xref: /linux/drivers/resctrl/mpam_devices.c (revision fdc29a141d6364645509cb20129cba1f84e4c10f)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2025 Arm Ltd.
3 
4 #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__
5 
6 #include <linux/acpi.h>
7 #include <linux/atomic.h>
8 #include <linux/arm_mpam.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cacheinfo.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/device.h>
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/irqdesc.h>
20 #include <linux/list.h>
21 #include <linux/lockdep.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/printk.h>
25 #include <linux/srcu.h>
26 #include <linux/spinlock.h>
27 #include <linux/types.h>
28 #include <linux/workqueue.h>
29 
30 #include "mpam_internal.h"
31 
32 DEFINE_STATIC_KEY_FALSE(mpam_enabled); /* This moves to arch code */
33 
34 /*
35  * mpam_list_lock protects the SRCU lists when writing. Once the
36  * mpam_enabled key is enabled these lists are read-only,
37  * unless the error interrupt disables the driver.
38  */
39 static DEFINE_MUTEX(mpam_list_lock);
40 static LIST_HEAD(mpam_all_msc);
41 
42 struct srcu_struct mpam_srcu;
43 
44 /*
45  * Number of MSCs that have been probed. Once all MSCs have been probed MPAM
46  * can be enabled.
47  */
48 static atomic_t mpam_num_msc;
49 
50 static int mpam_cpuhp_state;
51 static DEFINE_MUTEX(mpam_cpuhp_state_lock);
52 
53 /*
54  * The smallest common values for any CPU or MSC in the system.
55  * Generating traffic outside this range will result in screaming interrupts.
56  */
57 u16 mpam_partid_max;
58 u8 mpam_pmg_max;
59 static bool partid_max_init, partid_max_published;
60 static DEFINE_SPINLOCK(partid_max_lock);
61 
62 /*
63  * mpam is enabled once all devices have been probed from CPU online callbacks,
64  * scheduled via this work_struct. If access to an MSC depends on a CPU that
65  * was not brought online at boot, this can happen surprisingly late.
66  */
67 static DECLARE_WORK(mpam_enable_work, &mpam_enable);
68 
69 /*
70  * All mpam error interrupts indicate a software bug. On receipt, disable the
71  * driver.
72  */
73 static DECLARE_WORK(mpam_broken_work, &mpam_disable);
74 
75 /* When mpam is disabled, the printed reason to aid debugging */
76 static char *mpam_disable_reason;
77 
78 /*
79  * An MSC is a physical container for controls and monitors, each identified by
80  * their RIS index. These share a base-address, interrupts and some MMIO
81  * registers. A vMSC is a virtual container for RIS in an MSC that control or
82  * monitor the same thing. Members of a vMSC are all RIS in the same MSC, but
83  * not all RIS in an MSC share a vMSC.
84  *
85  * Components are a group of vMSC that control or monitor the same thing but
86  * are from different MSC, so have different base-address, interrupts etc.
87  * Classes are the set components of the same type.
88  *
89  * The features of a vMSC is the union of the RIS it contains.
90  * The features of a Class and Component are the common subset of the vMSC
91  * they contain.
92  *
93  * e.g. The system cache may have bandwidth controls on multiple interfaces,
94  * for regulating traffic from devices independently of traffic from CPUs.
95  * If these are two RIS in one MSC, they will be treated as controlling
96  * different things, and will not share a vMSC/component/class.
97  *
98  * e.g. The L2 may have one MSC and two RIS, one for cache-controls another
99  * for bandwidth. These two RIS are members of the same vMSC.
100  *
101  * e.g. The set of RIS that make up the L2 are grouped as a component. These
102  * are sometimes termed slices. They should be configured the same, as if there
103  * were only one.
104  *
105  * e.g. The SoC probably has more than one L2, each attached to a distinct set
106  * of CPUs. All the L2 components are grouped as a class.
107  *
108  * When creating an MSC, struct mpam_msc is added to the all mpam_all_msc list,
109  * then linked via struct mpam_ris to a vmsc, component and class.
110  * The same MSC may exist under different class->component->vmsc paths, but the
111  * RIS index will be unique.
112  */
113 LIST_HEAD(mpam_classes);
114 
115 /* List of all objects that can be free()d after synchronise_srcu() */
116 static LLIST_HEAD(mpam_garbage);
117 
118 static inline void init_garbage(struct mpam_garbage *garbage)
119 {
120 	init_llist_node(&garbage->llist);
121 }
122 
123 #define add_to_garbage(x)				\
124 do {							\
125 	__typeof__(x) _x = (x);				\
126 	_x->garbage.to_free = _x;			\
127 	llist_add(&_x->garbage.llist, &mpam_garbage);	\
128 } while (0)
129 
130 static void mpam_free_garbage(void)
131 {
132 	struct mpam_garbage *iter, *tmp;
133 	struct llist_node *to_free = llist_del_all(&mpam_garbage);
134 
135 	if (!to_free)
136 		return;
137 
138 	synchronize_srcu(&mpam_srcu);
139 
140 	llist_for_each_entry_safe(iter, tmp, to_free, llist) {
141 		if (iter->pdev)
142 			devm_kfree(&iter->pdev->dev, iter->to_free);
143 		else
144 			kfree(iter->to_free);
145 	}
146 }
147 
148 /*
149  * Once mpam is enabled, new requestors cannot further reduce the available
150  * partid. Assert that the size is fixed, and new requestors will be turned
151  * away.
152  */
153 static void mpam_assert_partid_sizes_fixed(void)
154 {
155 	WARN_ON_ONCE(!partid_max_published);
156 }
157 
158 static u32 __mpam_read_reg(struct mpam_msc *msc, u16 reg)
159 {
160 	WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility));
161 
162 	return readl_relaxed(msc->mapped_hwpage + reg);
163 }
164 
165 static inline u32 _mpam_read_partsel_reg(struct mpam_msc *msc, u16 reg)
166 {
167 	lockdep_assert_held_once(&msc->part_sel_lock);
168 	return __mpam_read_reg(msc, reg);
169 }
170 
171 #define mpam_read_partsel_reg(msc, reg) _mpam_read_partsel_reg(msc, MPAMF_##reg)
172 
173 static void __mpam_write_reg(struct mpam_msc *msc, u16 reg, u32 val)
174 {
175 	WARN_ON_ONCE(reg + sizeof(u32) > msc->mapped_hwpage_sz);
176 	WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility));
177 
178 	writel_relaxed(val, msc->mapped_hwpage + reg);
179 }
180 
181 static inline void _mpam_write_partsel_reg(struct mpam_msc *msc, u16 reg, u32 val)
182 {
183 	lockdep_assert_held_once(&msc->part_sel_lock);
184 	__mpam_write_reg(msc, reg, val);
185 }
186 
187 #define mpam_write_partsel_reg(msc, reg, val)  _mpam_write_partsel_reg(msc, MPAMCFG_##reg, val)
188 
189 static inline u32 _mpam_read_monsel_reg(struct mpam_msc *msc, u16 reg)
190 {
191 	mpam_mon_sel_lock_held(msc);
192 	return __mpam_read_reg(msc, reg);
193 }
194 
195 #define mpam_read_monsel_reg(msc, reg) _mpam_read_monsel_reg(msc, MSMON_##reg)
196 
197 static inline void _mpam_write_monsel_reg(struct mpam_msc *msc, u16 reg, u32 val)
198 {
199 	mpam_mon_sel_lock_held(msc);
200 	__mpam_write_reg(msc, reg, val);
201 }
202 
203 #define mpam_write_monsel_reg(msc, reg, val)   _mpam_write_monsel_reg(msc, MSMON_##reg, val)
204 
205 static u64 mpam_msc_read_idr(struct mpam_msc *msc)
206 {
207 	u64 idr_high = 0, idr_low;
208 
209 	lockdep_assert_held(&msc->part_sel_lock);
210 
211 	idr_low = mpam_read_partsel_reg(msc, IDR);
212 	if (FIELD_GET(MPAMF_IDR_EXT, idr_low))
213 		idr_high = mpam_read_partsel_reg(msc, IDR + 4);
214 
215 	return (idr_high << 32) | idr_low;
216 }
217 
218 static void mpam_msc_clear_esr(struct mpam_msc *msc)
219 {
220 	u64 esr_low = __mpam_read_reg(msc, MPAMF_ESR);
221 
222 	if (!esr_low)
223 		return;
224 
225 	/*
226 	 * Clearing the high/low bits of MPAMF_ESR can not be atomic.
227 	 * Clear the top half first, so that the pending error bits in the
228 	 * lower half prevent hardware from updating either half of the
229 	 * register.
230 	 */
231 	if (msc->has_extd_esr)
232 		__mpam_write_reg(msc, MPAMF_ESR + 4, 0);
233 	__mpam_write_reg(msc, MPAMF_ESR, 0);
234 }
235 
236 static u64 mpam_msc_read_esr(struct mpam_msc *msc)
237 {
238 	u64 esr_high = 0, esr_low;
239 
240 	esr_low = __mpam_read_reg(msc, MPAMF_ESR);
241 	if (msc->has_extd_esr)
242 		esr_high = __mpam_read_reg(msc, MPAMF_ESR + 4);
243 
244 	return (esr_high << 32) | esr_low;
245 }
246 
247 static void __mpam_part_sel_raw(u32 partsel, struct mpam_msc *msc)
248 {
249 	lockdep_assert_held(&msc->part_sel_lock);
250 
251 	mpam_write_partsel_reg(msc, PART_SEL, partsel);
252 }
253 
254 static void __mpam_part_sel(u8 ris_idx, u16 partid, struct mpam_msc *msc)
255 {
256 	u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) |
257 		      FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, partid);
258 
259 	__mpam_part_sel_raw(partsel, msc);
260 }
261 
262 static void __mpam_intpart_sel(u8 ris_idx, u16 intpartid, struct mpam_msc *msc)
263 {
264 	u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) |
265 		      FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, intpartid) |
266 		      MPAMCFG_PART_SEL_INTERNAL;
267 
268 	__mpam_part_sel_raw(partsel, msc);
269 }
270 
271 int mpam_register_requestor(u16 partid_max, u8 pmg_max)
272 {
273 	guard(spinlock)(&partid_max_lock);
274 	if (!partid_max_init) {
275 		mpam_partid_max = partid_max;
276 		mpam_pmg_max = pmg_max;
277 		partid_max_init = true;
278 	} else if (!partid_max_published) {
279 		mpam_partid_max = min(mpam_partid_max, partid_max);
280 		mpam_pmg_max = min(mpam_pmg_max, pmg_max);
281 	} else {
282 		/* New requestors can't lower the values */
283 		if (partid_max < mpam_partid_max || pmg_max < mpam_pmg_max)
284 			return -EBUSY;
285 	}
286 
287 	return 0;
288 }
289 EXPORT_SYMBOL(mpam_register_requestor);
290 
291 static struct mpam_class *
292 mpam_class_alloc(u8 level_idx, enum mpam_class_types type)
293 {
294 	struct mpam_class *class;
295 
296 	lockdep_assert_held(&mpam_list_lock);
297 
298 	class = kzalloc(sizeof(*class), GFP_KERNEL);
299 	if (!class)
300 		return ERR_PTR(-ENOMEM);
301 	init_garbage(&class->garbage);
302 
303 	INIT_LIST_HEAD_RCU(&class->components);
304 	/* Affinity is updated when ris are added */
305 	class->level = level_idx;
306 	class->type = type;
307 	INIT_LIST_HEAD_RCU(&class->classes_list);
308 	ida_init(&class->ida_csu_mon);
309 	ida_init(&class->ida_mbwu_mon);
310 
311 	list_add_rcu(&class->classes_list, &mpam_classes);
312 
313 	return class;
314 }
315 
316 static void mpam_class_destroy(struct mpam_class *class)
317 {
318 	lockdep_assert_held(&mpam_list_lock);
319 
320 	list_del_rcu(&class->classes_list);
321 	add_to_garbage(class);
322 }
323 
324 static struct mpam_class *
325 mpam_class_find(u8 level_idx, enum mpam_class_types type)
326 {
327 	struct mpam_class *class;
328 
329 	lockdep_assert_held(&mpam_list_lock);
330 
331 	list_for_each_entry(class, &mpam_classes, classes_list) {
332 		if (class->type == type && class->level == level_idx)
333 			return class;
334 	}
335 
336 	return mpam_class_alloc(level_idx, type);
337 }
338 
339 static struct mpam_component *
340 mpam_component_alloc(struct mpam_class *class, int id)
341 {
342 	struct mpam_component *comp;
343 
344 	lockdep_assert_held(&mpam_list_lock);
345 
346 	comp = kzalloc(sizeof(*comp), GFP_KERNEL);
347 	if (!comp)
348 		return ERR_PTR(-ENOMEM);
349 	init_garbage(&comp->garbage);
350 
351 	comp->comp_id = id;
352 	INIT_LIST_HEAD_RCU(&comp->vmsc);
353 	/* Affinity is updated when RIS are added */
354 	INIT_LIST_HEAD_RCU(&comp->class_list);
355 	comp->class = class;
356 
357 	list_add_rcu(&comp->class_list, &class->components);
358 
359 	return comp;
360 }
361 
362 static void __destroy_component_cfg(struct mpam_component *comp);
363 
364 static void mpam_component_destroy(struct mpam_component *comp)
365 {
366 	struct mpam_class *class = comp->class;
367 
368 	lockdep_assert_held(&mpam_list_lock);
369 
370 	__destroy_component_cfg(comp);
371 
372 	list_del_rcu(&comp->class_list);
373 	add_to_garbage(comp);
374 
375 	if (list_empty(&class->components))
376 		mpam_class_destroy(class);
377 }
378 
379 static struct mpam_component *
380 mpam_component_find(struct mpam_class *class, int id)
381 {
382 	struct mpam_component *comp;
383 
384 	lockdep_assert_held(&mpam_list_lock);
385 
386 	list_for_each_entry(comp, &class->components, class_list) {
387 		if (comp->comp_id == id)
388 			return comp;
389 	}
390 
391 	return mpam_component_alloc(class, id);
392 }
393 
394 static struct mpam_vmsc *
395 mpam_vmsc_alloc(struct mpam_component *comp, struct mpam_msc *msc)
396 {
397 	struct mpam_vmsc *vmsc;
398 
399 	lockdep_assert_held(&mpam_list_lock);
400 
401 	vmsc = kzalloc(sizeof(*vmsc), GFP_KERNEL);
402 	if (!vmsc)
403 		return ERR_PTR(-ENOMEM);
404 	init_garbage(&vmsc->garbage);
405 
406 	INIT_LIST_HEAD_RCU(&vmsc->ris);
407 	INIT_LIST_HEAD_RCU(&vmsc->comp_list);
408 	vmsc->comp = comp;
409 	vmsc->msc = msc;
410 
411 	list_add_rcu(&vmsc->comp_list, &comp->vmsc);
412 
413 	return vmsc;
414 }
415 
416 static void mpam_vmsc_destroy(struct mpam_vmsc *vmsc)
417 {
418 	struct mpam_component *comp = vmsc->comp;
419 
420 	lockdep_assert_held(&mpam_list_lock);
421 
422 	list_del_rcu(&vmsc->comp_list);
423 	add_to_garbage(vmsc);
424 
425 	if (list_empty(&comp->vmsc))
426 		mpam_component_destroy(comp);
427 }
428 
429 static struct mpam_vmsc *
430 mpam_vmsc_find(struct mpam_component *comp, struct mpam_msc *msc)
431 {
432 	struct mpam_vmsc *vmsc;
433 
434 	lockdep_assert_held(&mpam_list_lock);
435 
436 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
437 		if (vmsc->msc->id == msc->id)
438 			return vmsc;
439 	}
440 
441 	return mpam_vmsc_alloc(comp, msc);
442 }
443 
444 /*
445  * The cacheinfo structures are only populated when CPUs are online.
446  * This helper walks the acpi tables to include offline CPUs too.
447  */
448 int mpam_get_cpumask_from_cache_id(unsigned long cache_id, u32 cache_level,
449 				   cpumask_t *affinity)
450 {
451 	return acpi_pptt_get_cpumask_from_cache_id(cache_id, affinity);
452 }
453 
454 /*
455  * cpumask_of_node() only knows about online CPUs. This can't tell us whether
456  * a class is represented on all possible CPUs.
457  */
458 static void get_cpumask_from_node_id(u32 node_id, cpumask_t *affinity)
459 {
460 	int cpu;
461 
462 	for_each_possible_cpu(cpu) {
463 		if (node_id == cpu_to_node(cpu))
464 			cpumask_set_cpu(cpu, affinity);
465 	}
466 }
467 
468 static int mpam_ris_get_affinity(struct mpam_msc *msc, cpumask_t *affinity,
469 				 enum mpam_class_types type,
470 				 struct mpam_class *class,
471 				 struct mpam_component *comp)
472 {
473 	int err;
474 
475 	switch (type) {
476 	case MPAM_CLASS_CACHE:
477 		err = mpam_get_cpumask_from_cache_id(comp->comp_id, class->level,
478 						     affinity);
479 		if (err) {
480 			dev_warn_once(&msc->pdev->dev,
481 				      "Failed to determine CPU affinity\n");
482 			return err;
483 		}
484 
485 		if (cpumask_empty(affinity))
486 			dev_warn_once(&msc->pdev->dev, "no CPUs associated with cache node\n");
487 
488 		break;
489 	case MPAM_CLASS_MEMORY:
490 		get_cpumask_from_node_id(comp->comp_id, affinity);
491 		/* affinity may be empty for CPU-less memory nodes */
492 		break;
493 	case MPAM_CLASS_UNKNOWN:
494 		return 0;
495 	}
496 
497 	cpumask_and(affinity, affinity, &msc->accessibility);
498 
499 	return 0;
500 }
501 
502 static int mpam_ris_create_locked(struct mpam_msc *msc, u8 ris_idx,
503 				  enum mpam_class_types type, u8 class_id,
504 				  int component_id)
505 {
506 	int err;
507 	struct mpam_vmsc *vmsc;
508 	struct mpam_msc_ris *ris;
509 	struct mpam_class *class;
510 	struct mpam_component *comp;
511 	struct platform_device *pdev = msc->pdev;
512 
513 	lockdep_assert_held(&mpam_list_lock);
514 
515 	if (ris_idx > MPAM_MSC_MAX_NUM_RIS)
516 		return -EINVAL;
517 
518 	if (test_and_set_bit(ris_idx, &msc->ris_idxs))
519 		return -EBUSY;
520 
521 	ris = devm_kzalloc(&msc->pdev->dev, sizeof(*ris), GFP_KERNEL);
522 	if (!ris)
523 		return -ENOMEM;
524 	init_garbage(&ris->garbage);
525 	ris->garbage.pdev = pdev;
526 
527 	class = mpam_class_find(class_id, type);
528 	if (IS_ERR(class))
529 		return PTR_ERR(class);
530 
531 	comp = mpam_component_find(class, component_id);
532 	if (IS_ERR(comp)) {
533 		if (list_empty(&class->components))
534 			mpam_class_destroy(class);
535 		return PTR_ERR(comp);
536 	}
537 
538 	vmsc = mpam_vmsc_find(comp, msc);
539 	if (IS_ERR(vmsc)) {
540 		if (list_empty(&comp->vmsc))
541 			mpam_component_destroy(comp);
542 		return PTR_ERR(vmsc);
543 	}
544 
545 	err = mpam_ris_get_affinity(msc, &ris->affinity, type, class, comp);
546 	if (err) {
547 		if (list_empty(&vmsc->ris))
548 			mpam_vmsc_destroy(vmsc);
549 		return err;
550 	}
551 
552 	ris->ris_idx = ris_idx;
553 	INIT_LIST_HEAD_RCU(&ris->msc_list);
554 	INIT_LIST_HEAD_RCU(&ris->vmsc_list);
555 	ris->vmsc = vmsc;
556 
557 	cpumask_or(&comp->affinity, &comp->affinity, &ris->affinity);
558 	cpumask_or(&class->affinity, &class->affinity, &ris->affinity);
559 	list_add_rcu(&ris->vmsc_list, &vmsc->ris);
560 	list_add_rcu(&ris->msc_list, &msc->ris);
561 
562 	return 0;
563 }
564 
565 static void mpam_ris_destroy(struct mpam_msc_ris *ris)
566 {
567 	struct mpam_vmsc *vmsc = ris->vmsc;
568 	struct mpam_msc *msc = vmsc->msc;
569 	struct mpam_component *comp = vmsc->comp;
570 	struct mpam_class *class = comp->class;
571 
572 	lockdep_assert_held(&mpam_list_lock);
573 
574 	/*
575 	 * It is assumed affinities don't overlap. If they do the class becomes
576 	 * unusable immediately.
577 	 */
578 	cpumask_andnot(&class->affinity, &class->affinity, &ris->affinity);
579 	cpumask_andnot(&comp->affinity, &comp->affinity, &ris->affinity);
580 	clear_bit(ris->ris_idx, &msc->ris_idxs);
581 	list_del_rcu(&ris->msc_list);
582 	list_del_rcu(&ris->vmsc_list);
583 	add_to_garbage(ris);
584 
585 	if (list_empty(&vmsc->ris))
586 		mpam_vmsc_destroy(vmsc);
587 }
588 
589 int mpam_ris_create(struct mpam_msc *msc, u8 ris_idx,
590 		    enum mpam_class_types type, u8 class_id, int component_id)
591 {
592 	int err;
593 
594 	mutex_lock(&mpam_list_lock);
595 	err = mpam_ris_create_locked(msc, ris_idx, type, class_id,
596 				     component_id);
597 	mutex_unlock(&mpam_list_lock);
598 	if (err)
599 		mpam_free_garbage();
600 
601 	return err;
602 }
603 
604 static struct mpam_msc_ris *mpam_get_or_create_ris(struct mpam_msc *msc,
605 						   u8 ris_idx)
606 {
607 	int err;
608 	struct mpam_msc_ris *ris;
609 
610 	lockdep_assert_held(&mpam_list_lock);
611 
612 	if (!test_bit(ris_idx, &msc->ris_idxs)) {
613 		err = mpam_ris_create_locked(msc, ris_idx, MPAM_CLASS_UNKNOWN,
614 					     0, 0);
615 		if (err)
616 			return ERR_PTR(err);
617 	}
618 
619 	list_for_each_entry(ris, &msc->ris, msc_list) {
620 		if (ris->ris_idx == ris_idx)
621 			return ris;
622 	}
623 
624 	return ERR_PTR(-ENOENT);
625 }
626 
627 /*
628  * IHI009A.a has this nugget: "If a monitor does not support automatic behaviour
629  * of NRDY, software can use this bit for any purpose" - so hardware might not
630  * implement this - but it isn't RES0.
631  *
632  * Try and see what values stick in this bit. If we can write either value,
633  * its probably not implemented by hardware.
634  */
635 static bool _mpam_ris_hw_probe_hw_nrdy(struct mpam_msc_ris *ris, u32 mon_reg)
636 {
637 	u32 now;
638 	u64 mon_sel;
639 	bool can_set, can_clear;
640 	struct mpam_msc *msc = ris->vmsc->msc;
641 
642 	if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc)))
643 		return false;
644 
645 	mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, 0) |
646 		  FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx);
647 	_mpam_write_monsel_reg(msc, mon_reg, mon_sel);
648 
649 	_mpam_write_monsel_reg(msc, mon_reg, MSMON___NRDY);
650 	now = _mpam_read_monsel_reg(msc, mon_reg);
651 	can_set = now & MSMON___NRDY;
652 
653 	_mpam_write_monsel_reg(msc, mon_reg, 0);
654 	now = _mpam_read_monsel_reg(msc, mon_reg);
655 	can_clear = !(now & MSMON___NRDY);
656 	mpam_mon_sel_unlock(msc);
657 
658 	return (!can_set || !can_clear);
659 }
660 
661 #define mpam_ris_hw_probe_hw_nrdy(_ris, _mon_reg)			\
662 	_mpam_ris_hw_probe_hw_nrdy(_ris, MSMON_##_mon_reg)
663 
664 static void mpam_ris_hw_probe(struct mpam_msc_ris *ris)
665 {
666 	int err;
667 	struct mpam_msc *msc = ris->vmsc->msc;
668 	struct device *dev = &msc->pdev->dev;
669 	struct mpam_props *props = &ris->props;
670 	struct mpam_class *class = ris->vmsc->comp->class;
671 
672 	lockdep_assert_held(&msc->probe_lock);
673 	lockdep_assert_held(&msc->part_sel_lock);
674 
675 	/* Cache Capacity Partitioning */
676 	if (FIELD_GET(MPAMF_IDR_HAS_CCAP_PART, ris->idr)) {
677 		u32 ccap_features = mpam_read_partsel_reg(msc, CCAP_IDR);
678 
679 		props->cmax_wd = FIELD_GET(MPAMF_CCAP_IDR_CMAX_WD, ccap_features);
680 		if (props->cmax_wd &&
681 		    FIELD_GET(MPAMF_CCAP_IDR_HAS_CMAX_SOFTLIM, ccap_features))
682 			mpam_set_feature(mpam_feat_cmax_softlim, props);
683 
684 		if (props->cmax_wd &&
685 		    !FIELD_GET(MPAMF_CCAP_IDR_NO_CMAX, ccap_features))
686 			mpam_set_feature(mpam_feat_cmax_cmax, props);
687 
688 		if (props->cmax_wd &&
689 		    FIELD_GET(MPAMF_CCAP_IDR_HAS_CMIN, ccap_features))
690 			mpam_set_feature(mpam_feat_cmax_cmin, props);
691 
692 		props->cassoc_wd = FIELD_GET(MPAMF_CCAP_IDR_CASSOC_WD, ccap_features);
693 		if (props->cassoc_wd &&
694 		    FIELD_GET(MPAMF_CCAP_IDR_HAS_CASSOC, ccap_features))
695 			mpam_set_feature(mpam_feat_cmax_cassoc, props);
696 	}
697 
698 	/* Cache Portion partitioning */
699 	if (FIELD_GET(MPAMF_IDR_HAS_CPOR_PART, ris->idr)) {
700 		u32 cpor_features = mpam_read_partsel_reg(msc, CPOR_IDR);
701 
702 		props->cpbm_wd = FIELD_GET(MPAMF_CPOR_IDR_CPBM_WD, cpor_features);
703 		if (props->cpbm_wd)
704 			mpam_set_feature(mpam_feat_cpor_part, props);
705 	}
706 
707 	/* Memory bandwidth partitioning */
708 	if (FIELD_GET(MPAMF_IDR_HAS_MBW_PART, ris->idr)) {
709 		u32 mbw_features = mpam_read_partsel_reg(msc, MBW_IDR);
710 
711 		/* portion bitmap resolution */
712 		props->mbw_pbm_bits = FIELD_GET(MPAMF_MBW_IDR_BWPBM_WD, mbw_features);
713 		if (props->mbw_pbm_bits &&
714 		    FIELD_GET(MPAMF_MBW_IDR_HAS_PBM, mbw_features))
715 			mpam_set_feature(mpam_feat_mbw_part, props);
716 
717 		props->bwa_wd = FIELD_GET(MPAMF_MBW_IDR_BWA_WD, mbw_features);
718 		if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MAX, mbw_features))
719 			mpam_set_feature(mpam_feat_mbw_max, props);
720 
721 		if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MIN, mbw_features))
722 			mpam_set_feature(mpam_feat_mbw_min, props);
723 
724 		if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_PROP, mbw_features))
725 			mpam_set_feature(mpam_feat_mbw_prop, props);
726 	}
727 
728 	/* Priority partitioning */
729 	if (FIELD_GET(MPAMF_IDR_HAS_PRI_PART, ris->idr)) {
730 		u32 pri_features = mpam_read_partsel_reg(msc, PRI_IDR);
731 
732 		props->intpri_wd = FIELD_GET(MPAMF_PRI_IDR_INTPRI_WD, pri_features);
733 		if (props->intpri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_INTPRI, pri_features)) {
734 			mpam_set_feature(mpam_feat_intpri_part, props);
735 			if (FIELD_GET(MPAMF_PRI_IDR_INTPRI_0_IS_LOW, pri_features))
736 				mpam_set_feature(mpam_feat_intpri_part_0_low, props);
737 		}
738 
739 		props->dspri_wd = FIELD_GET(MPAMF_PRI_IDR_DSPRI_WD, pri_features);
740 		if (props->dspri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_DSPRI, pri_features)) {
741 			mpam_set_feature(mpam_feat_dspri_part, props);
742 			if (FIELD_GET(MPAMF_PRI_IDR_DSPRI_0_IS_LOW, pri_features))
743 				mpam_set_feature(mpam_feat_dspri_part_0_low, props);
744 		}
745 	}
746 
747 	/* Performance Monitoring */
748 	if (FIELD_GET(MPAMF_IDR_HAS_MSMON, ris->idr)) {
749 		u32 msmon_features = mpam_read_partsel_reg(msc, MSMON_IDR);
750 
751 		/*
752 		 * If the firmware max-nrdy-us property is missing, the
753 		 * CSU counters can't be used. Should we wait forever?
754 		 */
755 		err = device_property_read_u32(&msc->pdev->dev,
756 					       "arm,not-ready-us",
757 					       &msc->nrdy_usec);
758 
759 		if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_CSU, msmon_features)) {
760 			u32 csumonidr;
761 
762 			csumonidr = mpam_read_partsel_reg(msc, CSUMON_IDR);
763 			props->num_csu_mon = FIELD_GET(MPAMF_CSUMON_IDR_NUM_MON, csumonidr);
764 			if (props->num_csu_mon) {
765 				bool hw_managed;
766 
767 				mpam_set_feature(mpam_feat_msmon_csu, props);
768 
769 				if (FIELD_GET(MPAMF_CSUMON_IDR_HAS_XCL, csumonidr))
770 					mpam_set_feature(mpam_feat_msmon_csu_xcl, props);
771 
772 				/* Is NRDY hardware managed? */
773 				hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, CSU);
774 				if (hw_managed)
775 					mpam_set_feature(mpam_feat_msmon_csu_hw_nrdy, props);
776 			}
777 
778 			/*
779 			 * Accept the missing firmware property if NRDY appears
780 			 * un-implemented.
781 			 */
782 			if (err && mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, props))
783 				dev_err_once(dev, "Counters are not usable because not-ready timeout was not provided by firmware.");
784 		}
785 		if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_MBWU, msmon_features)) {
786 			bool has_long, hw_managed;
787 			u32 mbwumon_idr = mpam_read_partsel_reg(msc, MBWUMON_IDR);
788 
789 			props->num_mbwu_mon = FIELD_GET(MPAMF_MBWUMON_IDR_NUM_MON, mbwumon_idr);
790 			if (props->num_mbwu_mon) {
791 				mpam_set_feature(mpam_feat_msmon_mbwu, props);
792 
793 				if (FIELD_GET(MPAMF_MBWUMON_IDR_HAS_RWBW, mbwumon_idr))
794 					mpam_set_feature(mpam_feat_msmon_mbwu_rwbw, props);
795 
796 				has_long = FIELD_GET(MPAMF_MBWUMON_IDR_HAS_LONG, mbwumon_idr);
797 				if (has_long) {
798 					if (FIELD_GET(MPAMF_MBWUMON_IDR_LWD, mbwumon_idr))
799 						mpam_set_feature(mpam_feat_msmon_mbwu_63counter, props);
800 					else
801 						mpam_set_feature(mpam_feat_msmon_mbwu_44counter, props);
802 				} else {
803 					mpam_set_feature(mpam_feat_msmon_mbwu_31counter, props);
804 				}
805 
806 				/* Is NRDY hardware managed? */
807 				hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, MBWU);
808 				if (hw_managed)
809 					mpam_set_feature(mpam_feat_msmon_mbwu_hw_nrdy, props);
810 
811 				/*
812 				 * Don't warn about any missing firmware property for
813 				 * MBWU NRDY - it doesn't make any sense!
814 				 */
815 			}
816 		}
817 	}
818 
819 	/*
820 	 * RIS with PARTID narrowing don't have enough storage for one
821 	 * configuration per PARTID. If these are in a class we could use,
822 	 * reduce the supported partid_max to match the number of intpartid.
823 	 * If the class is unknown, just ignore it.
824 	 */
825 	if (FIELD_GET(MPAMF_IDR_HAS_PARTID_NRW, ris->idr) &&
826 	    class->type != MPAM_CLASS_UNKNOWN) {
827 		u32 nrwidr = mpam_read_partsel_reg(msc, PARTID_NRW_IDR);
828 		u16 partid_max = FIELD_GET(MPAMF_PARTID_NRW_IDR_INTPARTID_MAX, nrwidr);
829 
830 		mpam_set_feature(mpam_feat_partid_nrw, props);
831 		msc->partid_max = min(msc->partid_max, partid_max);
832 	}
833 }
834 
835 static int mpam_msc_hw_probe(struct mpam_msc *msc)
836 {
837 	u64 idr;
838 	u16 partid_max;
839 	u8 ris_idx, pmg_max;
840 	struct mpam_msc_ris *ris;
841 	struct device *dev = &msc->pdev->dev;
842 
843 	lockdep_assert_held(&msc->probe_lock);
844 
845 	idr = __mpam_read_reg(msc, MPAMF_AIDR);
846 	if ((idr & MPAMF_AIDR_ARCH_MAJOR_REV) != MPAM_ARCHITECTURE_V1) {
847 		dev_err_once(dev, "MSC does not match MPAM architecture v1.x\n");
848 		return -EIO;
849 	}
850 
851 	/* Grab an IDR value to find out how many RIS there are */
852 	mutex_lock(&msc->part_sel_lock);
853 	idr = mpam_msc_read_idr(msc);
854 	mutex_unlock(&msc->part_sel_lock);
855 
856 	msc->ris_max = FIELD_GET(MPAMF_IDR_RIS_MAX, idr);
857 
858 	/* Use these values so partid/pmg always starts with a valid value */
859 	msc->partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr);
860 	msc->pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr);
861 
862 	for (ris_idx = 0; ris_idx <= msc->ris_max; ris_idx++) {
863 		mutex_lock(&msc->part_sel_lock);
864 		__mpam_part_sel(ris_idx, 0, msc);
865 		idr = mpam_msc_read_idr(msc);
866 		mutex_unlock(&msc->part_sel_lock);
867 
868 		partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr);
869 		pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr);
870 		msc->partid_max = min(msc->partid_max, partid_max);
871 		msc->pmg_max = min(msc->pmg_max, pmg_max);
872 		msc->has_extd_esr = FIELD_GET(MPAMF_IDR_HAS_EXTD_ESR, idr);
873 
874 		mutex_lock(&mpam_list_lock);
875 		ris = mpam_get_or_create_ris(msc, ris_idx);
876 		mutex_unlock(&mpam_list_lock);
877 		if (IS_ERR(ris))
878 			return PTR_ERR(ris);
879 		ris->idr = idr;
880 
881 		mutex_lock(&msc->part_sel_lock);
882 		__mpam_part_sel(ris_idx, 0, msc);
883 		mpam_ris_hw_probe(ris);
884 		mutex_unlock(&msc->part_sel_lock);
885 	}
886 
887 	/* Clear any stale errors */
888 	mpam_msc_clear_esr(msc);
889 
890 	spin_lock(&partid_max_lock);
891 	mpam_partid_max = min(mpam_partid_max, msc->partid_max);
892 	mpam_pmg_max = min(mpam_pmg_max, msc->pmg_max);
893 	spin_unlock(&partid_max_lock);
894 
895 	msc->probed = true;
896 
897 	return 0;
898 }
899 
900 struct mon_read {
901 	struct mpam_msc_ris		*ris;
902 	struct mon_cfg			*ctx;
903 	enum mpam_device_features	type;
904 	u64				*val;
905 	int				err;
906 };
907 
908 static void gen_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val,
909 				   u32 *flt_val)
910 {
911 	struct mon_cfg *ctx = m->ctx;
912 
913 	/*
914 	 * For CSU counters its implementation-defined what happens when not
915 	 * filtering by partid.
916 	 */
917 	*ctl_val = MSMON_CFG_x_CTL_MATCH_PARTID;
918 
919 	*flt_val = FIELD_PREP(MSMON_CFG_x_FLT_PARTID, ctx->partid);
920 
921 	if (m->ctx->match_pmg) {
922 		*ctl_val |= MSMON_CFG_x_CTL_MATCH_PMG;
923 		*flt_val |= FIELD_PREP(MSMON_CFG_x_FLT_PMG, ctx->pmg);
924 	}
925 
926 	switch (m->type) {
927 	case mpam_feat_msmon_csu:
928 		*ctl_val |= MSMON_CFG_CSU_CTL_TYPE_CSU;
929 
930 		if (mpam_has_feature(mpam_feat_msmon_csu_xcl, &m->ris->props))
931 			*flt_val |= FIELD_PREP(MSMON_CFG_CSU_FLT_XCL, ctx->csu_exclude_clean);
932 
933 		break;
934 	case mpam_feat_msmon_mbwu:
935 		*ctl_val |= MSMON_CFG_MBWU_CTL_TYPE_MBWU;
936 
937 		if (mpam_has_feature(mpam_feat_msmon_mbwu_rwbw, &m->ris->props))
938 			*flt_val |= FIELD_PREP(MSMON_CFG_MBWU_FLT_RWBW, ctx->opts);
939 
940 		break;
941 	default:
942 		pr_warn("Unexpected monitor type %d\n", m->type);
943 	}
944 }
945 
946 static void read_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val,
947 				    u32 *flt_val)
948 {
949 	struct mpam_msc *msc = m->ris->vmsc->msc;
950 
951 	switch (m->type) {
952 	case mpam_feat_msmon_csu:
953 		*ctl_val = mpam_read_monsel_reg(msc, CFG_CSU_CTL);
954 		*flt_val = mpam_read_monsel_reg(msc, CFG_CSU_FLT);
955 		break;
956 	case mpam_feat_msmon_mbwu:
957 		*ctl_val = mpam_read_monsel_reg(msc, CFG_MBWU_CTL);
958 		*flt_val = mpam_read_monsel_reg(msc, CFG_MBWU_FLT);
959 		break;
960 	default:
961 		pr_warn("Unexpected monitor type %d\n", m->type);
962 	}
963 }
964 
965 /* Remove values set by the hardware to prevent apparent mismatches. */
966 static inline void clean_msmon_ctl_val(u32 *cur_ctl)
967 {
968 	*cur_ctl &= ~MSMON_CFG_x_CTL_OFLOW_STATUS;
969 }
970 
971 static void write_msmon_ctl_flt_vals(struct mon_read *m, u32 ctl_val,
972 				     u32 flt_val)
973 {
974 	struct mpam_msc *msc = m->ris->vmsc->msc;
975 
976 	/*
977 	 * Write the ctl_val with the enable bit cleared, reset the counter,
978 	 * then enable counter.
979 	 */
980 	switch (m->type) {
981 	case mpam_feat_msmon_csu:
982 		mpam_write_monsel_reg(msc, CFG_CSU_FLT, flt_val);
983 		mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val);
984 		mpam_write_monsel_reg(msc, CSU, 0);
985 		mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val | MSMON_CFG_x_CTL_EN);
986 		break;
987 	case mpam_feat_msmon_mbwu:
988 		mpam_write_monsel_reg(msc, CFG_MBWU_FLT, flt_val);
989 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val);
990 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val | MSMON_CFG_x_CTL_EN);
991 		/* Counting monitors require NRDY to be reset by software */
992 		mpam_write_monsel_reg(msc, MBWU, 0);
993 		break;
994 	default:
995 		pr_warn("Unexpected monitor type %d\n", m->type);
996 	}
997 }
998 
999 static u64 mpam_msmon_overflow_val(enum mpam_device_features type)
1000 {
1001 	/* TODO: scaling, and long counters */
1002 	return BIT_ULL(hweight_long(MSMON___VALUE));
1003 }
1004 
1005 static void __ris_msmon_read(void *arg)
1006 {
1007 	u64 now;
1008 	bool nrdy = false;
1009 	bool config_mismatch;
1010 	bool overflow;
1011 	struct mon_read *m = arg;
1012 	struct mon_cfg *ctx = m->ctx;
1013 	struct mpam_msc_ris *ris = m->ris;
1014 	struct msmon_mbwu_state *mbwu_state;
1015 	struct mpam_props *rprops = &ris->props;
1016 	struct mpam_msc *msc = m->ris->vmsc->msc;
1017 	u32 mon_sel, ctl_val, flt_val, cur_ctl, cur_flt;
1018 
1019 	if (!mpam_mon_sel_lock(msc)) {
1020 		m->err = -EIO;
1021 		return;
1022 	}
1023 	mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, ctx->mon) |
1024 		  FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx);
1025 	mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel);
1026 
1027 	/*
1028 	 * Read the existing configuration to avoid re-writing the same values.
1029 	 * This saves waiting for 'nrdy' on subsequent reads.
1030 	 */
1031 	read_msmon_ctl_flt_vals(m, &cur_ctl, &cur_flt);
1032 	overflow = cur_ctl & MSMON_CFG_x_CTL_OFLOW_STATUS;
1033 
1034 	clean_msmon_ctl_val(&cur_ctl);
1035 	gen_msmon_ctl_flt_vals(m, &ctl_val, &flt_val);
1036 	config_mismatch = cur_flt != flt_val ||
1037 			  cur_ctl != (ctl_val | MSMON_CFG_x_CTL_EN);
1038 
1039 	if (config_mismatch) {
1040 		write_msmon_ctl_flt_vals(m, ctl_val, flt_val);
1041 		overflow = false;
1042 	} else if (overflow) {
1043 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL,
1044 				      cur_ctl & ~MSMON_CFG_x_CTL_OFLOW_STATUS);
1045 	}
1046 
1047 	switch (m->type) {
1048 	case mpam_feat_msmon_csu:
1049 		now = mpam_read_monsel_reg(msc, CSU);
1050 		if (mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, rprops))
1051 			nrdy = now & MSMON___NRDY;
1052 		now = FIELD_GET(MSMON___VALUE, now);
1053 		break;
1054 	case mpam_feat_msmon_mbwu:
1055 		now = mpam_read_monsel_reg(msc, MBWU);
1056 		if (mpam_has_feature(mpam_feat_msmon_mbwu_hw_nrdy, rprops))
1057 			nrdy = now & MSMON___NRDY;
1058 		now = FIELD_GET(MSMON___VALUE, now);
1059 
1060 		if (nrdy)
1061 			break;
1062 
1063 		mbwu_state = &ris->mbwu_state[ctx->mon];
1064 
1065 		if (overflow)
1066 			mbwu_state->correction += mpam_msmon_overflow_val(m->type);
1067 
1068 		/*
1069 		 * Include bandwidth consumed before the last hardware reset and
1070 		 * a counter size increment for each overflow.
1071 		 */
1072 		now += mbwu_state->correction;
1073 		break;
1074 	default:
1075 		m->err = -EINVAL;
1076 	}
1077 	mpam_mon_sel_unlock(msc);
1078 
1079 	if (nrdy) {
1080 		m->err = -EBUSY;
1081 		return;
1082 	}
1083 
1084 	*m->val += now;
1085 }
1086 
1087 static int _msmon_read(struct mpam_component *comp, struct mon_read *arg)
1088 {
1089 	int err, any_err = 0;
1090 	struct mpam_vmsc *vmsc;
1091 
1092 	guard(srcu)(&mpam_srcu);
1093 	list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list,
1094 				 srcu_read_lock_held(&mpam_srcu)) {
1095 		struct mpam_msc *msc = vmsc->msc;
1096 		struct mpam_msc_ris *ris;
1097 
1098 		list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list,
1099 					 srcu_read_lock_held(&mpam_srcu)) {
1100 			arg->ris = ris;
1101 
1102 			err = smp_call_function_any(&msc->accessibility,
1103 						    __ris_msmon_read, arg,
1104 						    true);
1105 			if (!err && arg->err)
1106 				err = arg->err;
1107 
1108 			/*
1109 			 * Save one error to be returned to the caller, but
1110 			 * keep reading counters so that get reprogrammed. On
1111 			 * platforms with NRDY this lets us wait once.
1112 			 */
1113 			if (err)
1114 				any_err = err;
1115 		}
1116 	}
1117 
1118 	return any_err;
1119 }
1120 
1121 int mpam_msmon_read(struct mpam_component *comp, struct mon_cfg *ctx,
1122 		    enum mpam_device_features type, u64 *val)
1123 {
1124 	int err;
1125 	struct mon_read arg;
1126 	u64 wait_jiffies = 0;
1127 	struct mpam_props *cprops = &comp->class->props;
1128 
1129 	might_sleep();
1130 
1131 	if (!mpam_is_enabled())
1132 		return -EIO;
1133 
1134 	if (!mpam_has_feature(type, cprops))
1135 		return -EOPNOTSUPP;
1136 
1137 	arg = (struct mon_read) {
1138 		.ctx = ctx,
1139 		.type = type,
1140 		.val = val,
1141 	};
1142 	*val = 0;
1143 
1144 	err = _msmon_read(comp, &arg);
1145 	if (err == -EBUSY && comp->class->nrdy_usec)
1146 		wait_jiffies = usecs_to_jiffies(comp->class->nrdy_usec);
1147 
1148 	while (wait_jiffies)
1149 		wait_jiffies = schedule_timeout_uninterruptible(wait_jiffies);
1150 
1151 	if (err == -EBUSY) {
1152 		arg = (struct mon_read) {
1153 			.ctx = ctx,
1154 			.type = type,
1155 			.val = val,
1156 		};
1157 		*val = 0;
1158 
1159 		err = _msmon_read(comp, &arg);
1160 	}
1161 
1162 	return err;
1163 }
1164 
1165 static void mpam_reset_msc_bitmap(struct mpam_msc *msc, u16 reg, u16 wd)
1166 {
1167 	u32 num_words, msb;
1168 	u32 bm = ~0;
1169 	int i;
1170 
1171 	lockdep_assert_held(&msc->part_sel_lock);
1172 
1173 	if (wd == 0)
1174 		return;
1175 
1176 	/*
1177 	 * Write all ~0 to all but the last 32bit-word, which may
1178 	 * have fewer bits...
1179 	 */
1180 	num_words = DIV_ROUND_UP(wd, 32);
1181 	for (i = 0; i < num_words - 1; i++, reg += sizeof(bm))
1182 		__mpam_write_reg(msc, reg, bm);
1183 
1184 	/*
1185 	 * ....and then the last (maybe) partial 32bit word. When wd is a
1186 	 * multiple of 32, msb should be 31 to write a full 32bit word.
1187 	 */
1188 	msb = (wd - 1) % 32;
1189 	bm = GENMASK(msb, 0);
1190 	__mpam_write_reg(msc, reg, bm);
1191 }
1192 
1193 /* Called via IPI. Call while holding an SRCU reference */
1194 static void mpam_reprogram_ris_partid(struct mpam_msc_ris *ris, u16 partid,
1195 				      struct mpam_config *cfg)
1196 {
1197 	u32 pri_val = 0;
1198 	u16 cmax = MPAMCFG_CMAX_CMAX;
1199 	struct mpam_msc *msc = ris->vmsc->msc;
1200 	struct mpam_props *rprops = &ris->props;
1201 	u16 dspri = GENMASK(rprops->dspri_wd, 0);
1202 	u16 intpri = GENMASK(rprops->intpri_wd, 0);
1203 
1204 	mutex_lock(&msc->part_sel_lock);
1205 	__mpam_part_sel(ris->ris_idx, partid, msc);
1206 
1207 	if (mpam_has_feature(mpam_feat_partid_nrw, rprops)) {
1208 		/* Update the intpartid mapping */
1209 		mpam_write_partsel_reg(msc, INTPARTID,
1210 				       MPAMCFG_INTPARTID_INTERNAL | partid);
1211 
1212 		/*
1213 		 * Then switch to the 'internal' partid to update the
1214 		 * configuration.
1215 		 */
1216 		__mpam_intpart_sel(ris->ris_idx, partid, msc);
1217 	}
1218 
1219 	if (mpam_has_feature(mpam_feat_cpor_part, rprops) &&
1220 	    mpam_has_feature(mpam_feat_cpor_part, cfg)) {
1221 		if (cfg->reset_cpbm)
1222 			mpam_reset_msc_bitmap(msc, MPAMCFG_CPBM, rprops->cpbm_wd);
1223 		else
1224 			mpam_write_partsel_reg(msc, CPBM, cfg->cpbm);
1225 	}
1226 
1227 	if (mpam_has_feature(mpam_feat_mbw_part, rprops) &&
1228 	    mpam_has_feature(mpam_feat_mbw_part, cfg)) {
1229 		if (cfg->reset_mbw_pbm)
1230 			mpam_reset_msc_bitmap(msc, MPAMCFG_MBW_PBM, rprops->mbw_pbm_bits);
1231 		else
1232 			mpam_write_partsel_reg(msc, MBW_PBM, cfg->mbw_pbm);
1233 	}
1234 
1235 	if (mpam_has_feature(mpam_feat_mbw_min, rprops) &&
1236 	    mpam_has_feature(mpam_feat_mbw_min, cfg))
1237 		mpam_write_partsel_reg(msc, MBW_MIN, 0);
1238 
1239 	if (mpam_has_feature(mpam_feat_mbw_max, rprops) &&
1240 	    mpam_has_feature(mpam_feat_mbw_max, cfg)) {
1241 		if (cfg->reset_mbw_max)
1242 			mpam_write_partsel_reg(msc, MBW_MAX, MPAMCFG_MBW_MAX_MAX);
1243 		else
1244 			mpam_write_partsel_reg(msc, MBW_MAX, cfg->mbw_max);
1245 	}
1246 
1247 	if (mpam_has_feature(mpam_feat_mbw_prop, rprops) &&
1248 	    mpam_has_feature(mpam_feat_mbw_prop, cfg))
1249 		mpam_write_partsel_reg(msc, MBW_PROP, 0);
1250 
1251 	if (mpam_has_feature(mpam_feat_cmax_cmax, rprops))
1252 		mpam_write_partsel_reg(msc, CMAX, cmax);
1253 
1254 	if (mpam_has_feature(mpam_feat_cmax_cmin, rprops))
1255 		mpam_write_partsel_reg(msc, CMIN, 0);
1256 
1257 	if (mpam_has_feature(mpam_feat_cmax_cassoc, rprops))
1258 		mpam_write_partsel_reg(msc, CASSOC, MPAMCFG_CASSOC_CASSOC);
1259 
1260 	if (mpam_has_feature(mpam_feat_intpri_part, rprops) ||
1261 	    mpam_has_feature(mpam_feat_dspri_part, rprops)) {
1262 		/* aces high? */
1263 		if (!mpam_has_feature(mpam_feat_intpri_part_0_low, rprops))
1264 			intpri = 0;
1265 		if (!mpam_has_feature(mpam_feat_dspri_part_0_low, rprops))
1266 			dspri = 0;
1267 
1268 		if (mpam_has_feature(mpam_feat_intpri_part, rprops))
1269 			pri_val |= FIELD_PREP(MPAMCFG_PRI_INTPRI, intpri);
1270 		if (mpam_has_feature(mpam_feat_dspri_part, rprops))
1271 			pri_val |= FIELD_PREP(MPAMCFG_PRI_DSPRI, dspri);
1272 
1273 		mpam_write_partsel_reg(msc, PRI, pri_val);
1274 	}
1275 
1276 	mutex_unlock(&msc->part_sel_lock);
1277 }
1278 
1279 /* Call with msc cfg_lock held */
1280 static int mpam_restore_mbwu_state(void *_ris)
1281 {
1282 	int i;
1283 	struct mon_read mwbu_arg;
1284 	struct mpam_msc_ris *ris = _ris;
1285 
1286 	for (i = 0; i < ris->props.num_mbwu_mon; i++) {
1287 		if (ris->mbwu_state[i].enabled) {
1288 			mwbu_arg.ris = ris;
1289 			mwbu_arg.ctx = &ris->mbwu_state[i].cfg;
1290 			mwbu_arg.type = mpam_feat_msmon_mbwu;
1291 
1292 			__ris_msmon_read(&mwbu_arg);
1293 		}
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 /* Call with MSC cfg_lock held */
1300 static int mpam_save_mbwu_state(void *arg)
1301 {
1302 	int i;
1303 	u64 val;
1304 	struct mon_cfg *cfg;
1305 	u32 cur_flt, cur_ctl, mon_sel;
1306 	struct mpam_msc_ris *ris = arg;
1307 	struct msmon_mbwu_state *mbwu_state;
1308 	struct mpam_msc *msc = ris->vmsc->msc;
1309 
1310 	for (i = 0; i < ris->props.num_mbwu_mon; i++) {
1311 		mbwu_state = &ris->mbwu_state[i];
1312 		cfg = &mbwu_state->cfg;
1313 
1314 		if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc)))
1315 			return -EIO;
1316 
1317 		mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, i) |
1318 			  FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx);
1319 		mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel);
1320 
1321 		cur_flt = mpam_read_monsel_reg(msc, CFG_MBWU_FLT);
1322 		cur_ctl = mpam_read_monsel_reg(msc, CFG_MBWU_CTL);
1323 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL, 0);
1324 
1325 		val = mpam_read_monsel_reg(msc, MBWU);
1326 		mpam_write_monsel_reg(msc, MBWU, 0);
1327 
1328 		cfg->mon = i;
1329 		cfg->pmg = FIELD_GET(MSMON_CFG_x_FLT_PMG, cur_flt);
1330 		cfg->match_pmg = FIELD_GET(MSMON_CFG_x_CTL_MATCH_PMG, cur_ctl);
1331 		cfg->partid = FIELD_GET(MSMON_CFG_x_FLT_PARTID, cur_flt);
1332 		mbwu_state->correction += val;
1333 		mbwu_state->enabled = FIELD_GET(MSMON_CFG_x_CTL_EN, cur_ctl);
1334 		mpam_mon_sel_unlock(msc);
1335 	}
1336 
1337 	return 0;
1338 }
1339 
1340 static void mpam_init_reset_cfg(struct mpam_config *reset_cfg)
1341 {
1342 	*reset_cfg = (struct mpam_config) {
1343 		.reset_cpbm = true,
1344 		.reset_mbw_pbm = true,
1345 		.reset_mbw_max = true,
1346 	};
1347 	bitmap_fill(reset_cfg->features, MPAM_FEATURE_LAST);
1348 }
1349 
1350 /*
1351  * Called via smp_call_on_cpu() to prevent migration, while still being
1352  * pre-emptible. Caller must hold mpam_srcu.
1353  */
1354 static int mpam_reset_ris(void *arg)
1355 {
1356 	u16 partid, partid_max;
1357 	struct mpam_config reset_cfg;
1358 	struct mpam_msc_ris *ris = arg;
1359 
1360 	if (ris->in_reset_state)
1361 		return 0;
1362 
1363 	mpam_init_reset_cfg(&reset_cfg);
1364 
1365 	spin_lock(&partid_max_lock);
1366 	partid_max = mpam_partid_max;
1367 	spin_unlock(&partid_max_lock);
1368 	for (partid = 0; partid <= partid_max; partid++)
1369 		mpam_reprogram_ris_partid(ris, partid, &reset_cfg);
1370 
1371 	return 0;
1372 }
1373 
1374 /*
1375  * Get the preferred CPU for this MSC. If it is accessible from this CPU,
1376  * this CPU is preferred. This can be preempted/migrated, it will only result
1377  * in more work.
1378  */
1379 static int mpam_get_msc_preferred_cpu(struct mpam_msc *msc)
1380 {
1381 	int cpu = raw_smp_processor_id();
1382 
1383 	if (cpumask_test_cpu(cpu, &msc->accessibility))
1384 		return cpu;
1385 
1386 	return cpumask_first_and(&msc->accessibility, cpu_online_mask);
1387 }
1388 
1389 static int mpam_touch_msc(struct mpam_msc *msc, int (*fn)(void *a), void *arg)
1390 {
1391 	lockdep_assert_irqs_enabled();
1392 	lockdep_assert_cpus_held();
1393 	WARN_ON_ONCE(!srcu_read_lock_held((&mpam_srcu)));
1394 
1395 	return smp_call_on_cpu(mpam_get_msc_preferred_cpu(msc), fn, arg, true);
1396 }
1397 
1398 struct mpam_write_config_arg {
1399 	struct mpam_msc_ris *ris;
1400 	struct mpam_component *comp;
1401 	u16 partid;
1402 };
1403 
1404 static int __write_config(void *arg)
1405 {
1406 	struct mpam_write_config_arg *c = arg;
1407 
1408 	mpam_reprogram_ris_partid(c->ris, c->partid, &c->comp->cfg[c->partid]);
1409 
1410 	return 0;
1411 }
1412 
1413 static void mpam_reprogram_msc(struct mpam_msc *msc)
1414 {
1415 	u16 partid;
1416 	bool reset;
1417 	struct mpam_config *cfg;
1418 	struct mpam_msc_ris *ris;
1419 	struct mpam_write_config_arg arg;
1420 
1421 	/*
1422 	 * No lock for mpam_partid_max as partid_max_published has been
1423 	 * set by mpam_enabled(), so the values can no longer change.
1424 	 */
1425 	mpam_assert_partid_sizes_fixed();
1426 
1427 	mutex_lock(&msc->cfg_lock);
1428 	list_for_each_entry_srcu(ris, &msc->ris, msc_list,
1429 				 srcu_read_lock_held(&mpam_srcu)) {
1430 		if (!mpam_is_enabled() && !ris->in_reset_state) {
1431 			mpam_touch_msc(msc, &mpam_reset_ris, ris);
1432 			ris->in_reset_state = true;
1433 			continue;
1434 		}
1435 
1436 		arg.comp = ris->vmsc->comp;
1437 		arg.ris = ris;
1438 		reset = true;
1439 		for (partid = 0; partid <= mpam_partid_max; partid++) {
1440 			cfg = &ris->vmsc->comp->cfg[partid];
1441 			if (!bitmap_empty(cfg->features, MPAM_FEATURE_LAST))
1442 				reset = false;
1443 
1444 			arg.partid = partid;
1445 			mpam_touch_msc(msc, __write_config, &arg);
1446 		}
1447 		ris->in_reset_state = reset;
1448 
1449 		if (mpam_has_feature(mpam_feat_msmon_mbwu, &ris->props))
1450 			mpam_touch_msc(msc, &mpam_restore_mbwu_state, ris);
1451 	}
1452 	mutex_unlock(&msc->cfg_lock);
1453 }
1454 
1455 static void _enable_percpu_irq(void *_irq)
1456 {
1457 	int *irq = _irq;
1458 
1459 	enable_percpu_irq(*irq, IRQ_TYPE_NONE);
1460 }
1461 
1462 static int mpam_cpu_online(unsigned int cpu)
1463 {
1464 	struct mpam_msc *msc;
1465 
1466 	guard(srcu)(&mpam_srcu);
1467 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
1468 				 srcu_read_lock_held(&mpam_srcu)) {
1469 		if (!cpumask_test_cpu(cpu, &msc->accessibility))
1470 			continue;
1471 
1472 		if (msc->reenable_error_ppi)
1473 			_enable_percpu_irq(&msc->reenable_error_ppi);
1474 
1475 		if (atomic_fetch_inc(&msc->online_refs) == 0)
1476 			mpam_reprogram_msc(msc);
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 /* Before mpam is enabled, try to probe new MSC */
1483 static int mpam_discovery_cpu_online(unsigned int cpu)
1484 {
1485 	int err = 0;
1486 	struct mpam_msc *msc;
1487 	bool new_device_probed = false;
1488 
1489 	if (mpam_is_enabled())
1490 		return 0;
1491 
1492 	guard(srcu)(&mpam_srcu);
1493 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
1494 				 srcu_read_lock_held(&mpam_srcu)) {
1495 		if (!cpumask_test_cpu(cpu, &msc->accessibility))
1496 			continue;
1497 
1498 		mutex_lock(&msc->probe_lock);
1499 		if (!msc->probed)
1500 			err = mpam_msc_hw_probe(msc);
1501 		mutex_unlock(&msc->probe_lock);
1502 
1503 		if (err)
1504 			break;
1505 		new_device_probed = true;
1506 	}
1507 
1508 	if (new_device_probed && !err)
1509 		schedule_work(&mpam_enable_work);
1510 	if (err) {
1511 		mpam_disable_reason = "error during probing";
1512 		schedule_work(&mpam_broken_work);
1513 	}
1514 
1515 	return err;
1516 }
1517 
1518 static int mpam_cpu_offline(unsigned int cpu)
1519 {
1520 	struct mpam_msc *msc;
1521 
1522 	guard(srcu)(&mpam_srcu);
1523 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
1524 				 srcu_read_lock_held(&mpam_srcu)) {
1525 		if (!cpumask_test_cpu(cpu, &msc->accessibility))
1526 			continue;
1527 
1528 		if (msc->reenable_error_ppi)
1529 			disable_percpu_irq(msc->reenable_error_ppi);
1530 
1531 		if (atomic_dec_and_test(&msc->online_refs)) {
1532 			struct mpam_msc_ris *ris;
1533 
1534 			mutex_lock(&msc->cfg_lock);
1535 			list_for_each_entry_srcu(ris, &msc->ris, msc_list,
1536 						 srcu_read_lock_held(&mpam_srcu)) {
1537 				mpam_touch_msc(msc, &mpam_reset_ris, ris);
1538 
1539 				/*
1540 				 * The reset state for non-zero partid may be
1541 				 * lost while the CPUs are offline.
1542 				 */
1543 				ris->in_reset_state = false;
1544 
1545 				if (mpam_is_enabled())
1546 					mpam_touch_msc(msc, &mpam_save_mbwu_state, ris);
1547 			}
1548 			mutex_unlock(&msc->cfg_lock);
1549 		}
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 static void mpam_register_cpuhp_callbacks(int (*online)(unsigned int online),
1556 					  int (*offline)(unsigned int offline),
1557 					  char *name)
1558 {
1559 	mutex_lock(&mpam_cpuhp_state_lock);
1560 	if (mpam_cpuhp_state) {
1561 		cpuhp_remove_state(mpam_cpuhp_state);
1562 		mpam_cpuhp_state = 0;
1563 	}
1564 
1565 	mpam_cpuhp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, name, online,
1566 					     offline);
1567 	if (mpam_cpuhp_state <= 0) {
1568 		pr_err("Failed to register cpuhp callbacks");
1569 		mpam_cpuhp_state = 0;
1570 	}
1571 	mutex_unlock(&mpam_cpuhp_state_lock);
1572 }
1573 
1574 static int __setup_ppi(struct mpam_msc *msc)
1575 {
1576 	int cpu;
1577 
1578 	msc->error_dev_id = alloc_percpu(struct mpam_msc *);
1579 	if (!msc->error_dev_id)
1580 		return -ENOMEM;
1581 
1582 	for_each_cpu(cpu, &msc->accessibility)
1583 		*per_cpu_ptr(msc->error_dev_id, cpu) = msc;
1584 
1585 	return 0;
1586 }
1587 
1588 static int mpam_msc_setup_error_irq(struct mpam_msc *msc)
1589 {
1590 	int irq;
1591 
1592 	irq = platform_get_irq_byname_optional(msc->pdev, "error");
1593 	if (irq <= 0)
1594 		return 0;
1595 
1596 	/* Allocate and initialise the percpu device pointer for PPI */
1597 	if (irq_is_percpu(irq))
1598 		return __setup_ppi(msc);
1599 
1600 	/* sanity check: shared interrupts can be routed anywhere? */
1601 	if (!cpumask_equal(&msc->accessibility, cpu_possible_mask)) {
1602 		pr_err_once("msc:%u is a private resource with a shared error interrupt",
1603 			    msc->id);
1604 		return -EINVAL;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 /*
1611  * An MSC can control traffic from a set of CPUs, but may only be accessible
1612  * from a (hopefully wider) set of CPUs. The common reason for this is power
1613  * management. If all the CPUs in a cluster are in PSCI:CPU_SUSPEND, the
1614  * corresponding cache may also be powered off. By making accesses from
1615  * one of those CPUs, we ensure we don't access a cache that's powered off.
1616  */
1617 static void update_msc_accessibility(struct mpam_msc *msc)
1618 {
1619 	u32 affinity_id;
1620 	int err;
1621 
1622 	err = device_property_read_u32(&msc->pdev->dev, "cpu_affinity",
1623 				       &affinity_id);
1624 	if (err)
1625 		cpumask_copy(&msc->accessibility, cpu_possible_mask);
1626 	else
1627 		acpi_pptt_get_cpus_from_container(affinity_id, &msc->accessibility);
1628 }
1629 
1630 /*
1631  * There are two ways of reaching a struct mpam_msc_ris. Via the
1632  * class->component->vmsc->ris, or via the msc.
1633  * When destroying the msc, the other side needs unlinking and cleaning up too.
1634  */
1635 static void mpam_msc_destroy(struct mpam_msc *msc)
1636 {
1637 	struct platform_device *pdev = msc->pdev;
1638 	struct mpam_msc_ris *ris, *tmp;
1639 
1640 	lockdep_assert_held(&mpam_list_lock);
1641 
1642 	list_for_each_entry_safe(ris, tmp, &msc->ris, msc_list)
1643 		mpam_ris_destroy(ris);
1644 
1645 	list_del_rcu(&msc->all_msc_list);
1646 	platform_set_drvdata(pdev, NULL);
1647 
1648 	add_to_garbage(msc);
1649 }
1650 
1651 static void mpam_msc_drv_remove(struct platform_device *pdev)
1652 {
1653 	struct mpam_msc *msc = platform_get_drvdata(pdev);
1654 
1655 	mutex_lock(&mpam_list_lock);
1656 	mpam_msc_destroy(msc);
1657 	mutex_unlock(&mpam_list_lock);
1658 
1659 	mpam_free_garbage();
1660 }
1661 
1662 static struct mpam_msc *do_mpam_msc_drv_probe(struct platform_device *pdev)
1663 {
1664 	int err;
1665 	u32 tmp;
1666 	struct mpam_msc *msc;
1667 	struct resource *msc_res;
1668 	struct device *dev = &pdev->dev;
1669 
1670 	lockdep_assert_held(&mpam_list_lock);
1671 
1672 	msc = devm_kzalloc(&pdev->dev, sizeof(*msc), GFP_KERNEL);
1673 	if (!msc)
1674 		return ERR_PTR(-ENOMEM);
1675 	init_garbage(&msc->garbage);
1676 	msc->garbage.pdev = pdev;
1677 
1678 	err = devm_mutex_init(dev, &msc->probe_lock);
1679 	if (err)
1680 		return ERR_PTR(err);
1681 
1682 	err = devm_mutex_init(dev, &msc->part_sel_lock);
1683 	if (err)
1684 		return ERR_PTR(err);
1685 
1686 	err = devm_mutex_init(dev, &msc->error_irq_lock);
1687 	if (err)
1688 		return ERR_PTR(err);
1689 
1690 	err = devm_mutex_init(dev, &msc->cfg_lock);
1691 	if (err)
1692 		return ERR_PTR(err);
1693 
1694 	mpam_mon_sel_lock_init(msc);
1695 	msc->id = pdev->id;
1696 	msc->pdev = pdev;
1697 	INIT_LIST_HEAD_RCU(&msc->all_msc_list);
1698 	INIT_LIST_HEAD_RCU(&msc->ris);
1699 
1700 	update_msc_accessibility(msc);
1701 	if (cpumask_empty(&msc->accessibility)) {
1702 		dev_err_once(dev, "MSC is not accessible from any CPU!");
1703 		return ERR_PTR(-EINVAL);
1704 	}
1705 
1706 	err = mpam_msc_setup_error_irq(msc);
1707 	if (err)
1708 		return ERR_PTR(err);
1709 
1710 	if (device_property_read_u32(&pdev->dev, "pcc-channel", &tmp))
1711 		msc->iface = MPAM_IFACE_MMIO;
1712 	else
1713 		msc->iface = MPAM_IFACE_PCC;
1714 
1715 	if (msc->iface == MPAM_IFACE_MMIO) {
1716 		void __iomem *io;
1717 
1718 		io = devm_platform_get_and_ioremap_resource(pdev, 0,
1719 							    &msc_res);
1720 		if (IS_ERR(io)) {
1721 			dev_err_once(dev, "Failed to map MSC base address\n");
1722 			return ERR_CAST(io);
1723 		}
1724 		msc->mapped_hwpage_sz = msc_res->end - msc_res->start;
1725 		msc->mapped_hwpage = io;
1726 	} else {
1727 		return ERR_PTR(-EINVAL);
1728 	}
1729 
1730 	list_add_rcu(&msc->all_msc_list, &mpam_all_msc);
1731 	platform_set_drvdata(pdev, msc);
1732 
1733 	return msc;
1734 }
1735 
1736 static int fw_num_msc;
1737 
1738 static int mpam_msc_drv_probe(struct platform_device *pdev)
1739 {
1740 	int err;
1741 	struct mpam_msc *msc = NULL;
1742 	void *plat_data = pdev->dev.platform_data;
1743 
1744 	mutex_lock(&mpam_list_lock);
1745 	msc = do_mpam_msc_drv_probe(pdev);
1746 	mutex_unlock(&mpam_list_lock);
1747 
1748 	if (IS_ERR(msc))
1749 		return PTR_ERR(msc);
1750 
1751 	/* Create RIS entries described by firmware */
1752 	err = acpi_mpam_parse_resources(msc, plat_data);
1753 	if (err) {
1754 		mpam_msc_drv_remove(pdev);
1755 		return err;
1756 	}
1757 
1758 	if (atomic_add_return(1, &mpam_num_msc) == fw_num_msc)
1759 		mpam_register_cpuhp_callbacks(mpam_discovery_cpu_online, NULL,
1760 					      "mpam:drv_probe");
1761 
1762 	return 0;
1763 }
1764 
1765 static struct platform_driver mpam_msc_driver = {
1766 	.driver = {
1767 		.name = "mpam_msc",
1768 	},
1769 	.probe = mpam_msc_drv_probe,
1770 	.remove = mpam_msc_drv_remove,
1771 };
1772 
1773 /* Any of these features mean the BWA_WD field is valid. */
1774 static bool mpam_has_bwa_wd_feature(struct mpam_props *props)
1775 {
1776 	if (mpam_has_feature(mpam_feat_mbw_min, props))
1777 		return true;
1778 	if (mpam_has_feature(mpam_feat_mbw_max, props))
1779 		return true;
1780 	if (mpam_has_feature(mpam_feat_mbw_prop, props))
1781 		return true;
1782 	return false;
1783 }
1784 
1785 /* Any of these features mean the CMAX_WD field is valid. */
1786 static bool mpam_has_cmax_wd_feature(struct mpam_props *props)
1787 {
1788 	if (mpam_has_feature(mpam_feat_cmax_cmax, props))
1789 		return true;
1790 	if (mpam_has_feature(mpam_feat_cmax_cmin, props))
1791 		return true;
1792 	return false;
1793 }
1794 
1795 #define MISMATCHED_HELPER(parent, child, helper, field, alias)		\
1796 	helper(parent) &&						\
1797 	((helper(child) && (parent)->field != (child)->field) ||	\
1798 	 (!helper(child) && !(alias)))
1799 
1800 #define MISMATCHED_FEAT(parent, child, feat, field, alias)		     \
1801 	mpam_has_feature((feat), (parent)) &&				     \
1802 	((mpam_has_feature((feat), (child)) && (parent)->field != (child)->field) || \
1803 	 (!mpam_has_feature((feat), (child)) && !(alias)))
1804 
1805 #define CAN_MERGE_FEAT(parent, child, feat, alias)			\
1806 	(alias) && !mpam_has_feature((feat), (parent)) &&		\
1807 	mpam_has_feature((feat), (child))
1808 
1809 /*
1810  * Combine two props fields.
1811  * If this is for controls that alias the same resource, it is safe to just
1812  * copy the values over. If two aliasing controls implement the same scheme
1813  * a safe value must be picked.
1814  * For non-aliasing controls, these control different resources, and the
1815  * resulting safe value must be compatible with both. When merging values in
1816  * the tree, all the aliasing resources must be handled first.
1817  * On mismatch, parent is modified.
1818  */
1819 static void __props_mismatch(struct mpam_props *parent,
1820 			     struct mpam_props *child, bool alias)
1821 {
1822 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_cpor_part, alias)) {
1823 		parent->cpbm_wd = child->cpbm_wd;
1824 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_cpor_part,
1825 				   cpbm_wd, alias)) {
1826 		pr_debug("cleared cpor_part\n");
1827 		mpam_clear_feature(mpam_feat_cpor_part, parent);
1828 		parent->cpbm_wd = 0;
1829 	}
1830 
1831 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_mbw_part, alias)) {
1832 		parent->mbw_pbm_bits = child->mbw_pbm_bits;
1833 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_mbw_part,
1834 				   mbw_pbm_bits, alias)) {
1835 		pr_debug("cleared mbw_part\n");
1836 		mpam_clear_feature(mpam_feat_mbw_part, parent);
1837 		parent->mbw_pbm_bits = 0;
1838 	}
1839 
1840 	/* bwa_wd is a count of bits, fewer bits means less precision */
1841 	if (alias && !mpam_has_bwa_wd_feature(parent) &&
1842 	    mpam_has_bwa_wd_feature(child)) {
1843 		parent->bwa_wd = child->bwa_wd;
1844 	} else if (MISMATCHED_HELPER(parent, child, mpam_has_bwa_wd_feature,
1845 				     bwa_wd, alias)) {
1846 		pr_debug("took the min bwa_wd\n");
1847 		parent->bwa_wd = min(parent->bwa_wd, child->bwa_wd);
1848 	}
1849 
1850 	if (alias && !mpam_has_cmax_wd_feature(parent) && mpam_has_cmax_wd_feature(child)) {
1851 		parent->cmax_wd = child->cmax_wd;
1852 	} else if (MISMATCHED_HELPER(parent, child, mpam_has_cmax_wd_feature,
1853 				     cmax_wd, alias)) {
1854 		pr_debug("%s took the min cmax_wd\n", __func__);
1855 		parent->cmax_wd = min(parent->cmax_wd, child->cmax_wd);
1856 	}
1857 
1858 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_cmax_cassoc, alias)) {
1859 		parent->cassoc_wd = child->cassoc_wd;
1860 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_cmax_cassoc,
1861 				   cassoc_wd, alias)) {
1862 		pr_debug("%s cleared cassoc_wd\n", __func__);
1863 		mpam_clear_feature(mpam_feat_cmax_cassoc, parent);
1864 		parent->cassoc_wd = 0;
1865 	}
1866 
1867 	/* For num properties, take the minimum */
1868 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_csu, alias)) {
1869 		parent->num_csu_mon = child->num_csu_mon;
1870 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_csu,
1871 				   num_csu_mon, alias)) {
1872 		pr_debug("took the min num_csu_mon\n");
1873 		parent->num_csu_mon = min(parent->num_csu_mon,
1874 					  child->num_csu_mon);
1875 	}
1876 
1877 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_mbwu, alias)) {
1878 		parent->num_mbwu_mon = child->num_mbwu_mon;
1879 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_mbwu,
1880 				   num_mbwu_mon, alias)) {
1881 		pr_debug("took the min num_mbwu_mon\n");
1882 		parent->num_mbwu_mon = min(parent->num_mbwu_mon,
1883 					   child->num_mbwu_mon);
1884 	}
1885 
1886 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_intpri_part, alias)) {
1887 		parent->intpri_wd = child->intpri_wd;
1888 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_intpri_part,
1889 				   intpri_wd, alias)) {
1890 		pr_debug("%s took the min intpri_wd\n", __func__);
1891 		parent->intpri_wd = min(parent->intpri_wd, child->intpri_wd);
1892 	}
1893 
1894 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_dspri_part, alias)) {
1895 		parent->dspri_wd = child->dspri_wd;
1896 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_dspri_part,
1897 				   dspri_wd, alias)) {
1898 		pr_debug("%s took the min dspri_wd\n", __func__);
1899 		parent->dspri_wd = min(parent->dspri_wd, child->dspri_wd);
1900 	}
1901 
1902 	/* TODO: alias support for these two */
1903 	/* {int,ds}pri may not have differing 0-low behaviour */
1904 	if (mpam_has_feature(mpam_feat_intpri_part, parent) &&
1905 	    (!mpam_has_feature(mpam_feat_intpri_part, child) ||
1906 	     mpam_has_feature(mpam_feat_intpri_part_0_low, parent) !=
1907 	     mpam_has_feature(mpam_feat_intpri_part_0_low, child))) {
1908 		pr_debug("%s cleared intpri_part\n", __func__);
1909 		mpam_clear_feature(mpam_feat_intpri_part, parent);
1910 		mpam_clear_feature(mpam_feat_intpri_part_0_low, parent);
1911 	}
1912 	if (mpam_has_feature(mpam_feat_dspri_part, parent) &&
1913 	    (!mpam_has_feature(mpam_feat_dspri_part, child) ||
1914 	     mpam_has_feature(mpam_feat_dspri_part_0_low, parent) !=
1915 	     mpam_has_feature(mpam_feat_dspri_part_0_low, child))) {
1916 		pr_debug("%s cleared dspri_part\n", __func__);
1917 		mpam_clear_feature(mpam_feat_dspri_part, parent);
1918 		mpam_clear_feature(mpam_feat_dspri_part_0_low, parent);
1919 	}
1920 
1921 	if (alias) {
1922 		/* Merge features for aliased resources */
1923 		bitmap_or(parent->features, parent->features, child->features, MPAM_FEATURE_LAST);
1924 	} else {
1925 		/* Clear missing features for non aliasing */
1926 		bitmap_and(parent->features, parent->features, child->features, MPAM_FEATURE_LAST);
1927 	}
1928 }
1929 
1930 /*
1931  * If a vmsc doesn't match class feature/configuration, do the right thing(tm).
1932  * For 'num' properties we can just take the minimum.
1933  * For properties where the mismatched unused bits would make a difference, we
1934  * nobble the class feature, as we can't configure all the resources.
1935  * e.g. The L3 cache is composed of two resources with 13 and 17 portion
1936  * bitmaps respectively.
1937  */
1938 static void
1939 __class_props_mismatch(struct mpam_class *class, struct mpam_vmsc *vmsc)
1940 {
1941 	struct mpam_props *cprops = &class->props;
1942 	struct mpam_props *vprops = &vmsc->props;
1943 	struct device *dev = &vmsc->msc->pdev->dev;
1944 
1945 	lockdep_assert_held(&mpam_list_lock); /* we modify class */
1946 
1947 	dev_dbg(dev, "Merging features for class:0x%lx &= vmsc:0x%lx\n",
1948 		(long)cprops->features, (long)vprops->features);
1949 
1950 	/* Take the safe value for any common features */
1951 	__props_mismatch(cprops, vprops, false);
1952 }
1953 
1954 static void
1955 __vmsc_props_mismatch(struct mpam_vmsc *vmsc, struct mpam_msc_ris *ris)
1956 {
1957 	struct mpam_props *rprops = &ris->props;
1958 	struct mpam_props *vprops = &vmsc->props;
1959 	struct device *dev = &vmsc->msc->pdev->dev;
1960 
1961 	lockdep_assert_held(&mpam_list_lock); /* we modify vmsc */
1962 
1963 	dev_dbg(dev, "Merging features for vmsc:0x%lx |= ris:0x%lx\n",
1964 		(long)vprops->features, (long)rprops->features);
1965 
1966 	/*
1967 	 * Merge mismatched features - Copy any features that aren't common,
1968 	 * but take the safe value for any common features.
1969 	 */
1970 	__props_mismatch(vprops, rprops, true);
1971 }
1972 
1973 /*
1974  * Copy the first component's first vMSC's properties and features to the
1975  * class. __class_props_mismatch() will remove conflicts.
1976  * It is not possible to have a class with no components, or a component with
1977  * no resources. The vMSC properties have already been built.
1978  */
1979 static void mpam_enable_init_class_features(struct mpam_class *class)
1980 {
1981 	struct mpam_vmsc *vmsc;
1982 	struct mpam_component *comp;
1983 
1984 	comp = list_first_entry(&class->components,
1985 				struct mpam_component, class_list);
1986 	vmsc = list_first_entry(&comp->vmsc,
1987 				struct mpam_vmsc, comp_list);
1988 
1989 	class->props = vmsc->props;
1990 }
1991 
1992 static void mpam_enable_merge_vmsc_features(struct mpam_component *comp)
1993 {
1994 	struct mpam_vmsc *vmsc;
1995 	struct mpam_msc_ris *ris;
1996 	struct mpam_class *class = comp->class;
1997 
1998 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
1999 		list_for_each_entry(ris, &vmsc->ris, vmsc_list) {
2000 			__vmsc_props_mismatch(vmsc, ris);
2001 			class->nrdy_usec = max(class->nrdy_usec,
2002 					       vmsc->msc->nrdy_usec);
2003 		}
2004 	}
2005 }
2006 
2007 static void mpam_enable_merge_class_features(struct mpam_component *comp)
2008 {
2009 	struct mpam_vmsc *vmsc;
2010 	struct mpam_class *class = comp->class;
2011 
2012 	list_for_each_entry(vmsc, &comp->vmsc, comp_list)
2013 		__class_props_mismatch(class, vmsc);
2014 }
2015 
2016 /*
2017  * Merge all the common resource features into class.
2018  * vmsc features are bitwise-or'd together by mpam_enable_merge_vmsc_features()
2019  * as the first step so that mpam_enable_init_class_features() can initialise
2020  * the class with a representative set of features.
2021  * Next the mpam_enable_merge_class_features() bitwise-and's all the vmsc
2022  * features to form the class features.
2023  * Other features are the min/max as appropriate.
2024  *
2025  * To avoid walking the whole tree twice, the class->nrdy_usec property is
2026  * updated when working with the vmsc as it is a max(), and doesn't need
2027  * initialising first.
2028  */
2029 static void mpam_enable_merge_features(struct list_head *all_classes_list)
2030 {
2031 	struct mpam_class *class;
2032 	struct mpam_component *comp;
2033 
2034 	lockdep_assert_held(&mpam_list_lock);
2035 
2036 	list_for_each_entry(class, all_classes_list, classes_list) {
2037 		list_for_each_entry(comp, &class->components, class_list)
2038 			mpam_enable_merge_vmsc_features(comp);
2039 
2040 		mpam_enable_init_class_features(class);
2041 
2042 		list_for_each_entry(comp, &class->components, class_list)
2043 			mpam_enable_merge_class_features(comp);
2044 	}
2045 }
2046 
2047 static char *mpam_errcode_names[16] = {
2048 	[MPAM_ERRCODE_NONE]			= "No error",
2049 	[MPAM_ERRCODE_PARTID_SEL_RANGE]		= "PARTID_SEL_Range",
2050 	[MPAM_ERRCODE_REQ_PARTID_RANGE]		= "Req_PARTID_Range",
2051 	[MPAM_ERRCODE_MSMONCFG_ID_RANGE]	= "MSMONCFG_ID_RANGE",
2052 	[MPAM_ERRCODE_REQ_PMG_RANGE]		= "Req_PMG_Range",
2053 	[MPAM_ERRCODE_MONITOR_RANGE]		= "Monitor_Range",
2054 	[MPAM_ERRCODE_INTPARTID_RANGE]		= "intPARTID_Range",
2055 	[MPAM_ERRCODE_UNEXPECTED_INTERNAL]	= "Unexpected_INTERNAL",
2056 	[MPAM_ERRCODE_UNDEFINED_RIS_PART_SEL]	= "Undefined_RIS_PART_SEL",
2057 	[MPAM_ERRCODE_RIS_NO_CONTROL]		= "RIS_No_Control",
2058 	[MPAM_ERRCODE_UNDEFINED_RIS_MON_SEL]	= "Undefined_RIS_MON_SEL",
2059 	[MPAM_ERRCODE_RIS_NO_MONITOR]		= "RIS_No_Monitor",
2060 	[12 ... 15] = "Reserved"
2061 };
2062 
2063 static int mpam_enable_msc_ecr(void *_msc)
2064 {
2065 	struct mpam_msc *msc = _msc;
2066 
2067 	__mpam_write_reg(msc, MPAMF_ECR, MPAMF_ECR_INTEN);
2068 
2069 	return 0;
2070 }
2071 
2072 /* This can run in mpam_disable(), and the interrupt handler on the same CPU */
2073 static int mpam_disable_msc_ecr(void *_msc)
2074 {
2075 	struct mpam_msc *msc = _msc;
2076 
2077 	__mpam_write_reg(msc, MPAMF_ECR, 0);
2078 
2079 	return 0;
2080 }
2081 
2082 static irqreturn_t __mpam_irq_handler(int irq, struct mpam_msc *msc)
2083 {
2084 	u64 reg;
2085 	u16 partid;
2086 	u8 errcode, pmg, ris;
2087 
2088 	if (WARN_ON_ONCE(!msc) ||
2089 	    WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
2090 					   &msc->accessibility)))
2091 		return IRQ_NONE;
2092 
2093 	reg = mpam_msc_read_esr(msc);
2094 
2095 	errcode = FIELD_GET(MPAMF_ESR_ERRCODE, reg);
2096 	if (!errcode)
2097 		return IRQ_NONE;
2098 
2099 	/* Clear level triggered irq */
2100 	mpam_msc_clear_esr(msc);
2101 
2102 	partid = FIELD_GET(MPAMF_ESR_PARTID_MON, reg);
2103 	pmg = FIELD_GET(MPAMF_ESR_PMG, reg);
2104 	ris = FIELD_GET(MPAMF_ESR_RIS, reg);
2105 
2106 	pr_err_ratelimited("error irq from msc:%u '%s', partid:%u, pmg: %u, ris: %u\n",
2107 			   msc->id, mpam_errcode_names[errcode], partid, pmg,
2108 			   ris);
2109 
2110 	/* Disable this interrupt. */
2111 	mpam_disable_msc_ecr(msc);
2112 
2113 	/* Are we racing with the thread disabling MPAM? */
2114 	if (!mpam_is_enabled())
2115 		return IRQ_HANDLED;
2116 
2117 	/*
2118 	 * Schedule the teardown work. Don't use a threaded IRQ as we can't
2119 	 * unregister the interrupt from the threaded part of the handler.
2120 	 */
2121 	mpam_disable_reason = "hardware error interrupt";
2122 	schedule_work(&mpam_broken_work);
2123 
2124 	return IRQ_HANDLED;
2125 }
2126 
2127 static irqreturn_t mpam_ppi_handler(int irq, void *dev_id)
2128 {
2129 	struct mpam_msc *msc = *(struct mpam_msc **)dev_id;
2130 
2131 	return __mpam_irq_handler(irq, msc);
2132 }
2133 
2134 static irqreturn_t mpam_spi_handler(int irq, void *dev_id)
2135 {
2136 	struct mpam_msc *msc = dev_id;
2137 
2138 	return __mpam_irq_handler(irq, msc);
2139 }
2140 
2141 static int mpam_register_irqs(void)
2142 {
2143 	int err, irq;
2144 	struct mpam_msc *msc;
2145 
2146 	lockdep_assert_cpus_held();
2147 
2148 	guard(srcu)(&mpam_srcu);
2149 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
2150 				 srcu_read_lock_held(&mpam_srcu)) {
2151 		irq = platform_get_irq_byname_optional(msc->pdev, "error");
2152 		if (irq <= 0)
2153 			continue;
2154 
2155 		/* The MPAM spec says the interrupt can be SPI, PPI or LPI */
2156 		/* We anticipate sharing the interrupt with other MSCs */
2157 		if (irq_is_percpu(irq)) {
2158 			err = request_percpu_irq(irq, &mpam_ppi_handler,
2159 						 "mpam:msc:error",
2160 						 msc->error_dev_id);
2161 			if (err)
2162 				return err;
2163 
2164 			msc->reenable_error_ppi = irq;
2165 			smp_call_function_many(&msc->accessibility,
2166 					       &_enable_percpu_irq, &irq,
2167 					       true);
2168 		} else {
2169 			err = devm_request_irq(&msc->pdev->dev, irq,
2170 					       &mpam_spi_handler, IRQF_SHARED,
2171 					       "mpam:msc:error", msc);
2172 			if (err)
2173 				return err;
2174 		}
2175 
2176 		mutex_lock(&msc->error_irq_lock);
2177 		msc->error_irq_req = true;
2178 		mpam_touch_msc(msc, mpam_enable_msc_ecr, msc);
2179 		msc->error_irq_hw_enabled = true;
2180 		mutex_unlock(&msc->error_irq_lock);
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 static void mpam_unregister_irqs(void)
2187 {
2188 	int irq;
2189 	struct mpam_msc *msc;
2190 
2191 	guard(cpus_read_lock)();
2192 	guard(srcu)(&mpam_srcu);
2193 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
2194 				 srcu_read_lock_held(&mpam_srcu)) {
2195 		irq = platform_get_irq_byname_optional(msc->pdev, "error");
2196 		if (irq <= 0)
2197 			continue;
2198 
2199 		mutex_lock(&msc->error_irq_lock);
2200 		if (msc->error_irq_hw_enabled) {
2201 			mpam_touch_msc(msc, mpam_disable_msc_ecr, msc);
2202 			msc->error_irq_hw_enabled = false;
2203 		}
2204 
2205 		if (msc->error_irq_req) {
2206 			if (irq_is_percpu(irq)) {
2207 				msc->reenable_error_ppi = 0;
2208 				free_percpu_irq(irq, msc->error_dev_id);
2209 			} else {
2210 				devm_free_irq(&msc->pdev->dev, irq, msc);
2211 			}
2212 			msc->error_irq_req = false;
2213 		}
2214 		mutex_unlock(&msc->error_irq_lock);
2215 	}
2216 }
2217 
2218 static void __destroy_component_cfg(struct mpam_component *comp)
2219 {
2220 	struct mpam_msc *msc;
2221 	struct mpam_vmsc *vmsc;
2222 	struct mpam_msc_ris *ris;
2223 
2224 	lockdep_assert_held(&mpam_list_lock);
2225 
2226 	add_to_garbage(comp->cfg);
2227 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
2228 		msc = vmsc->msc;
2229 
2230 		if (mpam_mon_sel_lock(msc)) {
2231 			list_for_each_entry(ris, &vmsc->ris, vmsc_list)
2232 				add_to_garbage(ris->mbwu_state);
2233 			mpam_mon_sel_unlock(msc);
2234 		}
2235 	}
2236 }
2237 
2238 static void mpam_reset_component_cfg(struct mpam_component *comp)
2239 {
2240 	int i;
2241 	struct mpam_props *cprops = &comp->class->props;
2242 
2243 	mpam_assert_partid_sizes_fixed();
2244 
2245 	if (!comp->cfg)
2246 		return;
2247 
2248 	for (i = 0; i <= mpam_partid_max; i++) {
2249 		comp->cfg[i] = (struct mpam_config) {};
2250 		if (cprops->cpbm_wd)
2251 			comp->cfg[i].cpbm = GENMASK(cprops->cpbm_wd - 1, 0);
2252 		if (cprops->mbw_pbm_bits)
2253 			comp->cfg[i].mbw_pbm = GENMASK(cprops->mbw_pbm_bits - 1, 0);
2254 		if (cprops->bwa_wd)
2255 			comp->cfg[i].mbw_max = GENMASK(15, 16 - cprops->bwa_wd);
2256 	}
2257 }
2258 
2259 static int __allocate_component_cfg(struct mpam_component *comp)
2260 {
2261 	struct mpam_vmsc *vmsc;
2262 
2263 	mpam_assert_partid_sizes_fixed();
2264 
2265 	if (comp->cfg)
2266 		return 0;
2267 
2268 	comp->cfg = kcalloc(mpam_partid_max + 1, sizeof(*comp->cfg), GFP_KERNEL);
2269 	if (!comp->cfg)
2270 		return -ENOMEM;
2271 
2272 	/*
2273 	 * The array is free()d in one go, so only cfg[0]'s structure needs
2274 	 * to be initialised.
2275 	 */
2276 	init_garbage(&comp->cfg[0].garbage);
2277 
2278 	mpam_reset_component_cfg(comp);
2279 
2280 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
2281 		struct mpam_msc *msc;
2282 		struct mpam_msc_ris *ris;
2283 		struct msmon_mbwu_state *mbwu_state;
2284 
2285 		if (!vmsc->props.num_mbwu_mon)
2286 			continue;
2287 
2288 		msc = vmsc->msc;
2289 		list_for_each_entry(ris, &vmsc->ris, vmsc_list) {
2290 			if (!ris->props.num_mbwu_mon)
2291 				continue;
2292 
2293 			mbwu_state = kcalloc(ris->props.num_mbwu_mon,
2294 					     sizeof(*ris->mbwu_state),
2295 					     GFP_KERNEL);
2296 			if (!mbwu_state) {
2297 				__destroy_component_cfg(comp);
2298 				return -ENOMEM;
2299 			}
2300 
2301 			init_garbage(&mbwu_state[0].garbage);
2302 
2303 			if (mpam_mon_sel_lock(msc)) {
2304 				ris->mbwu_state = mbwu_state;
2305 				mpam_mon_sel_unlock(msc);
2306 			}
2307 		}
2308 	}
2309 
2310 	return 0;
2311 }
2312 
2313 static int mpam_allocate_config(void)
2314 {
2315 	struct mpam_class *class;
2316 	struct mpam_component *comp;
2317 
2318 	lockdep_assert_held(&mpam_list_lock);
2319 
2320 	list_for_each_entry(class, &mpam_classes, classes_list) {
2321 		list_for_each_entry(comp, &class->components, class_list) {
2322 			int err = __allocate_component_cfg(comp);
2323 			if (err)
2324 				return err;
2325 		}
2326 	}
2327 
2328 	return 0;
2329 }
2330 
2331 static void mpam_enable_once(void)
2332 {
2333 	int err;
2334 
2335 	/*
2336 	 * Once the cpuhp callbacks have been changed, mpam_partid_max can no
2337 	 * longer change.
2338 	 */
2339 	spin_lock(&partid_max_lock);
2340 	partid_max_published = true;
2341 	spin_unlock(&partid_max_lock);
2342 
2343 	/*
2344 	 * If all the MSC have been probed, enabling the IRQs happens next.
2345 	 * That involves cross-calling to a CPU that can reach the MSC, and
2346 	 * the locks must be taken in this order:
2347 	 */
2348 	cpus_read_lock();
2349 	mutex_lock(&mpam_list_lock);
2350 	do {
2351 		mpam_enable_merge_features(&mpam_classes);
2352 
2353 		err = mpam_register_irqs();
2354 		if (err) {
2355 			pr_warn("Failed to register irqs: %d\n", err);
2356 			break;
2357 		}
2358 
2359 		err = mpam_allocate_config();
2360 		if (err) {
2361 			pr_err("Failed to allocate configuration arrays.\n");
2362 			break;
2363 		}
2364 	} while (0);
2365 	mutex_unlock(&mpam_list_lock);
2366 	cpus_read_unlock();
2367 
2368 	if (err) {
2369 		mpam_disable_reason = "Failed to enable.";
2370 		schedule_work(&mpam_broken_work);
2371 		return;
2372 	}
2373 
2374 	static_branch_enable(&mpam_enabled);
2375 	mpam_register_cpuhp_callbacks(mpam_cpu_online, mpam_cpu_offline,
2376 				      "mpam:online");
2377 
2378 	/* Use printk() to avoid the pr_fmt adding the function name. */
2379 	printk(KERN_INFO "MPAM enabled with %u PARTIDs and %u PMGs\n",
2380 	       mpam_partid_max + 1, mpam_pmg_max + 1);
2381 }
2382 
2383 static void mpam_reset_component_locked(struct mpam_component *comp)
2384 {
2385 	struct mpam_vmsc *vmsc;
2386 
2387 	lockdep_assert_cpus_held();
2388 	mpam_assert_partid_sizes_fixed();
2389 
2390 	mpam_reset_component_cfg(comp);
2391 
2392 	guard(srcu)(&mpam_srcu);
2393 	list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list,
2394 				 srcu_read_lock_held(&mpam_srcu)) {
2395 		struct mpam_msc *msc = vmsc->msc;
2396 		struct mpam_msc_ris *ris;
2397 
2398 		list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list,
2399 					 srcu_read_lock_held(&mpam_srcu)) {
2400 			if (!ris->in_reset_state)
2401 				mpam_touch_msc(msc, mpam_reset_ris, ris);
2402 			ris->in_reset_state = true;
2403 		}
2404 	}
2405 }
2406 
2407 static void mpam_reset_class_locked(struct mpam_class *class)
2408 {
2409 	struct mpam_component *comp;
2410 
2411 	lockdep_assert_cpus_held();
2412 
2413 	guard(srcu)(&mpam_srcu);
2414 	list_for_each_entry_srcu(comp, &class->components, class_list,
2415 				 srcu_read_lock_held(&mpam_srcu))
2416 		mpam_reset_component_locked(comp);
2417 }
2418 
2419 static void mpam_reset_class(struct mpam_class *class)
2420 {
2421 	cpus_read_lock();
2422 	mpam_reset_class_locked(class);
2423 	cpus_read_unlock();
2424 }
2425 
2426 /*
2427  * Called in response to an error IRQ.
2428  * All of MPAMs errors indicate a software bug, restore any modified
2429  * controls to their reset values.
2430  */
2431 void mpam_disable(struct work_struct *ignored)
2432 {
2433 	int idx;
2434 	struct mpam_class *class;
2435 	struct mpam_msc *msc, *tmp;
2436 
2437 	mutex_lock(&mpam_cpuhp_state_lock);
2438 	if (mpam_cpuhp_state) {
2439 		cpuhp_remove_state(mpam_cpuhp_state);
2440 		mpam_cpuhp_state = 0;
2441 	}
2442 	mutex_unlock(&mpam_cpuhp_state_lock);
2443 
2444 	static_branch_disable(&mpam_enabled);
2445 
2446 	mpam_unregister_irqs();
2447 
2448 	idx = srcu_read_lock(&mpam_srcu);
2449 	list_for_each_entry_srcu(class, &mpam_classes, classes_list,
2450 				 srcu_read_lock_held(&mpam_srcu))
2451 		mpam_reset_class(class);
2452 	srcu_read_unlock(&mpam_srcu, idx);
2453 
2454 	mutex_lock(&mpam_list_lock);
2455 	list_for_each_entry_safe(msc, tmp, &mpam_all_msc, all_msc_list)
2456 		mpam_msc_destroy(msc);
2457 	mutex_unlock(&mpam_list_lock);
2458 	mpam_free_garbage();
2459 
2460 	pr_err_once("MPAM disabled due to %s\n", mpam_disable_reason);
2461 }
2462 
2463 /*
2464  * Enable mpam once all devices have been probed.
2465  * Scheduled by mpam_discovery_cpu_online() once all devices have been created.
2466  * Also scheduled when new devices are probed when new CPUs come online.
2467  */
2468 void mpam_enable(struct work_struct *work)
2469 {
2470 	static atomic_t once;
2471 	struct mpam_msc *msc;
2472 	bool all_devices_probed = true;
2473 
2474 	/* Have we probed all the hw devices? */
2475 	guard(srcu)(&mpam_srcu);
2476 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
2477 				 srcu_read_lock_held(&mpam_srcu)) {
2478 		mutex_lock(&msc->probe_lock);
2479 		if (!msc->probed)
2480 			all_devices_probed = false;
2481 		mutex_unlock(&msc->probe_lock);
2482 
2483 		if (!all_devices_probed)
2484 			break;
2485 	}
2486 
2487 	if (all_devices_probed && !atomic_fetch_inc(&once))
2488 		mpam_enable_once();
2489 }
2490 
2491 #define maybe_update_config(cfg, feature, newcfg, member, changes) do { \
2492 	if (mpam_has_feature(feature, newcfg) &&			\
2493 	    (newcfg)->member != (cfg)->member) {			\
2494 		(cfg)->member = (newcfg)->member;			\
2495 		mpam_set_feature(feature, cfg);				\
2496 									\
2497 		(changes) = true;					\
2498 	}								\
2499 } while (0)
2500 
2501 static bool mpam_update_config(struct mpam_config *cfg,
2502 			       const struct mpam_config *newcfg)
2503 {
2504 	bool has_changes = false;
2505 
2506 	maybe_update_config(cfg, mpam_feat_cpor_part, newcfg, cpbm, has_changes);
2507 	maybe_update_config(cfg, mpam_feat_mbw_part, newcfg, mbw_pbm, has_changes);
2508 	maybe_update_config(cfg, mpam_feat_mbw_max, newcfg, mbw_max, has_changes);
2509 
2510 	return has_changes;
2511 }
2512 
2513 int mpam_apply_config(struct mpam_component *comp, u16 partid,
2514 		      struct mpam_config *cfg)
2515 {
2516 	struct mpam_write_config_arg arg;
2517 	struct mpam_msc_ris *ris;
2518 	struct mpam_vmsc *vmsc;
2519 	struct mpam_msc *msc;
2520 
2521 	lockdep_assert_cpus_held();
2522 
2523 	/* Don't pass in the current config! */
2524 	WARN_ON_ONCE(&comp->cfg[partid] == cfg);
2525 
2526 	if (!mpam_update_config(&comp->cfg[partid], cfg))
2527 		return 0;
2528 
2529 	arg.comp = comp;
2530 	arg.partid = partid;
2531 
2532 	guard(srcu)(&mpam_srcu);
2533 	list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list,
2534 				 srcu_read_lock_held(&mpam_srcu)) {
2535 		msc = vmsc->msc;
2536 
2537 		mutex_lock(&msc->cfg_lock);
2538 		list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list,
2539 					 srcu_read_lock_held(&mpam_srcu)) {
2540 			arg.ris = ris;
2541 			mpam_touch_msc(msc, __write_config, &arg);
2542 		}
2543 		mutex_unlock(&msc->cfg_lock);
2544 	}
2545 
2546 	return 0;
2547 }
2548 
2549 static int __init mpam_msc_driver_init(void)
2550 {
2551 	if (!system_supports_mpam())
2552 		return -EOPNOTSUPP;
2553 
2554 	init_srcu_struct(&mpam_srcu);
2555 
2556 	fw_num_msc = acpi_mpam_count_msc();
2557 	if (fw_num_msc <= 0) {
2558 		pr_err("No MSC devices found in firmware\n");
2559 		return -EINVAL;
2560 	}
2561 
2562 	return platform_driver_register(&mpam_msc_driver);
2563 }
2564 
2565 /* Must occur after arm64_mpam_register_cpus() from arch_initcall() */
2566 subsys_initcall(mpam_msc_driver_init);
2567