xref: /linux/drivers/reset/core.c (revision 5cd2340cb6a383d04fd88e48fabc2a21a909d6a1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Reset Controller framework
4  *
5  * Copyright 2013 Philipp Zabel, Pengutronix
6  */
7 #include <linux/atomic.h>
8 #include <linux/cleanup.h>
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/kref.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/gpio/machine.h>
16 #include <linux/idr.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/acpi.h>
20 #include <linux/platform_device.h>
21 #include <linux/reset.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 
25 static DEFINE_MUTEX(reset_list_mutex);
26 static LIST_HEAD(reset_controller_list);
27 
28 static DEFINE_MUTEX(reset_lookup_mutex);
29 static LIST_HEAD(reset_lookup_list);
30 
31 /* Protects reset_gpio_lookup_list */
32 static DEFINE_MUTEX(reset_gpio_lookup_mutex);
33 static LIST_HEAD(reset_gpio_lookup_list);
34 static DEFINE_IDA(reset_gpio_ida);
35 
36 /**
37  * struct reset_control - a reset control
38  * @rcdev: a pointer to the reset controller device
39  *         this reset control belongs to
40  * @list: list entry for the rcdev's reset controller list
41  * @id: ID of the reset controller in the reset
42  *      controller device
43  * @refcnt: Number of gets of this reset_control
44  * @acquired: Only one reset_control may be acquired for a given rcdev and id.
45  * @shared: Is this a shared (1), or an exclusive (0) reset_control?
46  * @array: Is this an array of reset controls (1)?
47  * @deassert_count: Number of times this reset line has been deasserted
48  * @triggered_count: Number of times this reset line has been reset. Currently
49  *                   only used for shared resets, which means that the value
50  *                   will be either 0 or 1.
51  */
52 struct reset_control {
53 	struct reset_controller_dev *rcdev;
54 	struct list_head list;
55 	unsigned int id;
56 	struct kref refcnt;
57 	bool acquired;
58 	bool shared;
59 	bool array;
60 	atomic_t deassert_count;
61 	atomic_t triggered_count;
62 };
63 
64 /**
65  * struct reset_control_array - an array of reset controls
66  * @base: reset control for compatibility with reset control API functions
67  * @num_rstcs: number of reset controls
68  * @rstc: array of reset controls
69  */
70 struct reset_control_array {
71 	struct reset_control base;
72 	unsigned int num_rstcs;
73 	struct reset_control *rstc[] __counted_by(num_rstcs);
74 };
75 
76 /**
77  * struct reset_gpio_lookup - lookup key for ad-hoc created reset-gpio devices
78  * @of_args: phandle to the reset controller with all the args like GPIO number
79  * @list: list entry for the reset_gpio_lookup_list
80  */
81 struct reset_gpio_lookup {
82 	struct of_phandle_args of_args;
83 	struct list_head list;
84 };
85 
86 static const char *rcdev_name(struct reset_controller_dev *rcdev)
87 {
88 	if (rcdev->dev)
89 		return dev_name(rcdev->dev);
90 
91 	if (rcdev->of_node)
92 		return rcdev->of_node->full_name;
93 
94 	if (rcdev->of_args)
95 		return rcdev->of_args->np->full_name;
96 
97 	return NULL;
98 }
99 
100 /**
101  * of_reset_simple_xlate - translate reset_spec to the reset line number
102  * @rcdev: a pointer to the reset controller device
103  * @reset_spec: reset line specifier as found in the device tree
104  *
105  * This static translation function is used by default if of_xlate in
106  * :c:type:`reset_controller_dev` is not set. It is useful for all reset
107  * controllers with 1:1 mapping, where reset lines can be indexed by number
108  * without gaps.
109  */
110 static int of_reset_simple_xlate(struct reset_controller_dev *rcdev,
111 				 const struct of_phandle_args *reset_spec)
112 {
113 	if (reset_spec->args[0] >= rcdev->nr_resets)
114 		return -EINVAL;
115 
116 	return reset_spec->args[0];
117 }
118 
119 /**
120  * reset_controller_register - register a reset controller device
121  * @rcdev: a pointer to the initialized reset controller device
122  */
123 int reset_controller_register(struct reset_controller_dev *rcdev)
124 {
125 	if (rcdev->of_node && rcdev->of_args)
126 		return -EINVAL;
127 
128 	if (!rcdev->of_xlate) {
129 		rcdev->of_reset_n_cells = 1;
130 		rcdev->of_xlate = of_reset_simple_xlate;
131 	}
132 
133 	INIT_LIST_HEAD(&rcdev->reset_control_head);
134 
135 	mutex_lock(&reset_list_mutex);
136 	list_add(&rcdev->list, &reset_controller_list);
137 	mutex_unlock(&reset_list_mutex);
138 
139 	return 0;
140 }
141 EXPORT_SYMBOL_GPL(reset_controller_register);
142 
143 /**
144  * reset_controller_unregister - unregister a reset controller device
145  * @rcdev: a pointer to the reset controller device
146  */
147 void reset_controller_unregister(struct reset_controller_dev *rcdev)
148 {
149 	mutex_lock(&reset_list_mutex);
150 	list_del(&rcdev->list);
151 	mutex_unlock(&reset_list_mutex);
152 }
153 EXPORT_SYMBOL_GPL(reset_controller_unregister);
154 
155 static void devm_reset_controller_release(struct device *dev, void *res)
156 {
157 	reset_controller_unregister(*(struct reset_controller_dev **)res);
158 }
159 
160 /**
161  * devm_reset_controller_register - resource managed reset_controller_register()
162  * @dev: device that is registering this reset controller
163  * @rcdev: a pointer to the initialized reset controller device
164  *
165  * Managed reset_controller_register(). For reset controllers registered by
166  * this function, reset_controller_unregister() is automatically called on
167  * driver detach. See reset_controller_register() for more information.
168  */
169 int devm_reset_controller_register(struct device *dev,
170 				   struct reset_controller_dev *rcdev)
171 {
172 	struct reset_controller_dev **rcdevp;
173 	int ret;
174 
175 	rcdevp = devres_alloc(devm_reset_controller_release, sizeof(*rcdevp),
176 			      GFP_KERNEL);
177 	if (!rcdevp)
178 		return -ENOMEM;
179 
180 	ret = reset_controller_register(rcdev);
181 	if (ret) {
182 		devres_free(rcdevp);
183 		return ret;
184 	}
185 
186 	*rcdevp = rcdev;
187 	devres_add(dev, rcdevp);
188 
189 	return ret;
190 }
191 EXPORT_SYMBOL_GPL(devm_reset_controller_register);
192 
193 /**
194  * reset_controller_add_lookup - register a set of lookup entries
195  * @lookup: array of reset lookup entries
196  * @num_entries: number of entries in the lookup array
197  */
198 void reset_controller_add_lookup(struct reset_control_lookup *lookup,
199 				 unsigned int num_entries)
200 {
201 	struct reset_control_lookup *entry;
202 	unsigned int i;
203 
204 	mutex_lock(&reset_lookup_mutex);
205 	for (i = 0; i < num_entries; i++) {
206 		entry = &lookup[i];
207 
208 		if (!entry->dev_id || !entry->provider) {
209 			pr_warn("%s(): reset lookup entry badly specified, skipping\n",
210 				__func__);
211 			continue;
212 		}
213 
214 		list_add_tail(&entry->list, &reset_lookup_list);
215 	}
216 	mutex_unlock(&reset_lookup_mutex);
217 }
218 EXPORT_SYMBOL_GPL(reset_controller_add_lookup);
219 
220 static inline struct reset_control_array *
221 rstc_to_array(struct reset_control *rstc) {
222 	return container_of(rstc, struct reset_control_array, base);
223 }
224 
225 static int reset_control_array_reset(struct reset_control_array *resets)
226 {
227 	int ret, i;
228 
229 	for (i = 0; i < resets->num_rstcs; i++) {
230 		ret = reset_control_reset(resets->rstc[i]);
231 		if (ret)
232 			return ret;
233 	}
234 
235 	return 0;
236 }
237 
238 static int reset_control_array_rearm(struct reset_control_array *resets)
239 {
240 	struct reset_control *rstc;
241 	int i;
242 
243 	for (i = 0; i < resets->num_rstcs; i++) {
244 		rstc = resets->rstc[i];
245 
246 		if (!rstc)
247 			continue;
248 
249 		if (WARN_ON(IS_ERR(rstc)))
250 			return -EINVAL;
251 
252 		if (rstc->shared) {
253 			if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
254 				return -EINVAL;
255 		} else {
256 			if (!rstc->acquired)
257 				return -EPERM;
258 		}
259 	}
260 
261 	for (i = 0; i < resets->num_rstcs; i++) {
262 		rstc = resets->rstc[i];
263 
264 		if (rstc && rstc->shared)
265 			WARN_ON(atomic_dec_return(&rstc->triggered_count) < 0);
266 	}
267 
268 	return 0;
269 }
270 
271 static int reset_control_array_assert(struct reset_control_array *resets)
272 {
273 	int ret, i;
274 
275 	for (i = 0; i < resets->num_rstcs; i++) {
276 		ret = reset_control_assert(resets->rstc[i]);
277 		if (ret)
278 			goto err;
279 	}
280 
281 	return 0;
282 
283 err:
284 	while (i--)
285 		reset_control_deassert(resets->rstc[i]);
286 	return ret;
287 }
288 
289 static int reset_control_array_deassert(struct reset_control_array *resets)
290 {
291 	int ret, i;
292 
293 	for (i = 0; i < resets->num_rstcs; i++) {
294 		ret = reset_control_deassert(resets->rstc[i]);
295 		if (ret)
296 			goto err;
297 	}
298 
299 	return 0;
300 
301 err:
302 	while (i--)
303 		reset_control_assert(resets->rstc[i]);
304 	return ret;
305 }
306 
307 static int reset_control_array_acquire(struct reset_control_array *resets)
308 {
309 	unsigned int i;
310 	int err;
311 
312 	for (i = 0; i < resets->num_rstcs; i++) {
313 		err = reset_control_acquire(resets->rstc[i]);
314 		if (err < 0)
315 			goto release;
316 	}
317 
318 	return 0;
319 
320 release:
321 	while (i--)
322 		reset_control_release(resets->rstc[i]);
323 
324 	return err;
325 }
326 
327 static void reset_control_array_release(struct reset_control_array *resets)
328 {
329 	unsigned int i;
330 
331 	for (i = 0; i < resets->num_rstcs; i++)
332 		reset_control_release(resets->rstc[i]);
333 }
334 
335 static inline bool reset_control_is_array(struct reset_control *rstc)
336 {
337 	return rstc->array;
338 }
339 
340 /**
341  * reset_control_reset - reset the controlled device
342  * @rstc: reset controller
343  *
344  * On a shared reset line the actual reset pulse is only triggered once for the
345  * lifetime of the reset_control instance: for all but the first caller this is
346  * a no-op.
347  * Consumers must not use reset_control_(de)assert on shared reset lines when
348  * reset_control_reset has been used.
349  *
350  * If rstc is NULL it is an optional reset and the function will just
351  * return 0.
352  */
353 int reset_control_reset(struct reset_control *rstc)
354 {
355 	int ret;
356 
357 	if (!rstc)
358 		return 0;
359 
360 	if (WARN_ON(IS_ERR(rstc)))
361 		return -EINVAL;
362 
363 	if (reset_control_is_array(rstc))
364 		return reset_control_array_reset(rstc_to_array(rstc));
365 
366 	if (!rstc->rcdev->ops->reset)
367 		return -ENOTSUPP;
368 
369 	if (rstc->shared) {
370 		if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
371 			return -EINVAL;
372 
373 		if (atomic_inc_return(&rstc->triggered_count) != 1)
374 			return 0;
375 	} else {
376 		if (!rstc->acquired)
377 			return -EPERM;
378 	}
379 
380 	ret = rstc->rcdev->ops->reset(rstc->rcdev, rstc->id);
381 	if (rstc->shared && ret)
382 		atomic_dec(&rstc->triggered_count);
383 
384 	return ret;
385 }
386 EXPORT_SYMBOL_GPL(reset_control_reset);
387 
388 /**
389  * reset_control_bulk_reset - reset the controlled devices in order
390  * @num_rstcs: number of entries in rstcs array
391  * @rstcs: array of struct reset_control_bulk_data with reset controls set
392  *
393  * Issue a reset on all provided reset controls, in order.
394  *
395  * See also: reset_control_reset()
396  */
397 int reset_control_bulk_reset(int num_rstcs,
398 			     struct reset_control_bulk_data *rstcs)
399 {
400 	int ret, i;
401 
402 	for (i = 0; i < num_rstcs; i++) {
403 		ret = reset_control_reset(rstcs[i].rstc);
404 		if (ret)
405 			return ret;
406 	}
407 
408 	return 0;
409 }
410 EXPORT_SYMBOL_GPL(reset_control_bulk_reset);
411 
412 /**
413  * reset_control_rearm - allow shared reset line to be re-triggered"
414  * @rstc: reset controller
415  *
416  * On a shared reset line the actual reset pulse is only triggered once for the
417  * lifetime of the reset_control instance, except if this call is used.
418  *
419  * Calls to this function must be balanced with calls to reset_control_reset,
420  * a warning is thrown in case triggered_count ever dips below 0.
421  *
422  * Consumers must not use reset_control_(de)assert on shared reset lines when
423  * reset_control_reset or reset_control_rearm have been used.
424  *
425  * If rstc is NULL the function will just return 0.
426  */
427 int reset_control_rearm(struct reset_control *rstc)
428 {
429 	if (!rstc)
430 		return 0;
431 
432 	if (WARN_ON(IS_ERR(rstc)))
433 		return -EINVAL;
434 
435 	if (reset_control_is_array(rstc))
436 		return reset_control_array_rearm(rstc_to_array(rstc));
437 
438 	if (rstc->shared) {
439 		if (WARN_ON(atomic_read(&rstc->deassert_count) != 0))
440 			return -EINVAL;
441 
442 		WARN_ON(atomic_dec_return(&rstc->triggered_count) < 0);
443 	} else {
444 		if (!rstc->acquired)
445 			return -EPERM;
446 	}
447 
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(reset_control_rearm);
451 
452 /**
453  * reset_control_assert - asserts the reset line
454  * @rstc: reset controller
455  *
456  * Calling this on an exclusive reset controller guarantees that the reset
457  * will be asserted. When called on a shared reset controller the line may
458  * still be deasserted, as long as other users keep it so.
459  *
460  * For shared reset controls a driver cannot expect the hw's registers and
461  * internal state to be reset, but must be prepared for this to happen.
462  * Consumers must not use reset_control_reset on shared reset lines when
463  * reset_control_(de)assert has been used.
464  *
465  * If rstc is NULL it is an optional reset and the function will just
466  * return 0.
467  */
468 int reset_control_assert(struct reset_control *rstc)
469 {
470 	if (!rstc)
471 		return 0;
472 
473 	if (WARN_ON(IS_ERR(rstc)))
474 		return -EINVAL;
475 
476 	if (reset_control_is_array(rstc))
477 		return reset_control_array_assert(rstc_to_array(rstc));
478 
479 	if (rstc->shared) {
480 		if (WARN_ON(atomic_read(&rstc->triggered_count) != 0))
481 			return -EINVAL;
482 
483 		if (WARN_ON(atomic_read(&rstc->deassert_count) == 0))
484 			return -EINVAL;
485 
486 		if (atomic_dec_return(&rstc->deassert_count) != 0)
487 			return 0;
488 
489 		/*
490 		 * Shared reset controls allow the reset line to be in any state
491 		 * after this call, so doing nothing is a valid option.
492 		 */
493 		if (!rstc->rcdev->ops->assert)
494 			return 0;
495 	} else {
496 		/*
497 		 * If the reset controller does not implement .assert(), there
498 		 * is no way to guarantee that the reset line is asserted after
499 		 * this call.
500 		 */
501 		if (!rstc->rcdev->ops->assert)
502 			return -ENOTSUPP;
503 
504 		if (!rstc->acquired) {
505 			WARN(1, "reset %s (ID: %u) is not acquired\n",
506 			     rcdev_name(rstc->rcdev), rstc->id);
507 			return -EPERM;
508 		}
509 	}
510 
511 	return rstc->rcdev->ops->assert(rstc->rcdev, rstc->id);
512 }
513 EXPORT_SYMBOL_GPL(reset_control_assert);
514 
515 /**
516  * reset_control_bulk_assert - asserts the reset lines in order
517  * @num_rstcs: number of entries in rstcs array
518  * @rstcs: array of struct reset_control_bulk_data with reset controls set
519  *
520  * Assert the reset lines for all provided reset controls, in order.
521  * If an assertion fails, already asserted resets are deasserted again.
522  *
523  * See also: reset_control_assert()
524  */
525 int reset_control_bulk_assert(int num_rstcs,
526 			      struct reset_control_bulk_data *rstcs)
527 {
528 	int ret, i;
529 
530 	for (i = 0; i < num_rstcs; i++) {
531 		ret = reset_control_assert(rstcs[i].rstc);
532 		if (ret)
533 			goto err;
534 	}
535 
536 	return 0;
537 
538 err:
539 	while (i--)
540 		reset_control_deassert(rstcs[i].rstc);
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(reset_control_bulk_assert);
544 
545 /**
546  * reset_control_deassert - deasserts the reset line
547  * @rstc: reset controller
548  *
549  * After calling this function, the reset is guaranteed to be deasserted.
550  * Consumers must not use reset_control_reset on shared reset lines when
551  * reset_control_(de)assert has been used.
552  *
553  * If rstc is NULL it is an optional reset and the function will just
554  * return 0.
555  */
556 int reset_control_deassert(struct reset_control *rstc)
557 {
558 	if (!rstc)
559 		return 0;
560 
561 	if (WARN_ON(IS_ERR(rstc)))
562 		return -EINVAL;
563 
564 	if (reset_control_is_array(rstc))
565 		return reset_control_array_deassert(rstc_to_array(rstc));
566 
567 	if (rstc->shared) {
568 		if (WARN_ON(atomic_read(&rstc->triggered_count) != 0))
569 			return -EINVAL;
570 
571 		if (atomic_inc_return(&rstc->deassert_count) != 1)
572 			return 0;
573 	} else {
574 		if (!rstc->acquired) {
575 			WARN(1, "reset %s (ID: %u) is not acquired\n",
576 			     rcdev_name(rstc->rcdev), rstc->id);
577 			return -EPERM;
578 		}
579 	}
580 
581 	/*
582 	 * If the reset controller does not implement .deassert(), we assume
583 	 * that it handles self-deasserting reset lines via .reset(). In that
584 	 * case, the reset lines are deasserted by default. If that is not the
585 	 * case, the reset controller driver should implement .deassert() and
586 	 * return -ENOTSUPP.
587 	 */
588 	if (!rstc->rcdev->ops->deassert)
589 		return 0;
590 
591 	return rstc->rcdev->ops->deassert(rstc->rcdev, rstc->id);
592 }
593 EXPORT_SYMBOL_GPL(reset_control_deassert);
594 
595 /**
596  * reset_control_bulk_deassert - deasserts the reset lines in reverse order
597  * @num_rstcs: number of entries in rstcs array
598  * @rstcs: array of struct reset_control_bulk_data with reset controls set
599  *
600  * Deassert the reset lines for all provided reset controls, in reverse order.
601  * If a deassertion fails, already deasserted resets are asserted again.
602  *
603  * See also: reset_control_deassert()
604  */
605 int reset_control_bulk_deassert(int num_rstcs,
606 				struct reset_control_bulk_data *rstcs)
607 {
608 	int ret, i;
609 
610 	for (i = num_rstcs - 1; i >= 0; i--) {
611 		ret = reset_control_deassert(rstcs[i].rstc);
612 		if (ret)
613 			goto err;
614 	}
615 
616 	return 0;
617 
618 err:
619 	while (i < num_rstcs)
620 		reset_control_assert(rstcs[i++].rstc);
621 	return ret;
622 }
623 EXPORT_SYMBOL_GPL(reset_control_bulk_deassert);
624 
625 /**
626  * reset_control_status - returns a negative errno if not supported, a
627  * positive value if the reset line is asserted, or zero if the reset
628  * line is not asserted or if the desc is NULL (optional reset).
629  * @rstc: reset controller
630  */
631 int reset_control_status(struct reset_control *rstc)
632 {
633 	if (!rstc)
634 		return 0;
635 
636 	if (WARN_ON(IS_ERR(rstc)) || reset_control_is_array(rstc))
637 		return -EINVAL;
638 
639 	if (rstc->rcdev->ops->status)
640 		return rstc->rcdev->ops->status(rstc->rcdev, rstc->id);
641 
642 	return -ENOTSUPP;
643 }
644 EXPORT_SYMBOL_GPL(reset_control_status);
645 
646 /**
647  * reset_control_acquire() - acquires a reset control for exclusive use
648  * @rstc: reset control
649  *
650  * This is used to explicitly acquire a reset control for exclusive use. Note
651  * that exclusive resets are requested as acquired by default. In order for a
652  * second consumer to be able to control the reset, the first consumer has to
653  * release it first. Typically the easiest way to achieve this is to call the
654  * reset_control_get_exclusive_released() to obtain an instance of the reset
655  * control. Such reset controls are not acquired by default.
656  *
657  * Consumers implementing shared access to an exclusive reset need to follow
658  * a specific protocol in order to work together. Before consumers can change
659  * a reset they must acquire exclusive access using reset_control_acquire().
660  * After they are done operating the reset, they must release exclusive access
661  * with a call to reset_control_release(). Consumers are not granted exclusive
662  * access to the reset as long as another consumer hasn't released a reset.
663  *
664  * See also: reset_control_release()
665  */
666 int reset_control_acquire(struct reset_control *rstc)
667 {
668 	struct reset_control *rc;
669 
670 	if (!rstc)
671 		return 0;
672 
673 	if (WARN_ON(IS_ERR(rstc)))
674 		return -EINVAL;
675 
676 	if (reset_control_is_array(rstc))
677 		return reset_control_array_acquire(rstc_to_array(rstc));
678 
679 	mutex_lock(&reset_list_mutex);
680 
681 	if (rstc->acquired) {
682 		mutex_unlock(&reset_list_mutex);
683 		return 0;
684 	}
685 
686 	list_for_each_entry(rc, &rstc->rcdev->reset_control_head, list) {
687 		if (rstc != rc && rstc->id == rc->id) {
688 			if (rc->acquired) {
689 				mutex_unlock(&reset_list_mutex);
690 				return -EBUSY;
691 			}
692 		}
693 	}
694 
695 	rstc->acquired = true;
696 
697 	mutex_unlock(&reset_list_mutex);
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(reset_control_acquire);
701 
702 /**
703  * reset_control_bulk_acquire - acquires reset controls for exclusive use
704  * @num_rstcs: number of entries in rstcs array
705  * @rstcs: array of struct reset_control_bulk_data with reset controls set
706  *
707  * This is used to explicitly acquire reset controls requested with
708  * reset_control_bulk_get_exclusive_release() for temporary exclusive use.
709  *
710  * See also: reset_control_acquire(), reset_control_bulk_release()
711  */
712 int reset_control_bulk_acquire(int num_rstcs,
713 			       struct reset_control_bulk_data *rstcs)
714 {
715 	int ret, i;
716 
717 	for (i = 0; i < num_rstcs; i++) {
718 		ret = reset_control_acquire(rstcs[i].rstc);
719 		if (ret)
720 			goto err;
721 	}
722 
723 	return 0;
724 
725 err:
726 	while (i--)
727 		reset_control_release(rstcs[i].rstc);
728 	return ret;
729 }
730 EXPORT_SYMBOL_GPL(reset_control_bulk_acquire);
731 
732 /**
733  * reset_control_release() - releases exclusive access to a reset control
734  * @rstc: reset control
735  *
736  * Releases exclusive access right to a reset control previously obtained by a
737  * call to reset_control_acquire(). Until a consumer calls this function, no
738  * other consumers will be granted exclusive access.
739  *
740  * See also: reset_control_acquire()
741  */
742 void reset_control_release(struct reset_control *rstc)
743 {
744 	if (!rstc || WARN_ON(IS_ERR(rstc)))
745 		return;
746 
747 	if (reset_control_is_array(rstc))
748 		reset_control_array_release(rstc_to_array(rstc));
749 	else
750 		rstc->acquired = false;
751 }
752 EXPORT_SYMBOL_GPL(reset_control_release);
753 
754 /**
755  * reset_control_bulk_release() - releases exclusive access to reset controls
756  * @num_rstcs: number of entries in rstcs array
757  * @rstcs: array of struct reset_control_bulk_data with reset controls set
758  *
759  * Releases exclusive access right to reset controls previously obtained by a
760  * call to reset_control_bulk_acquire().
761  *
762  * See also: reset_control_release(), reset_control_bulk_acquire()
763  */
764 void reset_control_bulk_release(int num_rstcs,
765 				struct reset_control_bulk_data *rstcs)
766 {
767 	int i;
768 
769 	for (i = 0; i < num_rstcs; i++)
770 		reset_control_release(rstcs[i].rstc);
771 }
772 EXPORT_SYMBOL_GPL(reset_control_bulk_release);
773 
774 static struct reset_control *
775 __reset_control_get_internal(struct reset_controller_dev *rcdev,
776 			     unsigned int index, bool shared, bool acquired)
777 {
778 	struct reset_control *rstc;
779 
780 	lockdep_assert_held(&reset_list_mutex);
781 
782 	list_for_each_entry(rstc, &rcdev->reset_control_head, list) {
783 		if (rstc->id == index) {
784 			/*
785 			 * Allow creating a secondary exclusive reset_control
786 			 * that is initially not acquired for an already
787 			 * controlled reset line.
788 			 */
789 			if (!rstc->shared && !shared && !acquired)
790 				break;
791 
792 			if (WARN_ON(!rstc->shared || !shared))
793 				return ERR_PTR(-EBUSY);
794 
795 			kref_get(&rstc->refcnt);
796 			return rstc;
797 		}
798 	}
799 
800 	rstc = kzalloc(sizeof(*rstc), GFP_KERNEL);
801 	if (!rstc)
802 		return ERR_PTR(-ENOMEM);
803 
804 	if (!try_module_get(rcdev->owner)) {
805 		kfree(rstc);
806 		return ERR_PTR(-ENODEV);
807 	}
808 
809 	rstc->rcdev = rcdev;
810 	list_add(&rstc->list, &rcdev->reset_control_head);
811 	rstc->id = index;
812 	kref_init(&rstc->refcnt);
813 	rstc->acquired = acquired;
814 	rstc->shared = shared;
815 
816 	return rstc;
817 }
818 
819 static void __reset_control_release(struct kref *kref)
820 {
821 	struct reset_control *rstc = container_of(kref, struct reset_control,
822 						  refcnt);
823 
824 	lockdep_assert_held(&reset_list_mutex);
825 
826 	module_put(rstc->rcdev->owner);
827 
828 	list_del(&rstc->list);
829 	kfree(rstc);
830 }
831 
832 static void __reset_control_put_internal(struct reset_control *rstc)
833 {
834 	lockdep_assert_held(&reset_list_mutex);
835 
836 	if (IS_ERR_OR_NULL(rstc))
837 		return;
838 
839 	kref_put(&rstc->refcnt, __reset_control_release);
840 }
841 
842 static int __reset_add_reset_gpio_lookup(int id, struct device_node *np,
843 					 unsigned int gpio,
844 					 unsigned int of_flags)
845 {
846 	const struct fwnode_handle *fwnode = of_fwnode_handle(np);
847 	unsigned int lookup_flags;
848 	const char *label_tmp;
849 
850 	/*
851 	 * Later we map GPIO flags between OF and Linux, however not all
852 	 * constants from include/dt-bindings/gpio/gpio.h and
853 	 * include/linux/gpio/machine.h match each other.
854 	 */
855 	if (of_flags > GPIO_ACTIVE_LOW) {
856 		pr_err("reset-gpio code does not support GPIO flags %u for GPIO %u\n",
857 		       of_flags, gpio);
858 		return -EINVAL;
859 	}
860 
861 	struct gpio_device *gdev __free(gpio_device_put) = gpio_device_find_by_fwnode(fwnode);
862 	if (!gdev)
863 		return -EPROBE_DEFER;
864 
865 	label_tmp = gpio_device_get_label(gdev);
866 	if (!label_tmp)
867 		return -EINVAL;
868 
869 	char *label __free(kfree) = kstrdup(label_tmp, GFP_KERNEL);
870 	if (!label)
871 		return -ENOMEM;
872 
873 	/* Size: one lookup entry plus sentinel */
874 	struct gpiod_lookup_table *lookup __free(kfree) = kzalloc(struct_size(lookup, table, 2),
875 								  GFP_KERNEL);
876 	if (!lookup)
877 		return -ENOMEM;
878 
879 	lookup->dev_id = kasprintf(GFP_KERNEL, "reset-gpio.%d", id);
880 	if (!lookup->dev_id)
881 		return -ENOMEM;
882 
883 	lookup_flags = GPIO_PERSISTENT;
884 	lookup_flags |= of_flags & GPIO_ACTIVE_LOW;
885 	lookup->table[0] = GPIO_LOOKUP(no_free_ptr(label), gpio, "reset",
886 				       lookup_flags);
887 
888 	/* Not freed on success, because it is persisent subsystem data. */
889 	gpiod_add_lookup_table(no_free_ptr(lookup));
890 
891 	return 0;
892 }
893 
894 /*
895  * @args:	phandle to the GPIO provider with all the args like GPIO number
896  */
897 static int __reset_add_reset_gpio_device(const struct of_phandle_args *args)
898 {
899 	struct reset_gpio_lookup *rgpio_dev;
900 	struct platform_device *pdev;
901 	int id, ret;
902 
903 	/*
904 	 * Currently only #gpio-cells=2 is supported with the meaning of:
905 	 * args[0]: GPIO number
906 	 * args[1]: GPIO flags
907 	 * TODO: Handle other cases.
908 	 */
909 	if (args->args_count != 2)
910 		return -ENOENT;
911 
912 	/*
913 	 * Registering reset-gpio device might cause immediate
914 	 * bind, resulting in its probe() registering new reset controller thus
915 	 * taking reset_list_mutex lock via reset_controller_register().
916 	 */
917 	lockdep_assert_not_held(&reset_list_mutex);
918 
919 	mutex_lock(&reset_gpio_lookup_mutex);
920 
921 	list_for_each_entry(rgpio_dev, &reset_gpio_lookup_list, list) {
922 		if (args->np == rgpio_dev->of_args.np) {
923 			if (of_phandle_args_equal(args, &rgpio_dev->of_args))
924 				goto out; /* Already on the list, done */
925 		}
926 	}
927 
928 	id = ida_alloc(&reset_gpio_ida, GFP_KERNEL);
929 	if (id < 0) {
930 		ret = id;
931 		goto err_unlock;
932 	}
933 
934 	/* Not freed on success, because it is persisent subsystem data. */
935 	rgpio_dev = kzalloc(sizeof(*rgpio_dev), GFP_KERNEL);
936 	if (!rgpio_dev) {
937 		ret = -ENOMEM;
938 		goto err_ida_free;
939 	}
940 
941 	ret = __reset_add_reset_gpio_lookup(id, args->np, args->args[0],
942 					    args->args[1]);
943 	if (ret < 0)
944 		goto err_kfree;
945 
946 	rgpio_dev->of_args = *args;
947 	/*
948 	 * We keep the device_node reference, but of_args.np is put at the end
949 	 * of __of_reset_control_get(), so get it one more time.
950 	 * Hold reference as long as rgpio_dev memory is valid.
951 	 */
952 	of_node_get(rgpio_dev->of_args.np);
953 	pdev = platform_device_register_data(NULL, "reset-gpio", id,
954 					     &rgpio_dev->of_args,
955 					     sizeof(rgpio_dev->of_args));
956 	ret = PTR_ERR_OR_ZERO(pdev);
957 	if (ret)
958 		goto err_put;
959 
960 	list_add(&rgpio_dev->list, &reset_gpio_lookup_list);
961 
962 out:
963 	mutex_unlock(&reset_gpio_lookup_mutex);
964 
965 	return 0;
966 
967 err_put:
968 	of_node_put(rgpio_dev->of_args.np);
969 err_kfree:
970 	kfree(rgpio_dev);
971 err_ida_free:
972 	ida_free(&reset_gpio_ida, id);
973 err_unlock:
974 	mutex_unlock(&reset_gpio_lookup_mutex);
975 
976 	return ret;
977 }
978 
979 static struct reset_controller_dev *__reset_find_rcdev(const struct of_phandle_args *args,
980 						       bool gpio_fallback)
981 {
982 	struct reset_controller_dev *rcdev;
983 
984 	lockdep_assert_held(&reset_list_mutex);
985 
986 	list_for_each_entry(rcdev, &reset_controller_list, list) {
987 		if (gpio_fallback) {
988 			if (rcdev->of_args && of_phandle_args_equal(args,
989 								    rcdev->of_args))
990 				return rcdev;
991 		} else {
992 			if (args->np == rcdev->of_node)
993 				return rcdev;
994 		}
995 	}
996 
997 	return NULL;
998 }
999 
1000 struct reset_control *
1001 __of_reset_control_get(struct device_node *node, const char *id, int index,
1002 		       bool shared, bool optional, bool acquired)
1003 {
1004 	bool gpio_fallback = false;
1005 	struct reset_control *rstc;
1006 	struct reset_controller_dev *rcdev;
1007 	struct of_phandle_args args;
1008 	int rstc_id;
1009 	int ret;
1010 
1011 	if (!node)
1012 		return ERR_PTR(-EINVAL);
1013 
1014 	if (id) {
1015 		index = of_property_match_string(node,
1016 						 "reset-names", id);
1017 		if (index == -EILSEQ)
1018 			return ERR_PTR(index);
1019 		if (index < 0)
1020 			return optional ? NULL : ERR_PTR(-ENOENT);
1021 	}
1022 
1023 	ret = of_parse_phandle_with_args(node, "resets", "#reset-cells",
1024 					 index, &args);
1025 	if (ret == -EINVAL)
1026 		return ERR_PTR(ret);
1027 	if (ret) {
1028 		if (!IS_ENABLED(CONFIG_RESET_GPIO))
1029 			return optional ? NULL : ERR_PTR(ret);
1030 
1031 		/*
1032 		 * There can be only one reset-gpio for regular devices, so
1033 		 * don't bother with the "reset-gpios" phandle index.
1034 		 */
1035 		ret = of_parse_phandle_with_args(node, "reset-gpios", "#gpio-cells",
1036 						 0, &args);
1037 		if (ret)
1038 			return optional ? NULL : ERR_PTR(ret);
1039 
1040 		gpio_fallback = true;
1041 
1042 		ret = __reset_add_reset_gpio_device(&args);
1043 		if (ret) {
1044 			rstc = ERR_PTR(ret);
1045 			goto out_put;
1046 		}
1047 	}
1048 
1049 	mutex_lock(&reset_list_mutex);
1050 	rcdev = __reset_find_rcdev(&args, gpio_fallback);
1051 	if (!rcdev) {
1052 		rstc = ERR_PTR(-EPROBE_DEFER);
1053 		goto out_unlock;
1054 	}
1055 
1056 	if (WARN_ON(args.args_count != rcdev->of_reset_n_cells)) {
1057 		rstc = ERR_PTR(-EINVAL);
1058 		goto out_unlock;
1059 	}
1060 
1061 	rstc_id = rcdev->of_xlate(rcdev, &args);
1062 	if (rstc_id < 0) {
1063 		rstc = ERR_PTR(rstc_id);
1064 		goto out_unlock;
1065 	}
1066 
1067 	/* reset_list_mutex also protects the rcdev's reset_control list */
1068 	rstc = __reset_control_get_internal(rcdev, rstc_id, shared, acquired);
1069 
1070 out_unlock:
1071 	mutex_unlock(&reset_list_mutex);
1072 out_put:
1073 	of_node_put(args.np);
1074 
1075 	return rstc;
1076 }
1077 EXPORT_SYMBOL_GPL(__of_reset_control_get);
1078 
1079 static struct reset_controller_dev *
1080 __reset_controller_by_name(const char *name)
1081 {
1082 	struct reset_controller_dev *rcdev;
1083 
1084 	lockdep_assert_held(&reset_list_mutex);
1085 
1086 	list_for_each_entry(rcdev, &reset_controller_list, list) {
1087 		if (!rcdev->dev)
1088 			continue;
1089 
1090 		if (!strcmp(name, dev_name(rcdev->dev)))
1091 			return rcdev;
1092 	}
1093 
1094 	return NULL;
1095 }
1096 
1097 static struct reset_control *
1098 __reset_control_get_from_lookup(struct device *dev, const char *con_id,
1099 				bool shared, bool optional, bool acquired)
1100 {
1101 	const struct reset_control_lookup *lookup;
1102 	struct reset_controller_dev *rcdev;
1103 	const char *dev_id = dev_name(dev);
1104 	struct reset_control *rstc = NULL;
1105 
1106 	mutex_lock(&reset_lookup_mutex);
1107 
1108 	list_for_each_entry(lookup, &reset_lookup_list, list) {
1109 		if (strcmp(lookup->dev_id, dev_id))
1110 			continue;
1111 
1112 		if ((!con_id && !lookup->con_id) ||
1113 		    ((con_id && lookup->con_id) &&
1114 		     !strcmp(con_id, lookup->con_id))) {
1115 			mutex_lock(&reset_list_mutex);
1116 			rcdev = __reset_controller_by_name(lookup->provider);
1117 			if (!rcdev) {
1118 				mutex_unlock(&reset_list_mutex);
1119 				mutex_unlock(&reset_lookup_mutex);
1120 				/* Reset provider may not be ready yet. */
1121 				return ERR_PTR(-EPROBE_DEFER);
1122 			}
1123 
1124 			rstc = __reset_control_get_internal(rcdev,
1125 							    lookup->index,
1126 							    shared, acquired);
1127 			mutex_unlock(&reset_list_mutex);
1128 			break;
1129 		}
1130 	}
1131 
1132 	mutex_unlock(&reset_lookup_mutex);
1133 
1134 	if (!rstc)
1135 		return optional ? NULL : ERR_PTR(-ENOENT);
1136 
1137 	return rstc;
1138 }
1139 
1140 struct reset_control *__reset_control_get(struct device *dev, const char *id,
1141 					  int index, bool shared, bool optional,
1142 					  bool acquired)
1143 {
1144 	if (WARN_ON(shared && acquired))
1145 		return ERR_PTR(-EINVAL);
1146 
1147 	if (dev->of_node)
1148 		return __of_reset_control_get(dev->of_node, id, index, shared,
1149 					      optional, acquired);
1150 
1151 	return __reset_control_get_from_lookup(dev, id, shared, optional,
1152 					       acquired);
1153 }
1154 EXPORT_SYMBOL_GPL(__reset_control_get);
1155 
1156 int __reset_control_bulk_get(struct device *dev, int num_rstcs,
1157 			     struct reset_control_bulk_data *rstcs,
1158 			     bool shared, bool optional, bool acquired)
1159 {
1160 	int ret, i;
1161 
1162 	for (i = 0; i < num_rstcs; i++) {
1163 		rstcs[i].rstc = __reset_control_get(dev, rstcs[i].id, 0,
1164 						    shared, optional, acquired);
1165 		if (IS_ERR(rstcs[i].rstc)) {
1166 			ret = PTR_ERR(rstcs[i].rstc);
1167 			goto err;
1168 		}
1169 	}
1170 
1171 	return 0;
1172 
1173 err:
1174 	mutex_lock(&reset_list_mutex);
1175 	while (i--)
1176 		__reset_control_put_internal(rstcs[i].rstc);
1177 	mutex_unlock(&reset_list_mutex);
1178 	return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(__reset_control_bulk_get);
1181 
1182 static void reset_control_array_put(struct reset_control_array *resets)
1183 {
1184 	int i;
1185 
1186 	mutex_lock(&reset_list_mutex);
1187 	for (i = 0; i < resets->num_rstcs; i++)
1188 		__reset_control_put_internal(resets->rstc[i]);
1189 	mutex_unlock(&reset_list_mutex);
1190 	kfree(resets);
1191 }
1192 
1193 /**
1194  * reset_control_put - free the reset controller
1195  * @rstc: reset controller
1196  */
1197 void reset_control_put(struct reset_control *rstc)
1198 {
1199 	if (IS_ERR_OR_NULL(rstc))
1200 		return;
1201 
1202 	if (reset_control_is_array(rstc)) {
1203 		reset_control_array_put(rstc_to_array(rstc));
1204 		return;
1205 	}
1206 
1207 	mutex_lock(&reset_list_mutex);
1208 	__reset_control_put_internal(rstc);
1209 	mutex_unlock(&reset_list_mutex);
1210 }
1211 EXPORT_SYMBOL_GPL(reset_control_put);
1212 
1213 /**
1214  * reset_control_bulk_put - free the reset controllers
1215  * @num_rstcs: number of entries in rstcs array
1216  * @rstcs: array of struct reset_control_bulk_data with reset controls set
1217  */
1218 void reset_control_bulk_put(int num_rstcs, struct reset_control_bulk_data *rstcs)
1219 {
1220 	mutex_lock(&reset_list_mutex);
1221 	while (num_rstcs--)
1222 		__reset_control_put_internal(rstcs[num_rstcs].rstc);
1223 	mutex_unlock(&reset_list_mutex);
1224 }
1225 EXPORT_SYMBOL_GPL(reset_control_bulk_put);
1226 
1227 static void devm_reset_control_release(struct device *dev, void *res)
1228 {
1229 	reset_control_put(*(struct reset_control **)res);
1230 }
1231 
1232 struct reset_control *
1233 __devm_reset_control_get(struct device *dev, const char *id, int index,
1234 			 bool shared, bool optional, bool acquired)
1235 {
1236 	struct reset_control **ptr, *rstc;
1237 
1238 	ptr = devres_alloc(devm_reset_control_release, sizeof(*ptr),
1239 			   GFP_KERNEL);
1240 	if (!ptr)
1241 		return ERR_PTR(-ENOMEM);
1242 
1243 	rstc = __reset_control_get(dev, id, index, shared, optional, acquired);
1244 	if (IS_ERR_OR_NULL(rstc)) {
1245 		devres_free(ptr);
1246 		return rstc;
1247 	}
1248 
1249 	*ptr = rstc;
1250 	devres_add(dev, ptr);
1251 
1252 	return rstc;
1253 }
1254 EXPORT_SYMBOL_GPL(__devm_reset_control_get);
1255 
1256 struct reset_control_bulk_devres {
1257 	int num_rstcs;
1258 	struct reset_control_bulk_data *rstcs;
1259 };
1260 
1261 static void devm_reset_control_bulk_release(struct device *dev, void *res)
1262 {
1263 	struct reset_control_bulk_devres *devres = res;
1264 
1265 	reset_control_bulk_put(devres->num_rstcs, devres->rstcs);
1266 }
1267 
1268 int __devm_reset_control_bulk_get(struct device *dev, int num_rstcs,
1269 				  struct reset_control_bulk_data *rstcs,
1270 				  bool shared, bool optional, bool acquired)
1271 {
1272 	struct reset_control_bulk_devres *ptr;
1273 	int ret;
1274 
1275 	ptr = devres_alloc(devm_reset_control_bulk_release, sizeof(*ptr),
1276 			   GFP_KERNEL);
1277 	if (!ptr)
1278 		return -ENOMEM;
1279 
1280 	ret = __reset_control_bulk_get(dev, num_rstcs, rstcs, shared, optional, acquired);
1281 	if (ret < 0) {
1282 		devres_free(ptr);
1283 		return ret;
1284 	}
1285 
1286 	ptr->num_rstcs = num_rstcs;
1287 	ptr->rstcs = rstcs;
1288 	devres_add(dev, ptr);
1289 
1290 	return 0;
1291 }
1292 EXPORT_SYMBOL_GPL(__devm_reset_control_bulk_get);
1293 
1294 /**
1295  * __device_reset - find reset controller associated with the device
1296  *                  and perform reset
1297  * @dev: device to be reset by the controller
1298  * @optional: whether it is optional to reset the device
1299  *
1300  * Convenience wrapper for __reset_control_get() and reset_control_reset().
1301  * This is useful for the common case of devices with single, dedicated reset
1302  * lines. _RST firmware method will be called for devices with ACPI.
1303  */
1304 int __device_reset(struct device *dev, bool optional)
1305 {
1306 	struct reset_control *rstc;
1307 	int ret;
1308 
1309 #ifdef CONFIG_ACPI
1310 	acpi_handle handle = ACPI_HANDLE(dev);
1311 
1312 	if (handle) {
1313 		if (!acpi_has_method(handle, "_RST"))
1314 			return optional ? 0 : -ENOENT;
1315 		if (ACPI_FAILURE(acpi_evaluate_object(handle, "_RST", NULL,
1316 						      NULL)))
1317 			return -EIO;
1318 	}
1319 #endif
1320 
1321 	rstc = __reset_control_get(dev, NULL, 0, 0, optional, true);
1322 	if (IS_ERR(rstc))
1323 		return PTR_ERR(rstc);
1324 
1325 	ret = reset_control_reset(rstc);
1326 
1327 	reset_control_put(rstc);
1328 
1329 	return ret;
1330 }
1331 EXPORT_SYMBOL_GPL(__device_reset);
1332 
1333 /*
1334  * APIs to manage an array of reset controls.
1335  */
1336 
1337 /**
1338  * of_reset_control_get_count - Count number of resets available with a device
1339  *
1340  * @node: device node that contains 'resets'.
1341  *
1342  * Returns positive reset count on success, or error number on failure and
1343  * on count being zero.
1344  */
1345 static int of_reset_control_get_count(struct device_node *node)
1346 {
1347 	int count;
1348 
1349 	if (!node)
1350 		return -EINVAL;
1351 
1352 	count = of_count_phandle_with_args(node, "resets", "#reset-cells");
1353 	if (count == 0)
1354 		count = -ENOENT;
1355 
1356 	return count;
1357 }
1358 
1359 /**
1360  * of_reset_control_array_get - Get a list of reset controls using
1361  *				device node.
1362  *
1363  * @np: device node for the device that requests the reset controls array
1364  * @shared: whether reset controls are shared or not
1365  * @optional: whether it is optional to get the reset controls
1366  * @acquired: only one reset control may be acquired for a given controller
1367  *            and ID
1368  *
1369  * Returns pointer to allocated reset_control on success or error on failure
1370  */
1371 struct reset_control *
1372 of_reset_control_array_get(struct device_node *np, bool shared, bool optional,
1373 			   bool acquired)
1374 {
1375 	struct reset_control_array *resets;
1376 	struct reset_control *rstc;
1377 	int num, i;
1378 
1379 	num = of_reset_control_get_count(np);
1380 	if (num < 0)
1381 		return optional ? NULL : ERR_PTR(num);
1382 
1383 	resets = kzalloc(struct_size(resets, rstc, num), GFP_KERNEL);
1384 	if (!resets)
1385 		return ERR_PTR(-ENOMEM);
1386 	resets->num_rstcs = num;
1387 
1388 	for (i = 0; i < num; i++) {
1389 		rstc = __of_reset_control_get(np, NULL, i, shared, optional,
1390 					      acquired);
1391 		if (IS_ERR(rstc))
1392 			goto err_rst;
1393 		resets->rstc[i] = rstc;
1394 	}
1395 	resets->base.array = true;
1396 
1397 	return &resets->base;
1398 
1399 err_rst:
1400 	mutex_lock(&reset_list_mutex);
1401 	while (--i >= 0)
1402 		__reset_control_put_internal(resets->rstc[i]);
1403 	mutex_unlock(&reset_list_mutex);
1404 
1405 	kfree(resets);
1406 
1407 	return rstc;
1408 }
1409 EXPORT_SYMBOL_GPL(of_reset_control_array_get);
1410 
1411 /**
1412  * devm_reset_control_array_get - Resource managed reset control array get
1413  *
1414  * @dev: device that requests the list of reset controls
1415  * @shared: whether reset controls are shared or not
1416  * @optional: whether it is optional to get the reset controls
1417  *
1418  * The reset control array APIs are intended for a list of resets
1419  * that just have to be asserted or deasserted, without any
1420  * requirements on the order.
1421  *
1422  * Returns pointer to allocated reset_control on success or error on failure
1423  */
1424 struct reset_control *
1425 devm_reset_control_array_get(struct device *dev, bool shared, bool optional)
1426 {
1427 	struct reset_control **ptr, *rstc;
1428 
1429 	ptr = devres_alloc(devm_reset_control_release, sizeof(*ptr),
1430 			   GFP_KERNEL);
1431 	if (!ptr)
1432 		return ERR_PTR(-ENOMEM);
1433 
1434 	rstc = of_reset_control_array_get(dev->of_node, shared, optional, true);
1435 	if (IS_ERR_OR_NULL(rstc)) {
1436 		devres_free(ptr);
1437 		return rstc;
1438 	}
1439 
1440 	*ptr = rstc;
1441 	devres_add(dev, ptr);
1442 
1443 	return rstc;
1444 }
1445 EXPORT_SYMBOL_GPL(devm_reset_control_array_get);
1446 
1447 static int reset_control_get_count_from_lookup(struct device *dev)
1448 {
1449 	const struct reset_control_lookup *lookup;
1450 	const char *dev_id;
1451 	int count = 0;
1452 
1453 	if (!dev)
1454 		return -EINVAL;
1455 
1456 	dev_id = dev_name(dev);
1457 	mutex_lock(&reset_lookup_mutex);
1458 
1459 	list_for_each_entry(lookup, &reset_lookup_list, list) {
1460 		if (!strcmp(lookup->dev_id, dev_id))
1461 			count++;
1462 	}
1463 
1464 	mutex_unlock(&reset_lookup_mutex);
1465 
1466 	if (count == 0)
1467 		count = -ENOENT;
1468 
1469 	return count;
1470 }
1471 
1472 /**
1473  * reset_control_get_count - Count number of resets available with a device
1474  *
1475  * @dev: device for which to return the number of resets
1476  *
1477  * Returns positive reset count on success, or error number on failure and
1478  * on count being zero.
1479  */
1480 int reset_control_get_count(struct device *dev)
1481 {
1482 	if (dev->of_node)
1483 		return of_reset_control_get_count(dev->of_node);
1484 
1485 	return reset_control_get_count_from_lookup(dev);
1486 }
1487 EXPORT_SYMBOL_GPL(reset_control_get_count);
1488