1 /* 2 * Virtio-based remote processor messaging bus 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * 10 * This software is licensed under the terms of the GNU General Public 11 * License version 2, as published by the Free Software Foundation, and 12 * may be copied, distributed, and modified under those terms. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #define pr_fmt(fmt) "%s: " fmt, __func__ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/virtio.h> 25 #include <linux/virtio_ids.h> 26 #include <linux/virtio_config.h> 27 #include <linux/scatterlist.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/slab.h> 30 #include <linux/idr.h> 31 #include <linux/jiffies.h> 32 #include <linux/sched.h> 33 #include <linux/wait.h> 34 #include <linux/rpmsg.h> 35 #include <linux/mutex.h> 36 37 /** 38 * struct virtproc_info - virtual remote processor state 39 * @vdev: the virtio device 40 * @rvq: rx virtqueue 41 * @svq: tx virtqueue 42 * @rbufs: kernel address of rx buffers 43 * @sbufs: kernel address of tx buffers 44 * @last_sbuf: index of last tx buffer used 45 * @bufs_dma: dma base addr of the buffers 46 * @tx_lock: protects svq, sbufs and sleepers, to allow concurrent senders. 47 * sending a message might require waking up a dozing remote 48 * processor, which involves sleeping, hence the mutex. 49 * @endpoints: idr of local endpoints, allows fast retrieval 50 * @endpoints_lock: lock of the endpoints set 51 * @sendq: wait queue of sending contexts waiting for a tx buffers 52 * @sleepers: number of senders that are waiting for a tx buffer 53 * @ns_ept: the bus's name service endpoint 54 * 55 * This structure stores the rpmsg state of a given virtio remote processor 56 * device (there might be several virtio proc devices for each physical 57 * remote processor). 58 */ 59 struct virtproc_info { 60 struct virtio_device *vdev; 61 struct virtqueue *rvq, *svq; 62 void *rbufs, *sbufs; 63 int last_sbuf; 64 dma_addr_t bufs_dma; 65 struct mutex tx_lock; 66 struct idr endpoints; 67 struct mutex endpoints_lock; 68 wait_queue_head_t sendq; 69 atomic_t sleepers; 70 struct rpmsg_endpoint *ns_ept; 71 }; 72 73 /** 74 * struct rpmsg_channel_info - internal channel info representation 75 * @name: name of service 76 * @src: local address 77 * @dst: destination address 78 */ 79 struct rpmsg_channel_info { 80 char name[RPMSG_NAME_SIZE]; 81 u32 src; 82 u32 dst; 83 }; 84 85 #define to_rpmsg_channel(d) container_of(d, struct rpmsg_channel, dev) 86 #define to_rpmsg_driver(d) container_of(d, struct rpmsg_driver, drv) 87 88 /* 89 * We're allocating 512 buffers of 512 bytes for communications, and then 90 * using the first 256 buffers for RX, and the last 256 buffers for TX. 91 * 92 * Each buffer will have 16 bytes for the msg header and 496 bytes for 93 * the payload. 94 * 95 * This will require a total space of 256KB for the buffers. 96 * 97 * We might also want to add support for user-provided buffers in time. 98 * This will allow bigger buffer size flexibility, and can also be used 99 * to achieve zero-copy messaging. 100 * 101 * Note that these numbers are purely a decision of this driver - we 102 * can change this without changing anything in the firmware of the remote 103 * processor. 104 */ 105 #define RPMSG_NUM_BUFS (512) 106 #define RPMSG_BUF_SIZE (512) 107 #define RPMSG_TOTAL_BUF_SPACE (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE) 108 109 /* 110 * Local addresses are dynamically allocated on-demand. 111 * We do not dynamically assign addresses from the low 1024 range, 112 * in order to reserve that address range for predefined services. 113 */ 114 #define RPMSG_RESERVED_ADDRESSES (1024) 115 116 /* Address 53 is reserved for advertising remote services */ 117 #define RPMSG_NS_ADDR (53) 118 119 /* sysfs show configuration fields */ 120 #define rpmsg_show_attr(field, path, format_string) \ 121 static ssize_t \ 122 field##_show(struct device *dev, \ 123 struct device_attribute *attr, char *buf) \ 124 { \ 125 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); \ 126 \ 127 return sprintf(buf, format_string, rpdev->path); \ 128 } 129 130 /* for more info, see Documentation/ABI/testing/sysfs-bus-rpmsg */ 131 rpmsg_show_attr(name, id.name, "%s\n"); 132 rpmsg_show_attr(src, src, "0x%x\n"); 133 rpmsg_show_attr(dst, dst, "0x%x\n"); 134 rpmsg_show_attr(announce, announce ? "true" : "false", "%s\n"); 135 136 /* 137 * Unique (and free running) index for rpmsg devices. 138 * 139 * Yeah, we're not recycling those numbers (yet?). will be easy 140 * to change if/when we want to. 141 */ 142 static unsigned int rpmsg_dev_index; 143 144 static ssize_t modalias_show(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 148 149 return sprintf(buf, RPMSG_DEVICE_MODALIAS_FMT "\n", rpdev->id.name); 150 } 151 152 static struct device_attribute rpmsg_dev_attrs[] = { 153 __ATTR_RO(name), 154 __ATTR_RO(modalias), 155 __ATTR_RO(dst), 156 __ATTR_RO(src), 157 __ATTR_RO(announce), 158 __ATTR_NULL 159 }; 160 161 /* rpmsg devices and drivers are matched using the service name */ 162 static inline int rpmsg_id_match(const struct rpmsg_channel *rpdev, 163 const struct rpmsg_device_id *id) 164 { 165 return strncmp(id->name, rpdev->id.name, RPMSG_NAME_SIZE) == 0; 166 } 167 168 /* match rpmsg channel and rpmsg driver */ 169 static int rpmsg_dev_match(struct device *dev, struct device_driver *drv) 170 { 171 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 172 struct rpmsg_driver *rpdrv = to_rpmsg_driver(drv); 173 const struct rpmsg_device_id *ids = rpdrv->id_table; 174 unsigned int i; 175 176 for (i = 0; ids[i].name[0]; i++) 177 if (rpmsg_id_match(rpdev, &ids[i])) 178 return 1; 179 180 return 0; 181 } 182 183 static int rpmsg_uevent(struct device *dev, struct kobj_uevent_env *env) 184 { 185 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 186 187 return add_uevent_var(env, "MODALIAS=" RPMSG_DEVICE_MODALIAS_FMT, 188 rpdev->id.name); 189 } 190 191 /** 192 * __ept_release() - deallocate an rpmsg endpoint 193 * @kref: the ept's reference count 194 * 195 * This function deallocates an ept, and is invoked when its @kref refcount 196 * drops to zero. 197 * 198 * Never invoke this function directly! 199 */ 200 static void __ept_release(struct kref *kref) 201 { 202 struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint, 203 refcount); 204 /* 205 * At this point no one holds a reference to ept anymore, 206 * so we can directly free it 207 */ 208 kfree(ept); 209 } 210 211 /* for more info, see below documentation of rpmsg_create_ept() */ 212 static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp, 213 struct rpmsg_channel *rpdev, rpmsg_rx_cb_t cb, 214 void *priv, u32 addr) 215 { 216 int id_min, id_max, id; 217 struct rpmsg_endpoint *ept; 218 struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev; 219 220 ept = kzalloc(sizeof(*ept), GFP_KERNEL); 221 if (!ept) { 222 dev_err(dev, "failed to kzalloc a new ept\n"); 223 return NULL; 224 } 225 226 kref_init(&ept->refcount); 227 mutex_init(&ept->cb_lock); 228 229 ept->rpdev = rpdev; 230 ept->cb = cb; 231 ept->priv = priv; 232 233 /* do we need to allocate a local address ? */ 234 if (addr == RPMSG_ADDR_ANY) { 235 id_min = RPMSG_RESERVED_ADDRESSES; 236 id_max = 0; 237 } else { 238 id_min = addr; 239 id_max = addr + 1; 240 } 241 242 mutex_lock(&vrp->endpoints_lock); 243 244 /* bind the endpoint to an rpmsg address (and allocate one if needed) */ 245 id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL); 246 if (id < 0) { 247 dev_err(dev, "idr_alloc failed: %d\n", id); 248 goto free_ept; 249 } 250 ept->addr = id; 251 252 mutex_unlock(&vrp->endpoints_lock); 253 254 return ept; 255 256 free_ept: 257 mutex_unlock(&vrp->endpoints_lock); 258 kref_put(&ept->refcount, __ept_release); 259 return NULL; 260 } 261 262 /** 263 * rpmsg_create_ept() - create a new rpmsg_endpoint 264 * @rpdev: rpmsg channel device 265 * @cb: rx callback handler 266 * @priv: private data for the driver's use 267 * @addr: local rpmsg address to bind with @cb 268 * 269 * Every rpmsg address in the system is bound to an rx callback (so when 270 * inbound messages arrive, they are dispatched by the rpmsg bus using the 271 * appropriate callback handler) by means of an rpmsg_endpoint struct. 272 * 273 * This function allows drivers to create such an endpoint, and by that, 274 * bind a callback, and possibly some private data too, to an rpmsg address 275 * (either one that is known in advance, or one that will be dynamically 276 * assigned for them). 277 * 278 * Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint 279 * is already created for them when they are probed by the rpmsg bus 280 * (using the rx callback provided when they registered to the rpmsg bus). 281 * 282 * So things should just work for simple drivers: they already have an 283 * endpoint, their rx callback is bound to their rpmsg address, and when 284 * relevant inbound messages arrive (i.e. messages which their dst address 285 * equals to the src address of their rpmsg channel), the driver's handler 286 * is invoked to process it. 287 * 288 * That said, more complicated drivers might do need to allocate 289 * additional rpmsg addresses, and bind them to different rx callbacks. 290 * To accomplish that, those drivers need to call this function. 291 * 292 * Drivers should provide their @rpdev channel (so the new endpoint would belong 293 * to the same remote processor their channel belongs to), an rx callback 294 * function, an optional private data (which is provided back when the 295 * rx callback is invoked), and an address they want to bind with the 296 * callback. If @addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will 297 * dynamically assign them an available rpmsg address (drivers should have 298 * a very good reason why not to always use RPMSG_ADDR_ANY here). 299 * 300 * Returns a pointer to the endpoint on success, or NULL on error. 301 */ 302 struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev, 303 rpmsg_rx_cb_t cb, void *priv, u32 addr) 304 { 305 return __rpmsg_create_ept(rpdev->vrp, rpdev, cb, priv, addr); 306 } 307 EXPORT_SYMBOL(rpmsg_create_ept); 308 309 /** 310 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint 311 * @vrp: virtproc which owns this ept 312 * @ept: endpoing to destroy 313 * 314 * An internal function which destroy an ept without assuming it is 315 * bound to an rpmsg channel. This is needed for handling the internal 316 * name service endpoint, which isn't bound to an rpmsg channel. 317 * See also __rpmsg_create_ept(). 318 */ 319 static void 320 __rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept) 321 { 322 /* make sure new inbound messages can't find this ept anymore */ 323 mutex_lock(&vrp->endpoints_lock); 324 idr_remove(&vrp->endpoints, ept->addr); 325 mutex_unlock(&vrp->endpoints_lock); 326 327 /* make sure in-flight inbound messages won't invoke cb anymore */ 328 mutex_lock(&ept->cb_lock); 329 ept->cb = NULL; 330 mutex_unlock(&ept->cb_lock); 331 332 kref_put(&ept->refcount, __ept_release); 333 } 334 335 /** 336 * rpmsg_destroy_ept() - destroy an existing rpmsg endpoint 337 * @ept: endpoing to destroy 338 * 339 * Should be used by drivers to destroy an rpmsg endpoint previously 340 * created with rpmsg_create_ept(). 341 */ 342 void rpmsg_destroy_ept(struct rpmsg_endpoint *ept) 343 { 344 __rpmsg_destroy_ept(ept->rpdev->vrp, ept); 345 } 346 EXPORT_SYMBOL(rpmsg_destroy_ept); 347 348 /* 349 * when an rpmsg driver is probed with a channel, we seamlessly create 350 * it an endpoint, binding its rx callback to a unique local rpmsg 351 * address. 352 * 353 * if we need to, we also announce about this channel to the remote 354 * processor (needed in case the driver is exposing an rpmsg service). 355 */ 356 static int rpmsg_dev_probe(struct device *dev) 357 { 358 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 359 struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver); 360 struct virtproc_info *vrp = rpdev->vrp; 361 struct rpmsg_endpoint *ept; 362 int err; 363 364 ept = rpmsg_create_ept(rpdev, rpdrv->callback, NULL, rpdev->src); 365 if (!ept) { 366 dev_err(dev, "failed to create endpoint\n"); 367 err = -ENOMEM; 368 goto out; 369 } 370 371 rpdev->ept = ept; 372 rpdev->src = ept->addr; 373 374 err = rpdrv->probe(rpdev); 375 if (err) { 376 dev_err(dev, "%s: failed: %d\n", __func__, err); 377 rpmsg_destroy_ept(ept); 378 goto out; 379 } 380 381 /* need to tell remote processor's name service about this channel ? */ 382 if (rpdev->announce && 383 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 384 struct rpmsg_ns_msg nsm; 385 386 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 387 nsm.addr = rpdev->src; 388 nsm.flags = RPMSG_NS_CREATE; 389 390 err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 391 if (err) 392 dev_err(dev, "failed to announce service %d\n", err); 393 } 394 395 out: 396 return err; 397 } 398 399 static int rpmsg_dev_remove(struct device *dev) 400 { 401 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 402 struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver); 403 struct virtproc_info *vrp = rpdev->vrp; 404 int err = 0; 405 406 /* tell remote processor's name service we're removing this channel */ 407 if (rpdev->announce && 408 virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) { 409 struct rpmsg_ns_msg nsm; 410 411 strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE); 412 nsm.addr = rpdev->src; 413 nsm.flags = RPMSG_NS_DESTROY; 414 415 err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR); 416 if (err) 417 dev_err(dev, "failed to announce service %d\n", err); 418 } 419 420 rpdrv->remove(rpdev); 421 422 rpmsg_destroy_ept(rpdev->ept); 423 424 return err; 425 } 426 427 static struct bus_type rpmsg_bus = { 428 .name = "rpmsg", 429 .match = rpmsg_dev_match, 430 .dev_attrs = rpmsg_dev_attrs, 431 .uevent = rpmsg_uevent, 432 .probe = rpmsg_dev_probe, 433 .remove = rpmsg_dev_remove, 434 }; 435 436 /** 437 * register_rpmsg_driver() - register an rpmsg driver with the rpmsg bus 438 * @rpdrv: pointer to a struct rpmsg_driver 439 * 440 * Returns 0 on success, and an appropriate error value on failure. 441 */ 442 int register_rpmsg_driver(struct rpmsg_driver *rpdrv) 443 { 444 rpdrv->drv.bus = &rpmsg_bus; 445 return driver_register(&rpdrv->drv); 446 } 447 EXPORT_SYMBOL(register_rpmsg_driver); 448 449 /** 450 * unregister_rpmsg_driver() - unregister an rpmsg driver from the rpmsg bus 451 * @rpdrv: pointer to a struct rpmsg_driver 452 * 453 * Returns 0 on success, and an appropriate error value on failure. 454 */ 455 void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv) 456 { 457 driver_unregister(&rpdrv->drv); 458 } 459 EXPORT_SYMBOL(unregister_rpmsg_driver); 460 461 static void rpmsg_release_device(struct device *dev) 462 { 463 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 464 465 kfree(rpdev); 466 } 467 468 /* 469 * match an rpmsg channel with a channel info struct. 470 * this is used to make sure we're not creating rpmsg devices for channels 471 * that already exist. 472 */ 473 static int rpmsg_channel_match(struct device *dev, void *data) 474 { 475 struct rpmsg_channel_info *chinfo = data; 476 struct rpmsg_channel *rpdev = to_rpmsg_channel(dev); 477 478 if (chinfo->src != RPMSG_ADDR_ANY && chinfo->src != rpdev->src) 479 return 0; 480 481 if (chinfo->dst != RPMSG_ADDR_ANY && chinfo->dst != rpdev->dst) 482 return 0; 483 484 if (strncmp(chinfo->name, rpdev->id.name, RPMSG_NAME_SIZE)) 485 return 0; 486 487 /* found a match ! */ 488 return 1; 489 } 490 491 /* 492 * create an rpmsg channel using its name and address info. 493 * this function will be used to create both static and dynamic 494 * channels. 495 */ 496 static struct rpmsg_channel *rpmsg_create_channel(struct virtproc_info *vrp, 497 struct rpmsg_channel_info *chinfo) 498 { 499 struct rpmsg_channel *rpdev; 500 struct device *tmp, *dev = &vrp->vdev->dev; 501 int ret; 502 503 /* make sure a similar channel doesn't already exist */ 504 tmp = device_find_child(dev, chinfo, rpmsg_channel_match); 505 if (tmp) { 506 /* decrement the matched device's refcount back */ 507 put_device(tmp); 508 dev_err(dev, "channel %s:%x:%x already exist\n", 509 chinfo->name, chinfo->src, chinfo->dst); 510 return NULL; 511 } 512 513 rpdev = kzalloc(sizeof(struct rpmsg_channel), GFP_KERNEL); 514 if (!rpdev) { 515 pr_err("kzalloc failed\n"); 516 return NULL; 517 } 518 519 rpdev->vrp = vrp; 520 rpdev->src = chinfo->src; 521 rpdev->dst = chinfo->dst; 522 523 /* 524 * rpmsg server channels has predefined local address (for now), 525 * and their existence needs to be announced remotely 526 */ 527 rpdev->announce = rpdev->src != RPMSG_ADDR_ANY ? true : false; 528 529 strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE); 530 531 /* very simple device indexing plumbing which is enough for now */ 532 dev_set_name(&rpdev->dev, "rpmsg%d", rpmsg_dev_index++); 533 534 rpdev->dev.parent = &vrp->vdev->dev; 535 rpdev->dev.bus = &rpmsg_bus; 536 rpdev->dev.release = rpmsg_release_device; 537 538 ret = device_register(&rpdev->dev); 539 if (ret) { 540 dev_err(dev, "device_register failed: %d\n", ret); 541 put_device(&rpdev->dev); 542 return NULL; 543 } 544 545 return rpdev; 546 } 547 548 /* 549 * find an existing channel using its name + address properties, 550 * and destroy it 551 */ 552 static int rpmsg_destroy_channel(struct virtproc_info *vrp, 553 struct rpmsg_channel_info *chinfo) 554 { 555 struct virtio_device *vdev = vrp->vdev; 556 struct device *dev; 557 558 dev = device_find_child(&vdev->dev, chinfo, rpmsg_channel_match); 559 if (!dev) 560 return -EINVAL; 561 562 device_unregister(dev); 563 564 put_device(dev); 565 566 return 0; 567 } 568 569 /* super simple buffer "allocator" that is just enough for now */ 570 static void *get_a_tx_buf(struct virtproc_info *vrp) 571 { 572 unsigned int len; 573 void *ret; 574 575 /* support multiple concurrent senders */ 576 mutex_lock(&vrp->tx_lock); 577 578 /* 579 * either pick the next unused tx buffer 580 * (half of our buffers are used for sending messages) 581 */ 582 if (vrp->last_sbuf < RPMSG_NUM_BUFS / 2) 583 ret = vrp->sbufs + RPMSG_BUF_SIZE * vrp->last_sbuf++; 584 /* or recycle a used one */ 585 else 586 ret = virtqueue_get_buf(vrp->svq, &len); 587 588 mutex_unlock(&vrp->tx_lock); 589 590 return ret; 591 } 592 593 /** 594 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed 595 * @vrp: virtual remote processor state 596 * 597 * This function is called before a sender is blocked, waiting for 598 * a tx buffer to become available. 599 * 600 * If we already have blocking senders, this function merely increases 601 * the "sleepers" reference count, and exits. 602 * 603 * Otherwise, if this is the first sender to block, we also enable 604 * virtio's tx callbacks, so we'd be immediately notified when a tx 605 * buffer is consumed (we rely on virtio's tx callback in order 606 * to wake up sleeping senders as soon as a tx buffer is used by the 607 * remote processor). 608 */ 609 static void rpmsg_upref_sleepers(struct virtproc_info *vrp) 610 { 611 /* support multiple concurrent senders */ 612 mutex_lock(&vrp->tx_lock); 613 614 /* are we the first sleeping context waiting for tx buffers ? */ 615 if (atomic_inc_return(&vrp->sleepers) == 1) 616 /* enable "tx-complete" interrupts before dozing off */ 617 virtqueue_enable_cb(vrp->svq); 618 619 mutex_unlock(&vrp->tx_lock); 620 } 621 622 /** 623 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed 624 * @vrp: virtual remote processor state 625 * 626 * This function is called after a sender, that waited for a tx buffer 627 * to become available, is unblocked. 628 * 629 * If we still have blocking senders, this function merely decreases 630 * the "sleepers" reference count, and exits. 631 * 632 * Otherwise, if there are no more blocking senders, we also disable 633 * virtio's tx callbacks, to avoid the overhead incurred with handling 634 * those (now redundant) interrupts. 635 */ 636 static void rpmsg_downref_sleepers(struct virtproc_info *vrp) 637 { 638 /* support multiple concurrent senders */ 639 mutex_lock(&vrp->tx_lock); 640 641 /* are we the last sleeping context waiting for tx buffers ? */ 642 if (atomic_dec_and_test(&vrp->sleepers)) 643 /* disable "tx-complete" interrupts */ 644 virtqueue_disable_cb(vrp->svq); 645 646 mutex_unlock(&vrp->tx_lock); 647 } 648 649 /** 650 * rpmsg_send_offchannel_raw() - send a message across to the remote processor 651 * @rpdev: the rpmsg channel 652 * @src: source address 653 * @dst: destination address 654 * @data: payload of message 655 * @len: length of payload 656 * @wait: indicates whether caller should block in case no TX buffers available 657 * 658 * This function is the base implementation for all of the rpmsg sending API. 659 * 660 * It will send @data of length @len to @dst, and say it's from @src. The 661 * message will be sent to the remote processor which the @rpdev channel 662 * belongs to. 663 * 664 * The message is sent using one of the TX buffers that are available for 665 * communication with this remote processor. 666 * 667 * If @wait is true, the caller will be blocked until either a TX buffer is 668 * available, or 15 seconds elapses (we don't want callers to 669 * sleep indefinitely due to misbehaving remote processors), and in that 670 * case -ERESTARTSYS is returned. The number '15' itself was picked 671 * arbitrarily; there's little point in asking drivers to provide a timeout 672 * value themselves. 673 * 674 * Otherwise, if @wait is false, and there are no TX buffers available, 675 * the function will immediately fail, and -ENOMEM will be returned. 676 * 677 * Normally drivers shouldn't use this function directly; instead, drivers 678 * should use the appropriate rpmsg_{try}send{to, _offchannel} API 679 * (see include/linux/rpmsg.h). 680 * 681 * Returns 0 on success and an appropriate error value on failure. 682 */ 683 int rpmsg_send_offchannel_raw(struct rpmsg_channel *rpdev, u32 src, u32 dst, 684 void *data, int len, bool wait) 685 { 686 struct virtproc_info *vrp = rpdev->vrp; 687 struct device *dev = &rpdev->dev; 688 struct scatterlist sg; 689 struct rpmsg_hdr *msg; 690 int err; 691 692 /* bcasting isn't allowed */ 693 if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) { 694 dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst); 695 return -EINVAL; 696 } 697 698 /* 699 * We currently use fixed-sized buffers, and therefore the payload 700 * length is limited. 701 * 702 * One of the possible improvements here is either to support 703 * user-provided buffers (and then we can also support zero-copy 704 * messaging), or to improve the buffer allocator, to support 705 * variable-length buffer sizes. 706 */ 707 if (len > RPMSG_BUF_SIZE - sizeof(struct rpmsg_hdr)) { 708 dev_err(dev, "message is too big (%d)\n", len); 709 return -EMSGSIZE; 710 } 711 712 /* grab a buffer */ 713 msg = get_a_tx_buf(vrp); 714 if (!msg && !wait) 715 return -ENOMEM; 716 717 /* no free buffer ? wait for one (but bail after 15 seconds) */ 718 while (!msg) { 719 /* enable "tx-complete" interrupts, if not already enabled */ 720 rpmsg_upref_sleepers(vrp); 721 722 /* 723 * sleep until a free buffer is available or 15 secs elapse. 724 * the timeout period is not configurable because there's 725 * little point in asking drivers to specify that. 726 * if later this happens to be required, it'd be easy to add. 727 */ 728 err = wait_event_interruptible_timeout(vrp->sendq, 729 (msg = get_a_tx_buf(vrp)), 730 msecs_to_jiffies(15000)); 731 732 /* disable "tx-complete" interrupts if we're the last sleeper */ 733 rpmsg_downref_sleepers(vrp); 734 735 /* timeout ? */ 736 if (!err) { 737 dev_err(dev, "timeout waiting for a tx buffer\n"); 738 return -ERESTARTSYS; 739 } 740 } 741 742 msg->len = len; 743 msg->flags = 0; 744 msg->src = src; 745 msg->dst = dst; 746 msg->reserved = 0; 747 memcpy(msg->data, data, len); 748 749 dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n", 750 msg->src, msg->dst, msg->len, 751 msg->flags, msg->reserved); 752 print_hex_dump(KERN_DEBUG, "rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1, 753 msg, sizeof(*msg) + msg->len, true); 754 755 sg_init_one(&sg, msg, sizeof(*msg) + len); 756 757 mutex_lock(&vrp->tx_lock); 758 759 /* add message to the remote processor's virtqueue */ 760 err = virtqueue_add_buf(vrp->svq, &sg, 1, 0, msg, GFP_KERNEL); 761 if (err) { 762 /* 763 * need to reclaim the buffer here, otherwise it's lost 764 * (memory won't leak, but rpmsg won't use it again for TX). 765 * this will wait for a buffer management overhaul. 766 */ 767 dev_err(dev, "virtqueue_add_buf failed: %d\n", err); 768 goto out; 769 } 770 771 /* tell the remote processor it has a pending message to read */ 772 virtqueue_kick(vrp->svq); 773 out: 774 mutex_unlock(&vrp->tx_lock); 775 return err; 776 } 777 EXPORT_SYMBOL(rpmsg_send_offchannel_raw); 778 779 /* called when an rx buffer is used, and it's time to digest a message */ 780 static void rpmsg_recv_done(struct virtqueue *rvq) 781 { 782 struct rpmsg_hdr *msg; 783 unsigned int len; 784 struct rpmsg_endpoint *ept; 785 struct scatterlist sg; 786 struct virtproc_info *vrp = rvq->vdev->priv; 787 struct device *dev = &rvq->vdev->dev; 788 int err; 789 790 msg = virtqueue_get_buf(rvq, &len); 791 if (!msg) { 792 dev_err(dev, "uhm, incoming signal, but no used buffer ?\n"); 793 return; 794 } 795 796 dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n", 797 msg->src, msg->dst, msg->len, 798 msg->flags, msg->reserved); 799 print_hex_dump(KERN_DEBUG, "rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1, 800 msg, sizeof(*msg) + msg->len, true); 801 802 /* 803 * We currently use fixed-sized buffers, so trivially sanitize 804 * the reported payload length. 805 */ 806 if (len > RPMSG_BUF_SIZE || 807 msg->len > (len - sizeof(struct rpmsg_hdr))) { 808 dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg->len); 809 return; 810 } 811 812 /* use the dst addr to fetch the callback of the appropriate user */ 813 mutex_lock(&vrp->endpoints_lock); 814 815 ept = idr_find(&vrp->endpoints, msg->dst); 816 817 /* let's make sure no one deallocates ept while we use it */ 818 if (ept) 819 kref_get(&ept->refcount); 820 821 mutex_unlock(&vrp->endpoints_lock); 822 823 if (ept) { 824 /* make sure ept->cb doesn't go away while we use it */ 825 mutex_lock(&ept->cb_lock); 826 827 if (ept->cb) 828 ept->cb(ept->rpdev, msg->data, msg->len, ept->priv, 829 msg->src); 830 831 mutex_unlock(&ept->cb_lock); 832 833 /* farewell, ept, we don't need you anymore */ 834 kref_put(&ept->refcount, __ept_release); 835 } else 836 dev_warn(dev, "msg received with no recipient\n"); 837 838 /* publish the real size of the buffer */ 839 sg_init_one(&sg, msg, RPMSG_BUF_SIZE); 840 841 /* add the buffer back to the remote processor's virtqueue */ 842 err = virtqueue_add_buf(vrp->rvq, &sg, 0, 1, msg, GFP_KERNEL); 843 if (err < 0) { 844 dev_err(dev, "failed to add a virtqueue buffer: %d\n", err); 845 return; 846 } 847 848 /* tell the remote processor we added another available rx buffer */ 849 virtqueue_kick(vrp->rvq); 850 } 851 852 /* 853 * This is invoked whenever the remote processor completed processing 854 * a TX msg we just sent it, and the buffer is put back to the used ring. 855 * 856 * Normally, though, we suppress this "tx complete" interrupt in order to 857 * avoid the incurred overhead. 858 */ 859 static void rpmsg_xmit_done(struct virtqueue *svq) 860 { 861 struct virtproc_info *vrp = svq->vdev->priv; 862 863 dev_dbg(&svq->vdev->dev, "%s\n", __func__); 864 865 /* wake up potential senders that are waiting for a tx buffer */ 866 wake_up_interruptible(&vrp->sendq); 867 } 868 869 /* invoked when a name service announcement arrives */ 870 static void rpmsg_ns_cb(struct rpmsg_channel *rpdev, void *data, int len, 871 void *priv, u32 src) 872 { 873 struct rpmsg_ns_msg *msg = data; 874 struct rpmsg_channel *newch; 875 struct rpmsg_channel_info chinfo; 876 struct virtproc_info *vrp = priv; 877 struct device *dev = &vrp->vdev->dev; 878 int ret; 879 880 print_hex_dump(KERN_DEBUG, "NS announcement: ", 881 DUMP_PREFIX_NONE, 16, 1, 882 data, len, true); 883 884 if (len != sizeof(*msg)) { 885 dev_err(dev, "malformed ns msg (%d)\n", len); 886 return; 887 } 888 889 /* 890 * the name service ept does _not_ belong to a real rpmsg channel, 891 * and is handled by the rpmsg bus itself. 892 * for sanity reasons, make sure a valid rpdev has _not_ sneaked 893 * in somehow. 894 */ 895 if (rpdev) { 896 dev_err(dev, "anomaly: ns ept has an rpdev handle\n"); 897 return; 898 } 899 900 /* don't trust the remote processor for null terminating the name */ 901 msg->name[RPMSG_NAME_SIZE - 1] = '\0'; 902 903 dev_info(dev, "%sing channel %s addr 0x%x\n", 904 msg->flags & RPMSG_NS_DESTROY ? "destroy" : "creat", 905 msg->name, msg->addr); 906 907 strncpy(chinfo.name, msg->name, sizeof(chinfo.name)); 908 chinfo.src = RPMSG_ADDR_ANY; 909 chinfo.dst = msg->addr; 910 911 if (msg->flags & RPMSG_NS_DESTROY) { 912 ret = rpmsg_destroy_channel(vrp, &chinfo); 913 if (ret) 914 dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret); 915 } else { 916 newch = rpmsg_create_channel(vrp, &chinfo); 917 if (!newch) 918 dev_err(dev, "rpmsg_create_channel failed\n"); 919 } 920 } 921 922 static int rpmsg_probe(struct virtio_device *vdev) 923 { 924 vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done }; 925 const char *names[] = { "input", "output" }; 926 struct virtqueue *vqs[2]; 927 struct virtproc_info *vrp; 928 void *bufs_va; 929 int err = 0, i; 930 931 vrp = kzalloc(sizeof(*vrp), GFP_KERNEL); 932 if (!vrp) 933 return -ENOMEM; 934 935 vrp->vdev = vdev; 936 937 idr_init(&vrp->endpoints); 938 mutex_init(&vrp->endpoints_lock); 939 mutex_init(&vrp->tx_lock); 940 init_waitqueue_head(&vrp->sendq); 941 942 /* We expect two virtqueues, rx and tx (and in this order) */ 943 err = vdev->config->find_vqs(vdev, 2, vqs, vq_cbs, names); 944 if (err) 945 goto free_vrp; 946 947 vrp->rvq = vqs[0]; 948 vrp->svq = vqs[1]; 949 950 /* allocate coherent memory for the buffers */ 951 bufs_va = dma_alloc_coherent(vdev->dev.parent->parent, 952 RPMSG_TOTAL_BUF_SPACE, 953 &vrp->bufs_dma, GFP_KERNEL); 954 if (!bufs_va) 955 goto vqs_del; 956 957 dev_dbg(&vdev->dev, "buffers: va %p, dma 0x%llx\n", bufs_va, 958 (unsigned long long)vrp->bufs_dma); 959 960 /* half of the buffers is dedicated for RX */ 961 vrp->rbufs = bufs_va; 962 963 /* and half is dedicated for TX */ 964 vrp->sbufs = bufs_va + RPMSG_TOTAL_BUF_SPACE / 2; 965 966 /* set up the receive buffers */ 967 for (i = 0; i < RPMSG_NUM_BUFS / 2; i++) { 968 struct scatterlist sg; 969 void *cpu_addr = vrp->rbufs + i * RPMSG_BUF_SIZE; 970 971 sg_init_one(&sg, cpu_addr, RPMSG_BUF_SIZE); 972 973 err = virtqueue_add_buf(vrp->rvq, &sg, 0, 1, cpu_addr, 974 GFP_KERNEL); 975 WARN_ON(err); /* sanity check; this can't really happen */ 976 } 977 978 /* suppress "tx-complete" interrupts */ 979 virtqueue_disable_cb(vrp->svq); 980 981 vdev->priv = vrp; 982 983 /* if supported by the remote processor, enable the name service */ 984 if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) { 985 /* a dedicated endpoint handles the name service msgs */ 986 vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb, 987 vrp, RPMSG_NS_ADDR); 988 if (!vrp->ns_ept) { 989 dev_err(&vdev->dev, "failed to create the ns ept\n"); 990 err = -ENOMEM; 991 goto free_coherent; 992 } 993 } 994 995 /* tell the remote processor it can start sending messages */ 996 virtqueue_kick(vrp->rvq); 997 998 dev_info(&vdev->dev, "rpmsg host is online\n"); 999 1000 return 0; 1001 1002 free_coherent: 1003 dma_free_coherent(vdev->dev.parent->parent, RPMSG_TOTAL_BUF_SPACE, 1004 bufs_va, vrp->bufs_dma); 1005 vqs_del: 1006 vdev->config->del_vqs(vrp->vdev); 1007 free_vrp: 1008 kfree(vrp); 1009 return err; 1010 } 1011 1012 static int rpmsg_remove_device(struct device *dev, void *data) 1013 { 1014 device_unregister(dev); 1015 1016 return 0; 1017 } 1018 1019 static void rpmsg_remove(struct virtio_device *vdev) 1020 { 1021 struct virtproc_info *vrp = vdev->priv; 1022 int ret; 1023 1024 vdev->config->reset(vdev); 1025 1026 ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device); 1027 if (ret) 1028 dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret); 1029 1030 if (vrp->ns_ept) 1031 __rpmsg_destroy_ept(vrp, vrp->ns_ept); 1032 1033 idr_destroy(&vrp->endpoints); 1034 1035 vdev->config->del_vqs(vrp->vdev); 1036 1037 dma_free_coherent(vdev->dev.parent->parent, RPMSG_TOTAL_BUF_SPACE, 1038 vrp->rbufs, vrp->bufs_dma); 1039 1040 kfree(vrp); 1041 } 1042 1043 static struct virtio_device_id id_table[] = { 1044 { VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID }, 1045 { 0 }, 1046 }; 1047 1048 static unsigned int features[] = { 1049 VIRTIO_RPMSG_F_NS, 1050 }; 1051 1052 static struct virtio_driver virtio_ipc_driver = { 1053 .feature_table = features, 1054 .feature_table_size = ARRAY_SIZE(features), 1055 .driver.name = KBUILD_MODNAME, 1056 .driver.owner = THIS_MODULE, 1057 .id_table = id_table, 1058 .probe = rpmsg_probe, 1059 .remove = rpmsg_remove, 1060 }; 1061 1062 static int __init rpmsg_init(void) 1063 { 1064 int ret; 1065 1066 ret = bus_register(&rpmsg_bus); 1067 if (ret) { 1068 pr_err("failed to register rpmsg bus: %d\n", ret); 1069 return ret; 1070 } 1071 1072 ret = register_virtio_driver(&virtio_ipc_driver); 1073 if (ret) { 1074 pr_err("failed to register virtio driver: %d\n", ret); 1075 bus_unregister(&rpmsg_bus); 1076 } 1077 1078 return ret; 1079 } 1080 subsys_initcall(rpmsg_init); 1081 1082 static void __exit rpmsg_fini(void) 1083 { 1084 unregister_virtio_driver(&virtio_ipc_driver); 1085 bus_unregister(&rpmsg_bus); 1086 } 1087 module_exit(rpmsg_fini); 1088 1089 MODULE_DEVICE_TABLE(virtio, id_table); 1090 MODULE_DESCRIPTION("Virtio-based remote processor messaging bus"); 1091 MODULE_LICENSE("GPL v2"); 1092