell the remote processor it can start sending messages */
1046 	/*
1047 	 * this might be concurrent with callbacks, but we are only
1048 	 * doing notify, not a full kick here, so that's ok.
1049 	 */
1050 	if (notify)
1051 		virtqueue_notify(vrp->rvq);
1052 
1053 	dev_info(&vdev->dev, "rpmsg host is online\n");
1054 
1055 	return 0;
1056 
1057 free_coherent:
1058 	dma_free_coherent(vdev->dev.parent->parent, total_buf_space,
1059 			  bufs_va, vrp->bufs_dma);
1060 vqs_del:
1061 	vdev->config->del_vqs(vrp->vdev);
1062 free_vrp:
1063 	kfree(vrp);
1064 	return err;
1065 }
1066 
1067 static int rpmsg_remove_device(struct device *dev, void *data)
1068 {
1069 	device_unregister(dev);
1070 
1071 	return 0;
1072 }
1073 
1074 static void rpmsg_remove(struct virtio_device *vdev)
1075 {
1076 	struct virtproc_info *vrp = vdev->priv;
1077 	size_t total_buf_space = vrp->num_bufs * RPMSG_BUF_SIZE;
1078 	int ret;
1079 
1080 	vdev->config->reset(vdev);
1081 
1082 	ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device);
1083 	if (ret)
1084 		dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret);
1085 
1086 	if (vrp->ns_ept)
1087 		__rpmsg_destroy_ept(vrp, vrp->ns_ept);
1088 
1089 	idr_destroy(&vrp->endpoints);
1090 
1091 	vdev->config->del_vqs(vrp->vdev);
1092 
1093 	dma_free_coherent(vdev->dev.parent->parent, total_buf_space,
1094 			  vrp->rbufs, vrp->bufs_dma);
1095 
1096 	kfree(vrp);
1097 }
1098 
1099 static struct virtio_device_id id_table[] = {
1100 	{ VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID },
1101 	{ 0 },
1102 };
1103 
1104 static unsigned int features[] = {
1105 	VIRTIO_RPMSG_F_NS,
1106 };
1107 
1108 static struct virtio_driver virtio_ipc_driver = {
1109 	.feature_table	= features,
1110 	.feature_table_size = ARRAY_SIZE(features),
1111 	.driver.name	= KBUILD_MODNAME,
1112 	.driver.owner	= THIS_MODULE,
1113 	.id_table	= id_table,
1114 	.probe		= rpmsg_probe,
1115 	.remove		= rpmsg_remove,
1116 };
1117 
1118 static int __init rpmsg_init(void)
1119 {
1120 	int ret;
1121 
1122 	ret = bus_register(&rpmsg_bus);
1123 	if (ret) {
1124 		pr_err("failed to register rpmsg bus: %d\n", ret);
1125 		return ret;
1126 	}
1127 
1128 	ret = register_virtio_driver(&virtio_ipc_driver);
1129 	if (ret) {
1130 		pr_err("failed to register virtio driver: %d\n", ret);
1131 		bus_unregister(&rpmsg_bus);
1132 	}
1133 
1134 	return ret;
1135 }
1136 subsys_initcall(rpmsg_init);
1137 
1138 static void __exit rpmsg_fini(void)
1139 {
1140 	unregister_virtio_driver(&virtio_ipc_driver);
1141 	bus_unregister(&rpmsg_bus);
1142 }
1143 module_exit(rpmsg_fini);
1144 
1145 MODULE_DEVICE_TABLE(virtio, id_table);
1146 MODULE_DESCRIPTION("Virtio-based remote processor messaging bus");
1147 MODULE_LICENSE("GPL v2");
1148