1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2025 Arm Ltd. 3 4 #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__ 5 6 #include <linux/acpi.h> 7 #include <linux/atomic.h> 8 #include <linux/arm_mpam.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cacheinfo.h> 12 #include <linux/cpu.h> 13 #include <linux/cpumask.h> 14 #include <linux/device.h> 15 #include <linux/errno.h> 16 #include <linux/gfp.h> 17 #include <linux/interrupt.h> 18 #include <linux/irq.h> 19 #include <linux/irqdesc.h> 20 #include <linux/list.h> 21 #include <linux/lockdep.h> 22 #include <linux/mutex.h> 23 #include <linux/platform_device.h> 24 #include <linux/printk.h> 25 #include <linux/srcu.h> 26 #include <linux/spinlock.h> 27 #include <linux/types.h> 28 #include <linux/workqueue.h> 29 30 #include "mpam_internal.h" 31 32 DEFINE_STATIC_KEY_FALSE(mpam_enabled); /* This moves to arch code */ 33 34 /* 35 * mpam_list_lock protects the SRCU lists when writing. Once the 36 * mpam_enabled key is enabled these lists are read-only, 37 * unless the error interrupt disables the driver. 38 */ 39 static DEFINE_MUTEX(mpam_list_lock); 40 static LIST_HEAD(mpam_all_msc); 41 42 struct srcu_struct mpam_srcu; 43 44 /* 45 * Number of MSCs that have been probed. Once all MSCs have been probed MPAM 46 * can be enabled. 47 */ 48 static atomic_t mpam_num_msc; 49 50 static int mpam_cpuhp_state; 51 static DEFINE_MUTEX(mpam_cpuhp_state_lock); 52 53 /* 54 * The smallest common values for any CPU or MSC in the system. 55 * Generating traffic outside this range will result in screaming interrupts. 56 */ 57 u16 mpam_partid_max; 58 u8 mpam_pmg_max; 59 static bool partid_max_init, partid_max_published; 60 static DEFINE_SPINLOCK(partid_max_lock); 61 62 /* 63 * mpam is enabled once all devices have been probed from CPU online callbacks, 64 * scheduled via this work_struct. If access to an MSC depends on a CPU that 65 * was not brought online at boot, this can happen surprisingly late. 66 */ 67 static DECLARE_WORK(mpam_enable_work, &mpam_enable); 68 69 /* 70 * All mpam error interrupts indicate a software bug. On receipt, disable the 71 * driver. 72 */ 73 static DECLARE_WORK(mpam_broken_work, &mpam_disable); 74 75 /* When mpam is disabled, the printed reason to aid debugging */ 76 static char *mpam_disable_reason; 77 78 /* 79 * An MSC is a physical container for controls and monitors, each identified by 80 * their RIS index. These share a base-address, interrupts and some MMIO 81 * registers. A vMSC is a virtual container for RIS in an MSC that control or 82 * monitor the same thing. Members of a vMSC are all RIS in the same MSC, but 83 * not all RIS in an MSC share a vMSC. 84 * 85 * Components are a group of vMSC that control or monitor the same thing but 86 * are from different MSC, so have different base-address, interrupts etc. 87 * Classes are the set components of the same type. 88 * 89 * The features of a vMSC is the union of the RIS it contains. 90 * The features of a Class and Component are the common subset of the vMSC 91 * they contain. 92 * 93 * e.g. The system cache may have bandwidth controls on multiple interfaces, 94 * for regulating traffic from devices independently of traffic from CPUs. 95 * If these are two RIS in one MSC, they will be treated as controlling 96 * different things, and will not share a vMSC/component/class. 97 * 98 * e.g. The L2 may have one MSC and two RIS, one for cache-controls another 99 * for bandwidth. These two RIS are members of the same vMSC. 100 * 101 * e.g. The set of RIS that make up the L2 are grouped as a component. These 102 * are sometimes termed slices. They should be configured the same, as if there 103 * were only one. 104 * 105 * e.g. The SoC probably has more than one L2, each attached to a distinct set 106 * of CPUs. All the L2 components are grouped as a class. 107 * 108 * When creating an MSC, struct mpam_msc is added to the all mpam_all_msc list, 109 * then linked via struct mpam_ris to a vmsc, component and class. 110 * The same MSC may exist under different class->component->vmsc paths, but the 111 * RIS index will be unique. 112 */ 113 LIST_HEAD(mpam_classes); 114 115 /* List of all objects that can be free()d after synchronise_srcu() */ 116 static LLIST_HEAD(mpam_garbage); 117 118 static inline void init_garbage(struct mpam_garbage *garbage) 119 { 120 init_llist_node(&garbage->llist); 121 } 122 123 #define add_to_garbage(x) \ 124 do { \ 125 __typeof__(x) _x = (x); \ 126 _x->garbage.to_free = _x; \ 127 llist_add(&_x->garbage.llist, &mpam_garbage); \ 128 } while (0) 129 130 static void mpam_free_garbage(void) 131 { 132 struct mpam_garbage *iter, *tmp; 133 struct llist_node *to_free = llist_del_all(&mpam_garbage); 134 135 if (!to_free) 136 return; 137 138 synchronize_srcu(&mpam_srcu); 139 140 llist_for_each_entry_safe(iter, tmp, to_free, llist) { 141 if (iter->pdev) 142 devm_kfree(&iter->pdev->dev, iter->to_free); 143 else 144 kfree(iter->to_free); 145 } 146 } 147 148 /* 149 * Once mpam is enabled, new requestors cannot further reduce the available 150 * partid. Assert that the size is fixed, and new requestors will be turned 151 * away. 152 */ 153 static void mpam_assert_partid_sizes_fixed(void) 154 { 155 WARN_ON_ONCE(!partid_max_published); 156 } 157 158 static u32 __mpam_read_reg(struct mpam_msc *msc, u16 reg) 159 { 160 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); 161 162 return readl_relaxed(msc->mapped_hwpage + reg); 163 } 164 165 static inline u32 _mpam_read_partsel_reg(struct mpam_msc *msc, u16 reg) 166 { 167 lockdep_assert_held_once(&msc->part_sel_lock); 168 return __mpam_read_reg(msc, reg); 169 } 170 171 #define mpam_read_partsel_reg(msc, reg) _mpam_read_partsel_reg(msc, MPAMF_##reg) 172 173 static void __mpam_write_reg(struct mpam_msc *msc, u16 reg, u32 val) 174 { 175 WARN_ON_ONCE(reg + sizeof(u32) > msc->mapped_hwpage_sz); 176 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); 177 178 writel_relaxed(val, msc->mapped_hwpage + reg); 179 } 180 181 static inline void _mpam_write_partsel_reg(struct mpam_msc *msc, u16 reg, u32 val) 182 { 183 lockdep_assert_held_once(&msc->part_sel_lock); 184 __mpam_write_reg(msc, reg, val); 185 } 186 187 #define mpam_write_partsel_reg(msc, reg, val) _mpam_write_partsel_reg(msc, MPAMCFG_##reg, val) 188 189 static inline u32 _mpam_read_monsel_reg(struct mpam_msc *msc, u16 reg) 190 { 191 mpam_mon_sel_lock_held(msc); 192 return __mpam_read_reg(msc, reg); 193 } 194 195 #define mpam_read_monsel_reg(msc, reg) _mpam_read_monsel_reg(msc, MSMON_##reg) 196 197 static inline void _mpam_write_monsel_reg(struct mpam_msc *msc, u16 reg, u32 val) 198 { 199 mpam_mon_sel_lock_held(msc); 200 __mpam_write_reg(msc, reg, val); 201 } 202 203 #define mpam_write_monsel_reg(msc, reg, val) _mpam_write_monsel_reg(msc, MSMON_##reg, val) 204 205 static u64 mpam_msc_read_idr(struct mpam_msc *msc) 206 { 207 u64 idr_high = 0, idr_low; 208 209 lockdep_assert_held(&msc->part_sel_lock); 210 211 idr_low = mpam_read_partsel_reg(msc, IDR); 212 if (FIELD_GET(MPAMF_IDR_EXT, idr_low)) 213 idr_high = mpam_read_partsel_reg(msc, IDR + 4); 214 215 return (idr_high << 32) | idr_low; 216 } 217 218 static void mpam_msc_clear_esr(struct mpam_msc *msc) 219 { 220 u64 esr_low = __mpam_read_reg(msc, MPAMF_ESR); 221 222 if (!esr_low) 223 return; 224 225 /* 226 * Clearing the high/low bits of MPAMF_ESR can not be atomic. 227 * Clear the top half first, so that the pending error bits in the 228 * lower half prevent hardware from updating either half of the 229 * register. 230 */ 231 if (msc->has_extd_esr) 232 __mpam_write_reg(msc, MPAMF_ESR + 4, 0); 233 __mpam_write_reg(msc, MPAMF_ESR, 0); 234 } 235 236 static u64 mpam_msc_read_esr(struct mpam_msc *msc) 237 { 238 u64 esr_high = 0, esr_low; 239 240 esr_low = __mpam_read_reg(msc, MPAMF_ESR); 241 if (msc->has_extd_esr) 242 esr_high = __mpam_read_reg(msc, MPAMF_ESR + 4); 243 244 return (esr_high << 32) | esr_low; 245 } 246 247 static void __mpam_part_sel_raw(u32 partsel, struct mpam_msc *msc) 248 { 249 lockdep_assert_held(&msc->part_sel_lock); 250 251 mpam_write_partsel_reg(msc, PART_SEL, partsel); 252 } 253 254 static void __mpam_part_sel(u8 ris_idx, u16 partid, struct mpam_msc *msc) 255 { 256 u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) | 257 FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, partid); 258 259 __mpam_part_sel_raw(partsel, msc); 260 } 261 262 static void __mpam_intpart_sel(u8 ris_idx, u16 intpartid, struct mpam_msc *msc) 263 { 264 u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) | 265 FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, intpartid) | 266 MPAMCFG_PART_SEL_INTERNAL; 267 268 __mpam_part_sel_raw(partsel, msc); 269 } 270 271 int mpam_register_requestor(u16 partid_max, u8 pmg_max) 272 { 273 guard(spinlock)(&partid_max_lock); 274 if (!partid_max_init) { 275 mpam_partid_max = partid_max; 276 mpam_pmg_max = pmg_max; 277 partid_max_init = true; 278 } else if (!partid_max_published) { 279 mpam_partid_max = min(mpam_partid_max, partid_max); 280 mpam_pmg_max = min(mpam_pmg_max, pmg_max); 281 } else { 282 /* New requestors can't lower the values */ 283 if (partid_max < mpam_partid_max || pmg_max < mpam_pmg_max) 284 return -EBUSY; 285 } 286 287 return 0; 288 } 289 EXPORT_SYMBOL(mpam_register_requestor); 290 291 static struct mpam_class * 292 mpam_class_alloc(u8 level_idx, enum mpam_class_types type) 293 { 294 struct mpam_class *class; 295 296 lockdep_assert_held(&mpam_list_lock); 297 298 class = kzalloc(sizeof(*class), GFP_KERNEL); 299 if (!class) 300 return ERR_PTR(-ENOMEM); 301 init_garbage(&class->garbage); 302 303 INIT_LIST_HEAD_RCU(&class->components); 304 /* Affinity is updated when ris are added */ 305 class->level = level_idx; 306 class->type = type; 307 INIT_LIST_HEAD_RCU(&class->classes_list); 308 ida_init(&class->ida_csu_mon); 309 ida_init(&class->ida_mbwu_mon); 310 311 list_add_rcu(&class->classes_list, &mpam_classes); 312 313 return class; 314 } 315 316 static void mpam_class_destroy(struct mpam_class *class) 317 { 318 lockdep_assert_held(&mpam_list_lock); 319 320 list_del_rcu(&class->classes_list); 321 add_to_garbage(class); 322 } 323 324 static struct mpam_class * 325 mpam_class_find(u8 level_idx, enum mpam_class_types type) 326 { 327 struct mpam_class *class; 328 329 lockdep_assert_held(&mpam_list_lock); 330 331 list_for_each_entry(class, &mpam_classes, classes_list) { 332 if (class->type == type && class->level == level_idx) 333 return class; 334 } 335 336 return mpam_class_alloc(level_idx, type); 337 } 338 339 static struct mpam_component * 340 mpam_component_alloc(struct mpam_class *class, int id) 341 { 342 struct mpam_component *comp; 343 344 lockdep_assert_held(&mpam_list_lock); 345 346 comp = kzalloc(sizeof(*comp), GFP_KERNEL); 347 if (!comp) 348 return ERR_PTR(-ENOMEM); 349 init_garbage(&comp->garbage); 350 351 comp->comp_id = id; 352 INIT_LIST_HEAD_RCU(&comp->vmsc); 353 /* Affinity is updated when RIS are added */ 354 INIT_LIST_HEAD_RCU(&comp->class_list); 355 comp->class = class; 356 357 list_add_rcu(&comp->class_list, &class->components); 358 359 return comp; 360 } 361 362 static void __destroy_component_cfg(struct mpam_component *comp); 363 364 static void mpam_component_destroy(struct mpam_component *comp) 365 { 366 struct mpam_class *class = comp->class; 367 368 lockdep_assert_held(&mpam_list_lock); 369 370 __destroy_component_cfg(comp); 371 372 list_del_rcu(&comp->class_list); 373 add_to_garbage(comp); 374 375 if (list_empty(&class->components)) 376 mpam_class_destroy(class); 377 } 378 379 static struct mpam_component * 380 mpam_component_find(struct mpam_class *class, int id) 381 { 382 struct mpam_component *comp; 383 384 lockdep_assert_held(&mpam_list_lock); 385 386 list_for_each_entry(comp, &class->components, class_list) { 387 if (comp->comp_id == id) 388 return comp; 389 } 390 391 return mpam_component_alloc(class, id); 392 } 393 394 static struct mpam_vmsc * 395 mpam_vmsc_alloc(struct mpam_component *comp, struct mpam_msc *msc) 396 { 397 struct mpam_vmsc *vmsc; 398 399 lockdep_assert_held(&mpam_list_lock); 400 401 vmsc = kzalloc(sizeof(*vmsc), GFP_KERNEL); 402 if (!vmsc) 403 return ERR_PTR(-ENOMEM); 404 init_garbage(&vmsc->garbage); 405 406 INIT_LIST_HEAD_RCU(&vmsc->ris); 407 INIT_LIST_HEAD_RCU(&vmsc->comp_list); 408 vmsc->comp = comp; 409 vmsc->msc = msc; 410 411 list_add_rcu(&vmsc->comp_list, &comp->vmsc); 412 413 return vmsc; 414 } 415 416 static void mpam_vmsc_destroy(struct mpam_vmsc *vmsc) 417 { 418 struct mpam_component *comp = vmsc->comp; 419 420 lockdep_assert_held(&mpam_list_lock); 421 422 list_del_rcu(&vmsc->comp_list); 423 add_to_garbage(vmsc); 424 425 if (list_empty(&comp->vmsc)) 426 mpam_component_destroy(comp); 427 } 428 429 static struct mpam_vmsc * 430 mpam_vmsc_find(struct mpam_component *comp, struct mpam_msc *msc) 431 { 432 struct mpam_vmsc *vmsc; 433 434 lockdep_assert_held(&mpam_list_lock); 435 436 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 437 if (vmsc->msc->id == msc->id) 438 return vmsc; 439 } 440 441 return mpam_vmsc_alloc(comp, msc); 442 } 443 444 /* 445 * The cacheinfo structures are only populated when CPUs are online. 446 * This helper walks the acpi tables to include offline CPUs too. 447 */ 448 int mpam_get_cpumask_from_cache_id(unsigned long cache_id, u32 cache_level, 449 cpumask_t *affinity) 450 { 451 return acpi_pptt_get_cpumask_from_cache_id(cache_id, affinity); 452 } 453 454 /* 455 * cpumask_of_node() only knows about online CPUs. This can't tell us whether 456 * a class is represented on all possible CPUs. 457 */ 458 static void get_cpumask_from_node_id(u32 node_id, cpumask_t *affinity) 459 { 460 int cpu; 461 462 for_each_possible_cpu(cpu) { 463 if (node_id == cpu_to_node(cpu)) 464 cpumask_set_cpu(cpu, affinity); 465 } 466 } 467 468 static int mpam_ris_get_affinity(struct mpam_msc *msc, cpumask_t *affinity, 469 enum mpam_class_types type, 470 struct mpam_class *class, 471 struct mpam_component *comp) 472 { 473 int err; 474 475 switch (type) { 476 case MPAM_CLASS_CACHE: 477 err = mpam_get_cpumask_from_cache_id(comp->comp_id, class->level, 478 affinity); 479 if (err) { 480 dev_warn_once(&msc->pdev->dev, 481 "Failed to determine CPU affinity\n"); 482 return err; 483 } 484 485 if (cpumask_empty(affinity)) 486 dev_warn_once(&msc->pdev->dev, "no CPUs associated with cache node\n"); 487 488 break; 489 case MPAM_CLASS_MEMORY: 490 get_cpumask_from_node_id(comp->comp_id, affinity); 491 /* affinity may be empty for CPU-less memory nodes */ 492 break; 493 case MPAM_CLASS_UNKNOWN: 494 return 0; 495 } 496 497 cpumask_and(affinity, affinity, &msc->accessibility); 498 499 return 0; 500 } 501 502 static int mpam_ris_create_locked(struct mpam_msc *msc, u8 ris_idx, 503 enum mpam_class_types type, u8 class_id, 504 int component_id) 505 { 506 int err; 507 struct mpam_vmsc *vmsc; 508 struct mpam_msc_ris *ris; 509 struct mpam_class *class; 510 struct mpam_component *comp; 511 struct platform_device *pdev = msc->pdev; 512 513 lockdep_assert_held(&mpam_list_lock); 514 515 if (ris_idx > MPAM_MSC_MAX_NUM_RIS) 516 return -EINVAL; 517 518 if (test_and_set_bit(ris_idx, &msc->ris_idxs)) 519 return -EBUSY; 520 521 ris = devm_kzalloc(&msc->pdev->dev, sizeof(*ris), GFP_KERNEL); 522 if (!ris) 523 return -ENOMEM; 524 init_garbage(&ris->garbage); 525 ris->garbage.pdev = pdev; 526 527 class = mpam_class_find(class_id, type); 528 if (IS_ERR(class)) 529 return PTR_ERR(class); 530 531 comp = mpam_component_find(class, component_id); 532 if (IS_ERR(comp)) { 533 if (list_empty(&class->components)) 534 mpam_class_destroy(class); 535 return PTR_ERR(comp); 536 } 537 538 vmsc = mpam_vmsc_find(comp, msc); 539 if (IS_ERR(vmsc)) { 540 if (list_empty(&comp->vmsc)) 541 mpam_component_destroy(comp); 542 return PTR_ERR(vmsc); 543 } 544 545 err = mpam_ris_get_affinity(msc, &ris->affinity, type, class, comp); 546 if (err) { 547 if (list_empty(&vmsc->ris)) 548 mpam_vmsc_destroy(vmsc); 549 return err; 550 } 551 552 ris->ris_idx = ris_idx; 553 INIT_LIST_HEAD_RCU(&ris->msc_list); 554 INIT_LIST_HEAD_RCU(&ris->vmsc_list); 555 ris->vmsc = vmsc; 556 557 cpumask_or(&comp->affinity, &comp->affinity, &ris->affinity); 558 cpumask_or(&class->affinity, &class->affinity, &ris->affinity); 559 list_add_rcu(&ris->vmsc_list, &vmsc->ris); 560 list_add_rcu(&ris->msc_list, &msc->ris); 561 562 return 0; 563 } 564 565 static void mpam_ris_destroy(struct mpam_msc_ris *ris) 566 { 567 struct mpam_vmsc *vmsc = ris->vmsc; 568 struct mpam_msc *msc = vmsc->msc; 569 struct mpam_component *comp = vmsc->comp; 570 struct mpam_class *class = comp->class; 571 572 lockdep_assert_held(&mpam_list_lock); 573 574 /* 575 * It is assumed affinities don't overlap. If they do the class becomes 576 * unusable immediately. 577 */ 578 cpumask_andnot(&class->affinity, &class->affinity, &ris->affinity); 579 cpumask_andnot(&comp->affinity, &comp->affinity, &ris->affinity); 580 clear_bit(ris->ris_idx, &msc->ris_idxs); 581 list_del_rcu(&ris->msc_list); 582 list_del_rcu(&ris->vmsc_list); 583 add_to_garbage(ris); 584 585 if (list_empty(&vmsc->ris)) 586 mpam_vmsc_destroy(vmsc); 587 } 588 589 int mpam_ris_create(struct mpam_msc *msc, u8 ris_idx, 590 enum mpam_class_types type, u8 class_id, int component_id) 591 { 592 int err; 593 594 mutex_lock(&mpam_list_lock); 595 err = mpam_ris_create_locked(msc, ris_idx, type, class_id, 596 component_id); 597 mutex_unlock(&mpam_list_lock); 598 if (err) 599 mpam_free_garbage(); 600 601 return err; 602 } 603 604 static struct mpam_msc_ris *mpam_get_or_create_ris(struct mpam_msc *msc, 605 u8 ris_idx) 606 { 607 int err; 608 struct mpam_msc_ris *ris; 609 610 lockdep_assert_held(&mpam_list_lock); 611 612 if (!test_bit(ris_idx, &msc->ris_idxs)) { 613 err = mpam_ris_create_locked(msc, ris_idx, MPAM_CLASS_UNKNOWN, 614 0, 0); 615 if (err) 616 return ERR_PTR(err); 617 } 618 619 list_for_each_entry(ris, &msc->ris, msc_list) { 620 if (ris->ris_idx == ris_idx) 621 return ris; 622 } 623 624 return ERR_PTR(-ENOENT); 625 } 626 627 /* 628 * IHI009A.a has this nugget: "If a monitor does not support automatic behaviour 629 * of NRDY, software can use this bit for any purpose" - so hardware might not 630 * implement this - but it isn't RES0. 631 * 632 * Try and see what values stick in this bit. If we can write either value, 633 * its probably not implemented by hardware. 634 */ 635 static bool _mpam_ris_hw_probe_hw_nrdy(struct mpam_msc_ris *ris, u32 mon_reg) 636 { 637 u32 now; 638 u64 mon_sel; 639 bool can_set, can_clear; 640 struct mpam_msc *msc = ris->vmsc->msc; 641 642 if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc))) 643 return false; 644 645 mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, 0) | 646 FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx); 647 _mpam_write_monsel_reg(msc, mon_reg, mon_sel); 648 649 _mpam_write_monsel_reg(msc, mon_reg, MSMON___NRDY); 650 now = _mpam_read_monsel_reg(msc, mon_reg); 651 can_set = now & MSMON___NRDY; 652 653 _mpam_write_monsel_reg(msc, mon_reg, 0); 654 now = _mpam_read_monsel_reg(msc, mon_reg); 655 can_clear = !(now & MSMON___NRDY); 656 mpam_mon_sel_unlock(msc); 657 658 return (!can_set || !can_clear); 659 } 660 661 #define mpam_ris_hw_probe_hw_nrdy(_ris, _mon_reg) \ 662 _mpam_ris_hw_probe_hw_nrdy(_ris, MSMON_##_mon_reg) 663 664 static void mpam_ris_hw_probe(struct mpam_msc_ris *ris) 665 { 666 int err; 667 struct mpam_msc *msc = ris->vmsc->msc; 668 struct device *dev = &msc->pdev->dev; 669 struct mpam_props *props = &ris->props; 670 struct mpam_class *class = ris->vmsc->comp->class; 671 672 lockdep_assert_held(&msc->probe_lock); 673 lockdep_assert_held(&msc->part_sel_lock); 674 675 /* Cache Capacity Partitioning */ 676 if (FIELD_GET(MPAMF_IDR_HAS_CCAP_PART, ris->idr)) { 677 u32 ccap_features = mpam_read_partsel_reg(msc, CCAP_IDR); 678 679 props->cmax_wd = FIELD_GET(MPAMF_CCAP_IDR_CMAX_WD, ccap_features); 680 if (props->cmax_wd && 681 FIELD_GET(MPAMF_CCAP_IDR_HAS_CMAX_SOFTLIM, ccap_features)) 682 mpam_set_feature(mpam_feat_cmax_softlim, props); 683 684 if (props->cmax_wd && 685 !FIELD_GET(MPAMF_CCAP_IDR_NO_CMAX, ccap_features)) 686 mpam_set_feature(mpam_feat_cmax_cmax, props); 687 688 if (props->cmax_wd && 689 FIELD_GET(MPAMF_CCAP_IDR_HAS_CMIN, ccap_features)) 690 mpam_set_feature(mpam_feat_cmax_cmin, props); 691 692 props->cassoc_wd = FIELD_GET(MPAMF_CCAP_IDR_CASSOC_WD, ccap_features); 693 if (props->cassoc_wd && 694 FIELD_GET(MPAMF_CCAP_IDR_HAS_CASSOC, ccap_features)) 695 mpam_set_feature(mpam_feat_cmax_cassoc, props); 696 } 697 698 /* Cache Portion partitioning */ 699 if (FIELD_GET(MPAMF_IDR_HAS_CPOR_PART, ris->idr)) { 700 u32 cpor_features = mpam_read_partsel_reg(msc, CPOR_IDR); 701 702 props->cpbm_wd = FIELD_GET(MPAMF_CPOR_IDR_CPBM_WD, cpor_features); 703 if (props->cpbm_wd) 704 mpam_set_feature(mpam_feat_cpor_part, props); 705 } 706 707 /* Memory bandwidth partitioning */ 708 if (FIELD_GET(MPAMF_IDR_HAS_MBW_PART, ris->idr)) { 709 u32 mbw_features = mpam_read_partsel_reg(msc, MBW_IDR); 710 711 /* portion bitmap resolution */ 712 props->mbw_pbm_bits = FIELD_GET(MPAMF_MBW_IDR_BWPBM_WD, mbw_features); 713 if (props->mbw_pbm_bits && 714 FIELD_GET(MPAMF_MBW_IDR_HAS_PBM, mbw_features)) 715 mpam_set_feature(mpam_feat_mbw_part, props); 716 717 props->bwa_wd = FIELD_GET(MPAMF_MBW_IDR_BWA_WD, mbw_features); 718 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MAX, mbw_features)) 719 mpam_set_feature(mpam_feat_mbw_max, props); 720 721 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MIN, mbw_features)) 722 mpam_set_feature(mpam_feat_mbw_min, props); 723 724 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_PROP, mbw_features)) 725 mpam_set_feature(mpam_feat_mbw_prop, props); 726 } 727 728 /* Priority partitioning */ 729 if (FIELD_GET(MPAMF_IDR_HAS_PRI_PART, ris->idr)) { 730 u32 pri_features = mpam_read_partsel_reg(msc, PRI_IDR); 731 732 props->intpri_wd = FIELD_GET(MPAMF_PRI_IDR_INTPRI_WD, pri_features); 733 if (props->intpri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_INTPRI, pri_features)) { 734 mpam_set_feature(mpam_feat_intpri_part, props); 735 if (FIELD_GET(MPAMF_PRI_IDR_INTPRI_0_IS_LOW, pri_features)) 736 mpam_set_feature(mpam_feat_intpri_part_0_low, props); 737 } 738 739 props->dspri_wd = FIELD_GET(MPAMF_PRI_IDR_DSPRI_WD, pri_features); 740 if (props->dspri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_DSPRI, pri_features)) { 741 mpam_set_feature(mpam_feat_dspri_part, props); 742 if (FIELD_GET(MPAMF_PRI_IDR_DSPRI_0_IS_LOW, pri_features)) 743 mpam_set_feature(mpam_feat_dspri_part_0_low, props); 744 } 745 } 746 747 /* Performance Monitoring */ 748 if (FIELD_GET(MPAMF_IDR_HAS_MSMON, ris->idr)) { 749 u32 msmon_features = mpam_read_partsel_reg(msc, MSMON_IDR); 750 751 /* 752 * If the firmware max-nrdy-us property is missing, the 753 * CSU counters can't be used. Should we wait forever? 754 */ 755 err = device_property_read_u32(&msc->pdev->dev, 756 "arm,not-ready-us", 757 &msc->nrdy_usec); 758 759 if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_CSU, msmon_features)) { 760 u32 csumonidr; 761 762 csumonidr = mpam_read_partsel_reg(msc, CSUMON_IDR); 763 props->num_csu_mon = FIELD_GET(MPAMF_CSUMON_IDR_NUM_MON, csumonidr); 764 if (props->num_csu_mon) { 765 bool hw_managed; 766 767 mpam_set_feature(mpam_feat_msmon_csu, props); 768 769 if (FIELD_GET(MPAMF_CSUMON_IDR_HAS_XCL, csumonidr)) 770 mpam_set_feature(mpam_feat_msmon_csu_xcl, props); 771 772 /* Is NRDY hardware managed? */ 773 hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, CSU); 774 if (hw_managed) 775 mpam_set_feature(mpam_feat_msmon_csu_hw_nrdy, props); 776 } 777 778 /* 779 * Accept the missing firmware property if NRDY appears 780 * un-implemented. 781 */ 782 if (err && mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, props)) 783 dev_err_once(dev, "Counters are not usable because not-ready timeout was not provided by firmware."); 784 } 785 if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_MBWU, msmon_features)) { 786 bool hw_managed; 787 u32 mbwumon_idr = mpam_read_partsel_reg(msc, MBWUMON_IDR); 788 789 props->num_mbwu_mon = FIELD_GET(MPAMF_MBWUMON_IDR_NUM_MON, mbwumon_idr); 790 if (props->num_mbwu_mon) 791 mpam_set_feature(mpam_feat_msmon_mbwu, props); 792 793 if (FIELD_GET(MPAMF_MBWUMON_IDR_HAS_RWBW, mbwumon_idr)) 794 mpam_set_feature(mpam_feat_msmon_mbwu_rwbw, props); 795 796 /* Is NRDY hardware managed? */ 797 hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, MBWU); 798 if (hw_managed) 799 mpam_set_feature(mpam_feat_msmon_mbwu_hw_nrdy, props); 800 801 /* 802 * Don't warn about any missing firmware property for 803 * MBWU NRDY - it doesn't make any sense! 804 */ 805 } 806 } 807 808 /* 809 * RIS with PARTID narrowing don't have enough storage for one 810 * configuration per PARTID. If these are in a class we could use, 811 * reduce the supported partid_max to match the number of intpartid. 812 * If the class is unknown, just ignore it. 813 */ 814 if (FIELD_GET(MPAMF_IDR_HAS_PARTID_NRW, ris->idr) && 815 class->type != MPAM_CLASS_UNKNOWN) { 816 u32 nrwidr = mpam_read_partsel_reg(msc, PARTID_NRW_IDR); 817 u16 partid_max = FIELD_GET(MPAMF_PARTID_NRW_IDR_INTPARTID_MAX, nrwidr); 818 819 mpam_set_feature(mpam_feat_partid_nrw, props); 820 msc->partid_max = min(msc->partid_max, partid_max); 821 } 822 } 823 824 static int mpam_msc_hw_probe(struct mpam_msc *msc) 825 { 826 u64 idr; 827 u16 partid_max; 828 u8 ris_idx, pmg_max; 829 struct mpam_msc_ris *ris; 830 struct device *dev = &msc->pdev->dev; 831 832 lockdep_assert_held(&msc->probe_lock); 833 834 idr = __mpam_read_reg(msc, MPAMF_AIDR); 835 if ((idr & MPAMF_AIDR_ARCH_MAJOR_REV) != MPAM_ARCHITECTURE_V1) { 836 dev_err_once(dev, "MSC does not match MPAM architecture v1.x\n"); 837 return -EIO; 838 } 839 840 /* Grab an IDR value to find out how many RIS there are */ 841 mutex_lock(&msc->part_sel_lock); 842 idr = mpam_msc_read_idr(msc); 843 mutex_unlock(&msc->part_sel_lock); 844 845 msc->ris_max = FIELD_GET(MPAMF_IDR_RIS_MAX, idr); 846 847 /* Use these values so partid/pmg always starts with a valid value */ 848 msc->partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr); 849 msc->pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr); 850 851 for (ris_idx = 0; ris_idx <= msc->ris_max; ris_idx++) { 852 mutex_lock(&msc->part_sel_lock); 853 __mpam_part_sel(ris_idx, 0, msc); 854 idr = mpam_msc_read_idr(msc); 855 mutex_unlock(&msc->part_sel_lock); 856 857 partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr); 858 pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr); 859 msc->partid_max = min(msc->partid_max, partid_max); 860 msc->pmg_max = min(msc->pmg_max, pmg_max); 861 msc->has_extd_esr = FIELD_GET(MPAMF_IDR_HAS_EXTD_ESR, idr); 862 863 mutex_lock(&mpam_list_lock); 864 ris = mpam_get_or_create_ris(msc, ris_idx); 865 mutex_unlock(&mpam_list_lock); 866 if (IS_ERR(ris)) 867 return PTR_ERR(ris); 868 ris->idr = idr; 869 870 mutex_lock(&msc->part_sel_lock); 871 __mpam_part_sel(ris_idx, 0, msc); 872 mpam_ris_hw_probe(ris); 873 mutex_unlock(&msc->part_sel_lock); 874 } 875 876 /* Clear any stale errors */ 877 mpam_msc_clear_esr(msc); 878 879 spin_lock(&partid_max_lock); 880 mpam_partid_max = min(mpam_partid_max, msc->partid_max); 881 mpam_pmg_max = min(mpam_pmg_max, msc->pmg_max); 882 spin_unlock(&partid_max_lock); 883 884 msc->probed = true; 885 886 return 0; 887 } 888 889 static void mpam_reset_msc_bitmap(struct mpam_msc *msc, u16 reg, u16 wd) 890 { 891 u32 num_words, msb; 892 u32 bm = ~0; 893 int i; 894 895 lockdep_assert_held(&msc->part_sel_lock); 896 897 if (wd == 0) 898 return; 899 900 /* 901 * Write all ~0 to all but the last 32bit-word, which may 902 * have fewer bits... 903 */ 904 num_words = DIV_ROUND_UP(wd, 32); 905 for (i = 0; i < num_words - 1; i++, reg += sizeof(bm)) 906 __mpam_write_reg(msc, reg, bm); 907 908 /* 909 * ....and then the last (maybe) partial 32bit word. When wd is a 910 * multiple of 32, msb should be 31 to write a full 32bit word. 911 */ 912 msb = (wd - 1) % 32; 913 bm = GENMASK(msb, 0); 914 __mpam_write_reg(msc, reg, bm); 915 } 916 917 /* Called via IPI. Call while holding an SRCU reference */ 918 static void mpam_reprogram_ris_partid(struct mpam_msc_ris *ris, u16 partid, 919 struct mpam_config *cfg) 920 { 921 u32 pri_val = 0; 922 u16 cmax = MPAMCFG_CMAX_CMAX; 923 struct mpam_msc *msc = ris->vmsc->msc; 924 struct mpam_props *rprops = &ris->props; 925 u16 dspri = GENMASK(rprops->dspri_wd, 0); 926 u16 intpri = GENMASK(rprops->intpri_wd, 0); 927 928 mutex_lock(&msc->part_sel_lock); 929 __mpam_part_sel(ris->ris_idx, partid, msc); 930 931 if (mpam_has_feature(mpam_feat_partid_nrw, rprops)) { 932 /* Update the intpartid mapping */ 933 mpam_write_partsel_reg(msc, INTPARTID, 934 MPAMCFG_INTPARTID_INTERNAL | partid); 935 936 /* 937 * Then switch to the 'internal' partid to update the 938 * configuration. 939 */ 940 __mpam_intpart_sel(ris->ris_idx, partid, msc); 941 } 942 943 if (mpam_has_feature(mpam_feat_cpor_part, rprops) && 944 mpam_has_feature(mpam_feat_cpor_part, cfg)) { 945 if (cfg->reset_cpbm) 946 mpam_reset_msc_bitmap(msc, MPAMCFG_CPBM, rprops->cpbm_wd); 947 else 948 mpam_write_partsel_reg(msc, CPBM, cfg->cpbm); 949 } 950 951 if (mpam_has_feature(mpam_feat_mbw_part, rprops) && 952 mpam_has_feature(mpam_feat_mbw_part, cfg)) { 953 if (cfg->reset_mbw_pbm) 954 mpam_reset_msc_bitmap(msc, MPAMCFG_MBW_PBM, rprops->mbw_pbm_bits); 955 else 956 mpam_write_partsel_reg(msc, MBW_PBM, cfg->mbw_pbm); 957 } 958 959 if (mpam_has_feature(mpam_feat_mbw_min, rprops) && 960 mpam_has_feature(mpam_feat_mbw_min, cfg)) 961 mpam_write_partsel_reg(msc, MBW_MIN, 0); 962 963 if (mpam_has_feature(mpam_feat_mbw_max, rprops) && 964 mpam_has_feature(mpam_feat_mbw_max, cfg)) { 965 if (cfg->reset_mbw_max) 966 mpam_write_partsel_reg(msc, MBW_MAX, MPAMCFG_MBW_MAX_MAX); 967 else 968 mpam_write_partsel_reg(msc, MBW_MAX, cfg->mbw_max); 969 } 970 971 if (mpam_has_feature(mpam_feat_mbw_prop, rprops) && 972 mpam_has_feature(mpam_feat_mbw_prop, cfg)) 973 mpam_write_partsel_reg(msc, MBW_PROP, 0); 974 975 if (mpam_has_feature(mpam_feat_cmax_cmax, rprops)) 976 mpam_write_partsel_reg(msc, CMAX, cmax); 977 978 if (mpam_has_feature(mpam_feat_cmax_cmin, rprops)) 979 mpam_write_partsel_reg(msc, CMIN, 0); 980 981 if (mpam_has_feature(mpam_feat_cmax_cassoc, rprops)) 982 mpam_write_partsel_reg(msc, CASSOC, MPAMCFG_CASSOC_CASSOC); 983 984 if (mpam_has_feature(mpam_feat_intpri_part, rprops) || 985 mpam_has_feature(mpam_feat_dspri_part, rprops)) { 986 /* aces high? */ 987 if (!mpam_has_feature(mpam_feat_intpri_part_0_low, rprops)) 988 intpri = 0; 989 if (!mpam_has_feature(mpam_feat_dspri_part_0_low, rprops)) 990 dspri = 0; 991 992 if (mpam_has_feature(mpam_feat_intpri_part, rprops)) 993 pri_val |= FIELD_PREP(MPAMCFG_PRI_INTPRI, intpri); 994 if (mpam_has_feature(mpam_feat_dspri_part, rprops)) 995 pri_val |= FIELD_PREP(MPAMCFG_PRI_DSPRI, dspri); 996 997 mpam_write_partsel_reg(msc, PRI, pri_val); 998 } 999 1000 mutex_unlock(&msc->part_sel_lock); 1001 } 1002 1003 static void mpam_init_reset_cfg(struct mpam_config *reset_cfg) 1004 { 1005 *reset_cfg = (struct mpam_config) { 1006 .reset_cpbm = true, 1007 .reset_mbw_pbm = true, 1008 .reset_mbw_max = true, 1009 }; 1010 bitmap_fill(reset_cfg->features, MPAM_FEATURE_LAST); 1011 } 1012 1013 /* 1014 * Called via smp_call_on_cpu() to prevent migration, while still being 1015 * pre-emptible. Caller must hold mpam_srcu. 1016 */ 1017 static int mpam_reset_ris(void *arg) 1018 { 1019 u16 partid, partid_max; 1020 struct mpam_config reset_cfg; 1021 struct mpam_msc_ris *ris = arg; 1022 1023 if (ris->in_reset_state) 1024 return 0; 1025 1026 mpam_init_reset_cfg(&reset_cfg); 1027 1028 spin_lock(&partid_max_lock); 1029 partid_max = mpam_partid_max; 1030 spin_unlock(&partid_max_lock); 1031 for (partid = 0; partid <= partid_max; partid++) 1032 mpam_reprogram_ris_partid(ris, partid, &reset_cfg); 1033 1034 return 0; 1035 } 1036 1037 /* 1038 * Get the preferred CPU for this MSC. If it is accessible from this CPU, 1039 * this CPU is preferred. This can be preempted/migrated, it will only result 1040 * in more work. 1041 */ 1042 static int mpam_get_msc_preferred_cpu(struct mpam_msc *msc) 1043 { 1044 int cpu = raw_smp_processor_id(); 1045 1046 if (cpumask_test_cpu(cpu, &msc->accessibility)) 1047 return cpu; 1048 1049 return cpumask_first_and(&msc->accessibility, cpu_online_mask); 1050 } 1051 1052 static int mpam_touch_msc(struct mpam_msc *msc, int (*fn)(void *a), void *arg) 1053 { 1054 lockdep_assert_irqs_enabled(); 1055 lockdep_assert_cpus_held(); 1056 WARN_ON_ONCE(!srcu_read_lock_held((&mpam_srcu))); 1057 1058 return smp_call_on_cpu(mpam_get_msc_preferred_cpu(msc), fn, arg, true); 1059 } 1060 1061 struct mpam_write_config_arg { 1062 struct mpam_msc_ris *ris; 1063 struct mpam_component *comp; 1064 u16 partid; 1065 }; 1066 1067 static int __write_config(void *arg) 1068 { 1069 struct mpam_write_config_arg *c = arg; 1070 1071 mpam_reprogram_ris_partid(c->ris, c->partid, &c->comp->cfg[c->partid]); 1072 1073 return 0; 1074 } 1075 1076 static void mpam_reprogram_msc(struct mpam_msc *msc) 1077 { 1078 u16 partid; 1079 bool reset; 1080 struct mpam_config *cfg; 1081 struct mpam_msc_ris *ris; 1082 struct mpam_write_config_arg arg; 1083 1084 /* 1085 * No lock for mpam_partid_max as partid_max_published has been 1086 * set by mpam_enabled(), so the values can no longer change. 1087 */ 1088 mpam_assert_partid_sizes_fixed(); 1089 1090 mutex_lock(&msc->cfg_lock); 1091 list_for_each_entry_srcu(ris, &msc->ris, msc_list, 1092 srcu_read_lock_held(&mpam_srcu)) { 1093 if (!mpam_is_enabled() && !ris->in_reset_state) { 1094 mpam_touch_msc(msc, &mpam_reset_ris, ris); 1095 ris->in_reset_state = true; 1096 continue; 1097 } 1098 1099 arg.comp = ris->vmsc->comp; 1100 arg.ris = ris; 1101 reset = true; 1102 for (partid = 0; partid <= mpam_partid_max; partid++) { 1103 cfg = &ris->vmsc->comp->cfg[partid]; 1104 if (!bitmap_empty(cfg->features, MPAM_FEATURE_LAST)) 1105 reset = false; 1106 1107 arg.partid = partid; 1108 mpam_touch_msc(msc, __write_config, &arg); 1109 } 1110 ris->in_reset_state = reset; 1111 } 1112 mutex_unlock(&msc->cfg_lock); 1113 } 1114 1115 static void _enable_percpu_irq(void *_irq) 1116 { 1117 int *irq = _irq; 1118 1119 enable_percpu_irq(*irq, IRQ_TYPE_NONE); 1120 } 1121 1122 static int mpam_cpu_online(unsigned int cpu) 1123 { 1124 struct mpam_msc *msc; 1125 1126 guard(srcu)(&mpam_srcu); 1127 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1128 srcu_read_lock_held(&mpam_srcu)) { 1129 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1130 continue; 1131 1132 if (msc->reenable_error_ppi) 1133 _enable_percpu_irq(&msc->reenable_error_ppi); 1134 1135 if (atomic_fetch_inc(&msc->online_refs) == 0) 1136 mpam_reprogram_msc(msc); 1137 } 1138 1139 return 0; 1140 } 1141 1142 /* Before mpam is enabled, try to probe new MSC */ 1143 static int mpam_discovery_cpu_online(unsigned int cpu) 1144 { 1145 int err = 0; 1146 struct mpam_msc *msc; 1147 bool new_device_probed = false; 1148 1149 if (mpam_is_enabled()) 1150 return 0; 1151 1152 guard(srcu)(&mpam_srcu); 1153 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1154 srcu_read_lock_held(&mpam_srcu)) { 1155 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1156 continue; 1157 1158 mutex_lock(&msc->probe_lock); 1159 if (!msc->probed) 1160 err = mpam_msc_hw_probe(msc); 1161 mutex_unlock(&msc->probe_lock); 1162 1163 if (err) 1164 break; 1165 new_device_probed = true; 1166 } 1167 1168 if (new_device_probed && !err) 1169 schedule_work(&mpam_enable_work); 1170 if (err) { 1171 mpam_disable_reason = "error during probing"; 1172 schedule_work(&mpam_broken_work); 1173 } 1174 1175 return err; 1176 } 1177 1178 static int mpam_cpu_offline(unsigned int cpu) 1179 { 1180 struct mpam_msc *msc; 1181 1182 guard(srcu)(&mpam_srcu); 1183 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1184 srcu_read_lock_held(&mpam_srcu)) { 1185 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1186 continue; 1187 1188 if (msc->reenable_error_ppi) 1189 disable_percpu_irq(msc->reenable_error_ppi); 1190 1191 if (atomic_dec_and_test(&msc->online_refs)) { 1192 struct mpam_msc_ris *ris; 1193 1194 mutex_lock(&msc->cfg_lock); 1195 list_for_each_entry_srcu(ris, &msc->ris, msc_list, 1196 srcu_read_lock_held(&mpam_srcu)) { 1197 mpam_touch_msc(msc, &mpam_reset_ris, ris); 1198 1199 /* 1200 * The reset state for non-zero partid may be 1201 * lost while the CPUs are offline. 1202 */ 1203 ris->in_reset_state = false; 1204 } 1205 mutex_unlock(&msc->cfg_lock); 1206 } 1207 } 1208 1209 return 0; 1210 } 1211 1212 static void mpam_register_cpuhp_callbacks(int (*online)(unsigned int online), 1213 int (*offline)(unsigned int offline), 1214 char *name) 1215 { 1216 mutex_lock(&mpam_cpuhp_state_lock); 1217 if (mpam_cpuhp_state) { 1218 cpuhp_remove_state(mpam_cpuhp_state); 1219 mpam_cpuhp_state = 0; 1220 } 1221 1222 mpam_cpuhp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, name, online, 1223 offline); 1224 if (mpam_cpuhp_state <= 0) { 1225 pr_err("Failed to register cpuhp callbacks"); 1226 mpam_cpuhp_state = 0; 1227 } 1228 mutex_unlock(&mpam_cpuhp_state_lock); 1229 } 1230 1231 static int __setup_ppi(struct mpam_msc *msc) 1232 { 1233 int cpu; 1234 1235 msc->error_dev_id = alloc_percpu(struct mpam_msc *); 1236 if (!msc->error_dev_id) 1237 return -ENOMEM; 1238 1239 for_each_cpu(cpu, &msc->accessibility) 1240 *per_cpu_ptr(msc->error_dev_id, cpu) = msc; 1241 1242 return 0; 1243 } 1244 1245 static int mpam_msc_setup_error_irq(struct mpam_msc *msc) 1246 { 1247 int irq; 1248 1249 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 1250 if (irq <= 0) 1251 return 0; 1252 1253 /* Allocate and initialise the percpu device pointer for PPI */ 1254 if (irq_is_percpu(irq)) 1255 return __setup_ppi(msc); 1256 1257 /* sanity check: shared interrupts can be routed anywhere? */ 1258 if (!cpumask_equal(&msc->accessibility, cpu_possible_mask)) { 1259 pr_err_once("msc:%u is a private resource with a shared error interrupt", 1260 msc->id); 1261 return -EINVAL; 1262 } 1263 1264 return 0; 1265 } 1266 1267 /* 1268 * An MSC can control traffic from a set of CPUs, but may only be accessible 1269 * from a (hopefully wider) set of CPUs. The common reason for this is power 1270 * management. If all the CPUs in a cluster are in PSCI:CPU_SUSPEND, the 1271 * corresponding cache may also be powered off. By making accesses from 1272 * one of those CPUs, we ensure we don't access a cache that's powered off. 1273 */ 1274 static void update_msc_accessibility(struct mpam_msc *msc) 1275 { 1276 u32 affinity_id; 1277 int err; 1278 1279 err = device_property_read_u32(&msc->pdev->dev, "cpu_affinity", 1280 &affinity_id); 1281 if (err) 1282 cpumask_copy(&msc->accessibility, cpu_possible_mask); 1283 else 1284 acpi_pptt_get_cpus_from_container(affinity_id, &msc->accessibility); 1285 } 1286 1287 /* 1288 * There are two ways of reaching a struct mpam_msc_ris. Via the 1289 * class->component->vmsc->ris, or via the msc. 1290 * When destroying the msc, the other side needs unlinking and cleaning up too. 1291 */ 1292 static void mpam_msc_destroy(struct mpam_msc *msc) 1293 { 1294 struct platform_device *pdev = msc->pdev; 1295 struct mpam_msc_ris *ris, *tmp; 1296 1297 lockdep_assert_held(&mpam_list_lock); 1298 1299 list_for_each_entry_safe(ris, tmp, &msc->ris, msc_list) 1300 mpam_ris_destroy(ris); 1301 1302 list_del_rcu(&msc->all_msc_list); 1303 platform_set_drvdata(pdev, NULL); 1304 1305 add_to_garbage(msc); 1306 } 1307 1308 static void mpam_msc_drv_remove(struct platform_device *pdev) 1309 { 1310 struct mpam_msc *msc = platform_get_drvdata(pdev); 1311 1312 mutex_lock(&mpam_list_lock); 1313 mpam_msc_destroy(msc); 1314 mutex_unlock(&mpam_list_lock); 1315 1316 mpam_free_garbage(); 1317 } 1318 1319 static struct mpam_msc *do_mpam_msc_drv_probe(struct platform_device *pdev) 1320 { 1321 int err; 1322 u32 tmp; 1323 struct mpam_msc *msc; 1324 struct resource *msc_res; 1325 struct device *dev = &pdev->dev; 1326 1327 lockdep_assert_held(&mpam_list_lock); 1328 1329 msc = devm_kzalloc(&pdev->dev, sizeof(*msc), GFP_KERNEL); 1330 if (!msc) 1331 return ERR_PTR(-ENOMEM); 1332 init_garbage(&msc->garbage); 1333 msc->garbage.pdev = pdev; 1334 1335 err = devm_mutex_init(dev, &msc->probe_lock); 1336 if (err) 1337 return ERR_PTR(err); 1338 1339 err = devm_mutex_init(dev, &msc->part_sel_lock); 1340 if (err) 1341 return ERR_PTR(err); 1342 1343 err = devm_mutex_init(dev, &msc->error_irq_lock); 1344 if (err) 1345 return ERR_PTR(err); 1346 1347 err = devm_mutex_init(dev, &msc->cfg_lock); 1348 if (err) 1349 return ERR_PTR(err); 1350 1351 mpam_mon_sel_lock_init(msc); 1352 msc->id = pdev->id; 1353 msc->pdev = pdev; 1354 INIT_LIST_HEAD_RCU(&msc->all_msc_list); 1355 INIT_LIST_HEAD_RCU(&msc->ris); 1356 1357 update_msc_accessibility(msc); 1358 if (cpumask_empty(&msc->accessibility)) { 1359 dev_err_once(dev, "MSC is not accessible from any CPU!"); 1360 return ERR_PTR(-EINVAL); 1361 } 1362 1363 err = mpam_msc_setup_error_irq(msc); 1364 if (err) 1365 return ERR_PTR(err); 1366 1367 if (device_property_read_u32(&pdev->dev, "pcc-channel", &tmp)) 1368 msc->iface = MPAM_IFACE_MMIO; 1369 else 1370 msc->iface = MPAM_IFACE_PCC; 1371 1372 if (msc->iface == MPAM_IFACE_MMIO) { 1373 void __iomem *io; 1374 1375 io = devm_platform_get_and_ioremap_resource(pdev, 0, 1376 &msc_res); 1377 if (IS_ERR(io)) { 1378 dev_err_once(dev, "Failed to map MSC base address\n"); 1379 return ERR_CAST(io); 1380 } 1381 msc->mapped_hwpage_sz = msc_res->end - msc_res->start; 1382 msc->mapped_hwpage = io; 1383 } else { 1384 return ERR_PTR(-EINVAL); 1385 } 1386 1387 list_add_rcu(&msc->all_msc_list, &mpam_all_msc); 1388 platform_set_drvdata(pdev, msc); 1389 1390 return msc; 1391 } 1392 1393 static int fw_num_msc; 1394 1395 static int mpam_msc_drv_probe(struct platform_device *pdev) 1396 { 1397 int err; 1398 struct mpam_msc *msc = NULL; 1399 void *plat_data = pdev->dev.platform_data; 1400 1401 mutex_lock(&mpam_list_lock); 1402 msc = do_mpam_msc_drv_probe(pdev); 1403 mutex_unlock(&mpam_list_lock); 1404 1405 if (IS_ERR(msc)) 1406 return PTR_ERR(msc); 1407 1408 /* Create RIS entries described by firmware */ 1409 err = acpi_mpam_parse_resources(msc, plat_data); 1410 if (err) { 1411 mpam_msc_drv_remove(pdev); 1412 return err; 1413 } 1414 1415 if (atomic_add_return(1, &mpam_num_msc) == fw_num_msc) 1416 mpam_register_cpuhp_callbacks(mpam_discovery_cpu_online, NULL, 1417 "mpam:drv_probe"); 1418 1419 return 0; 1420 } 1421 1422 static struct platform_driver mpam_msc_driver = { 1423 .driver = { 1424 .name = "mpam_msc", 1425 }, 1426 .probe = mpam_msc_drv_probe, 1427 .remove = mpam_msc_drv_remove, 1428 }; 1429 1430 /* Any of these features mean the BWA_WD field is valid. */ 1431 static bool mpam_has_bwa_wd_feature(struct mpam_props *props) 1432 { 1433 if (mpam_has_feature(mpam_feat_mbw_min, props)) 1434 return true; 1435 if (mpam_has_feature(mpam_feat_mbw_max, props)) 1436 return true; 1437 if (mpam_has_feature(mpam_feat_mbw_prop, props)) 1438 return true; 1439 return false; 1440 } 1441 1442 /* Any of these features mean the CMAX_WD field is valid. */ 1443 static bool mpam_has_cmax_wd_feature(struct mpam_props *props) 1444 { 1445 if (mpam_has_feature(mpam_feat_cmax_cmax, props)) 1446 return true; 1447 if (mpam_has_feature(mpam_feat_cmax_cmin, props)) 1448 return true; 1449 return false; 1450 } 1451 1452 #define MISMATCHED_HELPER(parent, child, helper, field, alias) \ 1453 helper(parent) && \ 1454 ((helper(child) && (parent)->field != (child)->field) || \ 1455 (!helper(child) && !(alias))) 1456 1457 #define MISMATCHED_FEAT(parent, child, feat, field, alias) \ 1458 mpam_has_feature((feat), (parent)) && \ 1459 ((mpam_has_feature((feat), (child)) && (parent)->field != (child)->field) || \ 1460 (!mpam_has_feature((feat), (child)) && !(alias))) 1461 1462 #define CAN_MERGE_FEAT(parent, child, feat, alias) \ 1463 (alias) && !mpam_has_feature((feat), (parent)) && \ 1464 mpam_has_feature((feat), (child)) 1465 1466 /* 1467 * Combine two props fields. 1468 * If this is for controls that alias the same resource, it is safe to just 1469 * copy the values over. If two aliasing controls implement the same scheme 1470 * a safe value must be picked. 1471 * For non-aliasing controls, these control different resources, and the 1472 * resulting safe value must be compatible with both. When merging values in 1473 * the tree, all the aliasing resources must be handled first. 1474 * On mismatch, parent is modified. 1475 */ 1476 static void __props_mismatch(struct mpam_props *parent, 1477 struct mpam_props *child, bool alias) 1478 { 1479 if (CAN_MERGE_FEAT(parent, child, mpam_feat_cpor_part, alias)) { 1480 parent->cpbm_wd = child->cpbm_wd; 1481 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_cpor_part, 1482 cpbm_wd, alias)) { 1483 pr_debug("cleared cpor_part\n"); 1484 mpam_clear_feature(mpam_feat_cpor_part, parent); 1485 parent->cpbm_wd = 0; 1486 } 1487 1488 if (CAN_MERGE_FEAT(parent, child, mpam_feat_mbw_part, alias)) { 1489 parent->mbw_pbm_bits = child->mbw_pbm_bits; 1490 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_mbw_part, 1491 mbw_pbm_bits, alias)) { 1492 pr_debug("cleared mbw_part\n"); 1493 mpam_clear_feature(mpam_feat_mbw_part, parent); 1494 parent->mbw_pbm_bits = 0; 1495 } 1496 1497 /* bwa_wd is a count of bits, fewer bits means less precision */ 1498 if (alias && !mpam_has_bwa_wd_feature(parent) && 1499 mpam_has_bwa_wd_feature(child)) { 1500 parent->bwa_wd = child->bwa_wd; 1501 } else if (MISMATCHED_HELPER(parent, child, mpam_has_bwa_wd_feature, 1502 bwa_wd, alias)) { 1503 pr_debug("took the min bwa_wd\n"); 1504 parent->bwa_wd = min(parent->bwa_wd, child->bwa_wd); 1505 } 1506 1507 if (alias && !mpam_has_cmax_wd_feature(parent) && mpam_has_cmax_wd_feature(child)) { 1508 parent->cmax_wd = child->cmax_wd; 1509 } else if (MISMATCHED_HELPER(parent, child, mpam_has_cmax_wd_feature, 1510 cmax_wd, alias)) { 1511 pr_debug("%s took the min cmax_wd\n", __func__); 1512 parent->cmax_wd = min(parent->cmax_wd, child->cmax_wd); 1513 } 1514 1515 if (CAN_MERGE_FEAT(parent, child, mpam_feat_cmax_cassoc, alias)) { 1516 parent->cassoc_wd = child->cassoc_wd; 1517 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_cmax_cassoc, 1518 cassoc_wd, alias)) { 1519 pr_debug("%s cleared cassoc_wd\n", __func__); 1520 mpam_clear_feature(mpam_feat_cmax_cassoc, parent); 1521 parent->cassoc_wd = 0; 1522 } 1523 1524 /* For num properties, take the minimum */ 1525 if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_csu, alias)) { 1526 parent->num_csu_mon = child->num_csu_mon; 1527 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_csu, 1528 num_csu_mon, alias)) { 1529 pr_debug("took the min num_csu_mon\n"); 1530 parent->num_csu_mon = min(parent->num_csu_mon, 1531 child->num_csu_mon); 1532 } 1533 1534 if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_mbwu, alias)) { 1535 parent->num_mbwu_mon = child->num_mbwu_mon; 1536 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_mbwu, 1537 num_mbwu_mon, alias)) { 1538 pr_debug("took the min num_mbwu_mon\n"); 1539 parent->num_mbwu_mon = min(parent->num_mbwu_mon, 1540 child->num_mbwu_mon); 1541 } 1542 1543 if (CAN_MERGE_FEAT(parent, child, mpam_feat_intpri_part, alias)) { 1544 parent->intpri_wd = child->intpri_wd; 1545 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_intpri_part, 1546 intpri_wd, alias)) { 1547 pr_debug("%s took the min intpri_wd\n", __func__); 1548 parent->intpri_wd = min(parent->intpri_wd, child->intpri_wd); 1549 } 1550 1551 if (CAN_MERGE_FEAT(parent, child, mpam_feat_dspri_part, alias)) { 1552 parent->dspri_wd = child->dspri_wd; 1553 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_dspri_part, 1554 dspri_wd, alias)) { 1555 pr_debug("%s took the min dspri_wd\n", __func__); 1556 parent->dspri_wd = min(parent->dspri_wd, child->dspri_wd); 1557 } 1558 1559 /* TODO: alias support for these two */ 1560 /* {int,ds}pri may not have differing 0-low behaviour */ 1561 if (mpam_has_feature(mpam_feat_intpri_part, parent) && 1562 (!mpam_has_feature(mpam_feat_intpri_part, child) || 1563 mpam_has_feature(mpam_feat_intpri_part_0_low, parent) != 1564 mpam_has_feature(mpam_feat_intpri_part_0_low, child))) { 1565 pr_debug("%s cleared intpri_part\n", __func__); 1566 mpam_clear_feature(mpam_feat_intpri_part, parent); 1567 mpam_clear_feature(mpam_feat_intpri_part_0_low, parent); 1568 } 1569 if (mpam_has_feature(mpam_feat_dspri_part, parent) && 1570 (!mpam_has_feature(mpam_feat_dspri_part, child) || 1571 mpam_has_feature(mpam_feat_dspri_part_0_low, parent) != 1572 mpam_has_feature(mpam_feat_dspri_part_0_low, child))) { 1573 pr_debug("%s cleared dspri_part\n", __func__); 1574 mpam_clear_feature(mpam_feat_dspri_part, parent); 1575 mpam_clear_feature(mpam_feat_dspri_part_0_low, parent); 1576 } 1577 1578 if (alias) { 1579 /* Merge features for aliased resources */ 1580 bitmap_or(parent->features, parent->features, child->features, MPAM_FEATURE_LAST); 1581 } else { 1582 /* Clear missing features for non aliasing */ 1583 bitmap_and(parent->features, parent->features, child->features, MPAM_FEATURE_LAST); 1584 } 1585 } 1586 1587 /* 1588 * If a vmsc doesn't match class feature/configuration, do the right thing(tm). 1589 * For 'num' properties we can just take the minimum. 1590 * For properties where the mismatched unused bits would make a difference, we 1591 * nobble the class feature, as we can't configure all the resources. 1592 * e.g. The L3 cache is composed of two resources with 13 and 17 portion 1593 * bitmaps respectively. 1594 */ 1595 static void 1596 __class_props_mismatch(struct mpam_class *class, struct mpam_vmsc *vmsc) 1597 { 1598 struct mpam_props *cprops = &class->props; 1599 struct mpam_props *vprops = &vmsc->props; 1600 struct device *dev = &vmsc->msc->pdev->dev; 1601 1602 lockdep_assert_held(&mpam_list_lock); /* we modify class */ 1603 1604 dev_dbg(dev, "Merging features for class:0x%lx &= vmsc:0x%lx\n", 1605 (long)cprops->features, (long)vprops->features); 1606 1607 /* Take the safe value for any common features */ 1608 __props_mismatch(cprops, vprops, false); 1609 } 1610 1611 static void 1612 __vmsc_props_mismatch(struct mpam_vmsc *vmsc, struct mpam_msc_ris *ris) 1613 { 1614 struct mpam_props *rprops = &ris->props; 1615 struct mpam_props *vprops = &vmsc->props; 1616 struct device *dev = &vmsc->msc->pdev->dev; 1617 1618 lockdep_assert_held(&mpam_list_lock); /* we modify vmsc */ 1619 1620 dev_dbg(dev, "Merging features for vmsc:0x%lx |= ris:0x%lx\n", 1621 (long)vprops->features, (long)rprops->features); 1622 1623 /* 1624 * Merge mismatched features - Copy any features that aren't common, 1625 * but take the safe value for any common features. 1626 */ 1627 __props_mismatch(vprops, rprops, true); 1628 } 1629 1630 /* 1631 * Copy the first component's first vMSC's properties and features to the 1632 * class. __class_props_mismatch() will remove conflicts. 1633 * It is not possible to have a class with no components, or a component with 1634 * no resources. The vMSC properties have already been built. 1635 */ 1636 static void mpam_enable_init_class_features(struct mpam_class *class) 1637 { 1638 struct mpam_vmsc *vmsc; 1639 struct mpam_component *comp; 1640 1641 comp = list_first_entry(&class->components, 1642 struct mpam_component, class_list); 1643 vmsc = list_first_entry(&comp->vmsc, 1644 struct mpam_vmsc, comp_list); 1645 1646 class->props = vmsc->props; 1647 } 1648 1649 static void mpam_enable_merge_vmsc_features(struct mpam_component *comp) 1650 { 1651 struct mpam_vmsc *vmsc; 1652 struct mpam_msc_ris *ris; 1653 struct mpam_class *class = comp->class; 1654 1655 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 1656 list_for_each_entry(ris, &vmsc->ris, vmsc_list) { 1657 __vmsc_props_mismatch(vmsc, ris); 1658 class->nrdy_usec = max(class->nrdy_usec, 1659 vmsc->msc->nrdy_usec); 1660 } 1661 } 1662 } 1663 1664 static void mpam_enable_merge_class_features(struct mpam_component *comp) 1665 { 1666 struct mpam_vmsc *vmsc; 1667 struct mpam_class *class = comp->class; 1668 1669 list_for_each_entry(vmsc, &comp->vmsc, comp_list) 1670 __class_props_mismatch(class, vmsc); 1671 } 1672 1673 /* 1674 * Merge all the common resource features into class. 1675 * vmsc features are bitwise-or'd together by mpam_enable_merge_vmsc_features() 1676 * as the first step so that mpam_enable_init_class_features() can initialise 1677 * the class with a representative set of features. 1678 * Next the mpam_enable_merge_class_features() bitwise-and's all the vmsc 1679 * features to form the class features. 1680 * Other features are the min/max as appropriate. 1681 * 1682 * To avoid walking the whole tree twice, the class->nrdy_usec property is 1683 * updated when working with the vmsc as it is a max(), and doesn't need 1684 * initialising first. 1685 */ 1686 static void mpam_enable_merge_features(struct list_head *all_classes_list) 1687 { 1688 struct mpam_class *class; 1689 struct mpam_component *comp; 1690 1691 lockdep_assert_held(&mpam_list_lock); 1692 1693 list_for_each_entry(class, all_classes_list, classes_list) { 1694 list_for_each_entry(comp, &class->components, class_list) 1695 mpam_enable_merge_vmsc_features(comp); 1696 1697 mpam_enable_init_class_features(class); 1698 1699 list_for_each_entry(comp, &class->components, class_list) 1700 mpam_enable_merge_class_features(comp); 1701 } 1702 } 1703 1704 static char *mpam_errcode_names[16] = { 1705 [MPAM_ERRCODE_NONE] = "No error", 1706 [MPAM_ERRCODE_PARTID_SEL_RANGE] = "PARTID_SEL_Range", 1707 [MPAM_ERRCODE_REQ_PARTID_RANGE] = "Req_PARTID_Range", 1708 [MPAM_ERRCODE_MSMONCFG_ID_RANGE] = "MSMONCFG_ID_RANGE", 1709 [MPAM_ERRCODE_REQ_PMG_RANGE] = "Req_PMG_Range", 1710 [MPAM_ERRCODE_MONITOR_RANGE] = "Monitor_Range", 1711 [MPAM_ERRCODE_INTPARTID_RANGE] = "intPARTID_Range", 1712 [MPAM_ERRCODE_UNEXPECTED_INTERNAL] = "Unexpected_INTERNAL", 1713 [MPAM_ERRCODE_UNDEFINED_RIS_PART_SEL] = "Undefined_RIS_PART_SEL", 1714 [MPAM_ERRCODE_RIS_NO_CONTROL] = "RIS_No_Control", 1715 [MPAM_ERRCODE_UNDEFINED_RIS_MON_SEL] = "Undefined_RIS_MON_SEL", 1716 [MPAM_ERRCODE_RIS_NO_MONITOR] = "RIS_No_Monitor", 1717 [12 ... 15] = "Reserved" 1718 }; 1719 1720 static int mpam_enable_msc_ecr(void *_msc) 1721 { 1722 struct mpam_msc *msc = _msc; 1723 1724 __mpam_write_reg(msc, MPAMF_ECR, MPAMF_ECR_INTEN); 1725 1726 return 0; 1727 } 1728 1729 /* This can run in mpam_disable(), and the interrupt handler on the same CPU */ 1730 static int mpam_disable_msc_ecr(void *_msc) 1731 { 1732 struct mpam_msc *msc = _msc; 1733 1734 __mpam_write_reg(msc, MPAMF_ECR, 0); 1735 1736 return 0; 1737 } 1738 1739 static irqreturn_t __mpam_irq_handler(int irq, struct mpam_msc *msc) 1740 { 1741 u64 reg; 1742 u16 partid; 1743 u8 errcode, pmg, ris; 1744 1745 if (WARN_ON_ONCE(!msc) || 1746 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), 1747 &msc->accessibility))) 1748 return IRQ_NONE; 1749 1750 reg = mpam_msc_read_esr(msc); 1751 1752 errcode = FIELD_GET(MPAMF_ESR_ERRCODE, reg); 1753 if (!errcode) 1754 return IRQ_NONE; 1755 1756 /* Clear level triggered irq */ 1757 mpam_msc_clear_esr(msc); 1758 1759 partid = FIELD_GET(MPAMF_ESR_PARTID_MON, reg); 1760 pmg = FIELD_GET(MPAMF_ESR_PMG, reg); 1761 ris = FIELD_GET(MPAMF_ESR_RIS, reg); 1762 1763 pr_err_ratelimited("error irq from msc:%u '%s', partid:%u, pmg: %u, ris: %u\n", 1764 msc->id, mpam_errcode_names[errcode], partid, pmg, 1765 ris); 1766 1767 /* Disable this interrupt. */ 1768 mpam_disable_msc_ecr(msc); 1769 1770 /* Are we racing with the thread disabling MPAM? */ 1771 if (!mpam_is_enabled()) 1772 return IRQ_HANDLED; 1773 1774 /* 1775 * Schedule the teardown work. Don't use a threaded IRQ as we can't 1776 * unregister the interrupt from the threaded part of the handler. 1777 */ 1778 mpam_disable_reason = "hardware error interrupt"; 1779 schedule_work(&mpam_broken_work); 1780 1781 return IRQ_HANDLED; 1782 } 1783 1784 static irqreturn_t mpam_ppi_handler(int irq, void *dev_id) 1785 { 1786 struct mpam_msc *msc = *(struct mpam_msc **)dev_id; 1787 1788 return __mpam_irq_handler(irq, msc); 1789 } 1790 1791 static irqreturn_t mpam_spi_handler(int irq, void *dev_id) 1792 { 1793 struct mpam_msc *msc = dev_id; 1794 1795 return __mpam_irq_handler(irq, msc); 1796 } 1797 1798 static int mpam_register_irqs(void) 1799 { 1800 int err, irq; 1801 struct mpam_msc *msc; 1802 1803 lockdep_assert_cpus_held(); 1804 1805 guard(srcu)(&mpam_srcu); 1806 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1807 srcu_read_lock_held(&mpam_srcu)) { 1808 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 1809 if (irq <= 0) 1810 continue; 1811 1812 /* The MPAM spec says the interrupt can be SPI, PPI or LPI */ 1813 /* We anticipate sharing the interrupt with other MSCs */ 1814 if (irq_is_percpu(irq)) { 1815 err = request_percpu_irq(irq, &mpam_ppi_handler, 1816 "mpam:msc:error", 1817 msc->error_dev_id); 1818 if (err) 1819 return err; 1820 1821 msc->reenable_error_ppi = irq; 1822 smp_call_function_many(&msc->accessibility, 1823 &_enable_percpu_irq, &irq, 1824 true); 1825 } else { 1826 err = devm_request_irq(&msc->pdev->dev, irq, 1827 &mpam_spi_handler, IRQF_SHARED, 1828 "mpam:msc:error", msc); 1829 if (err) 1830 return err; 1831 } 1832 1833 mutex_lock(&msc->error_irq_lock); 1834 msc->error_irq_req = true; 1835 mpam_touch_msc(msc, mpam_enable_msc_ecr, msc); 1836 msc->error_irq_hw_enabled = true; 1837 mutex_unlock(&msc->error_irq_lock); 1838 } 1839 1840 return 0; 1841 } 1842 1843 static void mpam_unregister_irqs(void) 1844 { 1845 int irq; 1846 struct mpam_msc *msc; 1847 1848 guard(cpus_read_lock)(); 1849 guard(srcu)(&mpam_srcu); 1850 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1851 srcu_read_lock_held(&mpam_srcu)) { 1852 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 1853 if (irq <= 0) 1854 continue; 1855 1856 mutex_lock(&msc->error_irq_lock); 1857 if (msc->error_irq_hw_enabled) { 1858 mpam_touch_msc(msc, mpam_disable_msc_ecr, msc); 1859 msc->error_irq_hw_enabled = false; 1860 } 1861 1862 if (msc->error_irq_req) { 1863 if (irq_is_percpu(irq)) { 1864 msc->reenable_error_ppi = 0; 1865 free_percpu_irq(irq, msc->error_dev_id); 1866 } else { 1867 devm_free_irq(&msc->pdev->dev, irq, msc); 1868 } 1869 msc->error_irq_req = false; 1870 } 1871 mutex_unlock(&msc->error_irq_lock); 1872 } 1873 } 1874 1875 static void __destroy_component_cfg(struct mpam_component *comp) 1876 { 1877 add_to_garbage(comp->cfg); 1878 } 1879 1880 static void mpam_reset_component_cfg(struct mpam_component *comp) 1881 { 1882 int i; 1883 struct mpam_props *cprops = &comp->class->props; 1884 1885 mpam_assert_partid_sizes_fixed(); 1886 1887 if (!comp->cfg) 1888 return; 1889 1890 for (i = 0; i <= mpam_partid_max; i++) { 1891 comp->cfg[i] = (struct mpam_config) {}; 1892 if (cprops->cpbm_wd) 1893 comp->cfg[i].cpbm = GENMASK(cprops->cpbm_wd - 1, 0); 1894 if (cprops->mbw_pbm_bits) 1895 comp->cfg[i].mbw_pbm = GENMASK(cprops->mbw_pbm_bits - 1, 0); 1896 if (cprops->bwa_wd) 1897 comp->cfg[i].mbw_max = GENMASK(15, 16 - cprops->bwa_wd); 1898 } 1899 } 1900 1901 static int __allocate_component_cfg(struct mpam_component *comp) 1902 { 1903 mpam_assert_partid_sizes_fixed(); 1904 1905 if (comp->cfg) 1906 return 0; 1907 1908 comp->cfg = kcalloc(mpam_partid_max + 1, sizeof(*comp->cfg), GFP_KERNEL); 1909 if (!comp->cfg) 1910 return -ENOMEM; 1911 1912 /* 1913 * The array is free()d in one go, so only cfg[0]'s structure needs 1914 * to be initialised. 1915 */ 1916 init_garbage(&comp->cfg[0].garbage); 1917 1918 mpam_reset_component_cfg(comp); 1919 1920 return 0; 1921 } 1922 1923 static int mpam_allocate_config(void) 1924 { 1925 struct mpam_class *class; 1926 struct mpam_component *comp; 1927 1928 lockdep_assert_held(&mpam_list_lock); 1929 1930 list_for_each_entry(class, &mpam_classes, classes_list) { 1931 list_for_each_entry(comp, &class->components, class_list) { 1932 int err = __allocate_component_cfg(comp); 1933 if (err) 1934 return err; 1935 } 1936 } 1937 1938 return 0; 1939 } 1940 1941 static void mpam_enable_once(void) 1942 { 1943 int err; 1944 1945 /* 1946 * Once the cpuhp callbacks have been changed, mpam_partid_max can no 1947 * longer change. 1948 */ 1949 spin_lock(&partid_max_lock); 1950 partid_max_published = true; 1951 spin_unlock(&partid_max_lock); 1952 1953 /* 1954 * If all the MSC have been probed, enabling the IRQs happens next. 1955 * That involves cross-calling to a CPU that can reach the MSC, and 1956 * the locks must be taken in this order: 1957 */ 1958 cpus_read_lock(); 1959 mutex_lock(&mpam_list_lock); 1960 do { 1961 mpam_enable_merge_features(&mpam_classes); 1962 1963 err = mpam_register_irqs(); 1964 if (err) { 1965 pr_warn("Failed to register irqs: %d\n", err); 1966 break; 1967 } 1968 1969 err = mpam_allocate_config(); 1970 if (err) { 1971 pr_err("Failed to allocate configuration arrays.\n"); 1972 break; 1973 } 1974 } while (0); 1975 mutex_unlock(&mpam_list_lock); 1976 cpus_read_unlock(); 1977 1978 if (err) { 1979 mpam_disable_reason = "Failed to enable."; 1980 schedule_work(&mpam_broken_work); 1981 return; 1982 } 1983 1984 static_branch_enable(&mpam_enabled); 1985 mpam_register_cpuhp_callbacks(mpam_cpu_online, mpam_cpu_offline, 1986 "mpam:online"); 1987 1988 /* Use printk() to avoid the pr_fmt adding the function name. */ 1989 printk(KERN_INFO "MPAM enabled with %u PARTIDs and %u PMGs\n", 1990 mpam_partid_max + 1, mpam_pmg_max + 1); 1991 } 1992 1993 static void mpam_reset_component_locked(struct mpam_component *comp) 1994 { 1995 struct mpam_vmsc *vmsc; 1996 1997 lockdep_assert_cpus_held(); 1998 mpam_assert_partid_sizes_fixed(); 1999 2000 mpam_reset_component_cfg(comp); 2001 2002 guard(srcu)(&mpam_srcu); 2003 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 2004 srcu_read_lock_held(&mpam_srcu)) { 2005 struct mpam_msc *msc = vmsc->msc; 2006 struct mpam_msc_ris *ris; 2007 2008 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 2009 srcu_read_lock_held(&mpam_srcu)) { 2010 if (!ris->in_reset_state) 2011 mpam_touch_msc(msc, mpam_reset_ris, ris); 2012 ris->in_reset_state = true; 2013 } 2014 } 2015 } 2016 2017 static void mpam_reset_class_locked(struct mpam_class *class) 2018 { 2019 struct mpam_component *comp; 2020 2021 lockdep_assert_cpus_held(); 2022 2023 guard(srcu)(&mpam_srcu); 2024 list_for_each_entry_srcu(comp, &class->components, class_list, 2025 srcu_read_lock_held(&mpam_srcu)) 2026 mpam_reset_component_locked(comp); 2027 } 2028 2029 static void mpam_reset_class(struct mpam_class *class) 2030 { 2031 cpus_read_lock(); 2032 mpam_reset_class_locked(class); 2033 cpus_read_unlock(); 2034 } 2035 2036 /* 2037 * Called in response to an error IRQ. 2038 * All of MPAMs errors indicate a software bug, restore any modified 2039 * controls to their reset values. 2040 */ 2041 void mpam_disable(struct work_struct *ignored) 2042 { 2043 int idx; 2044 struct mpam_class *class; 2045 struct mpam_msc *msc, *tmp; 2046 2047 mutex_lock(&mpam_cpuhp_state_lock); 2048 if (mpam_cpuhp_state) { 2049 cpuhp_remove_state(mpam_cpuhp_state); 2050 mpam_cpuhp_state = 0; 2051 } 2052 mutex_unlock(&mpam_cpuhp_state_lock); 2053 2054 static_branch_disable(&mpam_enabled); 2055 2056 mpam_unregister_irqs(); 2057 2058 idx = srcu_read_lock(&mpam_srcu); 2059 list_for_each_entry_srcu(class, &mpam_classes, classes_list, 2060 srcu_read_lock_held(&mpam_srcu)) 2061 mpam_reset_class(class); 2062 srcu_read_unlock(&mpam_srcu, idx); 2063 2064 mutex_lock(&mpam_list_lock); 2065 list_for_each_entry_safe(msc, tmp, &mpam_all_msc, all_msc_list) 2066 mpam_msc_destroy(msc); 2067 mutex_unlock(&mpam_list_lock); 2068 mpam_free_garbage(); 2069 2070 pr_err_once("MPAM disabled due to %s\n", mpam_disable_reason); 2071 } 2072 2073 /* 2074 * Enable mpam once all devices have been probed. 2075 * Scheduled by mpam_discovery_cpu_online() once all devices have been created. 2076 * Also scheduled when new devices are probed when new CPUs come online. 2077 */ 2078 void mpam_enable(struct work_struct *work) 2079 { 2080 static atomic_t once; 2081 struct mpam_msc *msc; 2082 bool all_devices_probed = true; 2083 2084 /* Have we probed all the hw devices? */ 2085 guard(srcu)(&mpam_srcu); 2086 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 2087 srcu_read_lock_held(&mpam_srcu)) { 2088 mutex_lock(&msc->probe_lock); 2089 if (!msc->probed) 2090 all_devices_probed = false; 2091 mutex_unlock(&msc->probe_lock); 2092 2093 if (!all_devices_probed) 2094 break; 2095 } 2096 2097 if (all_devices_probed && !atomic_fetch_inc(&once)) 2098 mpam_enable_once(); 2099 } 2100 2101 #define maybe_update_config(cfg, feature, newcfg, member, changes) do { \ 2102 if (mpam_has_feature(feature, newcfg) && \ 2103 (newcfg)->member != (cfg)->member) { \ 2104 (cfg)->member = (newcfg)->member; \ 2105 mpam_set_feature(feature, cfg); \ 2106 \ 2107 (changes) = true; \ 2108 } \ 2109 } while (0) 2110 2111 static bool mpam_update_config(struct mpam_config *cfg, 2112 const struct mpam_config *newcfg) 2113 { 2114 bool has_changes = false; 2115 2116 maybe_update_config(cfg, mpam_feat_cpor_part, newcfg, cpbm, has_changes); 2117 maybe_update_config(cfg, mpam_feat_mbw_part, newcfg, mbw_pbm, has_changes); 2118 maybe_update_config(cfg, mpam_feat_mbw_max, newcfg, mbw_max, has_changes); 2119 2120 return has_changes; 2121 } 2122 2123 int mpam_apply_config(struct mpam_component *comp, u16 partid, 2124 struct mpam_config *cfg) 2125 { 2126 struct mpam_write_config_arg arg; 2127 struct mpam_msc_ris *ris; 2128 struct mpam_vmsc *vmsc; 2129 struct mpam_msc *msc; 2130 2131 lockdep_assert_cpus_held(); 2132 2133 /* Don't pass in the current config! */ 2134 WARN_ON_ONCE(&comp->cfg[partid] == cfg); 2135 2136 if (!mpam_update_config(&comp->cfg[partid], cfg)) 2137 return 0; 2138 2139 arg.comp = comp; 2140 arg.partid = partid; 2141 2142 guard(srcu)(&mpam_srcu); 2143 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 2144 srcu_read_lock_held(&mpam_srcu)) { 2145 msc = vmsc->msc; 2146 2147 mutex_lock(&msc->cfg_lock); 2148 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 2149 srcu_read_lock_held(&mpam_srcu)) { 2150 arg.ris = ris; 2151 mpam_touch_msc(msc, __write_config, &arg); 2152 } 2153 mutex_unlock(&msc->cfg_lock); 2154 } 2155 2156 return 0; 2157 } 2158 2159 static int __init mpam_msc_driver_init(void) 2160 { 2161 if (!system_supports_mpam()) 2162 return -EOPNOTSUPP; 2163 2164 init_srcu_struct(&mpam_srcu); 2165 2166 fw_num_msc = acpi_mpam_count_msc(); 2167 if (fw_num_msc <= 0) { 2168 pr_err("No MSC devices found in firmware\n"); 2169 return -EINVAL; 2170 } 2171 2172 return platform_driver_register(&mpam_msc_driver); 2173 } 2174 2175 /* Must occur after arm64_mpam_register_cpus() from arch_initcall() */ 2176 subsys_initcall(mpam_msc_driver_init); 2177