1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2025 Arm Ltd. 3 4 #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__ 5 6 #include <linux/acpi.h> 7 #include <linux/atomic.h> 8 #include <linux/arm_mpam.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cacheinfo.h> 12 #include <linux/cpu.h> 13 #include <linux/cpumask.h> 14 #include <linux/device.h> 15 #include <linux/errno.h> 16 #include <linux/gfp.h> 17 #include <linux/interrupt.h> 18 #include <linux/irq.h> 19 #include <linux/irqdesc.h> 20 #include <linux/list.h> 21 #include <linux/lockdep.h> 22 #include <linux/mutex.h> 23 #include <linux/platform_device.h> 24 #include <linux/printk.h> 25 #include <linux/srcu.h> 26 #include <linux/spinlock.h> 27 #include <linux/types.h> 28 #include <linux/workqueue.h> 29 30 #include "mpam_internal.h" 31 32 DEFINE_STATIC_KEY_FALSE(mpam_enabled); /* This moves to arch code */ 33 34 /* 35 * mpam_list_lock protects the SRCU lists when writing. Once the 36 * mpam_enabled key is enabled these lists are read-only, 37 * unless the error interrupt disables the driver. 38 */ 39 static DEFINE_MUTEX(mpam_list_lock); 40 static LIST_HEAD(mpam_all_msc); 41 42 struct srcu_struct mpam_srcu; 43 44 /* 45 * Number of MSCs that have been probed. Once all MSCs have been probed MPAM 46 * can be enabled. 47 */ 48 static atomic_t mpam_num_msc; 49 50 static int mpam_cpuhp_state; 51 static DEFINE_MUTEX(mpam_cpuhp_state_lock); 52 53 /* 54 * The smallest common values for any CPU or MSC in the system. 55 * Generating traffic outside this range will result in screaming interrupts. 56 */ 57 u16 mpam_partid_max; 58 u8 mpam_pmg_max; 59 static bool partid_max_init, partid_max_published; 60 static DEFINE_SPINLOCK(partid_max_lock); 61 62 /* 63 * mpam is enabled once all devices have been probed from CPU online callbacks, 64 * scheduled via this work_struct. If access to an MSC depends on a CPU that 65 * was not brought online at boot, this can happen surprisingly late. 66 */ 67 static DECLARE_WORK(mpam_enable_work, &mpam_enable); 68 69 /* 70 * All mpam error interrupts indicate a software bug. On receipt, disable the 71 * driver. 72 */ 73 static DECLARE_WORK(mpam_broken_work, &mpam_disable); 74 75 /* When mpam is disabled, the printed reason to aid debugging */ 76 static char *mpam_disable_reason; 77 78 /* 79 * An MSC is a physical container for controls and monitors, each identified by 80 * their RIS index. These share a base-address, interrupts and some MMIO 81 * registers. A vMSC is a virtual container for RIS in an MSC that control or 82 * monitor the same thing. Members of a vMSC are all RIS in the same MSC, but 83 * not all RIS in an MSC share a vMSC. 84 * 85 * Components are a group of vMSC that control or monitor the same thing but 86 * are from different MSC, so have different base-address, interrupts etc. 87 * Classes are the set components of the same type. 88 * 89 * The features of a vMSC is the union of the RIS it contains. 90 * The features of a Class and Component are the common subset of the vMSC 91 * they contain. 92 * 93 * e.g. The system cache may have bandwidth controls on multiple interfaces, 94 * for regulating traffic from devices independently of traffic from CPUs. 95 * If these are two RIS in one MSC, they will be treated as controlling 96 * different things, and will not share a vMSC/component/class. 97 * 98 * e.g. The L2 may have one MSC and two RIS, one for cache-controls another 99 * for bandwidth. These two RIS are members of the same vMSC. 100 * 101 * e.g. The set of RIS that make up the L2 are grouped as a component. These 102 * are sometimes termed slices. They should be configured the same, as if there 103 * were only one. 104 * 105 * e.g. The SoC probably has more than one L2, each attached to a distinct set 106 * of CPUs. All the L2 components are grouped as a class. 107 * 108 * When creating an MSC, struct mpam_msc is added to the all mpam_all_msc list, 109 * then linked via struct mpam_ris to a vmsc, component and class. 110 * The same MSC may exist under different class->component->vmsc paths, but the 111 * RIS index will be unique. 112 */ 113 LIST_HEAD(mpam_classes); 114 115 /* List of all objects that can be free()d after synchronise_srcu() */ 116 static LLIST_HEAD(mpam_garbage); 117 118 static inline void init_garbage(struct mpam_garbage *garbage) 119 { 120 init_llist_node(&garbage->llist); 121 } 122 123 #define add_to_garbage(x) \ 124 do { \ 125 __typeof__(x) _x = (x); \ 126 _x->garbage.to_free = _x; \ 127 llist_add(&_x->garbage.llist, &mpam_garbage); \ 128 } while (0) 129 130 static void mpam_free_garbage(void) 131 { 132 struct mpam_garbage *iter, *tmp; 133 struct llist_node *to_free = llist_del_all(&mpam_garbage); 134 135 if (!to_free) 136 return; 137 138 synchronize_srcu(&mpam_srcu); 139 140 llist_for_each_entry_safe(iter, tmp, to_free, llist) { 141 if (iter->pdev) 142 devm_kfree(&iter->pdev->dev, iter->to_free); 143 else 144 kfree(iter->to_free); 145 } 146 } 147 148 /* 149 * Once mpam is enabled, new requestors cannot further reduce the available 150 * partid. Assert that the size is fixed, and new requestors will be turned 151 * away. 152 */ 153 static void mpam_assert_partid_sizes_fixed(void) 154 { 155 WARN_ON_ONCE(!partid_max_published); 156 } 157 158 static u32 __mpam_read_reg(struct mpam_msc *msc, u16 reg) 159 { 160 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); 161 162 return readl_relaxed(msc->mapped_hwpage + reg); 163 } 164 165 static inline u32 _mpam_read_partsel_reg(struct mpam_msc *msc, u16 reg) 166 { 167 lockdep_assert_held_once(&msc->part_sel_lock); 168 return __mpam_read_reg(msc, reg); 169 } 170 171 #define mpam_read_partsel_reg(msc, reg) _mpam_read_partsel_reg(msc, MPAMF_##reg) 172 173 static void __mpam_write_reg(struct mpam_msc *msc, u16 reg, u32 val) 174 { 175 WARN_ON_ONCE(reg + sizeof(u32) > msc->mapped_hwpage_sz); 176 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); 177 178 writel_relaxed(val, msc->mapped_hwpage + reg); 179 } 180 181 static inline void _mpam_write_partsel_reg(struct mpam_msc *msc, u16 reg, u32 val) 182 { 183 lockdep_assert_held_once(&msc->part_sel_lock); 184 __mpam_write_reg(msc, reg, val); 185 } 186 187 #define mpam_write_partsel_reg(msc, reg, val) _mpam_write_partsel_reg(msc, MPAMCFG_##reg, val) 188 189 static inline u32 _mpam_read_monsel_reg(struct mpam_msc *msc, u16 reg) 190 { 191 mpam_mon_sel_lock_held(msc); 192 return __mpam_read_reg(msc, reg); 193 } 194 195 #define mpam_read_monsel_reg(msc, reg) _mpam_read_monsel_reg(msc, MSMON_##reg) 196 197 static inline void _mpam_write_monsel_reg(struct mpam_msc *msc, u16 reg, u32 val) 198 { 199 mpam_mon_sel_lock_held(msc); 200 __mpam_write_reg(msc, reg, val); 201 } 202 203 #define mpam_write_monsel_reg(msc, reg, val) _mpam_write_monsel_reg(msc, MSMON_##reg, val) 204 205 static u64 mpam_msc_read_idr(struct mpam_msc *msc) 206 { 207 u64 idr_high = 0, idr_low; 208 209 lockdep_assert_held(&msc->part_sel_lock); 210 211 idr_low = mpam_read_partsel_reg(msc, IDR); 212 if (FIELD_GET(MPAMF_IDR_EXT, idr_low)) 213 idr_high = mpam_read_partsel_reg(msc, IDR + 4); 214 215 return (idr_high << 32) | idr_low; 216 } 217 218 static void mpam_msc_clear_esr(struct mpam_msc *msc) 219 { 220 u64 esr_low = __mpam_read_reg(msc, MPAMF_ESR); 221 222 if (!esr_low) 223 return; 224 225 /* 226 * Clearing the high/low bits of MPAMF_ESR can not be atomic. 227 * Clear the top half first, so that the pending error bits in the 228 * lower half prevent hardware from updating either half of the 229 * register. 230 */ 231 if (msc->has_extd_esr) 232 __mpam_write_reg(msc, MPAMF_ESR + 4, 0); 233 __mpam_write_reg(msc, MPAMF_ESR, 0); 234 } 235 236 static u64 mpam_msc_read_esr(struct mpam_msc *msc) 237 { 238 u64 esr_high = 0, esr_low; 239 240 esr_low = __mpam_read_reg(msc, MPAMF_ESR); 241 if (msc->has_extd_esr) 242 esr_high = __mpam_read_reg(msc, MPAMF_ESR + 4); 243 244 return (esr_high << 32) | esr_low; 245 } 246 247 static void __mpam_part_sel_raw(u32 partsel, struct mpam_msc *msc) 248 { 249 lockdep_assert_held(&msc->part_sel_lock); 250 251 mpam_write_partsel_reg(msc, PART_SEL, partsel); 252 } 253 254 static void __mpam_part_sel(u8 ris_idx, u16 partid, struct mpam_msc *msc) 255 { 256 u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) | 257 FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, partid); 258 259 __mpam_part_sel_raw(partsel, msc); 260 } 261 262 static void __mpam_intpart_sel(u8 ris_idx, u16 intpartid, struct mpam_msc *msc) 263 { 264 u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) | 265 FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, intpartid) | 266 MPAMCFG_PART_SEL_INTERNAL; 267 268 __mpam_part_sel_raw(partsel, msc); 269 } 270 271 int mpam_register_requestor(u16 partid_max, u8 pmg_max) 272 { 273 guard(spinlock)(&partid_max_lock); 274 if (!partid_max_init) { 275 mpam_partid_max = partid_max; 276 mpam_pmg_max = pmg_max; 277 partid_max_init = true; 278 } else if (!partid_max_published) { 279 mpam_partid_max = min(mpam_partid_max, partid_max); 280 mpam_pmg_max = min(mpam_pmg_max, pmg_max); 281 } else { 282 /* New requestors can't lower the values */ 283 if (partid_max < mpam_partid_max || pmg_max < mpam_pmg_max) 284 return -EBUSY; 285 } 286 287 return 0; 288 } 289 EXPORT_SYMBOL(mpam_register_requestor); 290 291 static struct mpam_class * 292 mpam_class_alloc(u8 level_idx, enum mpam_class_types type) 293 { 294 struct mpam_class *class; 295 296 lockdep_assert_held(&mpam_list_lock); 297 298 class = kzalloc(sizeof(*class), GFP_KERNEL); 299 if (!class) 300 return ERR_PTR(-ENOMEM); 301 init_garbage(&class->garbage); 302 303 INIT_LIST_HEAD_RCU(&class->components); 304 /* Affinity is updated when ris are added */ 305 class->level = level_idx; 306 class->type = type; 307 INIT_LIST_HEAD_RCU(&class->classes_list); 308 ida_init(&class->ida_csu_mon); 309 ida_init(&class->ida_mbwu_mon); 310 311 list_add_rcu(&class->classes_list, &mpam_classes); 312 313 return class; 314 } 315 316 static void mpam_class_destroy(struct mpam_class *class) 317 { 318 lockdep_assert_held(&mpam_list_lock); 319 320 list_del_rcu(&class->classes_list); 321 add_to_garbage(class); 322 } 323 324 static struct mpam_class * 325 mpam_class_find(u8 level_idx, enum mpam_class_types type) 326 { 327 struct mpam_class *class; 328 329 lockdep_assert_held(&mpam_list_lock); 330 331 list_for_each_entry(class, &mpam_classes, classes_list) { 332 if (class->type == type && class->level == level_idx) 333 return class; 334 } 335 336 return mpam_class_alloc(level_idx, type); 337 } 338 339 static struct mpam_component * 340 mpam_component_alloc(struct mpam_class *class, int id) 341 { 342 struct mpam_component *comp; 343 344 lockdep_assert_held(&mpam_list_lock); 345 346 comp = kzalloc(sizeof(*comp), GFP_KERNEL); 347 if (!comp) 348 return ERR_PTR(-ENOMEM); 349 init_garbage(&comp->garbage); 350 351 comp->comp_id = id; 352 INIT_LIST_HEAD_RCU(&comp->vmsc); 353 /* Affinity is updated when RIS are added */ 354 INIT_LIST_HEAD_RCU(&comp->class_list); 355 comp->class = class; 356 357 list_add_rcu(&comp->class_list, &class->components); 358 359 return comp; 360 } 361 362 static void __destroy_component_cfg(struct mpam_component *comp); 363 364 static void mpam_component_destroy(struct mpam_component *comp) 365 { 366 struct mpam_class *class = comp->class; 367 368 lockdep_assert_held(&mpam_list_lock); 369 370 __destroy_component_cfg(comp); 371 372 list_del_rcu(&comp->class_list); 373 add_to_garbage(comp); 374 375 if (list_empty(&class->components)) 376 mpam_class_destroy(class); 377 } 378 379 static struct mpam_component * 380 mpam_component_find(struct mpam_class *class, int id) 381 { 382 struct mpam_component *comp; 383 384 lockdep_assert_held(&mpam_list_lock); 385 386 list_for_each_entry(comp, &class->components, class_list) { 387 if (comp->comp_id == id) 388 return comp; 389 } 390 391 return mpam_component_alloc(class, id); 392 } 393 394 static struct mpam_vmsc * 395 mpam_vmsc_alloc(struct mpam_component *comp, struct mpam_msc *msc) 396 { 397 struct mpam_vmsc *vmsc; 398 399 lockdep_assert_held(&mpam_list_lock); 400 401 vmsc = kzalloc(sizeof(*vmsc), GFP_KERNEL); 402 if (!vmsc) 403 return ERR_PTR(-ENOMEM); 404 init_garbage(&vmsc->garbage); 405 406 INIT_LIST_HEAD_RCU(&vmsc->ris); 407 INIT_LIST_HEAD_RCU(&vmsc->comp_list); 408 vmsc->comp = comp; 409 vmsc->msc = msc; 410 411 list_add_rcu(&vmsc->comp_list, &comp->vmsc); 412 413 return vmsc; 414 } 415 416 static void mpam_vmsc_destroy(struct mpam_vmsc *vmsc) 417 { 418 struct mpam_component *comp = vmsc->comp; 419 420 lockdep_assert_held(&mpam_list_lock); 421 422 list_del_rcu(&vmsc->comp_list); 423 add_to_garbage(vmsc); 424 425 if (list_empty(&comp->vmsc)) 426 mpam_component_destroy(comp); 427 } 428 429 static struct mpam_vmsc * 430 mpam_vmsc_find(struct mpam_component *comp, struct mpam_msc *msc) 431 { 432 struct mpam_vmsc *vmsc; 433 434 lockdep_assert_held(&mpam_list_lock); 435 436 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 437 if (vmsc->msc->id == msc->id) 438 return vmsc; 439 } 440 441 return mpam_vmsc_alloc(comp, msc); 442 } 443 444 /* 445 * The cacheinfo structures are only populated when CPUs are online. 446 * This helper walks the acpi tables to include offline CPUs too. 447 */ 448 int mpam_get_cpumask_from_cache_id(unsigned long cache_id, u32 cache_level, 449 cpumask_t *affinity) 450 { 451 return acpi_pptt_get_cpumask_from_cache_id(cache_id, affinity); 452 } 453 454 /* 455 * cpumask_of_node() only knows about online CPUs. This can't tell us whether 456 * a class is represented on all possible CPUs. 457 */ 458 static void get_cpumask_from_node_id(u32 node_id, cpumask_t *affinity) 459 { 460 int cpu; 461 462 for_each_possible_cpu(cpu) { 463 if (node_id == cpu_to_node(cpu)) 464 cpumask_set_cpu(cpu, affinity); 465 } 466 } 467 468 static int mpam_ris_get_affinity(struct mpam_msc *msc, cpumask_t *affinity, 469 enum mpam_class_types type, 470 struct mpam_class *class, 471 struct mpam_component *comp) 472 { 473 int err; 474 475 switch (type) { 476 case MPAM_CLASS_CACHE: 477 err = mpam_get_cpumask_from_cache_id(comp->comp_id, class->level, 478 affinity); 479 if (err) { 480 dev_warn_once(&msc->pdev->dev, 481 "Failed to determine CPU affinity\n"); 482 return err; 483 } 484 485 if (cpumask_empty(affinity)) 486 dev_warn_once(&msc->pdev->dev, "no CPUs associated with cache node\n"); 487 488 break; 489 case MPAM_CLASS_MEMORY: 490 get_cpumask_from_node_id(comp->comp_id, affinity); 491 /* affinity may be empty for CPU-less memory nodes */ 492 break; 493 case MPAM_CLASS_UNKNOWN: 494 return 0; 495 } 496 497 cpumask_and(affinity, affinity, &msc->accessibility); 498 499 return 0; 500 } 501 502 static int mpam_ris_create_locked(struct mpam_msc *msc, u8 ris_idx, 503 enum mpam_class_types type, u8 class_id, 504 int component_id) 505 { 506 int err; 507 struct mpam_vmsc *vmsc; 508 struct mpam_msc_ris *ris; 509 struct mpam_class *class; 510 struct mpam_component *comp; 511 struct platform_device *pdev = msc->pdev; 512 513 lockdep_assert_held(&mpam_list_lock); 514 515 if (ris_idx > MPAM_MSC_MAX_NUM_RIS) 516 return -EINVAL; 517 518 if (test_and_set_bit(ris_idx, &msc->ris_idxs)) 519 return -EBUSY; 520 521 ris = devm_kzalloc(&msc->pdev->dev, sizeof(*ris), GFP_KERNEL); 522 if (!ris) 523 return -ENOMEM; 524 init_garbage(&ris->garbage); 525 ris->garbage.pdev = pdev; 526 527 class = mpam_class_find(class_id, type); 528 if (IS_ERR(class)) 529 return PTR_ERR(class); 530 531 comp = mpam_component_find(class, component_id); 532 if (IS_ERR(comp)) { 533 if (list_empty(&class->components)) 534 mpam_class_destroy(class); 535 return PTR_ERR(comp); 536 } 537 538 vmsc = mpam_vmsc_find(comp, msc); 539 if (IS_ERR(vmsc)) { 540 if (list_empty(&comp->vmsc)) 541 mpam_component_destroy(comp); 542 return PTR_ERR(vmsc); 543 } 544 545 err = mpam_ris_get_affinity(msc, &ris->affinity, type, class, comp); 546 if (err) { 547 if (list_empty(&vmsc->ris)) 548 mpam_vmsc_destroy(vmsc); 549 return err; 550 } 551 552 ris->ris_idx = ris_idx; 553 INIT_LIST_HEAD_RCU(&ris->msc_list); 554 INIT_LIST_HEAD_RCU(&ris->vmsc_list); 555 ris->vmsc = vmsc; 556 557 cpumask_or(&comp->affinity, &comp->affinity, &ris->affinity); 558 cpumask_or(&class->affinity, &class->affinity, &ris->affinity); 559 list_add_rcu(&ris->vmsc_list, &vmsc->ris); 560 list_add_rcu(&ris->msc_list, &msc->ris); 561 562 return 0; 563 } 564 565 static void mpam_ris_destroy(struct mpam_msc_ris *ris) 566 { 567 struct mpam_vmsc *vmsc = ris->vmsc; 568 struct mpam_msc *msc = vmsc->msc; 569 struct mpam_component *comp = vmsc->comp; 570 struct mpam_class *class = comp->class; 571 572 lockdep_assert_held(&mpam_list_lock); 573 574 /* 575 * It is assumed affinities don't overlap. If they do the class becomes 576 * unusable immediately. 577 */ 578 cpumask_andnot(&class->affinity, &class->affinity, &ris->affinity); 579 cpumask_andnot(&comp->affinity, &comp->affinity, &ris->affinity); 580 clear_bit(ris->ris_idx, &msc->ris_idxs); 581 list_del_rcu(&ris->msc_list); 582 list_del_rcu(&ris->vmsc_list); 583 add_to_garbage(ris); 584 585 if (list_empty(&vmsc->ris)) 586 mpam_vmsc_destroy(vmsc); 587 } 588 589 int mpam_ris_create(struct mpam_msc *msc, u8 ris_idx, 590 enum mpam_class_types type, u8 class_id, int component_id) 591 { 592 int err; 593 594 mutex_lock(&mpam_list_lock); 595 err = mpam_ris_create_locked(msc, ris_idx, type, class_id, 596 component_id); 597 mutex_unlock(&mpam_list_lock); 598 if (err) 599 mpam_free_garbage(); 600 601 return err; 602 } 603 604 static struct mpam_msc_ris *mpam_get_or_create_ris(struct mpam_msc *msc, 605 u8 ris_idx) 606 { 607 int err; 608 struct mpam_msc_ris *ris; 609 610 lockdep_assert_held(&mpam_list_lock); 611 612 if (!test_bit(ris_idx, &msc->ris_idxs)) { 613 err = mpam_ris_create_locked(msc, ris_idx, MPAM_CLASS_UNKNOWN, 614 0, 0); 615 if (err) 616 return ERR_PTR(err); 617 } 618 619 list_for_each_entry(ris, &msc->ris, msc_list) { 620 if (ris->ris_idx == ris_idx) 621 return ris; 622 } 623 624 return ERR_PTR(-ENOENT); 625 } 626 627 /* 628 * IHI009A.a has this nugget: "If a monitor does not support automatic behaviour 629 * of NRDY, software can use this bit for any purpose" - so hardware might not 630 * implement this - but it isn't RES0. 631 * 632 * Try and see what values stick in this bit. If we can write either value, 633 * its probably not implemented by hardware. 634 */ 635 static bool _mpam_ris_hw_probe_hw_nrdy(struct mpam_msc_ris *ris, u32 mon_reg) 636 { 637 u32 now; 638 u64 mon_sel; 639 bool can_set, can_clear; 640 struct mpam_msc *msc = ris->vmsc->msc; 641 642 if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc))) 643 return false; 644 645 mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, 0) | 646 FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx); 647 _mpam_write_monsel_reg(msc, mon_reg, mon_sel); 648 649 _mpam_write_monsel_reg(msc, mon_reg, MSMON___NRDY); 650 now = _mpam_read_monsel_reg(msc, mon_reg); 651 can_set = now & MSMON___NRDY; 652 653 _mpam_write_monsel_reg(msc, mon_reg, 0); 654 now = _mpam_read_monsel_reg(msc, mon_reg); 655 can_clear = !(now & MSMON___NRDY); 656 mpam_mon_sel_unlock(msc); 657 658 return (!can_set || !can_clear); 659 } 660 661 #define mpam_ris_hw_probe_hw_nrdy(_ris, _mon_reg) \ 662 _mpam_ris_hw_probe_hw_nrdy(_ris, MSMON_##_mon_reg) 663 664 static void mpam_ris_hw_probe(struct mpam_msc_ris *ris) 665 { 666 int err; 667 struct mpam_msc *msc = ris->vmsc->msc; 668 struct device *dev = &msc->pdev->dev; 669 struct mpam_props *props = &ris->props; 670 struct mpam_class *class = ris->vmsc->comp->class; 671 672 lockdep_assert_held(&msc->probe_lock); 673 lockdep_assert_held(&msc->part_sel_lock); 674 675 /* Cache Capacity Partitioning */ 676 if (FIELD_GET(MPAMF_IDR_HAS_CCAP_PART, ris->idr)) { 677 u32 ccap_features = mpam_read_partsel_reg(msc, CCAP_IDR); 678 679 props->cmax_wd = FIELD_GET(MPAMF_CCAP_IDR_CMAX_WD, ccap_features); 680 if (props->cmax_wd && 681 FIELD_GET(MPAMF_CCAP_IDR_HAS_CMAX_SOFTLIM, ccap_features)) 682 mpam_set_feature(mpam_feat_cmax_softlim, props); 683 684 if (props->cmax_wd && 685 !FIELD_GET(MPAMF_CCAP_IDR_NO_CMAX, ccap_features)) 686 mpam_set_feature(mpam_feat_cmax_cmax, props); 687 688 if (props->cmax_wd && 689 FIELD_GET(MPAMF_CCAP_IDR_HAS_CMIN, ccap_features)) 690 mpam_set_feature(mpam_feat_cmax_cmin, props); 691 692 props->cassoc_wd = FIELD_GET(MPAMF_CCAP_IDR_CASSOC_WD, ccap_features); 693 if (props->cassoc_wd && 694 FIELD_GET(MPAMF_CCAP_IDR_HAS_CASSOC, ccap_features)) 695 mpam_set_feature(mpam_feat_cmax_cassoc, props); 696 } 697 698 /* Cache Portion partitioning */ 699 if (FIELD_GET(MPAMF_IDR_HAS_CPOR_PART, ris->idr)) { 700 u32 cpor_features = mpam_read_partsel_reg(msc, CPOR_IDR); 701 702 props->cpbm_wd = FIELD_GET(MPAMF_CPOR_IDR_CPBM_WD, cpor_features); 703 if (props->cpbm_wd) 704 mpam_set_feature(mpam_feat_cpor_part, props); 705 } 706 707 /* Memory bandwidth partitioning */ 708 if (FIELD_GET(MPAMF_IDR_HAS_MBW_PART, ris->idr)) { 709 u32 mbw_features = mpam_read_partsel_reg(msc, MBW_IDR); 710 711 /* portion bitmap resolution */ 712 props->mbw_pbm_bits = FIELD_GET(MPAMF_MBW_IDR_BWPBM_WD, mbw_features); 713 if (props->mbw_pbm_bits && 714 FIELD_GET(MPAMF_MBW_IDR_HAS_PBM, mbw_features)) 715 mpam_set_feature(mpam_feat_mbw_part, props); 716 717 props->bwa_wd = FIELD_GET(MPAMF_MBW_IDR_BWA_WD, mbw_features); 718 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MAX, mbw_features)) 719 mpam_set_feature(mpam_feat_mbw_max, props); 720 721 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MIN, mbw_features)) 722 mpam_set_feature(mpam_feat_mbw_min, props); 723 724 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_PROP, mbw_features)) 725 mpam_set_feature(mpam_feat_mbw_prop, props); 726 } 727 728 /* Priority partitioning */ 729 if (FIELD_GET(MPAMF_IDR_HAS_PRI_PART, ris->idr)) { 730 u32 pri_features = mpam_read_partsel_reg(msc, PRI_IDR); 731 732 props->intpri_wd = FIELD_GET(MPAMF_PRI_IDR_INTPRI_WD, pri_features); 733 if (props->intpri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_INTPRI, pri_features)) { 734 mpam_set_feature(mpam_feat_intpri_part, props); 735 if (FIELD_GET(MPAMF_PRI_IDR_INTPRI_0_IS_LOW, pri_features)) 736 mpam_set_feature(mpam_feat_intpri_part_0_low, props); 737 } 738 739 props->dspri_wd = FIELD_GET(MPAMF_PRI_IDR_DSPRI_WD, pri_features); 740 if (props->dspri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_DSPRI, pri_features)) { 741 mpam_set_feature(mpam_feat_dspri_part, props); 742 if (FIELD_GET(MPAMF_PRI_IDR_DSPRI_0_IS_LOW, pri_features)) 743 mpam_set_feature(mpam_feat_dspri_part_0_low, props); 744 } 745 } 746 747 /* Performance Monitoring */ 748 if (FIELD_GET(MPAMF_IDR_HAS_MSMON, ris->idr)) { 749 u32 msmon_features = mpam_read_partsel_reg(msc, MSMON_IDR); 750 751 /* 752 * If the firmware max-nrdy-us property is missing, the 753 * CSU counters can't be used. Should we wait forever? 754 */ 755 err = device_property_read_u32(&msc->pdev->dev, 756 "arm,not-ready-us", 757 &msc->nrdy_usec); 758 759 if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_CSU, msmon_features)) { 760 u32 csumonidr; 761 762 csumonidr = mpam_read_partsel_reg(msc, CSUMON_IDR); 763 props->num_csu_mon = FIELD_GET(MPAMF_CSUMON_IDR_NUM_MON, csumonidr); 764 if (props->num_csu_mon) { 765 bool hw_managed; 766 767 mpam_set_feature(mpam_feat_msmon_csu, props); 768 769 if (FIELD_GET(MPAMF_CSUMON_IDR_HAS_XCL, csumonidr)) 770 mpam_set_feature(mpam_feat_msmon_csu_xcl, props); 771 772 /* Is NRDY hardware managed? */ 773 hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, CSU); 774 if (hw_managed) 775 mpam_set_feature(mpam_feat_msmon_csu_hw_nrdy, props); 776 } 777 778 /* 779 * Accept the missing firmware property if NRDY appears 780 * un-implemented. 781 */ 782 if (err && mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, props)) 783 dev_err_once(dev, "Counters are not usable because not-ready timeout was not provided by firmware."); 784 } 785 if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_MBWU, msmon_features)) { 786 bool has_long, hw_managed; 787 u32 mbwumon_idr = mpam_read_partsel_reg(msc, MBWUMON_IDR); 788 789 props->num_mbwu_mon = FIELD_GET(MPAMF_MBWUMON_IDR_NUM_MON, mbwumon_idr); 790 if (props->num_mbwu_mon) { 791 mpam_set_feature(mpam_feat_msmon_mbwu, props); 792 793 if (FIELD_GET(MPAMF_MBWUMON_IDR_HAS_RWBW, mbwumon_idr)) 794 mpam_set_feature(mpam_feat_msmon_mbwu_rwbw, props); 795 796 has_long = FIELD_GET(MPAMF_MBWUMON_IDR_HAS_LONG, mbwumon_idr); 797 if (has_long) { 798 if (FIELD_GET(MPAMF_MBWUMON_IDR_LWD, mbwumon_idr)) 799 mpam_set_feature(mpam_feat_msmon_mbwu_63counter, props); 800 else 801 mpam_set_feature(mpam_feat_msmon_mbwu_44counter, props); 802 } else { 803 mpam_set_feature(mpam_feat_msmon_mbwu_31counter, props); 804 } 805 806 /* Is NRDY hardware managed? */ 807 hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, MBWU); 808 if (hw_managed) 809 mpam_set_feature(mpam_feat_msmon_mbwu_hw_nrdy, props); 810 811 /* 812 * Don't warn about any missing firmware property for 813 * MBWU NRDY - it doesn't make any sense! 814 */ 815 } 816 } 817 } 818 819 /* 820 * RIS with PARTID narrowing don't have enough storage for one 821 * configuration per PARTID. If these are in a class we could use, 822 * reduce the supported partid_max to match the number of intpartid. 823 * If the class is unknown, just ignore it. 824 */ 825 if (FIELD_GET(MPAMF_IDR_HAS_PARTID_NRW, ris->idr) && 826 class->type != MPAM_CLASS_UNKNOWN) { 827 u32 nrwidr = mpam_read_partsel_reg(msc, PARTID_NRW_IDR); 828 u16 partid_max = FIELD_GET(MPAMF_PARTID_NRW_IDR_INTPARTID_MAX, nrwidr); 829 830 mpam_set_feature(mpam_feat_partid_nrw, props); 831 msc->partid_max = min(msc->partid_max, partid_max); 832 } 833 } 834 835 static int mpam_msc_hw_probe(struct mpam_msc *msc) 836 { 837 u64 idr; 838 u16 partid_max; 839 u8 ris_idx, pmg_max; 840 struct mpam_msc_ris *ris; 841 struct device *dev = &msc->pdev->dev; 842 843 lockdep_assert_held(&msc->probe_lock); 844 845 idr = __mpam_read_reg(msc, MPAMF_AIDR); 846 if ((idr & MPAMF_AIDR_ARCH_MAJOR_REV) != MPAM_ARCHITECTURE_V1) { 847 dev_err_once(dev, "MSC does not match MPAM architecture v1.x\n"); 848 return -EIO; 849 } 850 851 /* Grab an IDR value to find out how many RIS there are */ 852 mutex_lock(&msc->part_sel_lock); 853 idr = mpam_msc_read_idr(msc); 854 mutex_unlock(&msc->part_sel_lock); 855 856 msc->ris_max = FIELD_GET(MPAMF_IDR_RIS_MAX, idr); 857 858 /* Use these values so partid/pmg always starts with a valid value */ 859 msc->partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr); 860 msc->pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr); 861 862 for (ris_idx = 0; ris_idx <= msc->ris_max; ris_idx++) { 863 mutex_lock(&msc->part_sel_lock); 864 __mpam_part_sel(ris_idx, 0, msc); 865 idr = mpam_msc_read_idr(msc); 866 mutex_unlock(&msc->part_sel_lock); 867 868 partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr); 869 pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr); 870 msc->partid_max = min(msc->partid_max, partid_max); 871 msc->pmg_max = min(msc->pmg_max, pmg_max); 872 msc->has_extd_esr = FIELD_GET(MPAMF_IDR_HAS_EXTD_ESR, idr); 873 874 mutex_lock(&mpam_list_lock); 875 ris = mpam_get_or_create_ris(msc, ris_idx); 876 mutex_unlock(&mpam_list_lock); 877 if (IS_ERR(ris)) 878 return PTR_ERR(ris); 879 ris->idr = idr; 880 881 mutex_lock(&msc->part_sel_lock); 882 __mpam_part_sel(ris_idx, 0, msc); 883 mpam_ris_hw_probe(ris); 884 mutex_unlock(&msc->part_sel_lock); 885 } 886 887 /* Clear any stale errors */ 888 mpam_msc_clear_esr(msc); 889 890 spin_lock(&partid_max_lock); 891 mpam_partid_max = min(mpam_partid_max, msc->partid_max); 892 mpam_pmg_max = min(mpam_pmg_max, msc->pmg_max); 893 spin_unlock(&partid_max_lock); 894 895 msc->probed = true; 896 897 return 0; 898 } 899 900 struct mon_read { 901 struct mpam_msc_ris *ris; 902 struct mon_cfg *ctx; 903 enum mpam_device_features type; 904 u64 *val; 905 int err; 906 }; 907 908 static void gen_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val, 909 u32 *flt_val) 910 { 911 struct mon_cfg *ctx = m->ctx; 912 913 /* 914 * For CSU counters its implementation-defined what happens when not 915 * filtering by partid. 916 */ 917 *ctl_val = MSMON_CFG_x_CTL_MATCH_PARTID; 918 919 *flt_val = FIELD_PREP(MSMON_CFG_x_FLT_PARTID, ctx->partid); 920 921 if (m->ctx->match_pmg) { 922 *ctl_val |= MSMON_CFG_x_CTL_MATCH_PMG; 923 *flt_val |= FIELD_PREP(MSMON_CFG_x_FLT_PMG, ctx->pmg); 924 } 925 926 switch (m->type) { 927 case mpam_feat_msmon_csu: 928 *ctl_val |= MSMON_CFG_CSU_CTL_TYPE_CSU; 929 930 if (mpam_has_feature(mpam_feat_msmon_csu_xcl, &m->ris->props)) 931 *flt_val |= FIELD_PREP(MSMON_CFG_CSU_FLT_XCL, ctx->csu_exclude_clean); 932 933 break; 934 case mpam_feat_msmon_mbwu: 935 *ctl_val |= MSMON_CFG_MBWU_CTL_TYPE_MBWU; 936 937 if (mpam_has_feature(mpam_feat_msmon_mbwu_rwbw, &m->ris->props)) 938 *flt_val |= FIELD_PREP(MSMON_CFG_MBWU_FLT_RWBW, ctx->opts); 939 940 break; 941 default: 942 pr_warn("Unexpected monitor type %d\n", m->type); 943 } 944 } 945 946 static void read_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val, 947 u32 *flt_val) 948 { 949 struct mpam_msc *msc = m->ris->vmsc->msc; 950 951 switch (m->type) { 952 case mpam_feat_msmon_csu: 953 *ctl_val = mpam_read_monsel_reg(msc, CFG_CSU_CTL); 954 *flt_val = mpam_read_monsel_reg(msc, CFG_CSU_FLT); 955 break; 956 case mpam_feat_msmon_mbwu: 957 *ctl_val = mpam_read_monsel_reg(msc, CFG_MBWU_CTL); 958 *flt_val = mpam_read_monsel_reg(msc, CFG_MBWU_FLT); 959 break; 960 default: 961 pr_warn("Unexpected monitor type %d\n", m->type); 962 } 963 } 964 965 /* Remove values set by the hardware to prevent apparent mismatches. */ 966 static inline void clean_msmon_ctl_val(u32 *cur_ctl) 967 { 968 *cur_ctl &= ~MSMON_CFG_x_CTL_OFLOW_STATUS; 969 } 970 971 static void write_msmon_ctl_flt_vals(struct mon_read *m, u32 ctl_val, 972 u32 flt_val) 973 { 974 struct mpam_msc *msc = m->ris->vmsc->msc; 975 976 /* 977 * Write the ctl_val with the enable bit cleared, reset the counter, 978 * then enable counter. 979 */ 980 switch (m->type) { 981 case mpam_feat_msmon_csu: 982 mpam_write_monsel_reg(msc, CFG_CSU_FLT, flt_val); 983 mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val); 984 mpam_write_monsel_reg(msc, CSU, 0); 985 mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val | MSMON_CFG_x_CTL_EN); 986 break; 987 case mpam_feat_msmon_mbwu: 988 mpam_write_monsel_reg(msc, CFG_MBWU_FLT, flt_val); 989 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val); 990 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val | MSMON_CFG_x_CTL_EN); 991 /* Counting monitors require NRDY to be reset by software */ 992 mpam_write_monsel_reg(msc, MBWU, 0); 993 break; 994 default: 995 pr_warn("Unexpected monitor type %d\n", m->type); 996 } 997 } 998 999 static u64 mpam_msmon_overflow_val(enum mpam_device_features type) 1000 { 1001 /* TODO: scaling, and long counters */ 1002 return BIT_ULL(hweight_long(MSMON___VALUE)); 1003 } 1004 1005 static void __ris_msmon_read(void *arg) 1006 { 1007 u64 now; 1008 bool nrdy = false; 1009 bool config_mismatch; 1010 bool overflow; 1011 struct mon_read *m = arg; 1012 struct mon_cfg *ctx = m->ctx; 1013 struct mpam_msc_ris *ris = m->ris; 1014 struct msmon_mbwu_state *mbwu_state; 1015 struct mpam_props *rprops = &ris->props; 1016 struct mpam_msc *msc = m->ris->vmsc->msc; 1017 u32 mon_sel, ctl_val, flt_val, cur_ctl, cur_flt; 1018 1019 if (!mpam_mon_sel_lock(msc)) { 1020 m->err = -EIO; 1021 return; 1022 } 1023 mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, ctx->mon) | 1024 FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx); 1025 mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel); 1026 1027 /* 1028 * Read the existing configuration to avoid re-writing the same values. 1029 * This saves waiting for 'nrdy' on subsequent reads. 1030 */ 1031 read_msmon_ctl_flt_vals(m, &cur_ctl, &cur_flt); 1032 overflow = cur_ctl & MSMON_CFG_x_CTL_OFLOW_STATUS; 1033 1034 clean_msmon_ctl_val(&cur_ctl); 1035 gen_msmon_ctl_flt_vals(m, &ctl_val, &flt_val); 1036 config_mismatch = cur_flt != flt_val || 1037 cur_ctl != (ctl_val | MSMON_CFG_x_CTL_EN); 1038 1039 if (config_mismatch) { 1040 write_msmon_ctl_flt_vals(m, ctl_val, flt_val); 1041 overflow = false; 1042 } else if (overflow) { 1043 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, 1044 cur_ctl & ~MSMON_CFG_x_CTL_OFLOW_STATUS); 1045 } 1046 1047 switch (m->type) { 1048 case mpam_feat_msmon_csu: 1049 now = mpam_read_monsel_reg(msc, CSU); 1050 if (mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, rprops)) 1051 nrdy = now & MSMON___NRDY; 1052 now = FIELD_GET(MSMON___VALUE, now); 1053 break; 1054 case mpam_feat_msmon_mbwu: 1055 now = mpam_read_monsel_reg(msc, MBWU); 1056 if (mpam_has_feature(mpam_feat_msmon_mbwu_hw_nrdy, rprops)) 1057 nrdy = now & MSMON___NRDY; 1058 now = FIELD_GET(MSMON___VALUE, now); 1059 1060 if (nrdy) 1061 break; 1062 1063 mbwu_state = &ris->mbwu_state[ctx->mon]; 1064 1065 if (overflow) 1066 mbwu_state->correction += mpam_msmon_overflow_val(m->type); 1067 1068 /* 1069 * Include bandwidth consumed before the last hardware reset and 1070 * a counter size increment for each overflow. 1071 */ 1072 now += mbwu_state->correction; 1073 break; 1074 default: 1075 m->err = -EINVAL; 1076 } 1077 mpam_mon_sel_unlock(msc); 1078 1079 if (nrdy) { 1080 m->err = -EBUSY; 1081 return; 1082 } 1083 1084 *m->val += now; 1085 } 1086 1087 static int _msmon_read(struct mpam_component *comp, struct mon_read *arg) 1088 { 1089 int err, any_err = 0; 1090 struct mpam_vmsc *vmsc; 1091 1092 guard(srcu)(&mpam_srcu); 1093 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 1094 srcu_read_lock_held(&mpam_srcu)) { 1095 struct mpam_msc *msc = vmsc->msc; 1096 struct mpam_msc_ris *ris; 1097 1098 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 1099 srcu_read_lock_held(&mpam_srcu)) { 1100 arg->ris = ris; 1101 1102 err = smp_call_function_any(&msc->accessibility, 1103 __ris_msmon_read, arg, 1104 true); 1105 if (!err && arg->err) 1106 err = arg->err; 1107 1108 /* 1109 * Save one error to be returned to the caller, but 1110 * keep reading counters so that get reprogrammed. On 1111 * platforms with NRDY this lets us wait once. 1112 */ 1113 if (err) 1114 any_err = err; 1115 } 1116 } 1117 1118 return any_err; 1119 } 1120 1121 int mpam_msmon_read(struct mpam_component *comp, struct mon_cfg *ctx, 1122 enum mpam_device_features type, u64 *val) 1123 { 1124 int err; 1125 struct mon_read arg; 1126 u64 wait_jiffies = 0; 1127 struct mpam_props *cprops = &comp->class->props; 1128 1129 might_sleep(); 1130 1131 if (!mpam_is_enabled()) 1132 return -EIO; 1133 1134 if (!mpam_has_feature(type, cprops)) 1135 return -EOPNOTSUPP; 1136 1137 arg = (struct mon_read) { 1138 .ctx = ctx, 1139 .type = type, 1140 .val = val, 1141 }; 1142 *val = 0; 1143 1144 err = _msmon_read(comp, &arg); 1145 if (err == -EBUSY && comp->class->nrdy_usec) 1146 wait_jiffies = usecs_to_jiffies(comp->class->nrdy_usec); 1147 1148 while (wait_jiffies) 1149 wait_jiffies = schedule_timeout_uninterruptible(wait_jiffies); 1150 1151 if (err == -EBUSY) { 1152 arg = (struct mon_read) { 1153 .ctx = ctx, 1154 .type = type, 1155 .val = val, 1156 }; 1157 *val = 0; 1158 1159 err = _msmon_read(comp, &arg); 1160 } 1161 1162 return err; 1163 } 1164 1165 static void mpam_reset_msc_bitmap(struct mpam_msc *msc, u16 reg, u16 wd) 1166 { 1167 u32 num_words, msb; 1168 u32 bm = ~0; 1169 int i; 1170 1171 lockdep_assert_held(&msc->part_sel_lock); 1172 1173 if (wd == 0) 1174 return; 1175 1176 /* 1177 * Write all ~0 to all but the last 32bit-word, which may 1178 * have fewer bits... 1179 */ 1180 num_words = DIV_ROUND_UP(wd, 32); 1181 for (i = 0; i < num_words - 1; i++, reg += sizeof(bm)) 1182 __mpam_write_reg(msc, reg, bm); 1183 1184 /* 1185 * ....and then the last (maybe) partial 32bit word. When wd is a 1186 * multiple of 32, msb should be 31 to write a full 32bit word. 1187 */ 1188 msb = (wd - 1) % 32; 1189 bm = GENMASK(msb, 0); 1190 __mpam_write_reg(msc, reg, bm); 1191 } 1192 1193 /* Called via IPI. Call while holding an SRCU reference */ 1194 static void mpam_reprogram_ris_partid(struct mpam_msc_ris *ris, u16 partid, 1195 struct mpam_config *cfg) 1196 { 1197 u32 pri_val = 0; 1198 u16 cmax = MPAMCFG_CMAX_CMAX; 1199 struct mpam_msc *msc = ris->vmsc->msc; 1200 struct mpam_props *rprops = &ris->props; 1201 u16 dspri = GENMASK(rprops->dspri_wd, 0); 1202 u16 intpri = GENMASK(rprops->intpri_wd, 0); 1203 1204 mutex_lock(&msc->part_sel_lock); 1205 __mpam_part_sel(ris->ris_idx, partid, msc); 1206 1207 if (mpam_has_feature(mpam_feat_partid_nrw, rprops)) { 1208 /* Update the intpartid mapping */ 1209 mpam_write_partsel_reg(msc, INTPARTID, 1210 MPAMCFG_INTPARTID_INTERNAL | partid); 1211 1212 /* 1213 * Then switch to the 'internal' partid to update the 1214 * configuration. 1215 */ 1216 __mpam_intpart_sel(ris->ris_idx, partid, msc); 1217 } 1218 1219 if (mpam_has_feature(mpam_feat_cpor_part, rprops) && 1220 mpam_has_feature(mpam_feat_cpor_part, cfg)) { 1221 if (cfg->reset_cpbm) 1222 mpam_reset_msc_bitmap(msc, MPAMCFG_CPBM, rprops->cpbm_wd); 1223 else 1224 mpam_write_partsel_reg(msc, CPBM, cfg->cpbm); 1225 } 1226 1227 if (mpam_has_feature(mpam_feat_mbw_part, rprops) && 1228 mpam_has_feature(mpam_feat_mbw_part, cfg)) { 1229 if (cfg->reset_mbw_pbm) 1230 mpam_reset_msc_bitmap(msc, MPAMCFG_MBW_PBM, rprops->mbw_pbm_bits); 1231 else 1232 mpam_write_partsel_reg(msc, MBW_PBM, cfg->mbw_pbm); 1233 } 1234 1235 if (mpam_has_feature(mpam_feat_mbw_min, rprops) && 1236 mpam_has_feature(mpam_feat_mbw_min, cfg)) 1237 mpam_write_partsel_reg(msc, MBW_MIN, 0); 1238 1239 if (mpam_has_feature(mpam_feat_mbw_max, rprops) && 1240 mpam_has_feature(mpam_feat_mbw_max, cfg)) { 1241 if (cfg->reset_mbw_max) 1242 mpam_write_partsel_reg(msc, MBW_MAX, MPAMCFG_MBW_MAX_MAX); 1243 else 1244 mpam_write_partsel_reg(msc, MBW_MAX, cfg->mbw_max); 1245 } 1246 1247 if (mpam_has_feature(mpam_feat_mbw_prop, rprops) && 1248 mpam_has_feature(mpam_feat_mbw_prop, cfg)) 1249 mpam_write_partsel_reg(msc, MBW_PROP, 0); 1250 1251 if (mpam_has_feature(mpam_feat_cmax_cmax, rprops)) 1252 mpam_write_partsel_reg(msc, CMAX, cmax); 1253 1254 if (mpam_has_feature(mpam_feat_cmax_cmin, rprops)) 1255 mpam_write_partsel_reg(msc, CMIN, 0); 1256 1257 if (mpam_has_feature(mpam_feat_cmax_cassoc, rprops)) 1258 mpam_write_partsel_reg(msc, CASSOC, MPAMCFG_CASSOC_CASSOC); 1259 1260 if (mpam_has_feature(mpam_feat_intpri_part, rprops) || 1261 mpam_has_feature(mpam_feat_dspri_part, rprops)) { 1262 /* aces high? */ 1263 if (!mpam_has_feature(mpam_feat_intpri_part_0_low, rprops)) 1264 intpri = 0; 1265 if (!mpam_has_feature(mpam_feat_dspri_part_0_low, rprops)) 1266 dspri = 0; 1267 1268 if (mpam_has_feature(mpam_feat_intpri_part, rprops)) 1269 pri_val |= FIELD_PREP(MPAMCFG_PRI_INTPRI, intpri); 1270 if (mpam_has_feature(mpam_feat_dspri_part, rprops)) 1271 pri_val |= FIELD_PREP(MPAMCFG_PRI_DSPRI, dspri); 1272 1273 mpam_write_partsel_reg(msc, PRI, pri_val); 1274 } 1275 1276 mutex_unlock(&msc->part_sel_lock); 1277 } 1278 1279 /* Call with msc cfg_lock held */ 1280 static int mpam_restore_mbwu_state(void *_ris) 1281 { 1282 int i; 1283 struct mon_read mwbu_arg; 1284 struct mpam_msc_ris *ris = _ris; 1285 1286 for (i = 0; i < ris->props.num_mbwu_mon; i++) { 1287 if (ris->mbwu_state[i].enabled) { 1288 mwbu_arg.ris = ris; 1289 mwbu_arg.ctx = &ris->mbwu_state[i].cfg; 1290 mwbu_arg.type = mpam_feat_msmon_mbwu; 1291 1292 __ris_msmon_read(&mwbu_arg); 1293 } 1294 } 1295 1296 return 0; 1297 } 1298 1299 /* Call with MSC cfg_lock held */ 1300 static int mpam_save_mbwu_state(void *arg) 1301 { 1302 int i; 1303 u64 val; 1304 struct mon_cfg *cfg; 1305 u32 cur_flt, cur_ctl, mon_sel; 1306 struct mpam_msc_ris *ris = arg; 1307 struct msmon_mbwu_state *mbwu_state; 1308 struct mpam_msc *msc = ris->vmsc->msc; 1309 1310 for (i = 0; i < ris->props.num_mbwu_mon; i++) { 1311 mbwu_state = &ris->mbwu_state[i]; 1312 cfg = &mbwu_state->cfg; 1313 1314 if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc))) 1315 return -EIO; 1316 1317 mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, i) | 1318 FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx); 1319 mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel); 1320 1321 cur_flt = mpam_read_monsel_reg(msc, CFG_MBWU_FLT); 1322 cur_ctl = mpam_read_monsel_reg(msc, CFG_MBWU_CTL); 1323 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, 0); 1324 1325 val = mpam_read_monsel_reg(msc, MBWU); 1326 mpam_write_monsel_reg(msc, MBWU, 0); 1327 1328 cfg->mon = i; 1329 cfg->pmg = FIELD_GET(MSMON_CFG_x_FLT_PMG, cur_flt); 1330 cfg->match_pmg = FIELD_GET(MSMON_CFG_x_CTL_MATCH_PMG, cur_ctl); 1331 cfg->partid = FIELD_GET(MSMON_CFG_x_FLT_PARTID, cur_flt); 1332 mbwu_state->correction += val; 1333 mbwu_state->enabled = FIELD_GET(MSMON_CFG_x_CTL_EN, cur_ctl); 1334 mpam_mon_sel_unlock(msc); 1335 } 1336 1337 return 0; 1338 } 1339 1340 static void mpam_init_reset_cfg(struct mpam_config *reset_cfg) 1341 { 1342 *reset_cfg = (struct mpam_config) { 1343 .reset_cpbm = true, 1344 .reset_mbw_pbm = true, 1345 .reset_mbw_max = true, 1346 }; 1347 bitmap_fill(reset_cfg->features, MPAM_FEATURE_LAST); 1348 } 1349 1350 /* 1351 * Called via smp_call_on_cpu() to prevent migration, while still being 1352 * pre-emptible. Caller must hold mpam_srcu. 1353 */ 1354 static int mpam_reset_ris(void *arg) 1355 { 1356 u16 partid, partid_max; 1357 struct mpam_config reset_cfg; 1358 struct mpam_msc_ris *ris = arg; 1359 1360 if (ris->in_reset_state) 1361 return 0; 1362 1363 mpam_init_reset_cfg(&reset_cfg); 1364 1365 spin_lock(&partid_max_lock); 1366 partid_max = mpam_partid_max; 1367 spin_unlock(&partid_max_lock); 1368 for (partid = 0; partid <= partid_max; partid++) 1369 mpam_reprogram_ris_partid(ris, partid, &reset_cfg); 1370 1371 return 0; 1372 } 1373 1374 /* 1375 * Get the preferred CPU for this MSC. If it is accessible from this CPU, 1376 * this CPU is preferred. This can be preempted/migrated, it will only result 1377 * in more work. 1378 */ 1379 static int mpam_get_msc_preferred_cpu(struct mpam_msc *msc) 1380 { 1381 int cpu = raw_smp_processor_id(); 1382 1383 if (cpumask_test_cpu(cpu, &msc->accessibility)) 1384 return cpu; 1385 1386 return cpumask_first_and(&msc->accessibility, cpu_online_mask); 1387 } 1388 1389 static int mpam_touch_msc(struct mpam_msc *msc, int (*fn)(void *a), void *arg) 1390 { 1391 lockdep_assert_irqs_enabled(); 1392 lockdep_assert_cpus_held(); 1393 WARN_ON_ONCE(!srcu_read_lock_held((&mpam_srcu))); 1394 1395 return smp_call_on_cpu(mpam_get_msc_preferred_cpu(msc), fn, arg, true); 1396 } 1397 1398 struct mpam_write_config_arg { 1399 struct mpam_msc_ris *ris; 1400 struct mpam_component *comp; 1401 u16 partid; 1402 }; 1403 1404 static int __write_config(void *arg) 1405 { 1406 struct mpam_write_config_arg *c = arg; 1407 1408 mpam_reprogram_ris_partid(c->ris, c->partid, &c->comp->cfg[c->partid]); 1409 1410 return 0; 1411 } 1412 1413 static void mpam_reprogram_msc(struct mpam_msc *msc) 1414 { 1415 u16 partid; 1416 bool reset; 1417 struct mpam_config *cfg; 1418 struct mpam_msc_ris *ris; 1419 struct mpam_write_config_arg arg; 1420 1421 /* 1422 * No lock for mpam_partid_max as partid_max_published has been 1423 * set by mpam_enabled(), so the values can no longer change. 1424 */ 1425 mpam_assert_partid_sizes_fixed(); 1426 1427 mutex_lock(&msc->cfg_lock); 1428 list_for_each_entry_srcu(ris, &msc->ris, msc_list, 1429 srcu_read_lock_held(&mpam_srcu)) { 1430 if (!mpam_is_enabled() && !ris->in_reset_state) { 1431 mpam_touch_msc(msc, &mpam_reset_ris, ris); 1432 ris->in_reset_state = true; 1433 continue; 1434 } 1435 1436 arg.comp = ris->vmsc->comp; 1437 arg.ris = ris; 1438 reset = true; 1439 for (partid = 0; partid <= mpam_partid_max; partid++) { 1440 cfg = &ris->vmsc->comp->cfg[partid]; 1441 if (!bitmap_empty(cfg->features, MPAM_FEATURE_LAST)) 1442 reset = false; 1443 1444 arg.partid = partid; 1445 mpam_touch_msc(msc, __write_config, &arg); 1446 } 1447 ris->in_reset_state = reset; 1448 1449 if (mpam_has_feature(mpam_feat_msmon_mbwu, &ris->props)) 1450 mpam_touch_msc(msc, &mpam_restore_mbwu_state, ris); 1451 } 1452 mutex_unlock(&msc->cfg_lock); 1453 } 1454 1455 static void _enable_percpu_irq(void *_irq) 1456 { 1457 int *irq = _irq; 1458 1459 enable_percpu_irq(*irq, IRQ_TYPE_NONE); 1460 } 1461 1462 static int mpam_cpu_online(unsigned int cpu) 1463 { 1464 struct mpam_msc *msc; 1465 1466 guard(srcu)(&mpam_srcu); 1467 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1468 srcu_read_lock_held(&mpam_srcu)) { 1469 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1470 continue; 1471 1472 if (msc->reenable_error_ppi) 1473 _enable_percpu_irq(&msc->reenable_error_ppi); 1474 1475 if (atomic_fetch_inc(&msc->online_refs) == 0) 1476 mpam_reprogram_msc(msc); 1477 } 1478 1479 return 0; 1480 } 1481 1482 /* Before mpam is enabled, try to probe new MSC */ 1483 static int mpam_discovery_cpu_online(unsigned int cpu) 1484 { 1485 int err = 0; 1486 struct mpam_msc *msc; 1487 bool new_device_probed = false; 1488 1489 if (mpam_is_enabled()) 1490 return 0; 1491 1492 guard(srcu)(&mpam_srcu); 1493 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1494 srcu_read_lock_held(&mpam_srcu)) { 1495 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1496 continue; 1497 1498 mutex_lock(&msc->probe_lock); 1499 if (!msc->probed) 1500 err = mpam_msc_hw_probe(msc); 1501 mutex_unlock(&msc->probe_lock); 1502 1503 if (err) 1504 break; 1505 new_device_probed = true; 1506 } 1507 1508 if (new_device_probed && !err) 1509 schedule_work(&mpam_enable_work); 1510 if (err) { 1511 mpam_disable_reason = "error during probing"; 1512 schedule_work(&mpam_broken_work); 1513 } 1514 1515 return err; 1516 } 1517 1518 static int mpam_cpu_offline(unsigned int cpu) 1519 { 1520 struct mpam_msc *msc; 1521 1522 guard(srcu)(&mpam_srcu); 1523 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1524 srcu_read_lock_held(&mpam_srcu)) { 1525 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1526 continue; 1527 1528 if (msc->reenable_error_ppi) 1529 disable_percpu_irq(msc->reenable_error_ppi); 1530 1531 if (atomic_dec_and_test(&msc->online_refs)) { 1532 struct mpam_msc_ris *ris; 1533 1534 mutex_lock(&msc->cfg_lock); 1535 list_for_each_entry_srcu(ris, &msc->ris, msc_list, 1536 srcu_read_lock_held(&mpam_srcu)) { 1537 mpam_touch_msc(msc, &mpam_reset_ris, ris); 1538 1539 /* 1540 * The reset state for non-zero partid may be 1541 * lost while the CPUs are offline. 1542 */ 1543 ris->in_reset_state = false; 1544 1545 if (mpam_is_enabled()) 1546 mpam_touch_msc(msc, &mpam_save_mbwu_state, ris); 1547 } 1548 mutex_unlock(&msc->cfg_lock); 1549 } 1550 } 1551 1552 return 0; 1553 } 1554 1555 static void mpam_register_cpuhp_callbacks(int (*online)(unsigned int online), 1556 int (*offline)(unsigned int offline), 1557 char *name) 1558 { 1559 mutex_lock(&mpam_cpuhp_state_lock); 1560 if (mpam_cpuhp_state) { 1561 cpuhp_remove_state(mpam_cpuhp_state); 1562 mpam_cpuhp_state = 0; 1563 } 1564 1565 mpam_cpuhp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, name, online, 1566 offline); 1567 if (mpam_cpuhp_state <= 0) { 1568 pr_err("Failed to register cpuhp callbacks"); 1569 mpam_cpuhp_state = 0; 1570 } 1571 mutex_unlock(&mpam_cpuhp_state_lock); 1572 } 1573 1574 static int __setup_ppi(struct mpam_msc *msc) 1575 { 1576 int cpu; 1577 1578 msc->error_dev_id = alloc_percpu(struct mpam_msc *); 1579 if (!msc->error_dev_id) 1580 return -ENOMEM; 1581 1582 for_each_cpu(cpu, &msc->accessibility) 1583 *per_cpu_ptr(msc->error_dev_id, cpu) = msc; 1584 1585 return 0; 1586 } 1587 1588 static int mpam_msc_setup_error_irq(struct mpam_msc *msc) 1589 { 1590 int irq; 1591 1592 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 1593 if (irq <= 0) 1594 return 0; 1595 1596 /* Allocate and initialise the percpu device pointer for PPI */ 1597 if (irq_is_percpu(irq)) 1598 return __setup_ppi(msc); 1599 1600 /* sanity check: shared interrupts can be routed anywhere? */ 1601 if (!cpumask_equal(&msc->accessibility, cpu_possible_mask)) { 1602 pr_err_once("msc:%u is a private resource with a shared error interrupt", 1603 msc->id); 1604 return -EINVAL; 1605 } 1606 1607 return 0; 1608 } 1609 1610 /* 1611 * An MSC can control traffic from a set of CPUs, but may only be accessible 1612 * from a (hopefully wider) set of CPUs. The common reason for this is power 1613 * management. If all the CPUs in a cluster are in PSCI:CPU_SUSPEND, the 1614 * corresponding cache may also be powered off. By making accesses from 1615 * one of those CPUs, we ensure we don't access a cache that's powered off. 1616 */ 1617 static void update_msc_accessibility(struct mpam_msc *msc) 1618 { 1619 u32 affinity_id; 1620 int err; 1621 1622 err = device_property_read_u32(&msc->pdev->dev, "cpu_affinity", 1623 &affinity_id); 1624 if (err) 1625 cpumask_copy(&msc->accessibility, cpu_possible_mask); 1626 else 1627 acpi_pptt_get_cpus_from_container(affinity_id, &msc->accessibility); 1628 } 1629 1630 /* 1631 * There are two ways of reaching a struct mpam_msc_ris. Via the 1632 * class->component->vmsc->ris, or via the msc. 1633 * When destroying the msc, the other side needs unlinking and cleaning up too. 1634 */ 1635 static void mpam_msc_destroy(struct mpam_msc *msc) 1636 { 1637 struct platform_device *pdev = msc->pdev; 1638 struct mpam_msc_ris *ris, *tmp; 1639 1640 lockdep_assert_held(&mpam_list_lock); 1641 1642 list_for_each_entry_safe(ris, tmp, &msc->ris, msc_list) 1643 mpam_ris_destroy(ris); 1644 1645 list_del_rcu(&msc->all_msc_list); 1646 platform_set_drvdata(pdev, NULL); 1647 1648 add_to_garbage(msc); 1649 } 1650 1651 static void mpam_msc_drv_remove(struct platform_device *pdev) 1652 { 1653 struct mpam_msc *msc = platform_get_drvdata(pdev); 1654 1655 mutex_lock(&mpam_list_lock); 1656 mpam_msc_destroy(msc); 1657 mutex_unlock(&mpam_list_lock); 1658 1659 mpam_free_garbage(); 1660 } 1661 1662 static struct mpam_msc *do_mpam_msc_drv_probe(struct platform_device *pdev) 1663 { 1664 int err; 1665 u32 tmp; 1666 struct mpam_msc *msc; 1667 struct resource *msc_res; 1668 struct device *dev = &pdev->dev; 1669 1670 lockdep_assert_held(&mpam_list_lock); 1671 1672 msc = devm_kzalloc(&pdev->dev, sizeof(*msc), GFP_KERNEL); 1673 if (!msc) 1674 return ERR_PTR(-ENOMEM); 1675 init_garbage(&msc->garbage); 1676 msc->garbage.pdev = pdev; 1677 1678 err = devm_mutex_init(dev, &msc->probe_lock); 1679 if (err) 1680 return ERR_PTR(err); 1681 1682 err = devm_mutex_init(dev, &msc->part_sel_lock); 1683 if (err) 1684 return ERR_PTR(err); 1685 1686 err = devm_mutex_init(dev, &msc->error_irq_lock); 1687 if (err) 1688 return ERR_PTR(err); 1689 1690 err = devm_mutex_init(dev, &msc->cfg_lock); 1691 if (err) 1692 return ERR_PTR(err); 1693 1694 mpam_mon_sel_lock_init(msc); 1695 msc->id = pdev->id; 1696 msc->pdev = pdev; 1697 INIT_LIST_HEAD_RCU(&msc->all_msc_list); 1698 INIT_LIST_HEAD_RCU(&msc->ris); 1699 1700 update_msc_accessibility(msc); 1701 if (cpumask_empty(&msc->accessibility)) { 1702 dev_err_once(dev, "MSC is not accessible from any CPU!"); 1703 return ERR_PTR(-EINVAL); 1704 } 1705 1706 err = mpam_msc_setup_error_irq(msc); 1707 if (err) 1708 return ERR_PTR(err); 1709 1710 if (device_property_read_u32(&pdev->dev, "pcc-channel", &tmp)) 1711 msc->iface = MPAM_IFACE_MMIO; 1712 else 1713 msc->iface = MPAM_IFACE_PCC; 1714 1715 if (msc->iface == MPAM_IFACE_MMIO) { 1716 void __iomem *io; 1717 1718 io = devm_platform_get_and_ioremap_resource(pdev, 0, 1719 &msc_res); 1720 if (IS_ERR(io)) { 1721 dev_err_once(dev, "Failed to map MSC base address\n"); 1722 return ERR_CAST(io); 1723 } 1724 msc->mapped_hwpage_sz = msc_res->end - msc_res->start; 1725 msc->mapped_hwpage = io; 1726 } else { 1727 return ERR_PTR(-EINVAL); 1728 } 1729 1730 list_add_rcu(&msc->all_msc_list, &mpam_all_msc); 1731 platform_set_drvdata(pdev, msc); 1732 1733 return msc; 1734 } 1735 1736 static int fw_num_msc; 1737 1738 static int mpam_msc_drv_probe(struct platform_device *pdev) 1739 { 1740 int err; 1741 struct mpam_msc *msc = NULL; 1742 void *plat_data = pdev->dev.platform_data; 1743 1744 mutex_lock(&mpam_list_lock); 1745 msc = do_mpam_msc_drv_probe(pdev); 1746 mutex_unlock(&mpam_list_lock); 1747 1748 if (IS_ERR(msc)) 1749 return PTR_ERR(msc); 1750 1751 /* Create RIS entries described by firmware */ 1752 err = acpi_mpam_parse_resources(msc, plat_data); 1753 if (err) { 1754 mpam_msc_drv_remove(pdev); 1755 return err; 1756 } 1757 1758 if (atomic_add_return(1, &mpam_num_msc) == fw_num_msc) 1759 mpam_register_cpuhp_callbacks(mpam_discovery_cpu_online, NULL, 1760 "mpam:drv_probe"); 1761 1762 return 0; 1763 } 1764 1765 static struct platform_driver mpam_msc_driver = { 1766 .driver = { 1767 .name = "mpam_msc", 1768 }, 1769 .probe = mpam_msc_drv_probe, 1770 .remove = mpam_msc_drv_remove, 1771 }; 1772 1773 /* Any of these features mean the BWA_WD field is valid. */ 1774 static bool mpam_has_bwa_wd_feature(struct mpam_props *props) 1775 { 1776 if (mpam_has_feature(mpam_feat_mbw_min, props)) 1777 return true; 1778 if (mpam_has_feature(mpam_feat_mbw_max, props)) 1779 return true; 1780 if (mpam_has_feature(mpam_feat_mbw_prop, props)) 1781 return true; 1782 return false; 1783 } 1784 1785 /* Any of these features mean the CMAX_WD field is valid. */ 1786 static bool mpam_has_cmax_wd_feature(struct mpam_props *props) 1787 { 1788 if (mpam_has_feature(mpam_feat_cmax_cmax, props)) 1789 return true; 1790 if (mpam_has_feature(mpam_feat_cmax_cmin, props)) 1791 return true; 1792 return false; 1793 } 1794 1795 #define MISMATCHED_HELPER(parent, child, helper, field, alias) \ 1796 helper(parent) && \ 1797 ((helper(child) && (parent)->field != (child)->field) || \ 1798 (!helper(child) && !(alias))) 1799 1800 #define MISMATCHED_FEAT(parent, child, feat, field, alias) \ 1801 mpam_has_feature((feat), (parent)) && \ 1802 ((mpam_has_feature((feat), (child)) && (parent)->field != (child)->field) || \ 1803 (!mpam_has_feature((feat), (child)) && !(alias))) 1804 1805 #define CAN_MERGE_FEAT(parent, child, feat, alias) \ 1806 (alias) && !mpam_has_feature((feat), (parent)) && \ 1807 mpam_has_feature((feat), (child)) 1808 1809 /* 1810 * Combine two props fields. 1811 * If this is for controls that alias the same resource, it is safe to just 1812 * copy the values over. If two aliasing controls implement the same scheme 1813 * a safe value must be picked. 1814 * For non-aliasing controls, these control different resources, and the 1815 * resulting safe value must be compatible with both. When merging values in 1816 * the tree, all the aliasing resources must be handled first. 1817 * On mismatch, parent is modified. 1818 */ 1819 static void __props_mismatch(struct mpam_props *parent, 1820 struct mpam_props *child, bool alias) 1821 { 1822 if (CAN_MERGE_FEAT(parent, child, mpam_feat_cpor_part, alias)) { 1823 parent->cpbm_wd = child->cpbm_wd; 1824 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_cpor_part, 1825 cpbm_wd, alias)) { 1826 pr_debug("cleared cpor_part\n"); 1827 mpam_clear_feature(mpam_feat_cpor_part, parent); 1828 parent->cpbm_wd = 0; 1829 } 1830 1831 if (CAN_MERGE_FEAT(parent, child, mpam_feat_mbw_part, alias)) { 1832 parent->mbw_pbm_bits = child->mbw_pbm_bits; 1833 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_mbw_part, 1834 mbw_pbm_bits, alias)) { 1835 pr_debug("cleared mbw_part\n"); 1836 mpam_clear_feature(mpam_feat_mbw_part, parent); 1837 parent->mbw_pbm_bits = 0; 1838 } 1839 1840 /* bwa_wd is a count of bits, fewer bits means less precision */ 1841 if (alias && !mpam_has_bwa_wd_feature(parent) && 1842 mpam_has_bwa_wd_feature(child)) { 1843 parent->bwa_wd = child->bwa_wd; 1844 } else if (MISMATCHED_HELPER(parent, child, mpam_has_bwa_wd_feature, 1845 bwa_wd, alias)) { 1846 pr_debug("took the min bwa_wd\n"); 1847 parent->bwa_wd = min(parent->bwa_wd, child->bwa_wd); 1848 } 1849 1850 if (alias && !mpam_has_cmax_wd_feature(parent) && mpam_has_cmax_wd_feature(child)) { 1851 parent->cmax_wd = child->cmax_wd; 1852 } else if (MISMATCHED_HELPER(parent, child, mpam_has_cmax_wd_feature, 1853 cmax_wd, alias)) { 1854 pr_debug("%s took the min cmax_wd\n", __func__); 1855 parent->cmax_wd = min(parent->cmax_wd, child->cmax_wd); 1856 } 1857 1858 if (CAN_MERGE_FEAT(parent, child, mpam_feat_cmax_cassoc, alias)) { 1859 parent->cassoc_wd = child->cassoc_wd; 1860 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_cmax_cassoc, 1861 cassoc_wd, alias)) { 1862 pr_debug("%s cleared cassoc_wd\n", __func__); 1863 mpam_clear_feature(mpam_feat_cmax_cassoc, parent); 1864 parent->cassoc_wd = 0; 1865 } 1866 1867 /* For num properties, take the minimum */ 1868 if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_csu, alias)) { 1869 parent->num_csu_mon = child->num_csu_mon; 1870 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_csu, 1871 num_csu_mon, alias)) { 1872 pr_debug("took the min num_csu_mon\n"); 1873 parent->num_csu_mon = min(parent->num_csu_mon, 1874 child->num_csu_mon); 1875 } 1876 1877 if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_mbwu, alias)) { 1878 parent->num_mbwu_mon = child->num_mbwu_mon; 1879 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_mbwu, 1880 num_mbwu_mon, alias)) { 1881 pr_debug("took the min num_mbwu_mon\n"); 1882 parent->num_mbwu_mon = min(parent->num_mbwu_mon, 1883 child->num_mbwu_mon); 1884 } 1885 1886 if (CAN_MERGE_FEAT(parent, child, mpam_feat_intpri_part, alias)) { 1887 parent->intpri_wd = child->intpri_wd; 1888 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_intpri_part, 1889 intpri_wd, alias)) { 1890 pr_debug("%s took the min intpri_wd\n", __func__); 1891 parent->intpri_wd = min(parent->intpri_wd, child->intpri_wd); 1892 } 1893 1894 if (CAN_MERGE_FEAT(parent, child, mpam_feat_dspri_part, alias)) { 1895 parent->dspri_wd = child->dspri_wd; 1896 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_dspri_part, 1897 dspri_wd, alias)) { 1898 pr_debug("%s took the min dspri_wd\n", __func__); 1899 parent->dspri_wd = min(parent->dspri_wd, child->dspri_wd); 1900 } 1901 1902 /* TODO: alias support for these two */ 1903 /* {int,ds}pri may not have differing 0-low behaviour */ 1904 if (mpam_has_feature(mpam_feat_intpri_part, parent) && 1905 (!mpam_has_feature(mpam_feat_intpri_part, child) || 1906 mpam_has_feature(mpam_feat_intpri_part_0_low, parent) != 1907 mpam_has_feature(mpam_feat_intpri_part_0_low, child))) { 1908 pr_debug("%s cleared intpri_part\n", __func__); 1909 mpam_clear_feature(mpam_feat_intpri_part, parent); 1910 mpam_clear_feature(mpam_feat_intpri_part_0_low, parent); 1911 } 1912 if (mpam_has_feature(mpam_feat_dspri_part, parent) && 1913 (!mpam_has_feature(mpam_feat_dspri_part, child) || 1914 mpam_has_feature(mpam_feat_dspri_part_0_low, parent) != 1915 mpam_has_feature(mpam_feat_dspri_part_0_low, child))) { 1916 pr_debug("%s cleared dspri_part\n", __func__); 1917 mpam_clear_feature(mpam_feat_dspri_part, parent); 1918 mpam_clear_feature(mpam_feat_dspri_part_0_low, parent); 1919 } 1920 1921 if (alias) { 1922 /* Merge features for aliased resources */ 1923 bitmap_or(parent->features, parent->features, child->features, MPAM_FEATURE_LAST); 1924 } else { 1925 /* Clear missing features for non aliasing */ 1926 bitmap_and(parent->features, parent->features, child->features, MPAM_FEATURE_LAST); 1927 } 1928 } 1929 1930 /* 1931 * If a vmsc doesn't match class feature/configuration, do the right thing(tm). 1932 * For 'num' properties we can just take the minimum. 1933 * For properties where the mismatched unused bits would make a difference, we 1934 * nobble the class feature, as we can't configure all the resources. 1935 * e.g. The L3 cache is composed of two resources with 13 and 17 portion 1936 * bitmaps respectively. 1937 */ 1938 static void 1939 __class_props_mismatch(struct mpam_class *class, struct mpam_vmsc *vmsc) 1940 { 1941 struct mpam_props *cprops = &class->props; 1942 struct mpam_props *vprops = &vmsc->props; 1943 struct device *dev = &vmsc->msc->pdev->dev; 1944 1945 lockdep_assert_held(&mpam_list_lock); /* we modify class */ 1946 1947 dev_dbg(dev, "Merging features for class:0x%lx &= vmsc:0x%lx\n", 1948 (long)cprops->features, (long)vprops->features); 1949 1950 /* Take the safe value for any common features */ 1951 __props_mismatch(cprops, vprops, false); 1952 } 1953 1954 static void 1955 __vmsc_props_mismatch(struct mpam_vmsc *vmsc, struct mpam_msc_ris *ris) 1956 { 1957 struct mpam_props *rprops = &ris->props; 1958 struct mpam_props *vprops = &vmsc->props; 1959 struct device *dev = &vmsc->msc->pdev->dev; 1960 1961 lockdep_assert_held(&mpam_list_lock); /* we modify vmsc */ 1962 1963 dev_dbg(dev, "Merging features for vmsc:0x%lx |= ris:0x%lx\n", 1964 (long)vprops->features, (long)rprops->features); 1965 1966 /* 1967 * Merge mismatched features - Copy any features that aren't common, 1968 * but take the safe value for any common features. 1969 */ 1970 __props_mismatch(vprops, rprops, true); 1971 } 1972 1973 /* 1974 * Copy the first component's first vMSC's properties and features to the 1975 * class. __class_props_mismatch() will remove conflicts. 1976 * It is not possible to have a class with no components, or a component with 1977 * no resources. The vMSC properties have already been built. 1978 */ 1979 static void mpam_enable_init_class_features(struct mpam_class *class) 1980 { 1981 struct mpam_vmsc *vmsc; 1982 struct mpam_component *comp; 1983 1984 comp = list_first_entry(&class->components, 1985 struct mpam_component, class_list); 1986 vmsc = list_first_entry(&comp->vmsc, 1987 struct mpam_vmsc, comp_list); 1988 1989 class->props = vmsc->props; 1990 } 1991 1992 static void mpam_enable_merge_vmsc_features(struct mpam_component *comp) 1993 { 1994 struct mpam_vmsc *vmsc; 1995 struct mpam_msc_ris *ris; 1996 struct mpam_class *class = comp->class; 1997 1998 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 1999 list_for_each_entry(ris, &vmsc->ris, vmsc_list) { 2000 __vmsc_props_mismatch(vmsc, ris); 2001 class->nrdy_usec = max(class->nrdy_usec, 2002 vmsc->msc->nrdy_usec); 2003 } 2004 } 2005 } 2006 2007 static void mpam_enable_merge_class_features(struct mpam_component *comp) 2008 { 2009 struct mpam_vmsc *vmsc; 2010 struct mpam_class *class = comp->class; 2011 2012 list_for_each_entry(vmsc, &comp->vmsc, comp_list) 2013 __class_props_mismatch(class, vmsc); 2014 } 2015 2016 /* 2017 * Merge all the common resource features into class. 2018 * vmsc features are bitwise-or'd together by mpam_enable_merge_vmsc_features() 2019 * as the first step so that mpam_enable_init_class_features() can initialise 2020 * the class with a representative set of features. 2021 * Next the mpam_enable_merge_class_features() bitwise-and's all the vmsc 2022 * features to form the class features. 2023 * Other features are the min/max as appropriate. 2024 * 2025 * To avoid walking the whole tree twice, the class->nrdy_usec property is 2026 * updated when working with the vmsc as it is a max(), and doesn't need 2027 * initialising first. 2028 */ 2029 static void mpam_enable_merge_features(struct list_head *all_classes_list) 2030 { 2031 struct mpam_class *class; 2032 struct mpam_component *comp; 2033 2034 lockdep_assert_held(&mpam_list_lock); 2035 2036 list_for_each_entry(class, all_classes_list, classes_list) { 2037 list_for_each_entry(comp, &class->components, class_list) 2038 mpam_enable_merge_vmsc_features(comp); 2039 2040 mpam_enable_init_class_features(class); 2041 2042 list_for_each_entry(comp, &class->components, class_list) 2043 mpam_enable_merge_class_features(comp); 2044 } 2045 } 2046 2047 static char *mpam_errcode_names[16] = { 2048 [MPAM_ERRCODE_NONE] = "No error", 2049 [MPAM_ERRCODE_PARTID_SEL_RANGE] = "PARTID_SEL_Range", 2050 [MPAM_ERRCODE_REQ_PARTID_RANGE] = "Req_PARTID_Range", 2051 [MPAM_ERRCODE_MSMONCFG_ID_RANGE] = "MSMONCFG_ID_RANGE", 2052 [MPAM_ERRCODE_REQ_PMG_RANGE] = "Req_PMG_Range", 2053 [MPAM_ERRCODE_MONITOR_RANGE] = "Monitor_Range", 2054 [MPAM_ERRCODE_INTPARTID_RANGE] = "intPARTID_Range", 2055 [MPAM_ERRCODE_UNEXPECTED_INTERNAL] = "Unexpected_INTERNAL", 2056 [MPAM_ERRCODE_UNDEFINED_RIS_PART_SEL] = "Undefined_RIS_PART_SEL", 2057 [MPAM_ERRCODE_RIS_NO_CONTROL] = "RIS_No_Control", 2058 [MPAM_ERRCODE_UNDEFINED_RIS_MON_SEL] = "Undefined_RIS_MON_SEL", 2059 [MPAM_ERRCODE_RIS_NO_MONITOR] = "RIS_No_Monitor", 2060 [12 ... 15] = "Reserved" 2061 }; 2062 2063 static int mpam_enable_msc_ecr(void *_msc) 2064 { 2065 struct mpam_msc *msc = _msc; 2066 2067 __mpam_write_reg(msc, MPAMF_ECR, MPAMF_ECR_INTEN); 2068 2069 return 0; 2070 } 2071 2072 /* This can run in mpam_disable(), and the interrupt handler on the same CPU */ 2073 static int mpam_disable_msc_ecr(void *_msc) 2074 { 2075 struct mpam_msc *msc = _msc; 2076 2077 __mpam_write_reg(msc, MPAMF_ECR, 0); 2078 2079 return 0; 2080 } 2081 2082 static irqreturn_t __mpam_irq_handler(int irq, struct mpam_msc *msc) 2083 { 2084 u64 reg; 2085 u16 partid; 2086 u8 errcode, pmg, ris; 2087 2088 if (WARN_ON_ONCE(!msc) || 2089 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), 2090 &msc->accessibility))) 2091 return IRQ_NONE; 2092 2093 reg = mpam_msc_read_esr(msc); 2094 2095 errcode = FIELD_GET(MPAMF_ESR_ERRCODE, reg); 2096 if (!errcode) 2097 return IRQ_NONE; 2098 2099 /* Clear level triggered irq */ 2100 mpam_msc_clear_esr(msc); 2101 2102 partid = FIELD_GET(MPAMF_ESR_PARTID_MON, reg); 2103 pmg = FIELD_GET(MPAMF_ESR_PMG, reg); 2104 ris = FIELD_GET(MPAMF_ESR_RIS, reg); 2105 2106 pr_err_ratelimited("error irq from msc:%u '%s', partid:%u, pmg: %u, ris: %u\n", 2107 msc->id, mpam_errcode_names[errcode], partid, pmg, 2108 ris); 2109 2110 /* Disable this interrupt. */ 2111 mpam_disable_msc_ecr(msc); 2112 2113 /* Are we racing with the thread disabling MPAM? */ 2114 if (!mpam_is_enabled()) 2115 return IRQ_HANDLED; 2116 2117 /* 2118 * Schedule the teardown work. Don't use a threaded IRQ as we can't 2119 * unregister the interrupt from the threaded part of the handler. 2120 */ 2121 mpam_disable_reason = "hardware error interrupt"; 2122 schedule_work(&mpam_broken_work); 2123 2124 return IRQ_HANDLED; 2125 } 2126 2127 static irqreturn_t mpam_ppi_handler(int irq, void *dev_id) 2128 { 2129 struct mpam_msc *msc = *(struct mpam_msc **)dev_id; 2130 2131 return __mpam_irq_handler(irq, msc); 2132 } 2133 2134 static irqreturn_t mpam_spi_handler(int irq, void *dev_id) 2135 { 2136 struct mpam_msc *msc = dev_id; 2137 2138 return __mpam_irq_handler(irq, msc); 2139 } 2140 2141 static int mpam_register_irqs(void) 2142 { 2143 int err, irq; 2144 struct mpam_msc *msc; 2145 2146 lockdep_assert_cpus_held(); 2147 2148 guard(srcu)(&mpam_srcu); 2149 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 2150 srcu_read_lock_held(&mpam_srcu)) { 2151 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 2152 if (irq <= 0) 2153 continue; 2154 2155 /* The MPAM spec says the interrupt can be SPI, PPI or LPI */ 2156 /* We anticipate sharing the interrupt with other MSCs */ 2157 if (irq_is_percpu(irq)) { 2158 err = request_percpu_irq(irq, &mpam_ppi_handler, 2159 "mpam:msc:error", 2160 msc->error_dev_id); 2161 if (err) 2162 return err; 2163 2164 msc->reenable_error_ppi = irq; 2165 smp_call_function_many(&msc->accessibility, 2166 &_enable_percpu_irq, &irq, 2167 true); 2168 } else { 2169 err = devm_request_irq(&msc->pdev->dev, irq, 2170 &mpam_spi_handler, IRQF_SHARED, 2171 "mpam:msc:error", msc); 2172 if (err) 2173 return err; 2174 } 2175 2176 mutex_lock(&msc->error_irq_lock); 2177 msc->error_irq_req = true; 2178 mpam_touch_msc(msc, mpam_enable_msc_ecr, msc); 2179 msc->error_irq_hw_enabled = true; 2180 mutex_unlock(&msc->error_irq_lock); 2181 } 2182 2183 return 0; 2184 } 2185 2186 static void mpam_unregister_irqs(void) 2187 { 2188 int irq; 2189 struct mpam_msc *msc; 2190 2191 guard(cpus_read_lock)(); 2192 guard(srcu)(&mpam_srcu); 2193 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 2194 srcu_read_lock_held(&mpam_srcu)) { 2195 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 2196 if (irq <= 0) 2197 continue; 2198 2199 mutex_lock(&msc->error_irq_lock); 2200 if (msc->error_irq_hw_enabled) { 2201 mpam_touch_msc(msc, mpam_disable_msc_ecr, msc); 2202 msc->error_irq_hw_enabled = false; 2203 } 2204 2205 if (msc->error_irq_req) { 2206 if (irq_is_percpu(irq)) { 2207 msc->reenable_error_ppi = 0; 2208 free_percpu_irq(irq, msc->error_dev_id); 2209 } else { 2210 devm_free_irq(&msc->pdev->dev, irq, msc); 2211 } 2212 msc->error_irq_req = false; 2213 } 2214 mutex_unlock(&msc->error_irq_lock); 2215 } 2216 } 2217 2218 static void __destroy_component_cfg(struct mpam_component *comp) 2219 { 2220 struct mpam_msc *msc; 2221 struct mpam_vmsc *vmsc; 2222 struct mpam_msc_ris *ris; 2223 2224 lockdep_assert_held(&mpam_list_lock); 2225 2226 add_to_garbage(comp->cfg); 2227 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 2228 msc = vmsc->msc; 2229 2230 if (mpam_mon_sel_lock(msc)) { 2231 list_for_each_entry(ris, &vmsc->ris, vmsc_list) 2232 add_to_garbage(ris->mbwu_state); 2233 mpam_mon_sel_unlock(msc); 2234 } 2235 } 2236 } 2237 2238 static void mpam_reset_component_cfg(struct mpam_component *comp) 2239 { 2240 int i; 2241 struct mpam_props *cprops = &comp->class->props; 2242 2243 mpam_assert_partid_sizes_fixed(); 2244 2245 if (!comp->cfg) 2246 return; 2247 2248 for (i = 0; i <= mpam_partid_max; i++) { 2249 comp->cfg[i] = (struct mpam_config) {}; 2250 if (cprops->cpbm_wd) 2251 comp->cfg[i].cpbm = GENMASK(cprops->cpbm_wd - 1, 0); 2252 if (cprops->mbw_pbm_bits) 2253 comp->cfg[i].mbw_pbm = GENMASK(cprops->mbw_pbm_bits - 1, 0); 2254 if (cprops->bwa_wd) 2255 comp->cfg[i].mbw_max = GENMASK(15, 16 - cprops->bwa_wd); 2256 } 2257 } 2258 2259 static int __allocate_component_cfg(struct mpam_component *comp) 2260 { 2261 struct mpam_vmsc *vmsc; 2262 2263 mpam_assert_partid_sizes_fixed(); 2264 2265 if (comp->cfg) 2266 return 0; 2267 2268 comp->cfg = kcalloc(mpam_partid_max + 1, sizeof(*comp->cfg), GFP_KERNEL); 2269 if (!comp->cfg) 2270 return -ENOMEM; 2271 2272 /* 2273 * The array is free()d in one go, so only cfg[0]'s structure needs 2274 * to be initialised. 2275 */ 2276 init_garbage(&comp->cfg[0].garbage); 2277 2278 mpam_reset_component_cfg(comp); 2279 2280 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 2281 struct mpam_msc *msc; 2282 struct mpam_msc_ris *ris; 2283 struct msmon_mbwu_state *mbwu_state; 2284 2285 if (!vmsc->props.num_mbwu_mon) 2286 continue; 2287 2288 msc = vmsc->msc; 2289 list_for_each_entry(ris, &vmsc->ris, vmsc_list) { 2290 if (!ris->props.num_mbwu_mon) 2291 continue; 2292 2293 mbwu_state = kcalloc(ris->props.num_mbwu_mon, 2294 sizeof(*ris->mbwu_state), 2295 GFP_KERNEL); 2296 if (!mbwu_state) { 2297 __destroy_component_cfg(comp); 2298 return -ENOMEM; 2299 } 2300 2301 init_garbage(&mbwu_state[0].garbage); 2302 2303 if (mpam_mon_sel_lock(msc)) { 2304 ris->mbwu_state = mbwu_state; 2305 mpam_mon_sel_unlock(msc); 2306 } 2307 } 2308 } 2309 2310 return 0; 2311 } 2312 2313 static int mpam_allocate_config(void) 2314 { 2315 struct mpam_class *class; 2316 struct mpam_component *comp; 2317 2318 lockdep_assert_held(&mpam_list_lock); 2319 2320 list_for_each_entry(class, &mpam_classes, classes_list) { 2321 list_for_each_entry(comp, &class->components, class_list) { 2322 int err = __allocate_component_cfg(comp); 2323 if (err) 2324 return err; 2325 } 2326 } 2327 2328 return 0; 2329 } 2330 2331 static void mpam_enable_once(void) 2332 { 2333 int err; 2334 2335 /* 2336 * Once the cpuhp callbacks have been changed, mpam_partid_max can no 2337 * longer change. 2338 */ 2339 spin_lock(&partid_max_lock); 2340 partid_max_published = true; 2341 spin_unlock(&partid_max_lock); 2342 2343 /* 2344 * If all the MSC have been probed, enabling the IRQs happens next. 2345 * That involves cross-calling to a CPU that can reach the MSC, and 2346 * the locks must be taken in this order: 2347 */ 2348 cpus_read_lock(); 2349 mutex_lock(&mpam_list_lock); 2350 do { 2351 mpam_enable_merge_features(&mpam_classes); 2352 2353 err = mpam_register_irqs(); 2354 if (err) { 2355 pr_warn("Failed to register irqs: %d\n", err); 2356 break; 2357 } 2358 2359 err = mpam_allocate_config(); 2360 if (err) { 2361 pr_err("Failed to allocate configuration arrays.\n"); 2362 break; 2363 } 2364 } while (0); 2365 mutex_unlock(&mpam_list_lock); 2366 cpus_read_unlock(); 2367 2368 if (err) { 2369 mpam_disable_reason = "Failed to enable."; 2370 schedule_work(&mpam_broken_work); 2371 return; 2372 } 2373 2374 static_branch_enable(&mpam_enabled); 2375 mpam_register_cpuhp_callbacks(mpam_cpu_online, mpam_cpu_offline, 2376 "mpam:online"); 2377 2378 /* Use printk() to avoid the pr_fmt adding the function name. */ 2379 printk(KERN_INFO "MPAM enabled with %u PARTIDs and %u PMGs\n", 2380 mpam_partid_max + 1, mpam_pmg_max + 1); 2381 } 2382 2383 static void mpam_reset_component_locked(struct mpam_component *comp) 2384 { 2385 struct mpam_vmsc *vmsc; 2386 2387 lockdep_assert_cpus_held(); 2388 mpam_assert_partid_sizes_fixed(); 2389 2390 mpam_reset_component_cfg(comp); 2391 2392 guard(srcu)(&mpam_srcu); 2393 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 2394 srcu_read_lock_held(&mpam_srcu)) { 2395 struct mpam_msc *msc = vmsc->msc; 2396 struct mpam_msc_ris *ris; 2397 2398 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 2399 srcu_read_lock_held(&mpam_srcu)) { 2400 if (!ris->in_reset_state) 2401 mpam_touch_msc(msc, mpam_reset_ris, ris); 2402 ris->in_reset_state = true; 2403 } 2404 } 2405 } 2406 2407 static void mpam_reset_class_locked(struct mpam_class *class) 2408 { 2409 struct mpam_component *comp; 2410 2411 lockdep_assert_cpus_held(); 2412 2413 guard(srcu)(&mpam_srcu); 2414 list_for_each_entry_srcu(comp, &class->components, class_list, 2415 srcu_read_lock_held(&mpam_srcu)) 2416 mpam_reset_component_locked(comp); 2417 } 2418 2419 static void mpam_reset_class(struct mpam_class *class) 2420 { 2421 cpus_read_lock(); 2422 mpam_reset_class_locked(class); 2423 cpus_read_unlock(); 2424 } 2425 2426 /* 2427 * Called in response to an error IRQ. 2428 * All of MPAMs errors indicate a software bug, restore any modified 2429 * controls to their reset values. 2430 */ 2431 void mpam_disable(struct work_struct *ignored) 2432 { 2433 int idx; 2434 struct mpam_class *class; 2435 struct mpam_msc *msc, *tmp; 2436 2437 mutex_lock(&mpam_cpuhp_state_lock); 2438 if (mpam_cpuhp_state) { 2439 cpuhp_remove_state(mpam_cpuhp_state); 2440 mpam_cpuhp_state = 0; 2441 } 2442 mutex_unlock(&mpam_cpuhp_state_lock); 2443 2444 static_branch_disable(&mpam_enabled); 2445 2446 mpam_unregister_irqs(); 2447 2448 idx = srcu_read_lock(&mpam_srcu); 2449 list_for_each_entry_srcu(class, &mpam_classes, classes_list, 2450 srcu_read_lock_held(&mpam_srcu)) 2451 mpam_reset_class(class); 2452 srcu_read_unlock(&mpam_srcu, idx); 2453 2454 mutex_lock(&mpam_list_lock); 2455 list_for_each_entry_safe(msc, tmp, &mpam_all_msc, all_msc_list) 2456 mpam_msc_destroy(msc); 2457 mutex_unlock(&mpam_list_lock); 2458 mpam_free_garbage(); 2459 2460 pr_err_once("MPAM disabled due to %s\n", mpam_disable_reason); 2461 } 2462 2463 /* 2464 * Enable mpam once all devices have been probed. 2465 * Scheduled by mpam_discovery_cpu_online() once all devices have been created. 2466 * Also scheduled when new devices are probed when new CPUs come online. 2467 */ 2468 void mpam_enable(struct work_struct *work) 2469 { 2470 static atomic_t once; 2471 struct mpam_msc *msc; 2472 bool all_devices_probed = true; 2473 2474 /* Have we probed all the hw devices? */ 2475 guard(srcu)(&mpam_srcu); 2476 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 2477 srcu_read_lock_held(&mpam_srcu)) { 2478 mutex_lock(&msc->probe_lock); 2479 if (!msc->probed) 2480 all_devices_probed = false; 2481 mutex_unlock(&msc->probe_lock); 2482 2483 if (!all_devices_probed) 2484 break; 2485 } 2486 2487 if (all_devices_probed && !atomic_fetch_inc(&once)) 2488 mpam_enable_once(); 2489 } 2490 2491 #define maybe_update_config(cfg, feature, newcfg, member, changes) do { \ 2492 if (mpam_has_feature(feature, newcfg) && \ 2493 (newcfg)->member != (cfg)->member) { \ 2494 (cfg)->member = (newcfg)->member; \ 2495 mpam_set_feature(feature, cfg); \ 2496 \ 2497 (changes) = true; \ 2498 } \ 2499 } while (0) 2500 2501 static bool mpam_update_config(struct mpam_config *cfg, 2502 const struct mpam_config *newcfg) 2503 { 2504 bool has_changes = false; 2505 2506 maybe_update_config(cfg, mpam_feat_cpor_part, newcfg, cpbm, has_changes); 2507 maybe_update_config(cfg, mpam_feat_mbw_part, newcfg, mbw_pbm, has_changes); 2508 maybe_update_config(cfg, mpam_feat_mbw_max, newcfg, mbw_max, has_changes); 2509 2510 return has_changes; 2511 } 2512 2513 int mpam_apply_config(struct mpam_component *comp, u16 partid, 2514 struct mpam_config *cfg) 2515 { 2516 struct mpam_write_config_arg arg; 2517 struct mpam_msc_ris *ris; 2518 struct mpam_vmsc *vmsc; 2519 struct mpam_msc *msc; 2520 2521 lockdep_assert_cpus_held(); 2522 2523 /* Don't pass in the current config! */ 2524 WARN_ON_ONCE(&comp->cfg[partid] == cfg); 2525 2526 if (!mpam_update_config(&comp->cfg[partid], cfg)) 2527 return 0; 2528 2529 arg.comp = comp; 2530 arg.partid = partid; 2531 2532 guard(srcu)(&mpam_srcu); 2533 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 2534 srcu_read_lock_held(&mpam_srcu)) { 2535 msc = vmsc->msc; 2536 2537 mutex_lock(&msc->cfg_lock); 2538 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 2539 srcu_read_lock_held(&mpam_srcu)) { 2540 arg.ris = ris; 2541 mpam_touch_msc(msc, __write_config, &arg); 2542 } 2543 mutex_unlock(&msc->cfg_lock); 2544 } 2545 2546 return 0; 2547 } 2548 2549 static int __init mpam_msc_driver_init(void) 2550 { 2551 if (!system_supports_mpam()) 2552 return -EOPNOTSUPP; 2553 2554 init_srcu_struct(&mpam_srcu); 2555 2556 fw_num_msc = acpi_mpam_count_msc(); 2557 if (fw_num_msc <= 0) { 2558 pr_err("No MSC devices found in firmware\n"); 2559 return -EINVAL; 2560 } 2561 2562 return platform_driver_register(&mpam_msc_driver); 2563 } 2564 2565 /* Must occur after arm64_mpam_register_cpus() from arch_initcall() */ 2566 subsys_initcall(mpam_msc_driver_init); 2567