xref: /linux/drivers/resctrl/mpam_devices.c (revision b35363793291e36c91d4a5b62d7ae7079c70d826)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2025 Arm Ltd.
3 
4 #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__
5 
6 #include <linux/acpi.h>
7 #include <linux/atomic.h>
8 #include <linux/arm_mpam.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cacheinfo.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/device.h>
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/irqdesc.h>
20 #include <linux/list.h>
21 #include <linux/lockdep.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/printk.h>
25 #include <linux/srcu.h>
26 #include <linux/spinlock.h>
27 #include <linux/types.h>
28 #include <linux/workqueue.h>
29 
30 #include "mpam_internal.h"
31 
32 DEFINE_STATIC_KEY_FALSE(mpam_enabled); /* This moves to arch code */
33 
34 /*
35  * mpam_list_lock protects the SRCU lists when writing. Once the
36  * mpam_enabled key is enabled these lists are read-only,
37  * unless the error interrupt disables the driver.
38  */
39 static DEFINE_MUTEX(mpam_list_lock);
40 static LIST_HEAD(mpam_all_msc);
41 
42 struct srcu_struct mpam_srcu;
43 
44 /*
45  * Number of MSCs that have been probed. Once all MSCs have been probed MPAM
46  * can be enabled.
47  */
48 static atomic_t mpam_num_msc;
49 
50 static int mpam_cpuhp_state;
51 static DEFINE_MUTEX(mpam_cpuhp_state_lock);
52 
53 /*
54  * The smallest common values for any CPU or MSC in the system.
55  * Generating traffic outside this range will result in screaming interrupts.
56  */
57 u16 mpam_partid_max;
58 u8 mpam_pmg_max;
59 static bool partid_max_init, partid_max_published;
60 static DEFINE_SPINLOCK(partid_max_lock);
61 
62 /*
63  * mpam is enabled once all devices have been probed from CPU online callbacks,
64  * scheduled via this work_struct. If access to an MSC depends on a CPU that
65  * was not brought online at boot, this can happen surprisingly late.
66  */
67 static DECLARE_WORK(mpam_enable_work, &mpam_enable);
68 
69 /*
70  * All mpam error interrupts indicate a software bug. On receipt, disable the
71  * driver.
72  */
73 static DECLARE_WORK(mpam_broken_work, &mpam_disable);
74 
75 /* When mpam is disabled, the printed reason to aid debugging */
76 static char *mpam_disable_reason;
77 
78 /*
79  * An MSC is a physical container for controls and monitors, each identified by
80  * their RIS index. These share a base-address, interrupts and some MMIO
81  * registers. A vMSC is a virtual container for RIS in an MSC that control or
82  * monitor the same thing. Members of a vMSC are all RIS in the same MSC, but
83  * not all RIS in an MSC share a vMSC.
84  *
85  * Components are a group of vMSC that control or monitor the same thing but
86  * are from different MSC, so have different base-address, interrupts etc.
87  * Classes are the set components of the same type.
88  *
89  * The features of a vMSC is the union of the RIS it contains.
90  * The features of a Class and Component are the common subset of the vMSC
91  * they contain.
92  *
93  * e.g. The system cache may have bandwidth controls on multiple interfaces,
94  * for regulating traffic from devices independently of traffic from CPUs.
95  * If these are two RIS in one MSC, they will be treated as controlling
96  * different things, and will not share a vMSC/component/class.
97  *
98  * e.g. The L2 may have one MSC and two RIS, one for cache-controls another
99  * for bandwidth. These two RIS are members of the same vMSC.
100  *
101  * e.g. The set of RIS that make up the L2 are grouped as a component. These
102  * are sometimes termed slices. They should be configured the same, as if there
103  * were only one.
104  *
105  * e.g. The SoC probably has more than one L2, each attached to a distinct set
106  * of CPUs. All the L2 components are grouped as a class.
107  *
108  * When creating an MSC, struct mpam_msc is added to the all mpam_all_msc list,
109  * then linked via struct mpam_ris to a vmsc, component and class.
110  * The same MSC may exist under different class->component->vmsc paths, but the
111  * RIS index will be unique.
112  */
113 LIST_HEAD(mpam_classes);
114 
115 /* List of all objects that can be free()d after synchronise_srcu() */
116 static LLIST_HEAD(mpam_garbage);
117 
118 static inline void init_garbage(struct mpam_garbage *garbage)
119 {
120 	init_llist_node(&garbage->llist);
121 }
122 
123 #define add_to_garbage(x)				\
124 do {							\
125 	__typeof__(x) _x = (x);				\
126 	_x->garbage.to_free = _x;			\
127 	llist_add(&_x->garbage.llist, &mpam_garbage);	\
128 } while (0)
129 
130 static void mpam_free_garbage(void)
131 {
132 	struct mpam_garbage *iter, *tmp;
133 	struct llist_node *to_free = llist_del_all(&mpam_garbage);
134 
135 	if (!to_free)
136 		return;
137 
138 	synchronize_srcu(&mpam_srcu);
139 
140 	llist_for_each_entry_safe(iter, tmp, to_free, llist) {
141 		if (iter->pdev)
142 			devm_kfree(&iter->pdev->dev, iter->to_free);
143 		else
144 			kfree(iter->to_free);
145 	}
146 }
147 
148 /*
149  * Once mpam is enabled, new requestors cannot further reduce the available
150  * partid. Assert that the size is fixed, and new requestors will be turned
151  * away.
152  */
153 static void mpam_assert_partid_sizes_fixed(void)
154 {
155 	WARN_ON_ONCE(!partid_max_published);
156 }
157 
158 static u32 __mpam_read_reg(struct mpam_msc *msc, u16 reg)
159 {
160 	WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility));
161 
162 	return readl_relaxed(msc->mapped_hwpage + reg);
163 }
164 
165 static inline u32 _mpam_read_partsel_reg(struct mpam_msc *msc, u16 reg)
166 {
167 	lockdep_assert_held_once(&msc->part_sel_lock);
168 	return __mpam_read_reg(msc, reg);
169 }
170 
171 #define mpam_read_partsel_reg(msc, reg) _mpam_read_partsel_reg(msc, MPAMF_##reg)
172 
173 static void __mpam_write_reg(struct mpam_msc *msc, u16 reg, u32 val)
174 {
175 	WARN_ON_ONCE(reg + sizeof(u32) > msc->mapped_hwpage_sz);
176 	WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility));
177 
178 	writel_relaxed(val, msc->mapped_hwpage + reg);
179 }
180 
181 static inline void _mpam_write_partsel_reg(struct mpam_msc *msc, u16 reg, u32 val)
182 {
183 	lockdep_assert_held_once(&msc->part_sel_lock);
184 	__mpam_write_reg(msc, reg, val);
185 }
186 
187 #define mpam_write_partsel_reg(msc, reg, val)  _mpam_write_partsel_reg(msc, MPAMCFG_##reg, val)
188 
189 static inline u32 _mpam_read_monsel_reg(struct mpam_msc *msc, u16 reg)
190 {
191 	mpam_mon_sel_lock_held(msc);
192 	return __mpam_read_reg(msc, reg);
193 }
194 
195 #define mpam_read_monsel_reg(msc, reg) _mpam_read_monsel_reg(msc, MSMON_##reg)
196 
197 static inline void _mpam_write_monsel_reg(struct mpam_msc *msc, u16 reg, u32 val)
198 {
199 	mpam_mon_sel_lock_held(msc);
200 	__mpam_write_reg(msc, reg, val);
201 }
202 
203 #define mpam_write_monsel_reg(msc, reg, val)   _mpam_write_monsel_reg(msc, MSMON_##reg, val)
204 
205 static u64 mpam_msc_read_idr(struct mpam_msc *msc)
206 {
207 	u64 idr_high = 0, idr_low;
208 
209 	lockdep_assert_held(&msc->part_sel_lock);
210 
211 	idr_low = mpam_read_partsel_reg(msc, IDR);
212 	if (FIELD_GET(MPAMF_IDR_EXT, idr_low))
213 		idr_high = mpam_read_partsel_reg(msc, IDR + 4);
214 
215 	return (idr_high << 32) | idr_low;
216 }
217 
218 static void mpam_msc_clear_esr(struct mpam_msc *msc)
219 {
220 	u64 esr_low = __mpam_read_reg(msc, MPAMF_ESR);
221 
222 	if (!esr_low)
223 		return;
224 
225 	/*
226 	 * Clearing the high/low bits of MPAMF_ESR can not be atomic.
227 	 * Clear the top half first, so that the pending error bits in the
228 	 * lower half prevent hardware from updating either half of the
229 	 * register.
230 	 */
231 	if (msc->has_extd_esr)
232 		__mpam_write_reg(msc, MPAMF_ESR + 4, 0);
233 	__mpam_write_reg(msc, MPAMF_ESR, 0);
234 }
235 
236 static u64 mpam_msc_read_esr(struct mpam_msc *msc)
237 {
238 	u64 esr_high = 0, esr_low;
239 
240 	esr_low = __mpam_read_reg(msc, MPAMF_ESR);
241 	if (msc->has_extd_esr)
242 		esr_high = __mpam_read_reg(msc, MPAMF_ESR + 4);
243 
244 	return (esr_high << 32) | esr_low;
245 }
246 
247 static void __mpam_part_sel_raw(u32 partsel, struct mpam_msc *msc)
248 {
249 	lockdep_assert_held(&msc->part_sel_lock);
250 
251 	mpam_write_partsel_reg(msc, PART_SEL, partsel);
252 }
253 
254 static void __mpam_part_sel(u8 ris_idx, u16 partid, struct mpam_msc *msc)
255 {
256 	u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) |
257 		      FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, partid);
258 
259 	__mpam_part_sel_raw(partsel, msc);
260 }
261 
262 static void __mpam_intpart_sel(u8 ris_idx, u16 intpartid, struct mpam_msc *msc)
263 {
264 	u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) |
265 		      FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, intpartid) |
266 		      MPAMCFG_PART_SEL_INTERNAL;
267 
268 	__mpam_part_sel_raw(partsel, msc);
269 }
270 
271 int mpam_register_requestor(u16 partid_max, u8 pmg_max)
272 {
273 	guard(spinlock)(&partid_max_lock);
274 	if (!partid_max_init) {
275 		mpam_partid_max = partid_max;
276 		mpam_pmg_max = pmg_max;
277 		partid_max_init = true;
278 	} else if (!partid_max_published) {
279 		mpam_partid_max = min(mpam_partid_max, partid_max);
280 		mpam_pmg_max = min(mpam_pmg_max, pmg_max);
281 	} else {
282 		/* New requestors can't lower the values */
283 		if (partid_max < mpam_partid_max || pmg_max < mpam_pmg_max)
284 			return -EBUSY;
285 	}
286 
287 	return 0;
288 }
289 EXPORT_SYMBOL(mpam_register_requestor);
290 
291 static struct mpam_class *
292 mpam_class_alloc(u8 level_idx, enum mpam_class_types type)
293 {
294 	struct mpam_class *class;
295 
296 	lockdep_assert_held(&mpam_list_lock);
297 
298 	class = kzalloc(sizeof(*class), GFP_KERNEL);
299 	if (!class)
300 		return ERR_PTR(-ENOMEM);
301 	init_garbage(&class->garbage);
302 
303 	INIT_LIST_HEAD_RCU(&class->components);
304 	/* Affinity is updated when ris are added */
305 	class->level = level_idx;
306 	class->type = type;
307 	INIT_LIST_HEAD_RCU(&class->classes_list);
308 	ida_init(&class->ida_csu_mon);
309 	ida_init(&class->ida_mbwu_mon);
310 
311 	list_add_rcu(&class->classes_list, &mpam_classes);
312 
313 	return class;
314 }
315 
316 static void mpam_class_destroy(struct mpam_class *class)
317 {
318 	lockdep_assert_held(&mpam_list_lock);
319 
320 	list_del_rcu(&class->classes_list);
321 	add_to_garbage(class);
322 }
323 
324 static struct mpam_class *
325 mpam_class_find(u8 level_idx, enum mpam_class_types type)
326 {
327 	struct mpam_class *class;
328 
329 	lockdep_assert_held(&mpam_list_lock);
330 
331 	list_for_each_entry(class, &mpam_classes, classes_list) {
332 		if (class->type == type && class->level == level_idx)
333 			return class;
334 	}
335 
336 	return mpam_class_alloc(level_idx, type);
337 }
338 
339 static struct mpam_component *
340 mpam_component_alloc(struct mpam_class *class, int id)
341 {
342 	struct mpam_component *comp;
343 
344 	lockdep_assert_held(&mpam_list_lock);
345 
346 	comp = kzalloc(sizeof(*comp), GFP_KERNEL);
347 	if (!comp)
348 		return ERR_PTR(-ENOMEM);
349 	init_garbage(&comp->garbage);
350 
351 	comp->comp_id = id;
352 	INIT_LIST_HEAD_RCU(&comp->vmsc);
353 	/* Affinity is updated when RIS are added */
354 	INIT_LIST_HEAD_RCU(&comp->class_list);
355 	comp->class = class;
356 
357 	list_add_rcu(&comp->class_list, &class->components);
358 
359 	return comp;
360 }
361 
362 static void __destroy_component_cfg(struct mpam_component *comp);
363 
364 static void mpam_component_destroy(struct mpam_component *comp)
365 {
366 	struct mpam_class *class = comp->class;
367 
368 	lockdep_assert_held(&mpam_list_lock);
369 
370 	__destroy_component_cfg(comp);
371 
372 	list_del_rcu(&comp->class_list);
373 	add_to_garbage(comp);
374 
375 	if (list_empty(&class->components))
376 		mpam_class_destroy(class);
377 }
378 
379 static struct mpam_component *
380 mpam_component_find(struct mpam_class *class, int id)
381 {
382 	struct mpam_component *comp;
383 
384 	lockdep_assert_held(&mpam_list_lock);
385 
386 	list_for_each_entry(comp, &class->components, class_list) {
387 		if (comp->comp_id == id)
388 			return comp;
389 	}
390 
391 	return mpam_component_alloc(class, id);
392 }
393 
394 static struct mpam_vmsc *
395 mpam_vmsc_alloc(struct mpam_component *comp, struct mpam_msc *msc)
396 {
397 	struct mpam_vmsc *vmsc;
398 
399 	lockdep_assert_held(&mpam_list_lock);
400 
401 	vmsc = kzalloc(sizeof(*vmsc), GFP_KERNEL);
402 	if (!vmsc)
403 		return ERR_PTR(-ENOMEM);
404 	init_garbage(&vmsc->garbage);
405 
406 	INIT_LIST_HEAD_RCU(&vmsc->ris);
407 	INIT_LIST_HEAD_RCU(&vmsc->comp_list);
408 	vmsc->comp = comp;
409 	vmsc->msc = msc;
410 
411 	list_add_rcu(&vmsc->comp_list, &comp->vmsc);
412 
413 	return vmsc;
414 }
415 
416 static void mpam_vmsc_destroy(struct mpam_vmsc *vmsc)
417 {
418 	struct mpam_component *comp = vmsc->comp;
419 
420 	lockdep_assert_held(&mpam_list_lock);
421 
422 	list_del_rcu(&vmsc->comp_list);
423 	add_to_garbage(vmsc);
424 
425 	if (list_empty(&comp->vmsc))
426 		mpam_component_destroy(comp);
427 }
428 
429 static struct mpam_vmsc *
430 mpam_vmsc_find(struct mpam_component *comp, struct mpam_msc *msc)
431 {
432 	struct mpam_vmsc *vmsc;
433 
434 	lockdep_assert_held(&mpam_list_lock);
435 
436 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
437 		if (vmsc->msc->id == msc->id)
438 			return vmsc;
439 	}
440 
441 	return mpam_vmsc_alloc(comp, msc);
442 }
443 
444 /*
445  * The cacheinfo structures are only populated when CPUs are online.
446  * This helper walks the acpi tables to include offline CPUs too.
447  */
448 int mpam_get_cpumask_from_cache_id(unsigned long cache_id, u32 cache_level,
449 				   cpumask_t *affinity)
450 {
451 	return acpi_pptt_get_cpumask_from_cache_id(cache_id, affinity);
452 }
453 
454 /*
455  * cpumask_of_node() only knows about online CPUs. This can't tell us whether
456  * a class is represented on all possible CPUs.
457  */
458 static void get_cpumask_from_node_id(u32 node_id, cpumask_t *affinity)
459 {
460 	int cpu;
461 
462 	for_each_possible_cpu(cpu) {
463 		if (node_id == cpu_to_node(cpu))
464 			cpumask_set_cpu(cpu, affinity);
465 	}
466 }
467 
468 static int mpam_ris_get_affinity(struct mpam_msc *msc, cpumask_t *affinity,
469 				 enum mpam_class_types type,
470 				 struct mpam_class *class,
471 				 struct mpam_component *comp)
472 {
473 	int err;
474 
475 	switch (type) {
476 	case MPAM_CLASS_CACHE:
477 		err = mpam_get_cpumask_from_cache_id(comp->comp_id, class->level,
478 						     affinity);
479 		if (err) {
480 			dev_warn_once(&msc->pdev->dev,
481 				      "Failed to determine CPU affinity\n");
482 			return err;
483 		}
484 
485 		if (cpumask_empty(affinity))
486 			dev_warn_once(&msc->pdev->dev, "no CPUs associated with cache node\n");
487 
488 		break;
489 	case MPAM_CLASS_MEMORY:
490 		get_cpumask_from_node_id(comp->comp_id, affinity);
491 		/* affinity may be empty for CPU-less memory nodes */
492 		break;
493 	case MPAM_CLASS_UNKNOWN:
494 		return 0;
495 	}
496 
497 	cpumask_and(affinity, affinity, &msc->accessibility);
498 
499 	return 0;
500 }
501 
502 static int mpam_ris_create_locked(struct mpam_msc *msc, u8 ris_idx,
503 				  enum mpam_class_types type, u8 class_id,
504 				  int component_id)
505 {
506 	int err;
507 	struct mpam_vmsc *vmsc;
508 	struct mpam_msc_ris *ris;
509 	struct mpam_class *class;
510 	struct mpam_component *comp;
511 	struct platform_device *pdev = msc->pdev;
512 
513 	lockdep_assert_held(&mpam_list_lock);
514 
515 	if (ris_idx > MPAM_MSC_MAX_NUM_RIS)
516 		return -EINVAL;
517 
518 	if (test_and_set_bit(ris_idx, &msc->ris_idxs))
519 		return -EBUSY;
520 
521 	ris = devm_kzalloc(&msc->pdev->dev, sizeof(*ris), GFP_KERNEL);
522 	if (!ris)
523 		return -ENOMEM;
524 	init_garbage(&ris->garbage);
525 	ris->garbage.pdev = pdev;
526 
527 	class = mpam_class_find(class_id, type);
528 	if (IS_ERR(class))
529 		return PTR_ERR(class);
530 
531 	comp = mpam_component_find(class, component_id);
532 	if (IS_ERR(comp)) {
533 		if (list_empty(&class->components))
534 			mpam_class_destroy(class);
535 		return PTR_ERR(comp);
536 	}
537 
538 	vmsc = mpam_vmsc_find(comp, msc);
539 	if (IS_ERR(vmsc)) {
540 		if (list_empty(&comp->vmsc))
541 			mpam_component_destroy(comp);
542 		return PTR_ERR(vmsc);
543 	}
544 
545 	err = mpam_ris_get_affinity(msc, &ris->affinity, type, class, comp);
546 	if (err) {
547 		if (list_empty(&vmsc->ris))
548 			mpam_vmsc_destroy(vmsc);
549 		return err;
550 	}
551 
552 	ris->ris_idx = ris_idx;
553 	INIT_LIST_HEAD_RCU(&ris->msc_list);
554 	INIT_LIST_HEAD_RCU(&ris->vmsc_list);
555 	ris->vmsc = vmsc;
556 
557 	cpumask_or(&comp->affinity, &comp->affinity, &ris->affinity);
558 	cpumask_or(&class->affinity, &class->affinity, &ris->affinity);
559 	list_add_rcu(&ris->vmsc_list, &vmsc->ris);
560 	list_add_rcu(&ris->msc_list, &msc->ris);
561 
562 	return 0;
563 }
564 
565 static void mpam_ris_destroy(struct mpam_msc_ris *ris)
566 {
567 	struct mpam_vmsc *vmsc = ris->vmsc;
568 	struct mpam_msc *msc = vmsc->msc;
569 	struct mpam_component *comp = vmsc->comp;
570 	struct mpam_class *class = comp->class;
571 
572 	lockdep_assert_held(&mpam_list_lock);
573 
574 	/*
575 	 * It is assumed affinities don't overlap. If they do the class becomes
576 	 * unusable immediately.
577 	 */
578 	cpumask_andnot(&class->affinity, &class->affinity, &ris->affinity);
579 	cpumask_andnot(&comp->affinity, &comp->affinity, &ris->affinity);
580 	clear_bit(ris->ris_idx, &msc->ris_idxs);
581 	list_del_rcu(&ris->msc_list);
582 	list_del_rcu(&ris->vmsc_list);
583 	add_to_garbage(ris);
584 
585 	if (list_empty(&vmsc->ris))
586 		mpam_vmsc_destroy(vmsc);
587 }
588 
589 int mpam_ris_create(struct mpam_msc *msc, u8 ris_idx,
590 		    enum mpam_class_types type, u8 class_id, int component_id)
591 {
592 	int err;
593 
594 	mutex_lock(&mpam_list_lock);
595 	err = mpam_ris_create_locked(msc, ris_idx, type, class_id,
596 				     component_id);
597 	mutex_unlock(&mpam_list_lock);
598 	if (err)
599 		mpam_free_garbage();
600 
601 	return err;
602 }
603 
604 static struct mpam_msc_ris *mpam_get_or_create_ris(struct mpam_msc *msc,
605 						   u8 ris_idx)
606 {
607 	int err;
608 	struct mpam_msc_ris *ris;
609 
610 	lockdep_assert_held(&mpam_list_lock);
611 
612 	if (!test_bit(ris_idx, &msc->ris_idxs)) {
613 		err = mpam_ris_create_locked(msc, ris_idx, MPAM_CLASS_UNKNOWN,
614 					     0, 0);
615 		if (err)
616 			return ERR_PTR(err);
617 	}
618 
619 	list_for_each_entry(ris, &msc->ris, msc_list) {
620 		if (ris->ris_idx == ris_idx)
621 			return ris;
622 	}
623 
624 	return ERR_PTR(-ENOENT);
625 }
626 
627 /*
628  * IHI009A.a has this nugget: "If a monitor does not support automatic behaviour
629  * of NRDY, software can use this bit for any purpose" - so hardware might not
630  * implement this - but it isn't RES0.
631  *
632  * Try and see what values stick in this bit. If we can write either value,
633  * its probably not implemented by hardware.
634  */
635 static bool _mpam_ris_hw_probe_hw_nrdy(struct mpam_msc_ris *ris, u32 mon_reg)
636 {
637 	u32 now;
638 	u64 mon_sel;
639 	bool can_set, can_clear;
640 	struct mpam_msc *msc = ris->vmsc->msc;
641 
642 	if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc)))
643 		return false;
644 
645 	mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, 0) |
646 		  FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx);
647 	_mpam_write_monsel_reg(msc, mon_reg, mon_sel);
648 
649 	_mpam_write_monsel_reg(msc, mon_reg, MSMON___NRDY);
650 	now = _mpam_read_monsel_reg(msc, mon_reg);
651 	can_set = now & MSMON___NRDY;
652 
653 	_mpam_write_monsel_reg(msc, mon_reg, 0);
654 	now = _mpam_read_monsel_reg(msc, mon_reg);
655 	can_clear = !(now & MSMON___NRDY);
656 	mpam_mon_sel_unlock(msc);
657 
658 	return (!can_set || !can_clear);
659 }
660 
661 #define mpam_ris_hw_probe_hw_nrdy(_ris, _mon_reg)			\
662 	_mpam_ris_hw_probe_hw_nrdy(_ris, MSMON_##_mon_reg)
663 
664 static void mpam_ris_hw_probe(struct mpam_msc_ris *ris)
665 {
666 	int err;
667 	struct mpam_msc *msc = ris->vmsc->msc;
668 	struct device *dev = &msc->pdev->dev;
669 	struct mpam_props *props = &ris->props;
670 	struct mpam_class *class = ris->vmsc->comp->class;
671 
672 	lockdep_assert_held(&msc->probe_lock);
673 	lockdep_assert_held(&msc->part_sel_lock);
674 
675 	/* Cache Capacity Partitioning */
676 	if (FIELD_GET(MPAMF_IDR_HAS_CCAP_PART, ris->idr)) {
677 		u32 ccap_features = mpam_read_partsel_reg(msc, CCAP_IDR);
678 
679 		props->cmax_wd = FIELD_GET(MPAMF_CCAP_IDR_CMAX_WD, ccap_features);
680 		if (props->cmax_wd &&
681 		    FIELD_GET(MPAMF_CCAP_IDR_HAS_CMAX_SOFTLIM, ccap_features))
682 			mpam_set_feature(mpam_feat_cmax_softlim, props);
683 
684 		if (props->cmax_wd &&
685 		    !FIELD_GET(MPAMF_CCAP_IDR_NO_CMAX, ccap_features))
686 			mpam_set_feature(mpam_feat_cmax_cmax, props);
687 
688 		if (props->cmax_wd &&
689 		    FIELD_GET(MPAMF_CCAP_IDR_HAS_CMIN, ccap_features))
690 			mpam_set_feature(mpam_feat_cmax_cmin, props);
691 
692 		props->cassoc_wd = FIELD_GET(MPAMF_CCAP_IDR_CASSOC_WD, ccap_features);
693 		if (props->cassoc_wd &&
694 		    FIELD_GET(MPAMF_CCAP_IDR_HAS_CASSOC, ccap_features))
695 			mpam_set_feature(mpam_feat_cmax_cassoc, props);
696 	}
697 
698 	/* Cache Portion partitioning */
699 	if (FIELD_GET(MPAMF_IDR_HAS_CPOR_PART, ris->idr)) {
700 		u32 cpor_features = mpam_read_partsel_reg(msc, CPOR_IDR);
701 
702 		props->cpbm_wd = FIELD_GET(MPAMF_CPOR_IDR_CPBM_WD, cpor_features);
703 		if (props->cpbm_wd)
704 			mpam_set_feature(mpam_feat_cpor_part, props);
705 	}
706 
707 	/* Memory bandwidth partitioning */
708 	if (FIELD_GET(MPAMF_IDR_HAS_MBW_PART, ris->idr)) {
709 		u32 mbw_features = mpam_read_partsel_reg(msc, MBW_IDR);
710 
711 		/* portion bitmap resolution */
712 		props->mbw_pbm_bits = FIELD_GET(MPAMF_MBW_IDR_BWPBM_WD, mbw_features);
713 		if (props->mbw_pbm_bits &&
714 		    FIELD_GET(MPAMF_MBW_IDR_HAS_PBM, mbw_features))
715 			mpam_set_feature(mpam_feat_mbw_part, props);
716 
717 		props->bwa_wd = FIELD_GET(MPAMF_MBW_IDR_BWA_WD, mbw_features);
718 		if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MAX, mbw_features))
719 			mpam_set_feature(mpam_feat_mbw_max, props);
720 
721 		if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MIN, mbw_features))
722 			mpam_set_feature(mpam_feat_mbw_min, props);
723 
724 		if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_PROP, mbw_features))
725 			mpam_set_feature(mpam_feat_mbw_prop, props);
726 	}
727 
728 	/* Priority partitioning */
729 	if (FIELD_GET(MPAMF_IDR_HAS_PRI_PART, ris->idr)) {
730 		u32 pri_features = mpam_read_partsel_reg(msc, PRI_IDR);
731 
732 		props->intpri_wd = FIELD_GET(MPAMF_PRI_IDR_INTPRI_WD, pri_features);
733 		if (props->intpri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_INTPRI, pri_features)) {
734 			mpam_set_feature(mpam_feat_intpri_part, props);
735 			if (FIELD_GET(MPAMF_PRI_IDR_INTPRI_0_IS_LOW, pri_features))
736 				mpam_set_feature(mpam_feat_intpri_part_0_low, props);
737 		}
738 
739 		props->dspri_wd = FIELD_GET(MPAMF_PRI_IDR_DSPRI_WD, pri_features);
740 		if (props->dspri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_DSPRI, pri_features)) {
741 			mpam_set_feature(mpam_feat_dspri_part, props);
742 			if (FIELD_GET(MPAMF_PRI_IDR_DSPRI_0_IS_LOW, pri_features))
743 				mpam_set_feature(mpam_feat_dspri_part_0_low, props);
744 		}
745 	}
746 
747 	/* Performance Monitoring */
748 	if (FIELD_GET(MPAMF_IDR_HAS_MSMON, ris->idr)) {
749 		u32 msmon_features = mpam_read_partsel_reg(msc, MSMON_IDR);
750 
751 		/*
752 		 * If the firmware max-nrdy-us property is missing, the
753 		 * CSU counters can't be used. Should we wait forever?
754 		 */
755 		err = device_property_read_u32(&msc->pdev->dev,
756 					       "arm,not-ready-us",
757 					       &msc->nrdy_usec);
758 
759 		if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_CSU, msmon_features)) {
760 			u32 csumonidr;
761 
762 			csumonidr = mpam_read_partsel_reg(msc, CSUMON_IDR);
763 			props->num_csu_mon = FIELD_GET(MPAMF_CSUMON_IDR_NUM_MON, csumonidr);
764 			if (props->num_csu_mon) {
765 				bool hw_managed;
766 
767 				mpam_set_feature(mpam_feat_msmon_csu, props);
768 
769 				if (FIELD_GET(MPAMF_CSUMON_IDR_HAS_XCL, csumonidr))
770 					mpam_set_feature(mpam_feat_msmon_csu_xcl, props);
771 
772 				/* Is NRDY hardware managed? */
773 				hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, CSU);
774 				if (hw_managed)
775 					mpam_set_feature(mpam_feat_msmon_csu_hw_nrdy, props);
776 			}
777 
778 			/*
779 			 * Accept the missing firmware property if NRDY appears
780 			 * un-implemented.
781 			 */
782 			if (err && mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, props))
783 				dev_err_once(dev, "Counters are not usable because not-ready timeout was not provided by firmware.");
784 		}
785 		if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_MBWU, msmon_features)) {
786 			bool hw_managed;
787 			u32 mbwumon_idr = mpam_read_partsel_reg(msc, MBWUMON_IDR);
788 
789 			props->num_mbwu_mon = FIELD_GET(MPAMF_MBWUMON_IDR_NUM_MON, mbwumon_idr);
790 			if (props->num_mbwu_mon)
791 				mpam_set_feature(mpam_feat_msmon_mbwu, props);
792 
793 			if (FIELD_GET(MPAMF_MBWUMON_IDR_HAS_RWBW, mbwumon_idr))
794 				mpam_set_feature(mpam_feat_msmon_mbwu_rwbw, props);
795 
796 			/* Is NRDY hardware managed? */
797 			hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, MBWU);
798 			if (hw_managed)
799 				mpam_set_feature(mpam_feat_msmon_mbwu_hw_nrdy, props);
800 
801 			/*
802 			 * Don't warn about any missing firmware property for
803 			 * MBWU NRDY - it doesn't make any sense!
804 			 */
805 		}
806 	}
807 
808 	/*
809 	 * RIS with PARTID narrowing don't have enough storage for one
810 	 * configuration per PARTID. If these are in a class we could use,
811 	 * reduce the supported partid_max to match the number of intpartid.
812 	 * If the class is unknown, just ignore it.
813 	 */
814 	if (FIELD_GET(MPAMF_IDR_HAS_PARTID_NRW, ris->idr) &&
815 	    class->type != MPAM_CLASS_UNKNOWN) {
816 		u32 nrwidr = mpam_read_partsel_reg(msc, PARTID_NRW_IDR);
817 		u16 partid_max = FIELD_GET(MPAMF_PARTID_NRW_IDR_INTPARTID_MAX, nrwidr);
818 
819 		mpam_set_feature(mpam_feat_partid_nrw, props);
820 		msc->partid_max = min(msc->partid_max, partid_max);
821 	}
822 }
823 
824 static int mpam_msc_hw_probe(struct mpam_msc *msc)
825 {
826 	u64 idr;
827 	u16 partid_max;
828 	u8 ris_idx, pmg_max;
829 	struct mpam_msc_ris *ris;
830 	struct device *dev = &msc->pdev->dev;
831 
832 	lockdep_assert_held(&msc->probe_lock);
833 
834 	idr = __mpam_read_reg(msc, MPAMF_AIDR);
835 	if ((idr & MPAMF_AIDR_ARCH_MAJOR_REV) != MPAM_ARCHITECTURE_V1) {
836 		dev_err_once(dev, "MSC does not match MPAM architecture v1.x\n");
837 		return -EIO;
838 	}
839 
840 	/* Grab an IDR value to find out how many RIS there are */
841 	mutex_lock(&msc->part_sel_lock);
842 	idr = mpam_msc_read_idr(msc);
843 	mutex_unlock(&msc->part_sel_lock);
844 
845 	msc->ris_max = FIELD_GET(MPAMF_IDR_RIS_MAX, idr);
846 
847 	/* Use these values so partid/pmg always starts with a valid value */
848 	msc->partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr);
849 	msc->pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr);
850 
851 	for (ris_idx = 0; ris_idx <= msc->ris_max; ris_idx++) {
852 		mutex_lock(&msc->part_sel_lock);
853 		__mpam_part_sel(ris_idx, 0, msc);
854 		idr = mpam_msc_read_idr(msc);
855 		mutex_unlock(&msc->part_sel_lock);
856 
857 		partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr);
858 		pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr);
859 		msc->partid_max = min(msc->partid_max, partid_max);
860 		msc->pmg_max = min(msc->pmg_max, pmg_max);
861 		msc->has_extd_esr = FIELD_GET(MPAMF_IDR_HAS_EXTD_ESR, idr);
862 
863 		mutex_lock(&mpam_list_lock);
864 		ris = mpam_get_or_create_ris(msc, ris_idx);
865 		mutex_unlock(&mpam_list_lock);
866 		if (IS_ERR(ris))
867 			return PTR_ERR(ris);
868 		ris->idr = idr;
869 
870 		mutex_lock(&msc->part_sel_lock);
871 		__mpam_part_sel(ris_idx, 0, msc);
872 		mpam_ris_hw_probe(ris);
873 		mutex_unlock(&msc->part_sel_lock);
874 	}
875 
876 	/* Clear any stale errors */
877 	mpam_msc_clear_esr(msc);
878 
879 	spin_lock(&partid_max_lock);
880 	mpam_partid_max = min(mpam_partid_max, msc->partid_max);
881 	mpam_pmg_max = min(mpam_pmg_max, msc->pmg_max);
882 	spin_unlock(&partid_max_lock);
883 
884 	msc->probed = true;
885 
886 	return 0;
887 }
888 
889 struct mon_read {
890 	struct mpam_msc_ris		*ris;
891 	struct mon_cfg			*ctx;
892 	enum mpam_device_features	type;
893 	u64				*val;
894 	int				err;
895 };
896 
897 static void gen_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val,
898 				   u32 *flt_val)
899 {
900 	struct mon_cfg *ctx = m->ctx;
901 
902 	/*
903 	 * For CSU counters its implementation-defined what happens when not
904 	 * filtering by partid.
905 	 */
906 	*ctl_val = MSMON_CFG_x_CTL_MATCH_PARTID;
907 
908 	*flt_val = FIELD_PREP(MSMON_CFG_x_FLT_PARTID, ctx->partid);
909 
910 	if (m->ctx->match_pmg) {
911 		*ctl_val |= MSMON_CFG_x_CTL_MATCH_PMG;
912 		*flt_val |= FIELD_PREP(MSMON_CFG_x_FLT_PMG, ctx->pmg);
913 	}
914 
915 	switch (m->type) {
916 	case mpam_feat_msmon_csu:
917 		*ctl_val |= MSMON_CFG_CSU_CTL_TYPE_CSU;
918 
919 		if (mpam_has_feature(mpam_feat_msmon_csu_xcl, &m->ris->props))
920 			*flt_val |= FIELD_PREP(MSMON_CFG_CSU_FLT_XCL, ctx->csu_exclude_clean);
921 
922 		break;
923 	case mpam_feat_msmon_mbwu:
924 		*ctl_val |= MSMON_CFG_MBWU_CTL_TYPE_MBWU;
925 
926 		if (mpam_has_feature(mpam_feat_msmon_mbwu_rwbw, &m->ris->props))
927 			*flt_val |= FIELD_PREP(MSMON_CFG_MBWU_FLT_RWBW, ctx->opts);
928 
929 		break;
930 	default:
931 		pr_warn("Unexpected monitor type %d\n", m->type);
932 	}
933 }
934 
935 static void read_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val,
936 				    u32 *flt_val)
937 {
938 	struct mpam_msc *msc = m->ris->vmsc->msc;
939 
940 	switch (m->type) {
941 	case mpam_feat_msmon_csu:
942 		*ctl_val = mpam_read_monsel_reg(msc, CFG_CSU_CTL);
943 		*flt_val = mpam_read_monsel_reg(msc, CFG_CSU_FLT);
944 		break;
945 	case mpam_feat_msmon_mbwu:
946 		*ctl_val = mpam_read_monsel_reg(msc, CFG_MBWU_CTL);
947 		*flt_val = mpam_read_monsel_reg(msc, CFG_MBWU_FLT);
948 		break;
949 	default:
950 		pr_warn("Unexpected monitor type %d\n", m->type);
951 	}
952 }
953 
954 /* Remove values set by the hardware to prevent apparent mismatches. */
955 static inline void clean_msmon_ctl_val(u32 *cur_ctl)
956 {
957 	*cur_ctl &= ~MSMON_CFG_x_CTL_OFLOW_STATUS;
958 }
959 
960 static void write_msmon_ctl_flt_vals(struct mon_read *m, u32 ctl_val,
961 				     u32 flt_val)
962 {
963 	struct mpam_msc *msc = m->ris->vmsc->msc;
964 
965 	/*
966 	 * Write the ctl_val with the enable bit cleared, reset the counter,
967 	 * then enable counter.
968 	 */
969 	switch (m->type) {
970 	case mpam_feat_msmon_csu:
971 		mpam_write_monsel_reg(msc, CFG_CSU_FLT, flt_val);
972 		mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val);
973 		mpam_write_monsel_reg(msc, CSU, 0);
974 		mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val | MSMON_CFG_x_CTL_EN);
975 		break;
976 	case mpam_feat_msmon_mbwu:
977 		mpam_write_monsel_reg(msc, CFG_MBWU_FLT, flt_val);
978 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val);
979 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val | MSMON_CFG_x_CTL_EN);
980 		/* Counting monitors require NRDY to be reset by software */
981 		mpam_write_monsel_reg(msc, MBWU, 0);
982 		break;
983 	default:
984 		pr_warn("Unexpected monitor type %d\n", m->type);
985 	}
986 }
987 
988 static u64 mpam_msmon_overflow_val(enum mpam_device_features type)
989 {
990 	/* TODO: scaling, and long counters */
991 	return BIT_ULL(hweight_long(MSMON___VALUE));
992 }
993 
994 static void __ris_msmon_read(void *arg)
995 {
996 	u64 now;
997 	bool nrdy = false;
998 	bool config_mismatch;
999 	bool overflow;
1000 	struct mon_read *m = arg;
1001 	struct mon_cfg *ctx = m->ctx;
1002 	struct mpam_msc_ris *ris = m->ris;
1003 	struct msmon_mbwu_state *mbwu_state;
1004 	struct mpam_props *rprops = &ris->props;
1005 	struct mpam_msc *msc = m->ris->vmsc->msc;
1006 	u32 mon_sel, ctl_val, flt_val, cur_ctl, cur_flt;
1007 
1008 	if (!mpam_mon_sel_lock(msc)) {
1009 		m->err = -EIO;
1010 		return;
1011 	}
1012 	mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, ctx->mon) |
1013 		  FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx);
1014 	mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel);
1015 
1016 	/*
1017 	 * Read the existing configuration to avoid re-writing the same values.
1018 	 * This saves waiting for 'nrdy' on subsequent reads.
1019 	 */
1020 	read_msmon_ctl_flt_vals(m, &cur_ctl, &cur_flt);
1021 	overflow = cur_ctl & MSMON_CFG_x_CTL_OFLOW_STATUS;
1022 
1023 	clean_msmon_ctl_val(&cur_ctl);
1024 	gen_msmon_ctl_flt_vals(m, &ctl_val, &flt_val);
1025 	config_mismatch = cur_flt != flt_val ||
1026 			  cur_ctl != (ctl_val | MSMON_CFG_x_CTL_EN);
1027 
1028 	if (config_mismatch) {
1029 		write_msmon_ctl_flt_vals(m, ctl_val, flt_val);
1030 		overflow = false;
1031 	} else if (overflow) {
1032 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL,
1033 				      cur_ctl & ~MSMON_CFG_x_CTL_OFLOW_STATUS);
1034 	}
1035 
1036 	switch (m->type) {
1037 	case mpam_feat_msmon_csu:
1038 		now = mpam_read_monsel_reg(msc, CSU);
1039 		if (mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, rprops))
1040 			nrdy = now & MSMON___NRDY;
1041 		now = FIELD_GET(MSMON___VALUE, now);
1042 		break;
1043 	case mpam_feat_msmon_mbwu:
1044 		now = mpam_read_monsel_reg(msc, MBWU);
1045 		if (mpam_has_feature(mpam_feat_msmon_mbwu_hw_nrdy, rprops))
1046 			nrdy = now & MSMON___NRDY;
1047 		now = FIELD_GET(MSMON___VALUE, now);
1048 
1049 		if (nrdy)
1050 			break;
1051 
1052 		mbwu_state = &ris->mbwu_state[ctx->mon];
1053 
1054 		if (overflow)
1055 			mbwu_state->correction += mpam_msmon_overflow_val(m->type);
1056 
1057 		/*
1058 		 * Include bandwidth consumed before the last hardware reset and
1059 		 * a counter size increment for each overflow.
1060 		 */
1061 		now += mbwu_state->correction;
1062 		break;
1063 	default:
1064 		m->err = -EINVAL;
1065 	}
1066 	mpam_mon_sel_unlock(msc);
1067 
1068 	if (nrdy) {
1069 		m->err = -EBUSY;
1070 		return;
1071 	}
1072 
1073 	*m->val += now;
1074 }
1075 
1076 static int _msmon_read(struct mpam_component *comp, struct mon_read *arg)
1077 {
1078 	int err, any_err = 0;
1079 	struct mpam_vmsc *vmsc;
1080 
1081 	guard(srcu)(&mpam_srcu);
1082 	list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list,
1083 				 srcu_read_lock_held(&mpam_srcu)) {
1084 		struct mpam_msc *msc = vmsc->msc;
1085 		struct mpam_msc_ris *ris;
1086 
1087 		list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list,
1088 					 srcu_read_lock_held(&mpam_srcu)) {
1089 			arg->ris = ris;
1090 
1091 			err = smp_call_function_any(&msc->accessibility,
1092 						    __ris_msmon_read, arg,
1093 						    true);
1094 			if (!err && arg->err)
1095 				err = arg->err;
1096 
1097 			/*
1098 			 * Save one error to be returned to the caller, but
1099 			 * keep reading counters so that get reprogrammed. On
1100 			 * platforms with NRDY this lets us wait once.
1101 			 */
1102 			if (err)
1103 				any_err = err;
1104 		}
1105 	}
1106 
1107 	return any_err;
1108 }
1109 
1110 int mpam_msmon_read(struct mpam_component *comp, struct mon_cfg *ctx,
1111 		    enum mpam_device_features type, u64 *val)
1112 {
1113 	int err;
1114 	struct mon_read arg;
1115 	u64 wait_jiffies = 0;
1116 	struct mpam_props *cprops = &comp->class->props;
1117 
1118 	might_sleep();
1119 
1120 	if (!mpam_is_enabled())
1121 		return -EIO;
1122 
1123 	if (!mpam_has_feature(type, cprops))
1124 		return -EOPNOTSUPP;
1125 
1126 	arg = (struct mon_read) {
1127 		.ctx = ctx,
1128 		.type = type,
1129 		.val = val,
1130 	};
1131 	*val = 0;
1132 
1133 	err = _msmon_read(comp, &arg);
1134 	if (err == -EBUSY && comp->class->nrdy_usec)
1135 		wait_jiffies = usecs_to_jiffies(comp->class->nrdy_usec);
1136 
1137 	while (wait_jiffies)
1138 		wait_jiffies = schedule_timeout_uninterruptible(wait_jiffies);
1139 
1140 	if (err == -EBUSY) {
1141 		arg = (struct mon_read) {
1142 			.ctx = ctx,
1143 			.type = type,
1144 			.val = val,
1145 		};
1146 		*val = 0;
1147 
1148 		err = _msmon_read(comp, &arg);
1149 	}
1150 
1151 	return err;
1152 }
1153 
1154 static void mpam_reset_msc_bitmap(struct mpam_msc *msc, u16 reg, u16 wd)
1155 {
1156 	u32 num_words, msb;
1157 	u32 bm = ~0;
1158 	int i;
1159 
1160 	lockdep_assert_held(&msc->part_sel_lock);
1161 
1162 	if (wd == 0)
1163 		return;
1164 
1165 	/*
1166 	 * Write all ~0 to all but the last 32bit-word, which may
1167 	 * have fewer bits...
1168 	 */
1169 	num_words = DIV_ROUND_UP(wd, 32);
1170 	for (i = 0; i < num_words - 1; i++, reg += sizeof(bm))
1171 		__mpam_write_reg(msc, reg, bm);
1172 
1173 	/*
1174 	 * ....and then the last (maybe) partial 32bit word. When wd is a
1175 	 * multiple of 32, msb should be 31 to write a full 32bit word.
1176 	 */
1177 	msb = (wd - 1) % 32;
1178 	bm = GENMASK(msb, 0);
1179 	__mpam_write_reg(msc, reg, bm);
1180 }
1181 
1182 /* Called via IPI. Call while holding an SRCU reference */
1183 static void mpam_reprogram_ris_partid(struct mpam_msc_ris *ris, u16 partid,
1184 				      struct mpam_config *cfg)
1185 {
1186 	u32 pri_val = 0;
1187 	u16 cmax = MPAMCFG_CMAX_CMAX;
1188 	struct mpam_msc *msc = ris->vmsc->msc;
1189 	struct mpam_props *rprops = &ris->props;
1190 	u16 dspri = GENMASK(rprops->dspri_wd, 0);
1191 	u16 intpri = GENMASK(rprops->intpri_wd, 0);
1192 
1193 	mutex_lock(&msc->part_sel_lock);
1194 	__mpam_part_sel(ris->ris_idx, partid, msc);
1195 
1196 	if (mpam_has_feature(mpam_feat_partid_nrw, rprops)) {
1197 		/* Update the intpartid mapping */
1198 		mpam_write_partsel_reg(msc, INTPARTID,
1199 				       MPAMCFG_INTPARTID_INTERNAL | partid);
1200 
1201 		/*
1202 		 * Then switch to the 'internal' partid to update the
1203 		 * configuration.
1204 		 */
1205 		__mpam_intpart_sel(ris->ris_idx, partid, msc);
1206 	}
1207 
1208 	if (mpam_has_feature(mpam_feat_cpor_part, rprops) &&
1209 	    mpam_has_feature(mpam_feat_cpor_part, cfg)) {
1210 		if (cfg->reset_cpbm)
1211 			mpam_reset_msc_bitmap(msc, MPAMCFG_CPBM, rprops->cpbm_wd);
1212 		else
1213 			mpam_write_partsel_reg(msc, CPBM, cfg->cpbm);
1214 	}
1215 
1216 	if (mpam_has_feature(mpam_feat_mbw_part, rprops) &&
1217 	    mpam_has_feature(mpam_feat_mbw_part, cfg)) {
1218 		if (cfg->reset_mbw_pbm)
1219 			mpam_reset_msc_bitmap(msc, MPAMCFG_MBW_PBM, rprops->mbw_pbm_bits);
1220 		else
1221 			mpam_write_partsel_reg(msc, MBW_PBM, cfg->mbw_pbm);
1222 	}
1223 
1224 	if (mpam_has_feature(mpam_feat_mbw_min, rprops) &&
1225 	    mpam_has_feature(mpam_feat_mbw_min, cfg))
1226 		mpam_write_partsel_reg(msc, MBW_MIN, 0);
1227 
1228 	if (mpam_has_feature(mpam_feat_mbw_max, rprops) &&
1229 	    mpam_has_feature(mpam_feat_mbw_max, cfg)) {
1230 		if (cfg->reset_mbw_max)
1231 			mpam_write_partsel_reg(msc, MBW_MAX, MPAMCFG_MBW_MAX_MAX);
1232 		else
1233 			mpam_write_partsel_reg(msc, MBW_MAX, cfg->mbw_max);
1234 	}
1235 
1236 	if (mpam_has_feature(mpam_feat_mbw_prop, rprops) &&
1237 	    mpam_has_feature(mpam_feat_mbw_prop, cfg))
1238 		mpam_write_partsel_reg(msc, MBW_PROP, 0);
1239 
1240 	if (mpam_has_feature(mpam_feat_cmax_cmax, rprops))
1241 		mpam_write_partsel_reg(msc, CMAX, cmax);
1242 
1243 	if (mpam_has_feature(mpam_feat_cmax_cmin, rprops))
1244 		mpam_write_partsel_reg(msc, CMIN, 0);
1245 
1246 	if (mpam_has_feature(mpam_feat_cmax_cassoc, rprops))
1247 		mpam_write_partsel_reg(msc, CASSOC, MPAMCFG_CASSOC_CASSOC);
1248 
1249 	if (mpam_has_feature(mpam_feat_intpri_part, rprops) ||
1250 	    mpam_has_feature(mpam_feat_dspri_part, rprops)) {
1251 		/* aces high? */
1252 		if (!mpam_has_feature(mpam_feat_intpri_part_0_low, rprops))
1253 			intpri = 0;
1254 		if (!mpam_has_feature(mpam_feat_dspri_part_0_low, rprops))
1255 			dspri = 0;
1256 
1257 		if (mpam_has_feature(mpam_feat_intpri_part, rprops))
1258 			pri_val |= FIELD_PREP(MPAMCFG_PRI_INTPRI, intpri);
1259 		if (mpam_has_feature(mpam_feat_dspri_part, rprops))
1260 			pri_val |= FIELD_PREP(MPAMCFG_PRI_DSPRI, dspri);
1261 
1262 		mpam_write_partsel_reg(msc, PRI, pri_val);
1263 	}
1264 
1265 	mutex_unlock(&msc->part_sel_lock);
1266 }
1267 
1268 /* Call with msc cfg_lock held */
1269 static int mpam_restore_mbwu_state(void *_ris)
1270 {
1271 	int i;
1272 	struct mon_read mwbu_arg;
1273 	struct mpam_msc_ris *ris = _ris;
1274 
1275 	for (i = 0; i < ris->props.num_mbwu_mon; i++) {
1276 		if (ris->mbwu_state[i].enabled) {
1277 			mwbu_arg.ris = ris;
1278 			mwbu_arg.ctx = &ris->mbwu_state[i].cfg;
1279 			mwbu_arg.type = mpam_feat_msmon_mbwu;
1280 
1281 			__ris_msmon_read(&mwbu_arg);
1282 		}
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 /* Call with MSC cfg_lock held */
1289 static int mpam_save_mbwu_state(void *arg)
1290 {
1291 	int i;
1292 	u64 val;
1293 	struct mon_cfg *cfg;
1294 	u32 cur_flt, cur_ctl, mon_sel;
1295 	struct mpam_msc_ris *ris = arg;
1296 	struct msmon_mbwu_state *mbwu_state;
1297 	struct mpam_msc *msc = ris->vmsc->msc;
1298 
1299 	for (i = 0; i < ris->props.num_mbwu_mon; i++) {
1300 		mbwu_state = &ris->mbwu_state[i];
1301 		cfg = &mbwu_state->cfg;
1302 
1303 		if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc)))
1304 			return -EIO;
1305 
1306 		mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, i) |
1307 			  FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx);
1308 		mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel);
1309 
1310 		cur_flt = mpam_read_monsel_reg(msc, CFG_MBWU_FLT);
1311 		cur_ctl = mpam_read_monsel_reg(msc, CFG_MBWU_CTL);
1312 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL, 0);
1313 
1314 		val = mpam_read_monsel_reg(msc, MBWU);
1315 		mpam_write_monsel_reg(msc, MBWU, 0);
1316 
1317 		cfg->mon = i;
1318 		cfg->pmg = FIELD_GET(MSMON_CFG_x_FLT_PMG, cur_flt);
1319 		cfg->match_pmg = FIELD_GET(MSMON_CFG_x_CTL_MATCH_PMG, cur_ctl);
1320 		cfg->partid = FIELD_GET(MSMON_CFG_x_FLT_PARTID, cur_flt);
1321 		mbwu_state->correction += val;
1322 		mbwu_state->enabled = FIELD_GET(MSMON_CFG_x_CTL_EN, cur_ctl);
1323 		mpam_mon_sel_unlock(msc);
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 static void mpam_init_reset_cfg(struct mpam_config *reset_cfg)
1330 {
1331 	*reset_cfg = (struct mpam_config) {
1332 		.reset_cpbm = true,
1333 		.reset_mbw_pbm = true,
1334 		.reset_mbw_max = true,
1335 	};
1336 	bitmap_fill(reset_cfg->features, MPAM_FEATURE_LAST);
1337 }
1338 
1339 /*
1340  * Called via smp_call_on_cpu() to prevent migration, while still being
1341  * pre-emptible. Caller must hold mpam_srcu.
1342  */
1343 static int mpam_reset_ris(void *arg)
1344 {
1345 	u16 partid, partid_max;
1346 	struct mpam_config reset_cfg;
1347 	struct mpam_msc_ris *ris = arg;
1348 
1349 	if (ris->in_reset_state)
1350 		return 0;
1351 
1352 	mpam_init_reset_cfg(&reset_cfg);
1353 
1354 	spin_lock(&partid_max_lock);
1355 	partid_max = mpam_partid_max;
1356 	spin_unlock(&partid_max_lock);
1357 	for (partid = 0; partid <= partid_max; partid++)
1358 		mpam_reprogram_ris_partid(ris, partid, &reset_cfg);
1359 
1360 	return 0;
1361 }
1362 
1363 /*
1364  * Get the preferred CPU for this MSC. If it is accessible from this CPU,
1365  * this CPU is preferred. This can be preempted/migrated, it will only result
1366  * in more work.
1367  */
1368 static int mpam_get_msc_preferred_cpu(struct mpam_msc *msc)
1369 {
1370 	int cpu = raw_smp_processor_id();
1371 
1372 	if (cpumask_test_cpu(cpu, &msc->accessibility))
1373 		return cpu;
1374 
1375 	return cpumask_first_and(&msc->accessibility, cpu_online_mask);
1376 }
1377 
1378 static int mpam_touch_msc(struct mpam_msc *msc, int (*fn)(void *a), void *arg)
1379 {
1380 	lockdep_assert_irqs_enabled();
1381 	lockdep_assert_cpus_held();
1382 	WARN_ON_ONCE(!srcu_read_lock_held((&mpam_srcu)));
1383 
1384 	return smp_call_on_cpu(mpam_get_msc_preferred_cpu(msc), fn, arg, true);
1385 }
1386 
1387 struct mpam_write_config_arg {
1388 	struct mpam_msc_ris *ris;
1389 	struct mpam_component *comp;
1390 	u16 partid;
1391 };
1392 
1393 static int __write_config(void *arg)
1394 {
1395 	struct mpam_write_config_arg *c = arg;
1396 
1397 	mpam_reprogram_ris_partid(c->ris, c->partid, &c->comp->cfg[c->partid]);
1398 
1399 	return 0;
1400 }
1401 
1402 static void mpam_reprogram_msc(struct mpam_msc *msc)
1403 {
1404 	u16 partid;
1405 	bool reset;
1406 	struct mpam_config *cfg;
1407 	struct mpam_msc_ris *ris;
1408 	struct mpam_write_config_arg arg;
1409 
1410 	/*
1411 	 * No lock for mpam_partid_max as partid_max_published has been
1412 	 * set by mpam_enabled(), so the values can no longer change.
1413 	 */
1414 	mpam_assert_partid_sizes_fixed();
1415 
1416 	mutex_lock(&msc->cfg_lock);
1417 	list_for_each_entry_srcu(ris, &msc->ris, msc_list,
1418 				 srcu_read_lock_held(&mpam_srcu)) {
1419 		if (!mpam_is_enabled() && !ris->in_reset_state) {
1420 			mpam_touch_msc(msc, &mpam_reset_ris, ris);
1421 			ris->in_reset_state = true;
1422 			continue;
1423 		}
1424 
1425 		arg.comp = ris->vmsc->comp;
1426 		arg.ris = ris;
1427 		reset = true;
1428 		for (partid = 0; partid <= mpam_partid_max; partid++) {
1429 			cfg = &ris->vmsc->comp->cfg[partid];
1430 			if (!bitmap_empty(cfg->features, MPAM_FEATURE_LAST))
1431 				reset = false;
1432 
1433 			arg.partid = partid;
1434 			mpam_touch_msc(msc, __write_config, &arg);
1435 		}
1436 		ris->in_reset_state = reset;
1437 
1438 		if (mpam_has_feature(mpam_feat_msmon_mbwu, &ris->props))
1439 			mpam_touch_msc(msc, &mpam_restore_mbwu_state, ris);
1440 	}
1441 	mutex_unlock(&msc->cfg_lock);
1442 }
1443 
1444 static void _enable_percpu_irq(void *_irq)
1445 {
1446 	int *irq = _irq;
1447 
1448 	enable_percpu_irq(*irq, IRQ_TYPE_NONE);
1449 }
1450 
1451 static int mpam_cpu_online(unsigned int cpu)
1452 {
1453 	struct mpam_msc *msc;
1454 
1455 	guard(srcu)(&mpam_srcu);
1456 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
1457 				 srcu_read_lock_held(&mpam_srcu)) {
1458 		if (!cpumask_test_cpu(cpu, &msc->accessibility))
1459 			continue;
1460 
1461 		if (msc->reenable_error_ppi)
1462 			_enable_percpu_irq(&msc->reenable_error_ppi);
1463 
1464 		if (atomic_fetch_inc(&msc->online_refs) == 0)
1465 			mpam_reprogram_msc(msc);
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 /* Before mpam is enabled, try to probe new MSC */
1472 static int mpam_discovery_cpu_online(unsigned int cpu)
1473 {
1474 	int err = 0;
1475 	struct mpam_msc *msc;
1476 	bool new_device_probed = false;
1477 
1478 	if (mpam_is_enabled())
1479 		return 0;
1480 
1481 	guard(srcu)(&mpam_srcu);
1482 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
1483 				 srcu_read_lock_held(&mpam_srcu)) {
1484 		if (!cpumask_test_cpu(cpu, &msc->accessibility))
1485 			continue;
1486 
1487 		mutex_lock(&msc->probe_lock);
1488 		if (!msc->probed)
1489 			err = mpam_msc_hw_probe(msc);
1490 		mutex_unlock(&msc->probe_lock);
1491 
1492 		if (err)
1493 			break;
1494 		new_device_probed = true;
1495 	}
1496 
1497 	if (new_device_probed && !err)
1498 		schedule_work(&mpam_enable_work);
1499 	if (err) {
1500 		mpam_disable_reason = "error during probing";
1501 		schedule_work(&mpam_broken_work);
1502 	}
1503 
1504 	return err;
1505 }
1506 
1507 static int mpam_cpu_offline(unsigned int cpu)
1508 {
1509 	struct mpam_msc *msc;
1510 
1511 	guard(srcu)(&mpam_srcu);
1512 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
1513 				 srcu_read_lock_held(&mpam_srcu)) {
1514 		if (!cpumask_test_cpu(cpu, &msc->accessibility))
1515 			continue;
1516 
1517 		if (msc->reenable_error_ppi)
1518 			disable_percpu_irq(msc->reenable_error_ppi);
1519 
1520 		if (atomic_dec_and_test(&msc->online_refs)) {
1521 			struct mpam_msc_ris *ris;
1522 
1523 			mutex_lock(&msc->cfg_lock);
1524 			list_for_each_entry_srcu(ris, &msc->ris, msc_list,
1525 						 srcu_read_lock_held(&mpam_srcu)) {
1526 				mpam_touch_msc(msc, &mpam_reset_ris, ris);
1527 
1528 				/*
1529 				 * The reset state for non-zero partid may be
1530 				 * lost while the CPUs are offline.
1531 				 */
1532 				ris->in_reset_state = false;
1533 
1534 				if (mpam_is_enabled())
1535 					mpam_touch_msc(msc, &mpam_save_mbwu_state, ris);
1536 			}
1537 			mutex_unlock(&msc->cfg_lock);
1538 		}
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 static void mpam_register_cpuhp_callbacks(int (*online)(unsigned int online),
1545 					  int (*offline)(unsigned int offline),
1546 					  char *name)
1547 {
1548 	mutex_lock(&mpam_cpuhp_state_lock);
1549 	if (mpam_cpuhp_state) {
1550 		cpuhp_remove_state(mpam_cpuhp_state);
1551 		mpam_cpuhp_state = 0;
1552 	}
1553 
1554 	mpam_cpuhp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, name, online,
1555 					     offline);
1556 	if (mpam_cpuhp_state <= 0) {
1557 		pr_err("Failed to register cpuhp callbacks");
1558 		mpam_cpuhp_state = 0;
1559 	}
1560 	mutex_unlock(&mpam_cpuhp_state_lock);
1561 }
1562 
1563 static int __setup_ppi(struct mpam_msc *msc)
1564 {
1565 	int cpu;
1566 
1567 	msc->error_dev_id = alloc_percpu(struct mpam_msc *);
1568 	if (!msc->error_dev_id)
1569 		return -ENOMEM;
1570 
1571 	for_each_cpu(cpu, &msc->accessibility)
1572 		*per_cpu_ptr(msc->error_dev_id, cpu) = msc;
1573 
1574 	return 0;
1575 }
1576 
1577 static int mpam_msc_setup_error_irq(struct mpam_msc *msc)
1578 {
1579 	int irq;
1580 
1581 	irq = platform_get_irq_byname_optional(msc->pdev, "error");
1582 	if (irq <= 0)
1583 		return 0;
1584 
1585 	/* Allocate and initialise the percpu device pointer for PPI */
1586 	if (irq_is_percpu(irq))
1587 		return __setup_ppi(msc);
1588 
1589 	/* sanity check: shared interrupts can be routed anywhere? */
1590 	if (!cpumask_equal(&msc->accessibility, cpu_possible_mask)) {
1591 		pr_err_once("msc:%u is a private resource with a shared error interrupt",
1592 			    msc->id);
1593 		return -EINVAL;
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 /*
1600  * An MSC can control traffic from a set of CPUs, but may only be accessible
1601  * from a (hopefully wider) set of CPUs. The common reason for this is power
1602  * management. If all the CPUs in a cluster are in PSCI:CPU_SUSPEND, the
1603  * corresponding cache may also be powered off. By making accesses from
1604  * one of those CPUs, we ensure we don't access a cache that's powered off.
1605  */
1606 static void update_msc_accessibility(struct mpam_msc *msc)
1607 {
1608 	u32 affinity_id;
1609 	int err;
1610 
1611 	err = device_property_read_u32(&msc->pdev->dev, "cpu_affinity",
1612 				       &affinity_id);
1613 	if (err)
1614 		cpumask_copy(&msc->accessibility, cpu_possible_mask);
1615 	else
1616 		acpi_pptt_get_cpus_from_container(affinity_id, &msc->accessibility);
1617 }
1618 
1619 /*
1620  * There are two ways of reaching a struct mpam_msc_ris. Via the
1621  * class->component->vmsc->ris, or via the msc.
1622  * When destroying the msc, the other side needs unlinking and cleaning up too.
1623  */
1624 static void mpam_msc_destroy(struct mpam_msc *msc)
1625 {
1626 	struct platform_device *pdev = msc->pdev;
1627 	struct mpam_msc_ris *ris, *tmp;
1628 
1629 	lockdep_assert_held(&mpam_list_lock);
1630 
1631 	list_for_each_entry_safe(ris, tmp, &msc->ris, msc_list)
1632 		mpam_ris_destroy(ris);
1633 
1634 	list_del_rcu(&msc->all_msc_list);
1635 	platform_set_drvdata(pdev, NULL);
1636 
1637 	add_to_garbage(msc);
1638 }
1639 
1640 static void mpam_msc_drv_remove(struct platform_device *pdev)
1641 {
1642 	struct mpam_msc *msc = platform_get_drvdata(pdev);
1643 
1644 	mutex_lock(&mpam_list_lock);
1645 	mpam_msc_destroy(msc);
1646 	mutex_unlock(&mpam_list_lock);
1647 
1648 	mpam_free_garbage();
1649 }
1650 
1651 static struct mpam_msc *do_mpam_msc_drv_probe(struct platform_device *pdev)
1652 {
1653 	int err;
1654 	u32 tmp;
1655 	struct mpam_msc *msc;
1656 	struct resource *msc_res;
1657 	struct device *dev = &pdev->dev;
1658 
1659 	lockdep_assert_held(&mpam_list_lock);
1660 
1661 	msc = devm_kzalloc(&pdev->dev, sizeof(*msc), GFP_KERNEL);
1662 	if (!msc)
1663 		return ERR_PTR(-ENOMEM);
1664 	init_garbage(&msc->garbage);
1665 	msc->garbage.pdev = pdev;
1666 
1667 	err = devm_mutex_init(dev, &msc->probe_lock);
1668 	if (err)
1669 		return ERR_PTR(err);
1670 
1671 	err = devm_mutex_init(dev, &msc->part_sel_lock);
1672 	if (err)
1673 		return ERR_PTR(err);
1674 
1675 	err = devm_mutex_init(dev, &msc->error_irq_lock);
1676 	if (err)
1677 		return ERR_PTR(err);
1678 
1679 	err = devm_mutex_init(dev, &msc->cfg_lock);
1680 	if (err)
1681 		return ERR_PTR(err);
1682 
1683 	mpam_mon_sel_lock_init(msc);
1684 	msc->id = pdev->id;
1685 	msc->pdev = pdev;
1686 	INIT_LIST_HEAD_RCU(&msc->all_msc_list);
1687 	INIT_LIST_HEAD_RCU(&msc->ris);
1688 
1689 	update_msc_accessibility(msc);
1690 	if (cpumask_empty(&msc->accessibility)) {
1691 		dev_err_once(dev, "MSC is not accessible from any CPU!");
1692 		return ERR_PTR(-EINVAL);
1693 	}
1694 
1695 	err = mpam_msc_setup_error_irq(msc);
1696 	if (err)
1697 		return ERR_PTR(err);
1698 
1699 	if (device_property_read_u32(&pdev->dev, "pcc-channel", &tmp))
1700 		msc->iface = MPAM_IFACE_MMIO;
1701 	else
1702 		msc->iface = MPAM_IFACE_PCC;
1703 
1704 	if (msc->iface == MPAM_IFACE_MMIO) {
1705 		void __iomem *io;
1706 
1707 		io = devm_platform_get_and_ioremap_resource(pdev, 0,
1708 							    &msc_res);
1709 		if (IS_ERR(io)) {
1710 			dev_err_once(dev, "Failed to map MSC base address\n");
1711 			return ERR_CAST(io);
1712 		}
1713 		msc->mapped_hwpage_sz = msc_res->end - msc_res->start;
1714 		msc->mapped_hwpage = io;
1715 	} else {
1716 		return ERR_PTR(-EINVAL);
1717 	}
1718 
1719 	list_add_rcu(&msc->all_msc_list, &mpam_all_msc);
1720 	platform_set_drvdata(pdev, msc);
1721 
1722 	return msc;
1723 }
1724 
1725 static int fw_num_msc;
1726 
1727 static int mpam_msc_drv_probe(struct platform_device *pdev)
1728 {
1729 	int err;
1730 	struct mpam_msc *msc = NULL;
1731 	void *plat_data = pdev->dev.platform_data;
1732 
1733 	mutex_lock(&mpam_list_lock);
1734 	msc = do_mpam_msc_drv_probe(pdev);
1735 	mutex_unlock(&mpam_list_lock);
1736 
1737 	if (IS_ERR(msc))
1738 		return PTR_ERR(msc);
1739 
1740 	/* Create RIS entries described by firmware */
1741 	err = acpi_mpam_parse_resources(msc, plat_data);
1742 	if (err) {
1743 		mpam_msc_drv_remove(pdev);
1744 		return err;
1745 	}
1746 
1747 	if (atomic_add_return(1, &mpam_num_msc) == fw_num_msc)
1748 		mpam_register_cpuhp_callbacks(mpam_discovery_cpu_online, NULL,
1749 					      "mpam:drv_probe");
1750 
1751 	return 0;
1752 }
1753 
1754 static struct platform_driver mpam_msc_driver = {
1755 	.driver = {
1756 		.name = "mpam_msc",
1757 	},
1758 	.probe = mpam_msc_drv_probe,
1759 	.remove = mpam_msc_drv_remove,
1760 };
1761 
1762 /* Any of these features mean the BWA_WD field is valid. */
1763 static bool mpam_has_bwa_wd_feature(struct mpam_props *props)
1764 {
1765 	if (mpam_has_feature(mpam_feat_mbw_min, props))
1766 		return true;
1767 	if (mpam_has_feature(mpam_feat_mbw_max, props))
1768 		return true;
1769 	if (mpam_has_feature(mpam_feat_mbw_prop, props))
1770 		return true;
1771 	return false;
1772 }
1773 
1774 /* Any of these features mean the CMAX_WD field is valid. */
1775 static bool mpam_has_cmax_wd_feature(struct mpam_props *props)
1776 {
1777 	if (mpam_has_feature(mpam_feat_cmax_cmax, props))
1778 		return true;
1779 	if (mpam_has_feature(mpam_feat_cmax_cmin, props))
1780 		return true;
1781 	return false;
1782 }
1783 
1784 #define MISMATCHED_HELPER(parent, child, helper, field, alias)		\
1785 	helper(parent) &&						\
1786 	((helper(child) && (parent)->field != (child)->field) ||	\
1787 	 (!helper(child) && !(alias)))
1788 
1789 #define MISMATCHED_FEAT(parent, child, feat, field, alias)		     \
1790 	mpam_has_feature((feat), (parent)) &&				     \
1791 	((mpam_has_feature((feat), (child)) && (parent)->field != (child)->field) || \
1792 	 (!mpam_has_feature((feat), (child)) && !(alias)))
1793 
1794 #define CAN_MERGE_FEAT(parent, child, feat, alias)			\
1795 	(alias) && !mpam_has_feature((feat), (parent)) &&		\
1796 	mpam_has_feature((feat), (child))
1797 
1798 /*
1799  * Combine two props fields.
1800  * If this is for controls that alias the same resource, it is safe to just
1801  * copy the values over. If two aliasing controls implement the same scheme
1802  * a safe value must be picked.
1803  * For non-aliasing controls, these control different resources, and the
1804  * resulting safe value must be compatible with both. When merging values in
1805  * the tree, all the aliasing resources must be handled first.
1806  * On mismatch, parent is modified.
1807  */
1808 static void __props_mismatch(struct mpam_props *parent,
1809 			     struct mpam_props *child, bool alias)
1810 {
1811 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_cpor_part, alias)) {
1812 		parent->cpbm_wd = child->cpbm_wd;
1813 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_cpor_part,
1814 				   cpbm_wd, alias)) {
1815 		pr_debug("cleared cpor_part\n");
1816 		mpam_clear_feature(mpam_feat_cpor_part, parent);
1817 		parent->cpbm_wd = 0;
1818 	}
1819 
1820 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_mbw_part, alias)) {
1821 		parent->mbw_pbm_bits = child->mbw_pbm_bits;
1822 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_mbw_part,
1823 				   mbw_pbm_bits, alias)) {
1824 		pr_debug("cleared mbw_part\n");
1825 		mpam_clear_feature(mpam_feat_mbw_part, parent);
1826 		parent->mbw_pbm_bits = 0;
1827 	}
1828 
1829 	/* bwa_wd is a count of bits, fewer bits means less precision */
1830 	if (alias && !mpam_has_bwa_wd_feature(parent) &&
1831 	    mpam_has_bwa_wd_feature(child)) {
1832 		parent->bwa_wd = child->bwa_wd;
1833 	} else if (MISMATCHED_HELPER(parent, child, mpam_has_bwa_wd_feature,
1834 				     bwa_wd, alias)) {
1835 		pr_debug("took the min bwa_wd\n");
1836 		parent->bwa_wd = min(parent->bwa_wd, child->bwa_wd);
1837 	}
1838 
1839 	if (alias && !mpam_has_cmax_wd_feature(parent) && mpam_has_cmax_wd_feature(child)) {
1840 		parent->cmax_wd = child->cmax_wd;
1841 	} else if (MISMATCHED_HELPER(parent, child, mpam_has_cmax_wd_feature,
1842 				     cmax_wd, alias)) {
1843 		pr_debug("%s took the min cmax_wd\n", __func__);
1844 		parent->cmax_wd = min(parent->cmax_wd, child->cmax_wd);
1845 	}
1846 
1847 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_cmax_cassoc, alias)) {
1848 		parent->cassoc_wd = child->cassoc_wd;
1849 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_cmax_cassoc,
1850 				   cassoc_wd, alias)) {
1851 		pr_debug("%s cleared cassoc_wd\n", __func__);
1852 		mpam_clear_feature(mpam_feat_cmax_cassoc, parent);
1853 		parent->cassoc_wd = 0;
1854 	}
1855 
1856 	/* For num properties, take the minimum */
1857 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_csu, alias)) {
1858 		parent->num_csu_mon = child->num_csu_mon;
1859 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_csu,
1860 				   num_csu_mon, alias)) {
1861 		pr_debug("took the min num_csu_mon\n");
1862 		parent->num_csu_mon = min(parent->num_csu_mon,
1863 					  child->num_csu_mon);
1864 	}
1865 
1866 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_mbwu, alias)) {
1867 		parent->num_mbwu_mon = child->num_mbwu_mon;
1868 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_mbwu,
1869 				   num_mbwu_mon, alias)) {
1870 		pr_debug("took the min num_mbwu_mon\n");
1871 		parent->num_mbwu_mon = min(parent->num_mbwu_mon,
1872 					   child->num_mbwu_mon);
1873 	}
1874 
1875 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_intpri_part, alias)) {
1876 		parent->intpri_wd = child->intpri_wd;
1877 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_intpri_part,
1878 				   intpri_wd, alias)) {
1879 		pr_debug("%s took the min intpri_wd\n", __func__);
1880 		parent->intpri_wd = min(parent->intpri_wd, child->intpri_wd);
1881 	}
1882 
1883 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_dspri_part, alias)) {
1884 		parent->dspri_wd = child->dspri_wd;
1885 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_dspri_part,
1886 				   dspri_wd, alias)) {
1887 		pr_debug("%s took the min dspri_wd\n", __func__);
1888 		parent->dspri_wd = min(parent->dspri_wd, child->dspri_wd);
1889 	}
1890 
1891 	/* TODO: alias support for these two */
1892 	/* {int,ds}pri may not have differing 0-low behaviour */
1893 	if (mpam_has_feature(mpam_feat_intpri_part, parent) &&
1894 	    (!mpam_has_feature(mpam_feat_intpri_part, child) ||
1895 	     mpam_has_feature(mpam_feat_intpri_part_0_low, parent) !=
1896 	     mpam_has_feature(mpam_feat_intpri_part_0_low, child))) {
1897 		pr_debug("%s cleared intpri_part\n", __func__);
1898 		mpam_clear_feature(mpam_feat_intpri_part, parent);
1899 		mpam_clear_feature(mpam_feat_intpri_part_0_low, parent);
1900 	}
1901 	if (mpam_has_feature(mpam_feat_dspri_part, parent) &&
1902 	    (!mpam_has_feature(mpam_feat_dspri_part, child) ||
1903 	     mpam_has_feature(mpam_feat_dspri_part_0_low, parent) !=
1904 	     mpam_has_feature(mpam_feat_dspri_part_0_low, child))) {
1905 		pr_debug("%s cleared dspri_part\n", __func__);
1906 		mpam_clear_feature(mpam_feat_dspri_part, parent);
1907 		mpam_clear_feature(mpam_feat_dspri_part_0_low, parent);
1908 	}
1909 
1910 	if (alias) {
1911 		/* Merge features for aliased resources */
1912 		bitmap_or(parent->features, parent->features, child->features, MPAM_FEATURE_LAST);
1913 	} else {
1914 		/* Clear missing features for non aliasing */
1915 		bitmap_and(parent->features, parent->features, child->features, MPAM_FEATURE_LAST);
1916 	}
1917 }
1918 
1919 /*
1920  * If a vmsc doesn't match class feature/configuration, do the right thing(tm).
1921  * For 'num' properties we can just take the minimum.
1922  * For properties where the mismatched unused bits would make a difference, we
1923  * nobble the class feature, as we can't configure all the resources.
1924  * e.g. The L3 cache is composed of two resources with 13 and 17 portion
1925  * bitmaps respectively.
1926  */
1927 static void
1928 __class_props_mismatch(struct mpam_class *class, struct mpam_vmsc *vmsc)
1929 {
1930 	struct mpam_props *cprops = &class->props;
1931 	struct mpam_props *vprops = &vmsc->props;
1932 	struct device *dev = &vmsc->msc->pdev->dev;
1933 
1934 	lockdep_assert_held(&mpam_list_lock); /* we modify class */
1935 
1936 	dev_dbg(dev, "Merging features for class:0x%lx &= vmsc:0x%lx\n",
1937 		(long)cprops->features, (long)vprops->features);
1938 
1939 	/* Take the safe value for any common features */
1940 	__props_mismatch(cprops, vprops, false);
1941 }
1942 
1943 static void
1944 __vmsc_props_mismatch(struct mpam_vmsc *vmsc, struct mpam_msc_ris *ris)
1945 {
1946 	struct mpam_props *rprops = &ris->props;
1947 	struct mpam_props *vprops = &vmsc->props;
1948 	struct device *dev = &vmsc->msc->pdev->dev;
1949 
1950 	lockdep_assert_held(&mpam_list_lock); /* we modify vmsc */
1951 
1952 	dev_dbg(dev, "Merging features for vmsc:0x%lx |= ris:0x%lx\n",
1953 		(long)vprops->features, (long)rprops->features);
1954 
1955 	/*
1956 	 * Merge mismatched features - Copy any features that aren't common,
1957 	 * but take the safe value for any common features.
1958 	 */
1959 	__props_mismatch(vprops, rprops, true);
1960 }
1961 
1962 /*
1963  * Copy the first component's first vMSC's properties and features to the
1964  * class. __class_props_mismatch() will remove conflicts.
1965  * It is not possible to have a class with no components, or a component with
1966  * no resources. The vMSC properties have already been built.
1967  */
1968 static void mpam_enable_init_class_features(struct mpam_class *class)
1969 {
1970 	struct mpam_vmsc *vmsc;
1971 	struct mpam_component *comp;
1972 
1973 	comp = list_first_entry(&class->components,
1974 				struct mpam_component, class_list);
1975 	vmsc = list_first_entry(&comp->vmsc,
1976 				struct mpam_vmsc, comp_list);
1977 
1978 	class->props = vmsc->props;
1979 }
1980 
1981 static void mpam_enable_merge_vmsc_features(struct mpam_component *comp)
1982 {
1983 	struct mpam_vmsc *vmsc;
1984 	struct mpam_msc_ris *ris;
1985 	struct mpam_class *class = comp->class;
1986 
1987 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
1988 		list_for_each_entry(ris, &vmsc->ris, vmsc_list) {
1989 			__vmsc_props_mismatch(vmsc, ris);
1990 			class->nrdy_usec = max(class->nrdy_usec,
1991 					       vmsc->msc->nrdy_usec);
1992 		}
1993 	}
1994 }
1995 
1996 static void mpam_enable_merge_class_features(struct mpam_component *comp)
1997 {
1998 	struct mpam_vmsc *vmsc;
1999 	struct mpam_class *class = comp->class;
2000 
2001 	list_for_each_entry(vmsc, &comp->vmsc, comp_list)
2002 		__class_props_mismatch(class, vmsc);
2003 }
2004 
2005 /*
2006  * Merge all the common resource features into class.
2007  * vmsc features are bitwise-or'd together by mpam_enable_merge_vmsc_features()
2008  * as the first step so that mpam_enable_init_class_features() can initialise
2009  * the class with a representative set of features.
2010  * Next the mpam_enable_merge_class_features() bitwise-and's all the vmsc
2011  * features to form the class features.
2012  * Other features are the min/max as appropriate.
2013  *
2014  * To avoid walking the whole tree twice, the class->nrdy_usec property is
2015  * updated when working with the vmsc as it is a max(), and doesn't need
2016  * initialising first.
2017  */
2018 static void mpam_enable_merge_features(struct list_head *all_classes_list)
2019 {
2020 	struct mpam_class *class;
2021 	struct mpam_component *comp;
2022 
2023 	lockdep_assert_held(&mpam_list_lock);
2024 
2025 	list_for_each_entry(class, all_classes_list, classes_list) {
2026 		list_for_each_entry(comp, &class->components, class_list)
2027 			mpam_enable_merge_vmsc_features(comp);
2028 
2029 		mpam_enable_init_class_features(class);
2030 
2031 		list_for_each_entry(comp, &class->components, class_list)
2032 			mpam_enable_merge_class_features(comp);
2033 	}
2034 }
2035 
2036 static char *mpam_errcode_names[16] = {
2037 	[MPAM_ERRCODE_NONE]			= "No error",
2038 	[MPAM_ERRCODE_PARTID_SEL_RANGE]		= "PARTID_SEL_Range",
2039 	[MPAM_ERRCODE_REQ_PARTID_RANGE]		= "Req_PARTID_Range",
2040 	[MPAM_ERRCODE_MSMONCFG_ID_RANGE]	= "MSMONCFG_ID_RANGE",
2041 	[MPAM_ERRCODE_REQ_PMG_RANGE]		= "Req_PMG_Range",
2042 	[MPAM_ERRCODE_MONITOR_RANGE]		= "Monitor_Range",
2043 	[MPAM_ERRCODE_INTPARTID_RANGE]		= "intPARTID_Range",
2044 	[MPAM_ERRCODE_UNEXPECTED_INTERNAL]	= "Unexpected_INTERNAL",
2045 	[MPAM_ERRCODE_UNDEFINED_RIS_PART_SEL]	= "Undefined_RIS_PART_SEL",
2046 	[MPAM_ERRCODE_RIS_NO_CONTROL]		= "RIS_No_Control",
2047 	[MPAM_ERRCODE_UNDEFINED_RIS_MON_SEL]	= "Undefined_RIS_MON_SEL",
2048 	[MPAM_ERRCODE_RIS_NO_MONITOR]		= "RIS_No_Monitor",
2049 	[12 ... 15] = "Reserved"
2050 };
2051 
2052 static int mpam_enable_msc_ecr(void *_msc)
2053 {
2054 	struct mpam_msc *msc = _msc;
2055 
2056 	__mpam_write_reg(msc, MPAMF_ECR, MPAMF_ECR_INTEN);
2057 
2058 	return 0;
2059 }
2060 
2061 /* This can run in mpam_disable(), and the interrupt handler on the same CPU */
2062 static int mpam_disable_msc_ecr(void *_msc)
2063 {
2064 	struct mpam_msc *msc = _msc;
2065 
2066 	__mpam_write_reg(msc, MPAMF_ECR, 0);
2067 
2068 	return 0;
2069 }
2070 
2071 static irqreturn_t __mpam_irq_handler(int irq, struct mpam_msc *msc)
2072 {
2073 	u64 reg;
2074 	u16 partid;
2075 	u8 errcode, pmg, ris;
2076 
2077 	if (WARN_ON_ONCE(!msc) ||
2078 	    WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
2079 					   &msc->accessibility)))
2080 		return IRQ_NONE;
2081 
2082 	reg = mpam_msc_read_esr(msc);
2083 
2084 	errcode = FIELD_GET(MPAMF_ESR_ERRCODE, reg);
2085 	if (!errcode)
2086 		return IRQ_NONE;
2087 
2088 	/* Clear level triggered irq */
2089 	mpam_msc_clear_esr(msc);
2090 
2091 	partid = FIELD_GET(MPAMF_ESR_PARTID_MON, reg);
2092 	pmg = FIELD_GET(MPAMF_ESR_PMG, reg);
2093 	ris = FIELD_GET(MPAMF_ESR_RIS, reg);
2094 
2095 	pr_err_ratelimited("error irq from msc:%u '%s', partid:%u, pmg: %u, ris: %u\n",
2096 			   msc->id, mpam_errcode_names[errcode], partid, pmg,
2097 			   ris);
2098 
2099 	/* Disable this interrupt. */
2100 	mpam_disable_msc_ecr(msc);
2101 
2102 	/* Are we racing with the thread disabling MPAM? */
2103 	if (!mpam_is_enabled())
2104 		return IRQ_HANDLED;
2105 
2106 	/*
2107 	 * Schedule the teardown work. Don't use a threaded IRQ as we can't
2108 	 * unregister the interrupt from the threaded part of the handler.
2109 	 */
2110 	mpam_disable_reason = "hardware error interrupt";
2111 	schedule_work(&mpam_broken_work);
2112 
2113 	return IRQ_HANDLED;
2114 }
2115 
2116 static irqreturn_t mpam_ppi_handler(int irq, void *dev_id)
2117 {
2118 	struct mpam_msc *msc = *(struct mpam_msc **)dev_id;
2119 
2120 	return __mpam_irq_handler(irq, msc);
2121 }
2122 
2123 static irqreturn_t mpam_spi_handler(int irq, void *dev_id)
2124 {
2125 	struct mpam_msc *msc = dev_id;
2126 
2127 	return __mpam_irq_handler(irq, msc);
2128 }
2129 
2130 static int mpam_register_irqs(void)
2131 {
2132 	int err, irq;
2133 	struct mpam_msc *msc;
2134 
2135 	lockdep_assert_cpus_held();
2136 
2137 	guard(srcu)(&mpam_srcu);
2138 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
2139 				 srcu_read_lock_held(&mpam_srcu)) {
2140 		irq = platform_get_irq_byname_optional(msc->pdev, "error");
2141 		if (irq <= 0)
2142 			continue;
2143 
2144 		/* The MPAM spec says the interrupt can be SPI, PPI or LPI */
2145 		/* We anticipate sharing the interrupt with other MSCs */
2146 		if (irq_is_percpu(irq)) {
2147 			err = request_percpu_irq(irq, &mpam_ppi_handler,
2148 						 "mpam:msc:error",
2149 						 msc->error_dev_id);
2150 			if (err)
2151 				return err;
2152 
2153 			msc->reenable_error_ppi = irq;
2154 			smp_call_function_many(&msc->accessibility,
2155 					       &_enable_percpu_irq, &irq,
2156 					       true);
2157 		} else {
2158 			err = devm_request_irq(&msc->pdev->dev, irq,
2159 					       &mpam_spi_handler, IRQF_SHARED,
2160 					       "mpam:msc:error", msc);
2161 			if (err)
2162 				return err;
2163 		}
2164 
2165 		mutex_lock(&msc->error_irq_lock);
2166 		msc->error_irq_req = true;
2167 		mpam_touch_msc(msc, mpam_enable_msc_ecr, msc);
2168 		msc->error_irq_hw_enabled = true;
2169 		mutex_unlock(&msc->error_irq_lock);
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 static void mpam_unregister_irqs(void)
2176 {
2177 	int irq;
2178 	struct mpam_msc *msc;
2179 
2180 	guard(cpus_read_lock)();
2181 	guard(srcu)(&mpam_srcu);
2182 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
2183 				 srcu_read_lock_held(&mpam_srcu)) {
2184 		irq = platform_get_irq_byname_optional(msc->pdev, "error");
2185 		if (irq <= 0)
2186 			continue;
2187 
2188 		mutex_lock(&msc->error_irq_lock);
2189 		if (msc->error_irq_hw_enabled) {
2190 			mpam_touch_msc(msc, mpam_disable_msc_ecr, msc);
2191 			msc->error_irq_hw_enabled = false;
2192 		}
2193 
2194 		if (msc->error_irq_req) {
2195 			if (irq_is_percpu(irq)) {
2196 				msc->reenable_error_ppi = 0;
2197 				free_percpu_irq(irq, msc->error_dev_id);
2198 			} else {
2199 				devm_free_irq(&msc->pdev->dev, irq, msc);
2200 			}
2201 			msc->error_irq_req = false;
2202 		}
2203 		mutex_unlock(&msc->error_irq_lock);
2204 	}
2205 }
2206 
2207 static void __destroy_component_cfg(struct mpam_component *comp)
2208 {
2209 	struct mpam_msc *msc;
2210 	struct mpam_vmsc *vmsc;
2211 	struct mpam_msc_ris *ris;
2212 
2213 	lockdep_assert_held(&mpam_list_lock);
2214 
2215 	add_to_garbage(comp->cfg);
2216 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
2217 		msc = vmsc->msc;
2218 
2219 		if (mpam_mon_sel_lock(msc)) {
2220 			list_for_each_entry(ris, &vmsc->ris, vmsc_list)
2221 				add_to_garbage(ris->mbwu_state);
2222 			mpam_mon_sel_unlock(msc);
2223 		}
2224 	}
2225 }
2226 
2227 static void mpam_reset_component_cfg(struct mpam_component *comp)
2228 {
2229 	int i;
2230 	struct mpam_props *cprops = &comp->class->props;
2231 
2232 	mpam_assert_partid_sizes_fixed();
2233 
2234 	if (!comp->cfg)
2235 		return;
2236 
2237 	for (i = 0; i <= mpam_partid_max; i++) {
2238 		comp->cfg[i] = (struct mpam_config) {};
2239 		if (cprops->cpbm_wd)
2240 			comp->cfg[i].cpbm = GENMASK(cprops->cpbm_wd - 1, 0);
2241 		if (cprops->mbw_pbm_bits)
2242 			comp->cfg[i].mbw_pbm = GENMASK(cprops->mbw_pbm_bits - 1, 0);
2243 		if (cprops->bwa_wd)
2244 			comp->cfg[i].mbw_max = GENMASK(15, 16 - cprops->bwa_wd);
2245 	}
2246 }
2247 
2248 static int __allocate_component_cfg(struct mpam_component *comp)
2249 {
2250 	struct mpam_vmsc *vmsc;
2251 
2252 	mpam_assert_partid_sizes_fixed();
2253 
2254 	if (comp->cfg)
2255 		return 0;
2256 
2257 	comp->cfg = kcalloc(mpam_partid_max + 1, sizeof(*comp->cfg), GFP_KERNEL);
2258 	if (!comp->cfg)
2259 		return -ENOMEM;
2260 
2261 	/*
2262 	 * The array is free()d in one go, so only cfg[0]'s structure needs
2263 	 * to be initialised.
2264 	 */
2265 	init_garbage(&comp->cfg[0].garbage);
2266 
2267 	mpam_reset_component_cfg(comp);
2268 
2269 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
2270 		struct mpam_msc *msc;
2271 		struct mpam_msc_ris *ris;
2272 		struct msmon_mbwu_state *mbwu_state;
2273 
2274 		if (!vmsc->props.num_mbwu_mon)
2275 			continue;
2276 
2277 		msc = vmsc->msc;
2278 		list_for_each_entry(ris, &vmsc->ris, vmsc_list) {
2279 			if (!ris->props.num_mbwu_mon)
2280 				continue;
2281 
2282 			mbwu_state = kcalloc(ris->props.num_mbwu_mon,
2283 					     sizeof(*ris->mbwu_state),
2284 					     GFP_KERNEL);
2285 			if (!mbwu_state) {
2286 				__destroy_component_cfg(comp);
2287 				return -ENOMEM;
2288 			}
2289 
2290 			init_garbage(&mbwu_state[0].garbage);
2291 
2292 			if (mpam_mon_sel_lock(msc)) {
2293 				ris->mbwu_state = mbwu_state;
2294 				mpam_mon_sel_unlock(msc);
2295 			}
2296 		}
2297 	}
2298 
2299 	return 0;
2300 }
2301 
2302 static int mpam_allocate_config(void)
2303 {
2304 	struct mpam_class *class;
2305 	struct mpam_component *comp;
2306 
2307 	lockdep_assert_held(&mpam_list_lock);
2308 
2309 	list_for_each_entry(class, &mpam_classes, classes_list) {
2310 		list_for_each_entry(comp, &class->components, class_list) {
2311 			int err = __allocate_component_cfg(comp);
2312 			if (err)
2313 				return err;
2314 		}
2315 	}
2316 
2317 	return 0;
2318 }
2319 
2320 static void mpam_enable_once(void)
2321 {
2322 	int err;
2323 
2324 	/*
2325 	 * Once the cpuhp callbacks have been changed, mpam_partid_max can no
2326 	 * longer change.
2327 	 */
2328 	spin_lock(&partid_max_lock);
2329 	partid_max_published = true;
2330 	spin_unlock(&partid_max_lock);
2331 
2332 	/*
2333 	 * If all the MSC have been probed, enabling the IRQs happens next.
2334 	 * That involves cross-calling to a CPU that can reach the MSC, and
2335 	 * the locks must be taken in this order:
2336 	 */
2337 	cpus_read_lock();
2338 	mutex_lock(&mpam_list_lock);
2339 	do {
2340 		mpam_enable_merge_features(&mpam_classes);
2341 
2342 		err = mpam_register_irqs();
2343 		if (err) {
2344 			pr_warn("Failed to register irqs: %d\n", err);
2345 			break;
2346 		}
2347 
2348 		err = mpam_allocate_config();
2349 		if (err) {
2350 			pr_err("Failed to allocate configuration arrays.\n");
2351 			break;
2352 		}
2353 	} while (0);
2354 	mutex_unlock(&mpam_list_lock);
2355 	cpus_read_unlock();
2356 
2357 	if (err) {
2358 		mpam_disable_reason = "Failed to enable.";
2359 		schedule_work(&mpam_broken_work);
2360 		return;
2361 	}
2362 
2363 	static_branch_enable(&mpam_enabled);
2364 	mpam_register_cpuhp_callbacks(mpam_cpu_online, mpam_cpu_offline,
2365 				      "mpam:online");
2366 
2367 	/* Use printk() to avoid the pr_fmt adding the function name. */
2368 	printk(KERN_INFO "MPAM enabled with %u PARTIDs and %u PMGs\n",
2369 	       mpam_partid_max + 1, mpam_pmg_max + 1);
2370 }
2371 
2372 static void mpam_reset_component_locked(struct mpam_component *comp)
2373 {
2374 	struct mpam_vmsc *vmsc;
2375 
2376 	lockdep_assert_cpus_held();
2377 	mpam_assert_partid_sizes_fixed();
2378 
2379 	mpam_reset_component_cfg(comp);
2380 
2381 	guard(srcu)(&mpam_srcu);
2382 	list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list,
2383 				 srcu_read_lock_held(&mpam_srcu)) {
2384 		struct mpam_msc *msc = vmsc->msc;
2385 		struct mpam_msc_ris *ris;
2386 
2387 		list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list,
2388 					 srcu_read_lock_held(&mpam_srcu)) {
2389 			if (!ris->in_reset_state)
2390 				mpam_touch_msc(msc, mpam_reset_ris, ris);
2391 			ris->in_reset_state = true;
2392 		}
2393 	}
2394 }
2395 
2396 static void mpam_reset_class_locked(struct mpam_class *class)
2397 {
2398 	struct mpam_component *comp;
2399 
2400 	lockdep_assert_cpus_held();
2401 
2402 	guard(srcu)(&mpam_srcu);
2403 	list_for_each_entry_srcu(comp, &class->components, class_list,
2404 				 srcu_read_lock_held(&mpam_srcu))
2405 		mpam_reset_component_locked(comp);
2406 }
2407 
2408 static void mpam_reset_class(struct mpam_class *class)
2409 {
2410 	cpus_read_lock();
2411 	mpam_reset_class_locked(class);
2412 	cpus_read_unlock();
2413 }
2414 
2415 /*
2416  * Called in response to an error IRQ.
2417  * All of MPAMs errors indicate a software bug, restore any modified
2418  * controls to their reset values.
2419  */
2420 void mpam_disable(struct work_struct *ignored)
2421 {
2422 	int idx;
2423 	struct mpam_class *class;
2424 	struct mpam_msc *msc, *tmp;
2425 
2426 	mutex_lock(&mpam_cpuhp_state_lock);
2427 	if (mpam_cpuhp_state) {
2428 		cpuhp_remove_state(mpam_cpuhp_state);
2429 		mpam_cpuhp_state = 0;
2430 	}
2431 	mutex_unlock(&mpam_cpuhp_state_lock);
2432 
2433 	static_branch_disable(&mpam_enabled);
2434 
2435 	mpam_unregister_irqs();
2436 
2437 	idx = srcu_read_lock(&mpam_srcu);
2438 	list_for_each_entry_srcu(class, &mpam_classes, classes_list,
2439 				 srcu_read_lock_held(&mpam_srcu))
2440 		mpam_reset_class(class);
2441 	srcu_read_unlock(&mpam_srcu, idx);
2442 
2443 	mutex_lock(&mpam_list_lock);
2444 	list_for_each_entry_safe(msc, tmp, &mpam_all_msc, all_msc_list)
2445 		mpam_msc_destroy(msc);
2446 	mutex_unlock(&mpam_list_lock);
2447 	mpam_free_garbage();
2448 
2449 	pr_err_once("MPAM disabled due to %s\n", mpam_disable_reason);
2450 }
2451 
2452 /*
2453  * Enable mpam once all devices have been probed.
2454  * Scheduled by mpam_discovery_cpu_online() once all devices have been created.
2455  * Also scheduled when new devices are probed when new CPUs come online.
2456  */
2457 void mpam_enable(struct work_struct *work)
2458 {
2459 	static atomic_t once;
2460 	struct mpam_msc *msc;
2461 	bool all_devices_probed = true;
2462 
2463 	/* Have we probed all the hw devices? */
2464 	guard(srcu)(&mpam_srcu);
2465 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
2466 				 srcu_read_lock_held(&mpam_srcu)) {
2467 		mutex_lock(&msc->probe_lock);
2468 		if (!msc->probed)
2469 			all_devices_probed = false;
2470 		mutex_unlock(&msc->probe_lock);
2471 
2472 		if (!all_devices_probed)
2473 			break;
2474 	}
2475 
2476 	if (all_devices_probed && !atomic_fetch_inc(&once))
2477 		mpam_enable_once();
2478 }
2479 
2480 #define maybe_update_config(cfg, feature, newcfg, member, changes) do { \
2481 	if (mpam_has_feature(feature, newcfg) &&			\
2482 	    (newcfg)->member != (cfg)->member) {			\
2483 		(cfg)->member = (newcfg)->member;			\
2484 		mpam_set_feature(feature, cfg);				\
2485 									\
2486 		(changes) = true;					\
2487 	}								\
2488 } while (0)
2489 
2490 static bool mpam_update_config(struct mpam_config *cfg,
2491 			       const struct mpam_config *newcfg)
2492 {
2493 	bool has_changes = false;
2494 
2495 	maybe_update_config(cfg, mpam_feat_cpor_part, newcfg, cpbm, has_changes);
2496 	maybe_update_config(cfg, mpam_feat_mbw_part, newcfg, mbw_pbm, has_changes);
2497 	maybe_update_config(cfg, mpam_feat_mbw_max, newcfg, mbw_max, has_changes);
2498 
2499 	return has_changes;
2500 }
2501 
2502 int mpam_apply_config(struct mpam_component *comp, u16 partid,
2503 		      struct mpam_config *cfg)
2504 {
2505 	struct mpam_write_config_arg arg;
2506 	struct mpam_msc_ris *ris;
2507 	struct mpam_vmsc *vmsc;
2508 	struct mpam_msc *msc;
2509 
2510 	lockdep_assert_cpus_held();
2511 
2512 	/* Don't pass in the current config! */
2513 	WARN_ON_ONCE(&comp->cfg[partid] == cfg);
2514 
2515 	if (!mpam_update_config(&comp->cfg[partid], cfg))
2516 		return 0;
2517 
2518 	arg.comp = comp;
2519 	arg.partid = partid;
2520 
2521 	guard(srcu)(&mpam_srcu);
2522 	list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list,
2523 				 srcu_read_lock_held(&mpam_srcu)) {
2524 		msc = vmsc->msc;
2525 
2526 		mutex_lock(&msc->cfg_lock);
2527 		list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list,
2528 					 srcu_read_lock_held(&mpam_srcu)) {
2529 			arg.ris = ris;
2530 			mpam_touch_msc(msc, __write_config, &arg);
2531 		}
2532 		mutex_unlock(&msc->cfg_lock);
2533 	}
2534 
2535 	return 0;
2536 }
2537 
2538 static int __init mpam_msc_driver_init(void)
2539 {
2540 	if (!system_supports_mpam())
2541 		return -EOPNOTSUPP;
2542 
2543 	init_srcu_struct(&mpam_srcu);
2544 
2545 	fw_num_msc = acpi_mpam_count_msc();
2546 	if (fw_num_msc <= 0) {
2547 		pr_err("No MSC devices found in firmware\n");
2548 		return -EINVAL;
2549 	}
2550 
2551 	return platform_driver_register(&mpam_msc_driver);
2552 }
2553 
2554 /* Must occur after arm64_mpam_register_cpus() from arch_initcall() */
2555 subsys_initcall(mpam_msc_driver_init);
2556