xref: /linux/drivers/reset/core.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Reset Controller framework
4  *
5  * Copyright 2013 Philipp Zabel, Pengutronix
6  */
7 #include <linux/atomic.h>
8 #include <linux/cleanup.h>
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/kref.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/gpio/machine.h>
16 #include <linux/idr.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/acpi.h>
20 #include <linux/platform_device.h>
21 #include <linux/reset.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 
25 static DEFINE_MUTEX(reset_list_mutex);
26 static LIST_HEAD(reset_controller_list);
27 
28 static DEFINE_MUTEX(reset_lookup_mutex);
29 static LIST_HEAD(reset_lookup_list);
30 
31 /* Protects reset_gpio_lookup_list */
32 static DEFINE_MUTEX(reset_gpio_lookup_mutex);
33 static LIST_HEAD(reset_gpio_lookup_list);
34 static DEFINE_IDA(reset_gpio_ida);
35 
36 /**
37  * struct reset_control - a reset control
38  * @rcdev: a pointer to the reset controller device
39  *         this reset control belongs to
40  * @list: list entry for the rcdev's reset controller list
41  * @id: ID of the reset controller in the reset
42  *      controller device
43  * @refcnt: Number of gets of this reset_control
44  * @acquired: Only one reset_control may be acquired for a given rcdev and id.
45  * @shared: Is this a shared (1), or an exclusive (0) reset_control?
46  * @array: Is this an array of reset controls (1)?
47  * @deassert_count: Number of times this reset line has been deasserted
48  * @triggered_count: Number of times this reset line has been reset. Currently
49  *                   only used for shared resets, which means that the value
50  *                   will be either 0 or 1.
51  */
52 struct reset_control {
53 	struct reset_controller_dev *rcdev;
54 	struct list_head list;
55 	unsigned int id;
56 	struct kref refcnt;
57 	bool acquired;
58 	bool shared;
59 	bool array;
60 	atomic_t deassert_count;
61 	atomic_t triggered_count;
62 };
63 
64 /**
65  * struct reset_control_array - an array of reset controls
66  * @base: reset control for compatibility with reset control API functions
67  * @num_rstcs: number of reset controls
68  * @rstc: array of reset controls
69  */
70 struct reset_control_array {
71 	struct reset_control base;
72 	unsigned int num_rstcs;
73 	struct reset_control *rstc[] __counted_by(num_rstcs);
74 };
75 
76 /**
77  * struct reset_gpio_lookup - lookup key for ad-hoc created reset-gpio devices
78  * @of_args: phandle to the reset controller with all the args like GPIO number
79  * @list: list entry for the reset_gpio_lookup_list
80  */
81 struct reset_gpio_lookup {
82 	struct of_phandle_args of_args;
83 	struct list_head list;
84 };
85 
86 static const char *rcdev_name(struct reset_controller_dev *rcdev)
87 {
88 	if (rcdev->dev)
89 		return dev_name(rcdev->dev);
90 
91 	if (rcdev->of_node)
92 		return rcdev->of_node->full_name;
93 
94 	if (rcdev->of_args)
95 		return rcdev->of_args->np->full_name;
96 
97 	return NULL;
98 }
99 
100 /**
101  * of_reset_simple_xlate - translate reset_spec to the reset line number
102  * @rcdev: a pointer to the reset controller device
103  * @reset_spec: reset line specifier as found in the device tree
104  *
105  * This static translation function is used by default if of_xlate in
106  * :c:type:`reset_controller_dev` is not set. It is useful for all reset
107  * controllers with 1:1 mapping, where reset lines can be indexed by number
108  * without gaps.
109  */
110 static int of_reset_simple_xlate(struct reset_controller_dev *rcdev,
111 				 const struct of_phandle_args *reset_spec)
112 {
113 	if (reset_spec->args[0] >= rcdev->nr_resets)
114 		return -EINVAL;
115 
116 	return reset_spec->args[0];
117 }
118 
119 /**
120  * reset_controller_register - register a reset controller device
121  * @rcdev: a pointer to the initialized reset controller device
122  */
123 int reset_controller_register(struct reset_controller_dev *rcdev)
124 {
125 	if (rcdev->of_node && rcdev->of_args)
126 		return -EINVAL;
127 
128 	if (!rcdev->of_xlate) {
129 		rcdev->of_reset_n_cells = 1;
130 		rcdev->of_xlate = of_reset_simple_xlate;
131 	}
132 
133 	INIT_LIST_HEAD(&rcdev->reset_control_head);
134 
135 	mutex_lock(&reset_list_mutex);
136 	list_add(&rcdev->list, &reset_controller_list);
137 	mutex_unlock(&reset_list_mutex);
138 
139 	return 0;
140 }
141 EXPORT_SYMBOL_GPL(reset_controller_register);
142 
143 /**
144  * reset_controller_unregister - unregister a reset controller device
145  * @rcdev: a pointer to the reset controller device
146  */
147 void reset_controller_unregister(struct reset_controller_dev *rcdev)
148 {
149 	mutex_lock(&reset_list_mutex);
150 	list_del(&rcdev->list);
151 	mutex_unlock(&reset_list_mutex);
152 }
153 EXPORT_SYMBOL_GPL(reset_controller_unregister);
154 
155 static void devm_reset_controller_release(struct device *dev, void *res)
156 {
157 	reset_controller_unregister(*(struct reset_controller_dev **)res);
158 }
159 
160 /**
161  * devm_reset_controller_register - resource managed reset_controller_register()
162  * @dev: device that is registering this reset controller
163  * @rcdev: a pointer to the initialized reset controller device
164  *
165  * Managed reset_controller_register(). For reset controllers registered by
166  * this function, reset_controller_unregister() is automatically called on
167  * driver detach. See reset_controller_register() for more information.
168  */
169 int devm_reset_controller_register(struct device *dev,
170 				   struct reset_controller_dev *rcdev)
171 {
172 	struct reset_controller_dev **rcdevp;
173 	int ret;
174 
175 	rcdevp = devres_alloc(devm_reset_controller_release, sizeof(*rcdevp),
176 			      GFP_KERNEL);
177 	if (!rcdevp)
178 		return -ENOMEM;
179 
180 	ret = reset_controller_register(rcdev);
181 	if (ret) {
182 		devres_free(rcdevp);
183 		return ret;
184 	}
185 
186 	*rcdevp = rcdev;
187 	devres_add(dev, rcdevp);
188 
189 	return ret;
190 }
191 EXPORT_SYMBOL_GPL(devm_reset_controller_register);
192 
193 /**
194  * reset_controller_add_lookup - register a set of lookup entries
195  * @lookup: array of reset lookup entries
196  * @num_entries: number of entries in the lookup array
197  */
198 void reset_controller_add_lookup(struct reset_control_lookup *lookup,
199 				 unsigned int num_entries)
200 {
201 	struct reset_control_lookup *entry;
202 	unsigned int i;
203 
204 	mutex_lock(&reset_lookup_mutex);
205 	for (i = 0; i < num_entries; i++) {
206 		entry = &lookup[i];
207 
208 		if (!entry->dev_id || !entry->provider) {
209 			pr_warn("%s(): reset lookup entry badly specified, skipping\n",
210 				__func__);
211 			continue;
212 		}
213 
214 		list_add_tail(&entry->list, &reset_lookup_list);
215 	}
216 	mutex_unlock(&reset_lookup_mutex);
217 }
218 EXPORT_SYMBOL_GPL(reset_controller_add_lookup);
219 
220 static inline struct reset_control_array *
221 rstc_to_array(struct reset_control *rstc) {
222 	return container_of(rstc, struct reset_control_array, base);
223 }
224 
225 static int reset_control_array_reset(struct reset_control_array *resets)
226 {
227 	int ret, i;
228 
229 	for (i = 0; i < resets->num_rstcs; i++) {
230 		ret = reset_control_reset(resets->rstc[i]);
231 		if (ret)
232 			return ret;
233 	}
234 
235 	return 0;
236 }
237 
238 static int reset_control_array_rearm(struct reset_control_array *resets)
239 {
240 	struct reset_control *rstc;
241 	int i;
242 
243 	for (i = 0; i < resets->num_rstcs; i++) {
244 		rstc = resets->rstc[i];
245 
246 		if (!rstc)
247 			continue;
248 
249 		if (WARN_ON(IS_ERR(rstc)))
250 			return -EINVAL;
251 
252 		if (rstc->shared) {
253 			if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
254 				return -EINVAL;
255 		} else {
256 			if (!rstc->acquired)
257 				return -EPERM;
258 		}
259 	}
260 
261 	for (i = 0; i < resets->num_rstcs; i++) {
262 		rstc = resets->rstc[i];
263 
264 		if (rstc && rstc->shared)
265 			WARN_ON(atomic_dec_return(&rstc->triggered_count) < 0);
266 	}
267 
268 	return 0;
269 }
270 
271 static int reset_control_array_assert(struct reset_control_array *resets)
272 {
273 	int ret, i;
274 
275 	for (i = 0; i < resets->num_rstcs; i++) {
276 		ret = reset_control_assert(resets->rstc[i]);
277 		if (ret)
278 			goto err;
279 	}
280 
281 	return 0;
282 
283 err:
284 	while (i--)
285 		reset_control_deassert(resets->rstc[i]);
286 	return ret;
287 }
288 
289 static int reset_control_array_deassert(struct reset_control_array *resets)
290 {
291 	int ret, i;
292 
293 	for (i = 0; i < resets->num_rstcs; i++) {
294 		ret = reset_control_deassert(resets->rstc[i]);
295 		if (ret)
296 			goto err;
297 	}
298 
299 	return 0;
300 
301 err:
302 	while (i--)
303 		reset_control_assert(resets->rstc[i]);
304 	return ret;
305 }
306 
307 static int reset_control_array_acquire(struct reset_control_array *resets)
308 {
309 	unsigned int i;
310 	int err;
311 
312 	for (i = 0; i < resets->num_rstcs; i++) {
313 		err = reset_control_acquire(resets->rstc[i]);
314 		if (err < 0)
315 			goto release;
316 	}
317 
318 	return 0;
319 
320 release:
321 	while (i--)
322 		reset_control_release(resets->rstc[i]);
323 
324 	return err;
325 }
326 
327 static void reset_control_array_release(struct reset_control_array *resets)
328 {
329 	unsigned int i;
330 
331 	for (i = 0; i < resets->num_rstcs; i++)
332 		reset_control_release(resets->rstc[i]);
333 }
334 
335 static inline bool reset_control_is_array(struct reset_control *rstc)
336 {
337 	return rstc->array;
338 }
339 
340 /**
341  * reset_control_reset - reset the controlled device
342  * @rstc: reset controller
343  *
344  * On a shared reset line the actual reset pulse is only triggered once for the
345  * lifetime of the reset_control instance: for all but the first caller this is
346  * a no-op.
347  * Consumers must not use reset_control_(de)assert on shared reset lines when
348  * reset_control_reset has been used.
349  *
350  * If rstc is NULL it is an optional reset and the function will just
351  * return 0.
352  */
353 int reset_control_reset(struct reset_control *rstc)
354 {
355 	int ret;
356 
357 	if (!rstc)
358 		return 0;
359 
360 	if (WARN_ON(IS_ERR(rstc)))
361 		return -EINVAL;
362 
363 	if (reset_control_is_array(rstc))
364 		return reset_control_array_reset(rstc_to_array(rstc));
365 
366 	if (!rstc->rcdev->ops->reset)
367 		return -ENOTSUPP;
368 
369 	if (rstc->shared) {
370 		if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
371 			return -EINVAL;
372 
373 		if (atomic_inc_return(&rstc->triggered_count) != 1)
374 			return 0;
375 	} else {
376 		if (!rstc->acquired)
377 			return -EPERM;
378 	}
379 
380 	ret = rstc->rcdev->ops->reset(rstc->rcdev, rstc->id);
381 	if (rstc->shared && ret)
382 		atomic_dec(&rstc->triggered_count);
383 
384 	return ret;
385 }
386 EXPORT_SYMBOL_GPL(reset_control_reset);
387 
388 /**
389  * reset_control_bulk_reset - reset the controlled devices in order
390  * @num_rstcs: number of entries in rstcs array
391  * @rstcs: array of struct reset_control_bulk_data with reset controls set
392  *
393  * Issue a reset on all provided reset controls, in order.
394  *
395  * See also: reset_control_reset()
396  */
397 int reset_control_bulk_reset(int num_rstcs,
398 			     struct reset_control_bulk_data *rstcs)
399 {
400 	int ret, i;
401 
402 	for (i = 0; i < num_rstcs; i++) {
403 		ret = reset_control_reset(rstcs[i].rstc);
404 		if (ret)
405 			return ret;
406 	}
407 
408 	return 0;
409 }
410 EXPORT_SYMBOL_GPL(reset_control_bulk_reset);
411 
412 /**
413  * reset_control_rearm - allow shared reset line to be re-triggered"
414  * @rstc: reset controller
415  *
416  * On a shared reset line the actual reset pulse is only triggered once for the
417  * lifetime of the reset_control instance, except if this call is used.
418  *
419  * Calls to this function must be balanced with calls to reset_control_reset,
420  * a warning is thrown in case triggered_count ever dips below 0.
421  *
422  * Consumers must not use reset_control_(de)assert on shared reset lines when
423  * reset_control_reset or reset_control_rearm have been used.
424  *
425  * If rstc is NULL the function will just return 0.
426  */
427 int reset_control_rearm(struct reset_control *rstc)
428 {
429 	if (!rstc)
430 		return 0;
431 
432 	if (WARN_ON(IS_ERR(rstc)))
433 		return -EINVAL;
434 
435 	if (reset_control_is_array(rstc))
436 		return reset_control_array_rearm(rstc_to_array(rstc));
437 
438 	if (rstc->shared) {
439 		if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
440 			return -EINVAL;
441 
442 		WARN_ON(atomic_dec_return(&rstc->triggered_count) < 0);
443 	} else {
444 		if (!rstc->acquired)
445 			return -EPERM;
446 	}
447 
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(reset_control_rearm);
451 
452 /**
453  * reset_control_assert - asserts the reset line
454  * @rstc: reset controller
455  *
456  * Calling this on an exclusive reset controller guarantees that the reset
457  * will be asserted. When called on a shared reset controller the line may
458  * still be deasserted, as long as other users keep it so.
459  *
460  * For shared reset controls a driver cannot expect the hw's registers and
461  * internal state to be reset, but must be prepared for this to happen.
462  * Consumers must not use reset_control_reset on shared reset lines when
463  * reset_control_(de)assert has been used.
464  *
465  * If rstc is NULL it is an optional reset and the function will just
466  * return 0.
467  */
468 int reset_control_assert(struct reset_control *rstc)
469 {
470 	if (!rstc)
471 		return 0;
472 
473 	if (WARN_ON(IS_ERR(rstc)))
474 		return -EINVAL;
475 
476 	if (reset_control_is_array(rstc))
477 		return reset_control_array_assert(rstc_to_array(rstc));
478 
479 	if (rstc->shared) {
480 		if (WARN_ON(atomic_read(&rstc->triggered_count) != 0))
481 			return -EINVAL;
482 
483 		if (WARN_ON(atomic_read(&rstc->deassert_count) == 0))
484 			return -EINVAL;
485 
486 		if (atomic_dec_return(&rstc->deassert_count) != 0)
487 			return 0;
488 
489 		/*
490 		 * Shared reset controls allow the reset line to be in any state
491 		 * after this call, so doing nothing is a valid option.
492 		 */
493 		if (!rstc->rcdev->ops->assert)
494 			return 0;
495 	} else {
496 		/*
497 		 * If the reset controller does not implement .assert(), there
498 		 * is no way to guarantee that the reset line is asserted after
499 		 * this call.
500 		 */
501 		if (!rstc->rcdev->ops->assert)
502 			return -ENOTSUPP;
503 
504 		if (!rstc->acquired) {
505 			WARN(1, "reset %s (ID: %u) is not acquired\n",
506 			     rcdev_name(rstc->rcdev), rstc->id);
507 			return -EPERM;
508 		}
509 	}
510 
511 	return rstc->rcdev->ops->assert(rstc->rcdev, rstc->id);
512 }
513 EXPORT_SYMBOL_GPL(reset_control_assert);
514 
515 /**
516  * reset_control_bulk_assert - asserts the reset lines in order
517  * @num_rstcs: number of entries in rstcs array
518  * @rstcs: array of struct reset_control_bulk_data with reset controls set
519  *
520  * Assert the reset lines for all provided reset controls, in order.
521  * If an assertion fails, already asserted resets are deasserted again.
522  *
523  * See also: reset_control_assert()
524  */
525 int reset_control_bulk_assert(int num_rstcs,
526 			      struct reset_control_bulk_data *rstcs)
527 {
528 	int ret, i;
529 
530 	for (i = 0; i < num_rstcs; i++) {
531 		ret = reset_control_assert(rstcs[i].rstc);
532 		if (ret)
533 			goto err;
534 	}
535 
536 	return 0;
537 
538 err:
539 	while (i--)
540 		reset_control_deassert(rstcs[i].rstc);
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(reset_control_bulk_assert);
544 
545 /**
546  * reset_control_deassert - deasserts the reset line
547  * @rstc: reset controller
548  *
549  * After calling this function, the reset is guaranteed to be deasserted.
550  * Consumers must not use reset_control_reset on shared reset lines when
551  * reset_control_(de)assert has been used.
552  *
553  * If rstc is NULL it is an optional reset and the function will just
554  * return 0.
555  */
556 int reset_control_deassert(struct reset_control *rstc)
557 {
558 	if (!rstc)
559 		return 0;
560 
561 	if (WARN_ON(IS_ERR(rstc)))
562 		return -EINVAL;
563 
564 	if (reset_control_is_array(rstc))
565 		return reset_control_array_deassert(rstc_to_array(rstc));
566 
567 	if (rstc->shared) {
568 		if (WARN_ON(atomic_read(&rstc->triggered_count) != 0))
569 			return -EINVAL;
570 
571 		if (atomic_inc_return(&rstc->deassert_count) != 1)
572 			return 0;
573 	} else {
574 		if (!rstc->acquired) {
575 			WARN(1, "reset %s (ID: %u) is not acquired\n",
576 			     rcdev_name(rstc->rcdev), rstc->id);
577 			return -EPERM;
578 		}
579 	}
580 
581 	/*
582 	 * If the reset controller does not implement .deassert(), we assume
583 	 * that it handles self-deasserting reset lines via .reset(). In that
584 	 * case, the reset lines are deasserted by default. If that is not the
585 	 * case, the reset controller driver should implement .deassert() and
586 	 * return -ENOTSUPP.
587 	 */
588 	if (!rstc->rcdev->ops->deassert)
589 		return 0;
590 
591 	return rstc->rcdev->ops->deassert(rstc->rcdev, rstc->id);
592 }
593 EXPORT_SYMBOL_GPL(reset_control_deassert);
594 
595 /**
596  * reset_control_bulk_deassert - deasserts the reset lines in reverse order
597  * @num_rstcs: number of entries in rstcs array
598  * @rstcs: array of struct reset_control_bulk_data with reset controls set
599  *
600  * Deassert the reset lines for all provided reset controls, in reverse order.
601  * If a deassertion fails, already deasserted resets are asserted again.
602  *
603  * See also: reset_control_deassert()
604  */
605 int reset_control_bulk_deassert(int num_rstcs,
606 				struct reset_control_bulk_data *rstcs)
607 {
608 	int ret, i;
609 
610 	for (i = num_rstcs - 1; i >= 0; i--) {
611 		ret = reset_control_deassert(rstcs[i].rstc);
612 		if (ret)
613 			goto err;
614 	}
615 
616 	return 0;
617 
618 err:
619 	while (i < num_rstcs)
620 		reset_control_assert(rstcs[i++].rstc);
621 	return ret;
622 }
623 EXPORT_SYMBOL_GPL(reset_control_bulk_deassert);
624 
625 /**
626  * reset_control_status - returns a negative errno if not supported, a
627  * positive value if the reset line is asserted, or zero if the reset
628  * line is not asserted or if the desc is NULL (optional reset).
629  * @rstc: reset controller
630  */
631 int reset_control_status(struct reset_control *rstc)
632 {
633 	if (!rstc)
634 		return 0;
635 
636 	if (WARN_ON(IS_ERR(rstc)) || reset_control_is_array(rstc))
637 		return -EINVAL;
638 
639 	if (rstc->rcdev->ops->status)
640 		return rstc->rcdev->ops->status(rstc->rcdev, rstc->id);
641 
642 	return -ENOTSUPP;
643 }
644 EXPORT_SYMBOL_GPL(reset_control_status);
645 
646 /**
647  * reset_control_acquire() - acquires a reset control for exclusive use
648  * @rstc: reset control
649  *
650  * This is used to explicitly acquire a reset control for exclusive use. Note
651  * that exclusive resets are requested as acquired by default. In order for a
652  * second consumer to be able to control the reset, the first consumer has to
653  * release it first. Typically the easiest way to achieve this is to call the
654  * reset_control_get_exclusive_released() to obtain an instance of the reset
655  * control. Such reset controls are not acquired by default.
656  *
657  * Consumers implementing shared access to an exclusive reset need to follow
658  * a specific protocol in order to work together. Before consumers can change
659  * a reset they must acquire exclusive access using reset_control_acquire().
660  * After they are done operating the reset, they must release exclusive access
661  * with a call to reset_control_release(). Consumers are not granted exclusive
662  * access to the reset as long as another consumer hasn't released a reset.
663  *
664  * See also: reset_control_release()
665  */
666 int reset_control_acquire(struct reset_control *rstc)
667 {
668 	struct reset_control *rc;
669 
670 	if (!rstc)
671 		return 0;
672 
673 	if (WARN_ON(IS_ERR(rstc)))
674 		return -EINVAL;
675 
676 	if (reset_control_is_array(rstc))
677 		return reset_control_array_acquire(rstc_to_array(rstc));
678 
679 	mutex_lock(&reset_list_mutex);
680 
681 	if (rstc->acquired) {
682 		mutex_unlock(&reset_list_mutex);
683 		return 0;
684 	}
685 
686 	list_for_each_entry(rc, &rstc->rcdev->reset_control_head, list) {
687 		if (rstc != rc && rstc->id == rc->id) {
688 			if (rc->acquired) {
689 				mutex_unlock(&reset_list_mutex);
690 				return -EBUSY;
691 			}
692 		}
693 	}
694 
695 	rstc->acquired = true;
696 
697 	mutex_unlock(&reset_list_mutex);
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(reset_control_acquire);
701 
702 /**
703  * reset_control_bulk_acquire - acquires reset controls for exclusive use
704  * @num_rstcs: number of entries in rstcs array
705  * @rstcs: array of struct reset_control_bulk_data with reset controls set
706  *
707  * This is used to explicitly acquire reset controls requested with
708  * reset_control_bulk_get_exclusive_release() for temporary exclusive use.
709  *
710  * See also: reset_control_acquire(), reset_control_bulk_release()
711  */
712 int reset_control_bulk_acquire(int num_rstcs,
713 			       struct reset_control_bulk_data *rstcs)
714 {
715 	int ret, i;
716 
717 	for (i = 0; i < num_rstcs; i++) {
718 		ret = reset_control_acquire(rstcs[i].rstc);
719 		if (ret)
720 			goto err;
721 	}
722 
723 	return 0;
724 
725 err:
726 	while (i--)
727 		reset_control_release(rstcs[i].rstc);
728 	return ret;
729 }
730 EXPORT_SYMBOL_GPL(reset_control_bulk_acquire);
731 
732 /**
733  * reset_control_release() - releases exclusive access to a reset control
734  * @rstc: reset control
735  *
736  * Releases exclusive access right to a reset control previously obtained by a
737  * call to reset_control_acquire(). Until a consumer calls this function, no
738  * other consumers will be granted exclusive access.
739  *
740  * See also: reset_control_acquire()
741  */
742 void reset_control_release(struct reset_control *rstc)
743 {
744 	if (!rstc || WARN_ON(IS_ERR(rstc)))
745 		return;
746 
747 	if (reset_control_is_array(rstc))
748 		reset_control_array_release(rstc_to_array(rstc));
749 	else
750 		rstc->acquired = false;
751 }
752 EXPORT_SYMBOL_GPL(reset_control_release);
753 
754 /**
755  * reset_control_bulk_release() - releases exclusive access to reset controls
756  * @num_rstcs: number of entries in rstcs array
757  * @rstcs: array of struct reset_control_bulk_data with reset controls set
758  *
759  * Releases exclusive access right to reset controls previously obtained by a
760  * call to reset_control_bulk_acquire().
761  *
762  * See also: reset_control_release(), reset_control_bulk_acquire()
763  */
764 void reset_control_bulk_release(int num_rstcs,
765 				struct reset_control_bulk_data *rstcs)
766 {
767 	int i;
768 
769 	for (i = 0; i < num_rstcs; i++)
770 		reset_control_release(rstcs[i].rstc);
771 }
772 EXPORT_SYMBOL_GPL(reset_control_bulk_release);
773 
774 static struct reset_control *
775 __reset_control_get_internal(struct reset_controller_dev *rcdev,
776 			     unsigned int index, enum reset_control_flags flags)
777 {
778 	bool shared = flags & RESET_CONTROL_FLAGS_BIT_SHARED;
779 	bool acquired = flags & RESET_CONTROL_FLAGS_BIT_ACQUIRED;
780 	struct reset_control *rstc;
781 
782 	lockdep_assert_held(&reset_list_mutex);
783 
784 	/* Expect callers to filter out OPTIONAL and DEASSERTED bits */
785 	if (WARN_ON(flags & ~(RESET_CONTROL_FLAGS_BIT_SHARED |
786 			      RESET_CONTROL_FLAGS_BIT_ACQUIRED)))
787 		return ERR_PTR(-EINVAL);
788 
789 	list_for_each_entry(rstc, &rcdev->reset_control_head, list) {
790 		if (rstc->id == index) {
791 			/*
792 			 * Allow creating a secondary exclusive reset_control
793 			 * that is initially not acquired for an already
794 			 * controlled reset line.
795 			 */
796 			if (!rstc->shared && !shared && !acquired)
797 				break;
798 
799 			if (WARN_ON(!rstc->shared || !shared))
800 				return ERR_PTR(-EBUSY);
801 
802 			kref_get(&rstc->refcnt);
803 			return rstc;
804 		}
805 	}
806 
807 	rstc = kzalloc(sizeof(*rstc), GFP_KERNEL);
808 	if (!rstc)
809 		return ERR_PTR(-ENOMEM);
810 
811 	if (!try_module_get(rcdev->owner)) {
812 		kfree(rstc);
813 		return ERR_PTR(-ENODEV);
814 	}
815 
816 	rstc->rcdev = rcdev;
817 	list_add(&rstc->list, &rcdev->reset_control_head);
818 	rstc->id = index;
819 	kref_init(&rstc->refcnt);
820 	rstc->acquired = acquired;
821 	rstc->shared = shared;
822 	get_device(rcdev->dev);
823 
824 	return rstc;
825 }
826 
827 static void __reset_control_release(struct kref *kref)
828 {
829 	struct reset_control *rstc = container_of(kref, struct reset_control,
830 						  refcnt);
831 
832 	lockdep_assert_held(&reset_list_mutex);
833 
834 	module_put(rstc->rcdev->owner);
835 
836 	list_del(&rstc->list);
837 	put_device(rstc->rcdev->dev);
838 	kfree(rstc);
839 }
840 
841 static void __reset_control_put_internal(struct reset_control *rstc)
842 {
843 	lockdep_assert_held(&reset_list_mutex);
844 
845 	if (IS_ERR_OR_NULL(rstc))
846 		return;
847 
848 	kref_put(&rstc->refcnt, __reset_control_release);
849 }
850 
851 static int __reset_add_reset_gpio_lookup(int id, struct device_node *np,
852 					 unsigned int gpio,
853 					 unsigned int of_flags)
854 {
855 	const struct fwnode_handle *fwnode = of_fwnode_handle(np);
856 	unsigned int lookup_flags;
857 	const char *label_tmp;
858 
859 	/*
860 	 * Later we map GPIO flags between OF and Linux, however not all
861 	 * constants from include/dt-bindings/gpio/gpio.h and
862 	 * include/linux/gpio/machine.h match each other.
863 	 */
864 	if (of_flags > GPIO_ACTIVE_LOW) {
865 		pr_err("reset-gpio code does not support GPIO flags %u for GPIO %u\n",
866 		       of_flags, gpio);
867 		return -EINVAL;
868 	}
869 
870 	struct gpio_device *gdev __free(gpio_device_put) = gpio_device_find_by_fwnode(fwnode);
871 	if (!gdev)
872 		return -EPROBE_DEFER;
873 
874 	label_tmp = gpio_device_get_label(gdev);
875 	if (!label_tmp)
876 		return -EINVAL;
877 
878 	char *label __free(kfree) = kstrdup(label_tmp, GFP_KERNEL);
879 	if (!label)
880 		return -ENOMEM;
881 
882 	/* Size: one lookup entry plus sentinel */
883 	struct gpiod_lookup_table *lookup __free(kfree) = kzalloc(struct_size(lookup, table, 2),
884 								  GFP_KERNEL);
885 	if (!lookup)
886 		return -ENOMEM;
887 
888 	lookup->dev_id = kasprintf(GFP_KERNEL, "reset-gpio.%d", id);
889 	if (!lookup->dev_id)
890 		return -ENOMEM;
891 
892 	lookup_flags = GPIO_PERSISTENT;
893 	lookup_flags |= of_flags & GPIO_ACTIVE_LOW;
894 	lookup->table[0] = GPIO_LOOKUP(no_free_ptr(label), gpio, "reset",
895 				       lookup_flags);
896 
897 	/* Not freed on success, because it is persisent subsystem data. */
898 	gpiod_add_lookup_table(no_free_ptr(lookup));
899 
900 	return 0;
901 }
902 
903 /*
904  * @args:	phandle to the GPIO provider with all the args like GPIO number
905  */
906 static int __reset_add_reset_gpio_device(const struct of_phandle_args *args)
907 {
908 	struct reset_gpio_lookup *rgpio_dev;
909 	struct platform_device *pdev;
910 	int id, ret;
911 
912 	/*
913 	 * Currently only #gpio-cells=2 is supported with the meaning of:
914 	 * args[0]: GPIO number
915 	 * args[1]: GPIO flags
916 	 * TODO: Handle other cases.
917 	 */
918 	if (args->args_count != 2)
919 		return -ENOENT;
920 
921 	/*
922 	 * Registering reset-gpio device might cause immediate
923 	 * bind, resulting in its probe() registering new reset controller thus
924 	 * taking reset_list_mutex lock via reset_controller_register().
925 	 */
926 	lockdep_assert_not_held(&reset_list_mutex);
927 
928 	guard(mutex)(&reset_gpio_lookup_mutex);
929 
930 	list_for_each_entry(rgpio_dev, &reset_gpio_lookup_list, list) {
931 		if (args->np == rgpio_dev->of_args.np) {
932 			if (of_phandle_args_equal(args, &rgpio_dev->of_args))
933 				return 0; /* Already on the list, done */
934 		}
935 	}
936 
937 	id = ida_alloc(&reset_gpio_ida, GFP_KERNEL);
938 	if (id < 0)
939 		return id;
940 
941 	/* Not freed on success, because it is persisent subsystem data. */
942 	rgpio_dev = kzalloc(sizeof(*rgpio_dev), GFP_KERNEL);
943 	if (!rgpio_dev) {
944 		ret = -ENOMEM;
945 		goto err_ida_free;
946 	}
947 
948 	ret = __reset_add_reset_gpio_lookup(id, args->np, args->args[0],
949 					    args->args[1]);
950 	if (ret < 0)
951 		goto err_kfree;
952 
953 	rgpio_dev->of_args = *args;
954 	/*
955 	 * We keep the device_node reference, but of_args.np is put at the end
956 	 * of __of_reset_control_get(), so get it one more time.
957 	 * Hold reference as long as rgpio_dev memory is valid.
958 	 */
959 	of_node_get(rgpio_dev->of_args.np);
960 	pdev = platform_device_register_data(NULL, "reset-gpio", id,
961 					     &rgpio_dev->of_args,
962 					     sizeof(rgpio_dev->of_args));
963 	ret = PTR_ERR_OR_ZERO(pdev);
964 	if (ret)
965 		goto err_put;
966 
967 	list_add(&rgpio_dev->list, &reset_gpio_lookup_list);
968 
969 	return 0;
970 
971 err_put:
972 	of_node_put(rgpio_dev->of_args.np);
973 err_kfree:
974 	kfree(rgpio_dev);
975 err_ida_free:
976 	ida_free(&reset_gpio_ida, id);
977 
978 	return ret;
979 }
980 
981 static struct reset_controller_dev *__reset_find_rcdev(const struct of_phandle_args *args,
982 						       bool gpio_fallback)
983 {
984 	struct reset_controller_dev *rcdev;
985 
986 	lockdep_assert_held(&reset_list_mutex);
987 
988 	list_for_each_entry(rcdev, &reset_controller_list, list) {
989 		if (gpio_fallback) {
990 			if (rcdev->of_args && of_phandle_args_equal(args,
991 								    rcdev->of_args))
992 				return rcdev;
993 		} else {
994 			if (args->np == rcdev->of_node)
995 				return rcdev;
996 		}
997 	}
998 
999 	return NULL;
1000 }
1001 
1002 struct reset_control *
1003 __of_reset_control_get(struct device_node *node, const char *id, int index,
1004 		       enum reset_control_flags flags)
1005 {
1006 	bool optional = flags & RESET_CONTROL_FLAGS_BIT_OPTIONAL;
1007 	bool gpio_fallback = false;
1008 	struct reset_control *rstc;
1009 	struct reset_controller_dev *rcdev;
1010 	struct of_phandle_args args;
1011 	int rstc_id;
1012 	int ret;
1013 
1014 	if (!node)
1015 		return ERR_PTR(-EINVAL);
1016 
1017 	if (id) {
1018 		index = of_property_match_string(node,
1019 						 "reset-names", id);
1020 		if (index == -EILSEQ)
1021 			return ERR_PTR(index);
1022 		if (index < 0)
1023 			return optional ? NULL : ERR_PTR(-ENOENT);
1024 	}
1025 
1026 	ret = of_parse_phandle_with_args(node, "resets", "#reset-cells",
1027 					 index, &args);
1028 	if (ret == -EINVAL)
1029 		return ERR_PTR(ret);
1030 	if (ret) {
1031 		if (!IS_ENABLED(CONFIG_RESET_GPIO))
1032 			return optional ? NULL : ERR_PTR(ret);
1033 
1034 		/*
1035 		 * There can be only one reset-gpio for regular devices, so
1036 		 * don't bother with the "reset-gpios" phandle index.
1037 		 */
1038 		ret = of_parse_phandle_with_args(node, "reset-gpios", "#gpio-cells",
1039 						 0, &args);
1040 		if (ret)
1041 			return optional ? NULL : ERR_PTR(ret);
1042 
1043 		gpio_fallback = true;
1044 
1045 		ret = __reset_add_reset_gpio_device(&args);
1046 		if (ret) {
1047 			rstc = ERR_PTR(ret);
1048 			goto out_put;
1049 		}
1050 	}
1051 
1052 	mutex_lock(&reset_list_mutex);
1053 	rcdev = __reset_find_rcdev(&args, gpio_fallback);
1054 	if (!rcdev) {
1055 		rstc = ERR_PTR(-EPROBE_DEFER);
1056 		goto out_unlock;
1057 	}
1058 
1059 	if (WARN_ON(args.args_count != rcdev->of_reset_n_cells)) {
1060 		rstc = ERR_PTR(-EINVAL);
1061 		goto out_unlock;
1062 	}
1063 
1064 	rstc_id = rcdev->of_xlate(rcdev, &args);
1065 	if (rstc_id < 0) {
1066 		rstc = ERR_PTR(rstc_id);
1067 		goto out_unlock;
1068 	}
1069 
1070 	flags &= ~RESET_CONTROL_FLAGS_BIT_OPTIONAL;
1071 
1072 	/* reset_list_mutex also protects the rcdev's reset_control list */
1073 	rstc = __reset_control_get_internal(rcdev, rstc_id, flags);
1074 
1075 out_unlock:
1076 	mutex_unlock(&reset_list_mutex);
1077 out_put:
1078 	of_node_put(args.np);
1079 
1080 	return rstc;
1081 }
1082 EXPORT_SYMBOL_GPL(__of_reset_control_get);
1083 
1084 static struct reset_controller_dev *
1085 __reset_controller_by_name(const char *name)
1086 {
1087 	struct reset_controller_dev *rcdev;
1088 
1089 	lockdep_assert_held(&reset_list_mutex);
1090 
1091 	list_for_each_entry(rcdev, &reset_controller_list, list) {
1092 		if (!rcdev->dev)
1093 			continue;
1094 
1095 		if (!strcmp(name, dev_name(rcdev->dev)))
1096 			return rcdev;
1097 	}
1098 
1099 	return NULL;
1100 }
1101 
1102 static struct reset_control *
1103 __reset_control_get_from_lookup(struct device *dev, const char *con_id,
1104 				enum reset_control_flags flags)
1105 {
1106 	bool optional = flags & RESET_CONTROL_FLAGS_BIT_OPTIONAL;
1107 	const struct reset_control_lookup *lookup;
1108 	struct reset_controller_dev *rcdev;
1109 	const char *dev_id = dev_name(dev);
1110 	struct reset_control *rstc = NULL;
1111 
1112 	mutex_lock(&reset_lookup_mutex);
1113 
1114 	list_for_each_entry(lookup, &reset_lookup_list, list) {
1115 		if (strcmp(lookup->dev_id, dev_id))
1116 			continue;
1117 
1118 		if ((!con_id && !lookup->con_id) ||
1119 		    ((con_id && lookup->con_id) &&
1120 		     !strcmp(con_id, lookup->con_id))) {
1121 			mutex_lock(&reset_list_mutex);
1122 			rcdev = __reset_controller_by_name(lookup->provider);
1123 			if (!rcdev) {
1124 				mutex_unlock(&reset_list_mutex);
1125 				mutex_unlock(&reset_lookup_mutex);
1126 				/* Reset provider may not be ready yet. */
1127 				return ERR_PTR(-EPROBE_DEFER);
1128 			}
1129 
1130 			flags &= ~RESET_CONTROL_FLAGS_BIT_OPTIONAL;
1131 
1132 			rstc = __reset_control_get_internal(rcdev,
1133 							    lookup->index,
1134 							    flags);
1135 			mutex_unlock(&reset_list_mutex);
1136 			break;
1137 		}
1138 	}
1139 
1140 	mutex_unlock(&reset_lookup_mutex);
1141 
1142 	if (!rstc)
1143 		return optional ? NULL : ERR_PTR(-ENOENT);
1144 
1145 	return rstc;
1146 }
1147 
1148 struct reset_control *__reset_control_get(struct device *dev, const char *id,
1149 					  int index, enum reset_control_flags flags)
1150 {
1151 	bool shared = flags & RESET_CONTROL_FLAGS_BIT_SHARED;
1152 	bool acquired = flags & RESET_CONTROL_FLAGS_BIT_ACQUIRED;
1153 
1154 	if (WARN_ON(shared && acquired))
1155 		return ERR_PTR(-EINVAL);
1156 
1157 	if (dev->of_node)
1158 		return __of_reset_control_get(dev->of_node, id, index, flags);
1159 
1160 	return __reset_control_get_from_lookup(dev, id, flags);
1161 }
1162 EXPORT_SYMBOL_GPL(__reset_control_get);
1163 
1164 int __reset_control_bulk_get(struct device *dev, int num_rstcs,
1165 			     struct reset_control_bulk_data *rstcs,
1166 			     enum reset_control_flags flags)
1167 {
1168 	int ret, i;
1169 
1170 	for (i = 0; i < num_rstcs; i++) {
1171 		rstcs[i].rstc = __reset_control_get(dev, rstcs[i].id, 0, flags);
1172 		if (IS_ERR(rstcs[i].rstc)) {
1173 			ret = PTR_ERR(rstcs[i].rstc);
1174 			goto err;
1175 		}
1176 	}
1177 
1178 	return 0;
1179 
1180 err:
1181 	mutex_lock(&reset_list_mutex);
1182 	while (i--)
1183 		__reset_control_put_internal(rstcs[i].rstc);
1184 	mutex_unlock(&reset_list_mutex);
1185 	return ret;
1186 }
1187 EXPORT_SYMBOL_GPL(__reset_control_bulk_get);
1188 
1189 static void reset_control_array_put(struct reset_control_array *resets)
1190 {
1191 	int i;
1192 
1193 	mutex_lock(&reset_list_mutex);
1194 	for (i = 0; i < resets->num_rstcs; i++)
1195 		__reset_control_put_internal(resets->rstc[i]);
1196 	mutex_unlock(&reset_list_mutex);
1197 	kfree(resets);
1198 }
1199 
1200 /**
1201  * reset_control_put - free the reset controller
1202  * @rstc: reset controller
1203  */
1204 void reset_control_put(struct reset_control *rstc)
1205 {
1206 	if (IS_ERR_OR_NULL(rstc))
1207 		return;
1208 
1209 	if (reset_control_is_array(rstc)) {
1210 		reset_control_array_put(rstc_to_array(rstc));
1211 		return;
1212 	}
1213 
1214 	mutex_lock(&reset_list_mutex);
1215 	__reset_control_put_internal(rstc);
1216 	mutex_unlock(&reset_list_mutex);
1217 }
1218 EXPORT_SYMBOL_GPL(reset_control_put);
1219 
1220 /**
1221  * reset_control_bulk_put - free the reset controllers
1222  * @num_rstcs: number of entries in rstcs array
1223  * @rstcs: array of struct reset_control_bulk_data with reset controls set
1224  */
1225 void reset_control_bulk_put(int num_rstcs, struct reset_control_bulk_data *rstcs)
1226 {
1227 	mutex_lock(&reset_list_mutex);
1228 	while (num_rstcs--)
1229 		__reset_control_put_internal(rstcs[num_rstcs].rstc);
1230 	mutex_unlock(&reset_list_mutex);
1231 }
1232 EXPORT_SYMBOL_GPL(reset_control_bulk_put);
1233 
1234 static void devm_reset_control_release(struct device *dev, void *res)
1235 {
1236 	reset_control_put(*(struct reset_control **)res);
1237 }
1238 
1239 static void devm_reset_control_release_deasserted(struct device *dev, void *res)
1240 {
1241 	struct reset_control *rstc = *(struct reset_control **)res;
1242 
1243 	reset_control_assert(rstc);
1244 	reset_control_put(rstc);
1245 }
1246 
1247 struct reset_control *
1248 __devm_reset_control_get(struct device *dev, const char *id, int index,
1249 			 enum reset_control_flags flags)
1250 {
1251 	struct reset_control **ptr, *rstc;
1252 	bool deasserted = flags & RESET_CONTROL_FLAGS_BIT_DEASSERTED;
1253 
1254 	ptr = devres_alloc(deasserted ? devm_reset_control_release_deasserted :
1255 			   devm_reset_control_release, sizeof(*ptr),
1256 			   GFP_KERNEL);
1257 	if (!ptr)
1258 		return ERR_PTR(-ENOMEM);
1259 
1260 	flags &= ~RESET_CONTROL_FLAGS_BIT_DEASSERTED;
1261 
1262 	rstc = __reset_control_get(dev, id, index, flags);
1263 	if (IS_ERR_OR_NULL(rstc)) {
1264 		devres_free(ptr);
1265 		return rstc;
1266 	}
1267 
1268 	if (deasserted) {
1269 		int ret;
1270 
1271 		ret = reset_control_deassert(rstc);
1272 		if (ret) {
1273 			reset_control_put(rstc);
1274 			devres_free(ptr);
1275 			return ERR_PTR(ret);
1276 		}
1277 	}
1278 
1279 	*ptr = rstc;
1280 	devres_add(dev, ptr);
1281 
1282 	return rstc;
1283 }
1284 EXPORT_SYMBOL_GPL(__devm_reset_control_get);
1285 
1286 struct reset_control_bulk_devres {
1287 	int num_rstcs;
1288 	struct reset_control_bulk_data *rstcs;
1289 };
1290 
1291 static void devm_reset_control_bulk_release(struct device *dev, void *res)
1292 {
1293 	struct reset_control_bulk_devres *devres = res;
1294 
1295 	reset_control_bulk_put(devres->num_rstcs, devres->rstcs);
1296 }
1297 
1298 static void devm_reset_control_bulk_release_deasserted(struct device *dev, void *res)
1299 {
1300 	struct reset_control_bulk_devres *devres = res;
1301 
1302 	reset_control_bulk_assert(devres->num_rstcs, devres->rstcs);
1303 	reset_control_bulk_put(devres->num_rstcs, devres->rstcs);
1304 }
1305 
1306 int __devm_reset_control_bulk_get(struct device *dev, int num_rstcs,
1307 				  struct reset_control_bulk_data *rstcs,
1308 				  enum reset_control_flags flags)
1309 {
1310 	struct reset_control_bulk_devres *ptr;
1311 	bool deasserted = flags & RESET_CONTROL_FLAGS_BIT_DEASSERTED;
1312 	int ret;
1313 
1314 	ptr = devres_alloc(deasserted ? devm_reset_control_bulk_release_deasserted :
1315 			   devm_reset_control_bulk_release, sizeof(*ptr),
1316 			   GFP_KERNEL);
1317 	if (!ptr)
1318 		return -ENOMEM;
1319 
1320 	flags &= ~RESET_CONTROL_FLAGS_BIT_DEASSERTED;
1321 
1322 	ret = __reset_control_bulk_get(dev, num_rstcs, rstcs, flags);
1323 	if (ret < 0) {
1324 		devres_free(ptr);
1325 		return ret;
1326 	}
1327 
1328 	if (deasserted) {
1329 		ret = reset_control_bulk_deassert(num_rstcs, rstcs);
1330 		if (ret) {
1331 			reset_control_bulk_put(num_rstcs, rstcs);
1332 			devres_free(ptr);
1333 			return ret;
1334 		}
1335 	}
1336 
1337 	ptr->num_rstcs = num_rstcs;
1338 	ptr->rstcs = rstcs;
1339 	devres_add(dev, ptr);
1340 
1341 	return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(__devm_reset_control_bulk_get);
1344 
1345 /**
1346  * __device_reset - find reset controller associated with the device
1347  *                  and perform reset
1348  * @dev: device to be reset by the controller
1349  * @optional: whether it is optional to reset the device
1350  *
1351  * Convenience wrapper for __reset_control_get() and reset_control_reset().
1352  * This is useful for the common case of devices with single, dedicated reset
1353  * lines. _RST firmware method will be called for devices with ACPI.
1354  */
1355 int __device_reset(struct device *dev, bool optional)
1356 {
1357 	enum reset_control_flags flags;
1358 	struct reset_control *rstc;
1359 	int ret;
1360 
1361 #ifdef CONFIG_ACPI
1362 	acpi_handle handle = ACPI_HANDLE(dev);
1363 
1364 	if (handle) {
1365 		if (!acpi_has_method(handle, "_RST"))
1366 			return optional ? 0 : -ENOENT;
1367 		if (ACPI_FAILURE(acpi_evaluate_object(handle, "_RST", NULL,
1368 						      NULL)))
1369 			return -EIO;
1370 	}
1371 #endif
1372 
1373 	flags = optional ? RESET_CONTROL_OPTIONAL_EXCLUSIVE : RESET_CONTROL_EXCLUSIVE;
1374 	rstc = __reset_control_get(dev, NULL, 0, flags);
1375 	if (IS_ERR(rstc))
1376 		return PTR_ERR(rstc);
1377 
1378 	ret = reset_control_reset(rstc);
1379 
1380 	reset_control_put(rstc);
1381 
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL_GPL(__device_reset);
1385 
1386 /*
1387  * APIs to manage an array of reset controls.
1388  */
1389 
1390 /**
1391  * of_reset_control_get_count - Count number of resets available with a device
1392  *
1393  * @node: device node that contains 'resets'.
1394  *
1395  * Returns positive reset count on success, or error number on failure and
1396  * on count being zero.
1397  */
1398 static int of_reset_control_get_count(struct device_node *node)
1399 {
1400 	int count;
1401 
1402 	if (!node)
1403 		return -EINVAL;
1404 
1405 	count = of_count_phandle_with_args(node, "resets", "#reset-cells");
1406 	if (count == 0)
1407 		count = -ENOENT;
1408 
1409 	return count;
1410 }
1411 
1412 /**
1413  * of_reset_control_array_get - Get a list of reset controls using
1414  *				device node.
1415  *
1416  * @np: device node for the device that requests the reset controls array
1417  * @flags: whether reset controls are shared, optional, acquired
1418  *
1419  * Returns pointer to allocated reset_control on success or error on failure
1420  */
1421 struct reset_control *
1422 of_reset_control_array_get(struct device_node *np, enum reset_control_flags flags)
1423 {
1424 	bool optional = flags & RESET_CONTROL_FLAGS_BIT_OPTIONAL;
1425 	struct reset_control_array *resets;
1426 	struct reset_control *rstc;
1427 	int num, i;
1428 
1429 	num = of_reset_control_get_count(np);
1430 	if (num < 0)
1431 		return optional ? NULL : ERR_PTR(num);
1432 
1433 	resets = kzalloc(struct_size(resets, rstc, num), GFP_KERNEL);
1434 	if (!resets)
1435 		return ERR_PTR(-ENOMEM);
1436 	resets->num_rstcs = num;
1437 
1438 	for (i = 0; i < num; i++) {
1439 		rstc = __of_reset_control_get(np, NULL, i, flags);
1440 		if (IS_ERR(rstc))
1441 			goto err_rst;
1442 		resets->rstc[i] = rstc;
1443 	}
1444 	resets->base.array = true;
1445 
1446 	return &resets->base;
1447 
1448 err_rst:
1449 	mutex_lock(&reset_list_mutex);
1450 	while (--i >= 0)
1451 		__reset_control_put_internal(resets->rstc[i]);
1452 	mutex_unlock(&reset_list_mutex);
1453 
1454 	kfree(resets);
1455 
1456 	return rstc;
1457 }
1458 EXPORT_SYMBOL_GPL(of_reset_control_array_get);
1459 
1460 /**
1461  * devm_reset_control_array_get - Resource managed reset control array get
1462  *
1463  * @dev: device that requests the list of reset controls
1464  * @flags: whether reset controls are shared, optional, acquired
1465  *
1466  * The reset control array APIs are intended for a list of resets
1467  * that just have to be asserted or deasserted, without any
1468  * requirements on the order.
1469  *
1470  * Returns pointer to allocated reset_control on success or error on failure
1471  */
1472 struct reset_control *
1473 devm_reset_control_array_get(struct device *dev, enum reset_control_flags flags)
1474 {
1475 	struct reset_control **ptr, *rstc;
1476 
1477 	ptr = devres_alloc(devm_reset_control_release, sizeof(*ptr),
1478 			   GFP_KERNEL);
1479 	if (!ptr)
1480 		return ERR_PTR(-ENOMEM);
1481 
1482 	rstc = of_reset_control_array_get(dev->of_node, flags);
1483 	if (IS_ERR_OR_NULL(rstc)) {
1484 		devres_free(ptr);
1485 		return rstc;
1486 	}
1487 
1488 	*ptr = rstc;
1489 	devres_add(dev, ptr);
1490 
1491 	return rstc;
1492 }
1493 EXPORT_SYMBOL_GPL(devm_reset_control_array_get);
1494 
1495 static int reset_control_get_count_from_lookup(struct device *dev)
1496 {
1497 	const struct reset_control_lookup *lookup;
1498 	const char *dev_id;
1499 	int count = 0;
1500 
1501 	if (!dev)
1502 		return -EINVAL;
1503 
1504 	dev_id = dev_name(dev);
1505 	mutex_lock(&reset_lookup_mutex);
1506 
1507 	list_for_each_entry(lookup, &reset_lookup_list, list) {
1508 		if (!strcmp(lookup->dev_id, dev_id))
1509 			count++;
1510 	}
1511 
1512 	mutex_unlock(&reset_lookup_mutex);
1513 
1514 	if (count == 0)
1515 		count = -ENOENT;
1516 
1517 	return count;
1518 }
1519 
1520 /**
1521  * reset_control_get_count - Count number of resets available with a device
1522  *
1523  * @dev: device for which to return the number of resets
1524  *
1525  * Returns positive reset count on success, or error number on failure and
1526  * on count being zero.
1527  */
1528 int reset_control_get_count(struct device *dev)
1529 {
1530 	if (dev->of_node)
1531 		return of_reset_control_get_count(dev->of_node);
1532 
1533 	return reset_control_get_count_from_lookup(dev);
1534 }
1535 EXPORT_SYMBOL_GPL(reset_control_get_count);
1536