xref: /linux/drivers/resctrl/mpam_devices.c (revision 41e8a14950e1732af51cfec8fa09f8ded02a5ca9)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2025 Arm Ltd.
3 
4 #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__
5 
6 #include <linux/acpi.h>
7 #include <linux/atomic.h>
8 #include <linux/arm_mpam.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cacheinfo.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/device.h>
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/irqdesc.h>
20 #include <linux/list.h>
21 #include <linux/lockdep.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/printk.h>
25 #include <linux/srcu.h>
26 #include <linux/spinlock.h>
27 #include <linux/types.h>
28 #include <linux/workqueue.h>
29 
30 #include "mpam_internal.h"
31 
32 DEFINE_STATIC_KEY_FALSE(mpam_enabled); /* This moves to arch code */
33 
34 /*
35  * mpam_list_lock protects the SRCU lists when writing. Once the
36  * mpam_enabled key is enabled these lists are read-only,
37  * unless the error interrupt disables the driver.
38  */
39 static DEFINE_MUTEX(mpam_list_lock);
40 static LIST_HEAD(mpam_all_msc);
41 
42 struct srcu_struct mpam_srcu;
43 
44 /*
45  * Number of MSCs that have been probed. Once all MSCs have been probed MPAM
46  * can be enabled.
47  */
48 static atomic_t mpam_num_msc;
49 
50 static int mpam_cpuhp_state;
51 static DEFINE_MUTEX(mpam_cpuhp_state_lock);
52 
53 /*
54  * The smallest common values for any CPU or MSC in the system.
55  * Generating traffic outside this range will result in screaming interrupts.
56  */
57 u16 mpam_partid_max;
58 u8 mpam_pmg_max;
59 static bool partid_max_init, partid_max_published;
60 static DEFINE_SPINLOCK(partid_max_lock);
61 
62 /*
63  * mpam is enabled once all devices have been probed from CPU online callbacks,
64  * scheduled via this work_struct. If access to an MSC depends on a CPU that
65  * was not brought online at boot, this can happen surprisingly late.
66  */
67 static DECLARE_WORK(mpam_enable_work, &mpam_enable);
68 
69 /*
70  * All mpam error interrupts indicate a software bug. On receipt, disable the
71  * driver.
72  */
73 static DECLARE_WORK(mpam_broken_work, &mpam_disable);
74 
75 /* When mpam is disabled, the printed reason to aid debugging */
76 static char *mpam_disable_reason;
77 
78 /*
79  * An MSC is a physical container for controls and monitors, each identified by
80  * their RIS index. These share a base-address, interrupts and some MMIO
81  * registers. A vMSC is a virtual container for RIS in an MSC that control or
82  * monitor the same thing. Members of a vMSC are all RIS in the same MSC, but
83  * not all RIS in an MSC share a vMSC.
84  *
85  * Components are a group of vMSC that control or monitor the same thing but
86  * are from different MSC, so have different base-address, interrupts etc.
87  * Classes are the set components of the same type.
88  *
89  * The features of a vMSC is the union of the RIS it contains.
90  * The features of a Class and Component are the common subset of the vMSC
91  * they contain.
92  *
93  * e.g. The system cache may have bandwidth controls on multiple interfaces,
94  * for regulating traffic from devices independently of traffic from CPUs.
95  * If these are two RIS in one MSC, they will be treated as controlling
96  * different things, and will not share a vMSC/component/class.
97  *
98  * e.g. The L2 may have one MSC and two RIS, one for cache-controls another
99  * for bandwidth. These two RIS are members of the same vMSC.
100  *
101  * e.g. The set of RIS that make up the L2 are grouped as a component. These
102  * are sometimes termed slices. They should be configured the same, as if there
103  * were only one.
104  *
105  * e.g. The SoC probably has more than one L2, each attached to a distinct set
106  * of CPUs. All the L2 components are grouped as a class.
107  *
108  * When creating an MSC, struct mpam_msc is added to the all mpam_all_msc list,
109  * then linked via struct mpam_ris to a vmsc, component and class.
110  * The same MSC may exist under different class->component->vmsc paths, but the
111  * RIS index will be unique.
112  */
113 LIST_HEAD(mpam_classes);
114 
115 /* List of all objects that can be free()d after synchronise_srcu() */
116 static LLIST_HEAD(mpam_garbage);
117 
118 static inline void init_garbage(struct mpam_garbage *garbage)
119 {
120 	init_llist_node(&garbage->llist);
121 }
122 
123 #define add_to_garbage(x)				\
124 do {							\
125 	__typeof__(x) _x = (x);				\
126 	_x->garbage.to_free = _x;			\
127 	llist_add(&_x->garbage.llist, &mpam_garbage);	\
128 } while (0)
129 
130 static void mpam_free_garbage(void)
131 {
132 	struct mpam_garbage *iter, *tmp;
133 	struct llist_node *to_free = llist_del_all(&mpam_garbage);
134 
135 	if (!to_free)
136 		return;
137 
138 	synchronize_srcu(&mpam_srcu);
139 
140 	llist_for_each_entry_safe(iter, tmp, to_free, llist) {
141 		if (iter->pdev)
142 			devm_kfree(&iter->pdev->dev, iter->to_free);
143 		else
144 			kfree(iter->to_free);
145 	}
146 }
147 
148 /*
149  * Once mpam is enabled, new requestors cannot further reduce the available
150  * partid. Assert that the size is fixed, and new requestors will be turned
151  * away.
152  */
153 static void mpam_assert_partid_sizes_fixed(void)
154 {
155 	WARN_ON_ONCE(!partid_max_published);
156 }
157 
158 static u32 __mpam_read_reg(struct mpam_msc *msc, u16 reg)
159 {
160 	WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility));
161 
162 	return readl_relaxed(msc->mapped_hwpage + reg);
163 }
164 
165 static inline u32 _mpam_read_partsel_reg(struct mpam_msc *msc, u16 reg)
166 {
167 	lockdep_assert_held_once(&msc->part_sel_lock);
168 	return __mpam_read_reg(msc, reg);
169 }
170 
171 #define mpam_read_partsel_reg(msc, reg) _mpam_read_partsel_reg(msc, MPAMF_##reg)
172 
173 static void __mpam_write_reg(struct mpam_msc *msc, u16 reg, u32 val)
174 {
175 	WARN_ON_ONCE(reg + sizeof(u32) > msc->mapped_hwpage_sz);
176 	WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility));
177 
178 	writel_relaxed(val, msc->mapped_hwpage + reg);
179 }
180 
181 static inline void _mpam_write_partsel_reg(struct mpam_msc *msc, u16 reg, u32 val)
182 {
183 	lockdep_assert_held_once(&msc->part_sel_lock);
184 	__mpam_write_reg(msc, reg, val);
185 }
186 
187 #define mpam_write_partsel_reg(msc, reg, val)  _mpam_write_partsel_reg(msc, MPAMCFG_##reg, val)
188 
189 static inline u32 _mpam_read_monsel_reg(struct mpam_msc *msc, u16 reg)
190 {
191 	mpam_mon_sel_lock_held(msc);
192 	return __mpam_read_reg(msc, reg);
193 }
194 
195 #define mpam_read_monsel_reg(msc, reg) _mpam_read_monsel_reg(msc, MSMON_##reg)
196 
197 static inline void _mpam_write_monsel_reg(struct mpam_msc *msc, u16 reg, u32 val)
198 {
199 	mpam_mon_sel_lock_held(msc);
200 	__mpam_write_reg(msc, reg, val);
201 }
202 
203 #define mpam_write_monsel_reg(msc, reg, val)   _mpam_write_monsel_reg(msc, MSMON_##reg, val)
204 
205 static u64 mpam_msc_read_idr(struct mpam_msc *msc)
206 {
207 	u64 idr_high = 0, idr_low;
208 
209 	lockdep_assert_held(&msc->part_sel_lock);
210 
211 	idr_low = mpam_read_partsel_reg(msc, IDR);
212 	if (FIELD_GET(MPAMF_IDR_EXT, idr_low))
213 		idr_high = mpam_read_partsel_reg(msc, IDR + 4);
214 
215 	return (idr_high << 32) | idr_low;
216 }
217 
218 static void mpam_msc_clear_esr(struct mpam_msc *msc)
219 {
220 	u64 esr_low = __mpam_read_reg(msc, MPAMF_ESR);
221 
222 	if (!esr_low)
223 		return;
224 
225 	/*
226 	 * Clearing the high/low bits of MPAMF_ESR can not be atomic.
227 	 * Clear the top half first, so that the pending error bits in the
228 	 * lower half prevent hardware from updating either half of the
229 	 * register.
230 	 */
231 	if (msc->has_extd_esr)
232 		__mpam_write_reg(msc, MPAMF_ESR + 4, 0);
233 	__mpam_write_reg(msc, MPAMF_ESR, 0);
234 }
235 
236 static u64 mpam_msc_read_esr(struct mpam_msc *msc)
237 {
238 	u64 esr_high = 0, esr_low;
239 
240 	esr_low = __mpam_read_reg(msc, MPAMF_ESR);
241 	if (msc->has_extd_esr)
242 		esr_high = __mpam_read_reg(msc, MPAMF_ESR + 4);
243 
244 	return (esr_high << 32) | esr_low;
245 }
246 
247 static void __mpam_part_sel_raw(u32 partsel, struct mpam_msc *msc)
248 {
249 	lockdep_assert_held(&msc->part_sel_lock);
250 
251 	mpam_write_partsel_reg(msc, PART_SEL, partsel);
252 }
253 
254 static void __mpam_part_sel(u8 ris_idx, u16 partid, struct mpam_msc *msc)
255 {
256 	u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) |
257 		      FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, partid);
258 
259 	__mpam_part_sel_raw(partsel, msc);
260 }
261 
262 static void __mpam_intpart_sel(u8 ris_idx, u16 intpartid, struct mpam_msc *msc)
263 {
264 	u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) |
265 		      FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, intpartid) |
266 		      MPAMCFG_PART_SEL_INTERNAL;
267 
268 	__mpam_part_sel_raw(partsel, msc);
269 }
270 
271 int mpam_register_requestor(u16 partid_max, u8 pmg_max)
272 {
273 	guard(spinlock)(&partid_max_lock);
274 	if (!partid_max_init) {
275 		mpam_partid_max = partid_max;
276 		mpam_pmg_max = pmg_max;
277 		partid_max_init = true;
278 	} else if (!partid_max_published) {
279 		mpam_partid_max = min(mpam_partid_max, partid_max);
280 		mpam_pmg_max = min(mpam_pmg_max, pmg_max);
281 	} else {
282 		/* New requestors can't lower the values */
283 		if (partid_max < mpam_partid_max || pmg_max < mpam_pmg_max)
284 			return -EBUSY;
285 	}
286 
287 	return 0;
288 }
289 EXPORT_SYMBOL(mpam_register_requestor);
290 
291 static struct mpam_class *
292 mpam_class_alloc(u8 level_idx, enum mpam_class_types type)
293 {
294 	struct mpam_class *class;
295 
296 	lockdep_assert_held(&mpam_list_lock);
297 
298 	class = kzalloc(sizeof(*class), GFP_KERNEL);
299 	if (!class)
300 		return ERR_PTR(-ENOMEM);
301 	init_garbage(&class->garbage);
302 
303 	INIT_LIST_HEAD_RCU(&class->components);
304 	/* Affinity is updated when ris are added */
305 	class->level = level_idx;
306 	class->type = type;
307 	INIT_LIST_HEAD_RCU(&class->classes_list);
308 	ida_init(&class->ida_csu_mon);
309 	ida_init(&class->ida_mbwu_mon);
310 
311 	list_add_rcu(&class->classes_list, &mpam_classes);
312 
313 	return class;
314 }
315 
316 static void mpam_class_destroy(struct mpam_class *class)
317 {
318 	lockdep_assert_held(&mpam_list_lock);
319 
320 	list_del_rcu(&class->classes_list);
321 	add_to_garbage(class);
322 }
323 
324 static struct mpam_class *
325 mpam_class_find(u8 level_idx, enum mpam_class_types type)
326 {
327 	struct mpam_class *class;
328 
329 	lockdep_assert_held(&mpam_list_lock);
330 
331 	list_for_each_entry(class, &mpam_classes, classes_list) {
332 		if (class->type == type && class->level == level_idx)
333 			return class;
334 	}
335 
336 	return mpam_class_alloc(level_idx, type);
337 }
338 
339 static struct mpam_component *
340 mpam_component_alloc(struct mpam_class *class, int id)
341 {
342 	struct mpam_component *comp;
343 
344 	lockdep_assert_held(&mpam_list_lock);
345 
346 	comp = kzalloc(sizeof(*comp), GFP_KERNEL);
347 	if (!comp)
348 		return ERR_PTR(-ENOMEM);
349 	init_garbage(&comp->garbage);
350 
351 	comp->comp_id = id;
352 	INIT_LIST_HEAD_RCU(&comp->vmsc);
353 	/* Affinity is updated when RIS are added */
354 	INIT_LIST_HEAD_RCU(&comp->class_list);
355 	comp->class = class;
356 
357 	list_add_rcu(&comp->class_list, &class->components);
358 
359 	return comp;
360 }
361 
362 static void __destroy_component_cfg(struct mpam_component *comp);
363 
364 static void mpam_component_destroy(struct mpam_component *comp)
365 {
366 	struct mpam_class *class = comp->class;
367 
368 	lockdep_assert_held(&mpam_list_lock);
369 
370 	__destroy_component_cfg(comp);
371 
372 	list_del_rcu(&comp->class_list);
373 	add_to_garbage(comp);
374 
375 	if (list_empty(&class->components))
376 		mpam_class_destroy(class);
377 }
378 
379 static struct mpam_component *
380 mpam_component_find(struct mpam_class *class, int id)
381 {
382 	struct mpam_component *comp;
383 
384 	lockdep_assert_held(&mpam_list_lock);
385 
386 	list_for_each_entry(comp, &class->components, class_list) {
387 		if (comp->comp_id == id)
388 			return comp;
389 	}
390 
391 	return mpam_component_alloc(class, id);
392 }
393 
394 static struct mpam_vmsc *
395 mpam_vmsc_alloc(struct mpam_component *comp, struct mpam_msc *msc)
396 {
397 	struct mpam_vmsc *vmsc;
398 
399 	lockdep_assert_held(&mpam_list_lock);
400 
401 	vmsc = kzalloc(sizeof(*vmsc), GFP_KERNEL);
402 	if (!vmsc)
403 		return ERR_PTR(-ENOMEM);
404 	init_garbage(&vmsc->garbage);
405 
406 	INIT_LIST_HEAD_RCU(&vmsc->ris);
407 	INIT_LIST_HEAD_RCU(&vmsc->comp_list);
408 	vmsc->comp = comp;
409 	vmsc->msc = msc;
410 
411 	list_add_rcu(&vmsc->comp_list, &comp->vmsc);
412 
413 	return vmsc;
414 }
415 
416 static void mpam_vmsc_destroy(struct mpam_vmsc *vmsc)
417 {
418 	struct mpam_component *comp = vmsc->comp;
419 
420 	lockdep_assert_held(&mpam_list_lock);
421 
422 	list_del_rcu(&vmsc->comp_list);
423 	add_to_garbage(vmsc);
424 
425 	if (list_empty(&comp->vmsc))
426 		mpam_component_destroy(comp);
427 }
428 
429 static struct mpam_vmsc *
430 mpam_vmsc_find(struct mpam_component *comp, struct mpam_msc *msc)
431 {
432 	struct mpam_vmsc *vmsc;
433 
434 	lockdep_assert_held(&mpam_list_lock);
435 
436 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
437 		if (vmsc->msc->id == msc->id)
438 			return vmsc;
439 	}
440 
441 	return mpam_vmsc_alloc(comp, msc);
442 }
443 
444 /*
445  * The cacheinfo structures are only populated when CPUs are online.
446  * This helper walks the acpi tables to include offline CPUs too.
447  */
448 int mpam_get_cpumask_from_cache_id(unsigned long cache_id, u32 cache_level,
449 				   cpumask_t *affinity)
450 {
451 	return acpi_pptt_get_cpumask_from_cache_id(cache_id, affinity);
452 }
453 
454 /*
455  * cpumask_of_node() only knows about online CPUs. This can't tell us whether
456  * a class is represented on all possible CPUs.
457  */
458 static void get_cpumask_from_node_id(u32 node_id, cpumask_t *affinity)
459 {
460 	int cpu;
461 
462 	for_each_possible_cpu(cpu) {
463 		if (node_id == cpu_to_node(cpu))
464 			cpumask_set_cpu(cpu, affinity);
465 	}
466 }
467 
468 static int mpam_ris_get_affinity(struct mpam_msc *msc, cpumask_t *affinity,
469 				 enum mpam_class_types type,
470 				 struct mpam_class *class,
471 				 struct mpam_component *comp)
472 {
473 	int err;
474 
475 	switch (type) {
476 	case MPAM_CLASS_CACHE:
477 		err = mpam_get_cpumask_from_cache_id(comp->comp_id, class->level,
478 						     affinity);
479 		if (err) {
480 			dev_warn_once(&msc->pdev->dev,
481 				      "Failed to determine CPU affinity\n");
482 			return err;
483 		}
484 
485 		if (cpumask_empty(affinity))
486 			dev_warn_once(&msc->pdev->dev, "no CPUs associated with cache node\n");
487 
488 		break;
489 	case MPAM_CLASS_MEMORY:
490 		get_cpumask_from_node_id(comp->comp_id, affinity);
491 		/* affinity may be empty for CPU-less memory nodes */
492 		break;
493 	case MPAM_CLASS_UNKNOWN:
494 		return 0;
495 	}
496 
497 	cpumask_and(affinity, affinity, &msc->accessibility);
498 
499 	return 0;
500 }
501 
502 static int mpam_ris_create_locked(struct mpam_msc *msc, u8 ris_idx,
503 				  enum mpam_class_types type, u8 class_id,
504 				  int component_id)
505 {
506 	int err;
507 	struct mpam_vmsc *vmsc;
508 	struct mpam_msc_ris *ris;
509 	struct mpam_class *class;
510 	struct mpam_component *comp;
511 	struct platform_device *pdev = msc->pdev;
512 
513 	lockdep_assert_held(&mpam_list_lock);
514 
515 	if (ris_idx > MPAM_MSC_MAX_NUM_RIS)
516 		return -EINVAL;
517 
518 	if (test_and_set_bit(ris_idx, &msc->ris_idxs))
519 		return -EBUSY;
520 
521 	ris = devm_kzalloc(&msc->pdev->dev, sizeof(*ris), GFP_KERNEL);
522 	if (!ris)
523 		return -ENOMEM;
524 	init_garbage(&ris->garbage);
525 	ris->garbage.pdev = pdev;
526 
527 	class = mpam_class_find(class_id, type);
528 	if (IS_ERR(class))
529 		return PTR_ERR(class);
530 
531 	comp = mpam_component_find(class, component_id);
532 	if (IS_ERR(comp)) {
533 		if (list_empty(&class->components))
534 			mpam_class_destroy(class);
535 		return PTR_ERR(comp);
536 	}
537 
538 	vmsc = mpam_vmsc_find(comp, msc);
539 	if (IS_ERR(vmsc)) {
540 		if (list_empty(&comp->vmsc))
541 			mpam_component_destroy(comp);
542 		return PTR_ERR(vmsc);
543 	}
544 
545 	err = mpam_ris_get_affinity(msc, &ris->affinity, type, class, comp);
546 	if (err) {
547 		if (list_empty(&vmsc->ris))
548 			mpam_vmsc_destroy(vmsc);
549 		return err;
550 	}
551 
552 	ris->ris_idx = ris_idx;
553 	INIT_LIST_HEAD_RCU(&ris->msc_list);
554 	INIT_LIST_HEAD_RCU(&ris->vmsc_list);
555 	ris->vmsc = vmsc;
556 
557 	cpumask_or(&comp->affinity, &comp->affinity, &ris->affinity);
558 	cpumask_or(&class->affinity, &class->affinity, &ris->affinity);
559 	list_add_rcu(&ris->vmsc_list, &vmsc->ris);
560 	list_add_rcu(&ris->msc_list, &msc->ris);
561 
562 	return 0;
563 }
564 
565 static void mpam_ris_destroy(struct mpam_msc_ris *ris)
566 {
567 	struct mpam_vmsc *vmsc = ris->vmsc;
568 	struct mpam_msc *msc = vmsc->msc;
569 	struct mpam_component *comp = vmsc->comp;
570 	struct mpam_class *class = comp->class;
571 
572 	lockdep_assert_held(&mpam_list_lock);
573 
574 	/*
575 	 * It is assumed affinities don't overlap. If they do the class becomes
576 	 * unusable immediately.
577 	 */
578 	cpumask_andnot(&class->affinity, &class->affinity, &ris->affinity);
579 	cpumask_andnot(&comp->affinity, &comp->affinity, &ris->affinity);
580 	clear_bit(ris->ris_idx, &msc->ris_idxs);
581 	list_del_rcu(&ris->msc_list);
582 	list_del_rcu(&ris->vmsc_list);
583 	add_to_garbage(ris);
584 
585 	if (list_empty(&vmsc->ris))
586 		mpam_vmsc_destroy(vmsc);
587 }
588 
589 int mpam_ris_create(struct mpam_msc *msc, u8 ris_idx,
590 		    enum mpam_class_types type, u8 class_id, int component_id)
591 {
592 	int err;
593 
594 	mutex_lock(&mpam_list_lock);
595 	err = mpam_ris_create_locked(msc, ris_idx, type, class_id,
596 				     component_id);
597 	mutex_unlock(&mpam_list_lock);
598 	if (err)
599 		mpam_free_garbage();
600 
601 	return err;
602 }
603 
604 static struct mpam_msc_ris *mpam_get_or_create_ris(struct mpam_msc *msc,
605 						   u8 ris_idx)
606 {
607 	int err;
608 	struct mpam_msc_ris *ris;
609 
610 	lockdep_assert_held(&mpam_list_lock);
611 
612 	if (!test_bit(ris_idx, &msc->ris_idxs)) {
613 		err = mpam_ris_create_locked(msc, ris_idx, MPAM_CLASS_UNKNOWN,
614 					     0, 0);
615 		if (err)
616 			return ERR_PTR(err);
617 	}
618 
619 	list_for_each_entry(ris, &msc->ris, msc_list) {
620 		if (ris->ris_idx == ris_idx)
621 			return ris;
622 	}
623 
624 	return ERR_PTR(-ENOENT);
625 }
626 
627 /*
628  * IHI009A.a has this nugget: "If a monitor does not support automatic behaviour
629  * of NRDY, software can use this bit for any purpose" - so hardware might not
630  * implement this - but it isn't RES0.
631  *
632  * Try and see what values stick in this bit. If we can write either value,
633  * its probably not implemented by hardware.
634  */
635 static bool _mpam_ris_hw_probe_hw_nrdy(struct mpam_msc_ris *ris, u32 mon_reg)
636 {
637 	u32 now;
638 	u64 mon_sel;
639 	bool can_set, can_clear;
640 	struct mpam_msc *msc = ris->vmsc->msc;
641 
642 	if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc)))
643 		return false;
644 
645 	mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, 0) |
646 		  FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx);
647 	_mpam_write_monsel_reg(msc, mon_reg, mon_sel);
648 
649 	_mpam_write_monsel_reg(msc, mon_reg, MSMON___NRDY);
650 	now = _mpam_read_monsel_reg(msc, mon_reg);
651 	can_set = now & MSMON___NRDY;
652 
653 	_mpam_write_monsel_reg(msc, mon_reg, 0);
654 	now = _mpam_read_monsel_reg(msc, mon_reg);
655 	can_clear = !(now & MSMON___NRDY);
656 	mpam_mon_sel_unlock(msc);
657 
658 	return (!can_set || !can_clear);
659 }
660 
661 #define mpam_ris_hw_probe_hw_nrdy(_ris, _mon_reg)			\
662 	_mpam_ris_hw_probe_hw_nrdy(_ris, MSMON_##_mon_reg)
663 
664 static void mpam_ris_hw_probe(struct mpam_msc_ris *ris)
665 {
666 	int err;
667 	struct mpam_msc *msc = ris->vmsc->msc;
668 	struct device *dev = &msc->pdev->dev;
669 	struct mpam_props *props = &ris->props;
670 	struct mpam_class *class = ris->vmsc->comp->class;
671 
672 	lockdep_assert_held(&msc->probe_lock);
673 	lockdep_assert_held(&msc->part_sel_lock);
674 
675 	/* Cache Capacity Partitioning */
676 	if (FIELD_GET(MPAMF_IDR_HAS_CCAP_PART, ris->idr)) {
677 		u32 ccap_features = mpam_read_partsel_reg(msc, CCAP_IDR);
678 
679 		props->cmax_wd = FIELD_GET(MPAMF_CCAP_IDR_CMAX_WD, ccap_features);
680 		if (props->cmax_wd &&
681 		    FIELD_GET(MPAMF_CCAP_IDR_HAS_CMAX_SOFTLIM, ccap_features))
682 			mpam_set_feature(mpam_feat_cmax_softlim, props);
683 
684 		if (props->cmax_wd &&
685 		    !FIELD_GET(MPAMF_CCAP_IDR_NO_CMAX, ccap_features))
686 			mpam_set_feature(mpam_feat_cmax_cmax, props);
687 
688 		if (props->cmax_wd &&
689 		    FIELD_GET(MPAMF_CCAP_IDR_HAS_CMIN, ccap_features))
690 			mpam_set_feature(mpam_feat_cmax_cmin, props);
691 
692 		props->cassoc_wd = FIELD_GET(MPAMF_CCAP_IDR_CASSOC_WD, ccap_features);
693 		if (props->cassoc_wd &&
694 		    FIELD_GET(MPAMF_CCAP_IDR_HAS_CASSOC, ccap_features))
695 			mpam_set_feature(mpam_feat_cmax_cassoc, props);
696 	}
697 
698 	/* Cache Portion partitioning */
699 	if (FIELD_GET(MPAMF_IDR_HAS_CPOR_PART, ris->idr)) {
700 		u32 cpor_features = mpam_read_partsel_reg(msc, CPOR_IDR);
701 
702 		props->cpbm_wd = FIELD_GET(MPAMF_CPOR_IDR_CPBM_WD, cpor_features);
703 		if (props->cpbm_wd)
704 			mpam_set_feature(mpam_feat_cpor_part, props);
705 	}
706 
707 	/* Memory bandwidth partitioning */
708 	if (FIELD_GET(MPAMF_IDR_HAS_MBW_PART, ris->idr)) {
709 		u32 mbw_features = mpam_read_partsel_reg(msc, MBW_IDR);
710 
711 		/* portion bitmap resolution */
712 		props->mbw_pbm_bits = FIELD_GET(MPAMF_MBW_IDR_BWPBM_WD, mbw_features);
713 		if (props->mbw_pbm_bits &&
714 		    FIELD_GET(MPAMF_MBW_IDR_HAS_PBM, mbw_features))
715 			mpam_set_feature(mpam_feat_mbw_part, props);
716 
717 		props->bwa_wd = FIELD_GET(MPAMF_MBW_IDR_BWA_WD, mbw_features);
718 		if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MAX, mbw_features))
719 			mpam_set_feature(mpam_feat_mbw_max, props);
720 
721 		if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MIN, mbw_features))
722 			mpam_set_feature(mpam_feat_mbw_min, props);
723 
724 		if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_PROP, mbw_features))
725 			mpam_set_feature(mpam_feat_mbw_prop, props);
726 	}
727 
728 	/* Priority partitioning */
729 	if (FIELD_GET(MPAMF_IDR_HAS_PRI_PART, ris->idr)) {
730 		u32 pri_features = mpam_read_partsel_reg(msc, PRI_IDR);
731 
732 		props->intpri_wd = FIELD_GET(MPAMF_PRI_IDR_INTPRI_WD, pri_features);
733 		if (props->intpri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_INTPRI, pri_features)) {
734 			mpam_set_feature(mpam_feat_intpri_part, props);
735 			if (FIELD_GET(MPAMF_PRI_IDR_INTPRI_0_IS_LOW, pri_features))
736 				mpam_set_feature(mpam_feat_intpri_part_0_low, props);
737 		}
738 
739 		props->dspri_wd = FIELD_GET(MPAMF_PRI_IDR_DSPRI_WD, pri_features);
740 		if (props->dspri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_DSPRI, pri_features)) {
741 			mpam_set_feature(mpam_feat_dspri_part, props);
742 			if (FIELD_GET(MPAMF_PRI_IDR_DSPRI_0_IS_LOW, pri_features))
743 				mpam_set_feature(mpam_feat_dspri_part_0_low, props);
744 		}
745 	}
746 
747 	/* Performance Monitoring */
748 	if (FIELD_GET(MPAMF_IDR_HAS_MSMON, ris->idr)) {
749 		u32 msmon_features = mpam_read_partsel_reg(msc, MSMON_IDR);
750 
751 		/*
752 		 * If the firmware max-nrdy-us property is missing, the
753 		 * CSU counters can't be used. Should we wait forever?
754 		 */
755 		err = device_property_read_u32(&msc->pdev->dev,
756 					       "arm,not-ready-us",
757 					       &msc->nrdy_usec);
758 
759 		if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_CSU, msmon_features)) {
760 			u32 csumonidr;
761 
762 			csumonidr = mpam_read_partsel_reg(msc, CSUMON_IDR);
763 			props->num_csu_mon = FIELD_GET(MPAMF_CSUMON_IDR_NUM_MON, csumonidr);
764 			if (props->num_csu_mon) {
765 				bool hw_managed;
766 
767 				mpam_set_feature(mpam_feat_msmon_csu, props);
768 
769 				if (FIELD_GET(MPAMF_CSUMON_IDR_HAS_XCL, csumonidr))
770 					mpam_set_feature(mpam_feat_msmon_csu_xcl, props);
771 
772 				/* Is NRDY hardware managed? */
773 				hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, CSU);
774 				if (hw_managed)
775 					mpam_set_feature(mpam_feat_msmon_csu_hw_nrdy, props);
776 			}
777 
778 			/*
779 			 * Accept the missing firmware property if NRDY appears
780 			 * un-implemented.
781 			 */
782 			if (err && mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, props))
783 				dev_err_once(dev, "Counters are not usable because not-ready timeout was not provided by firmware.");
784 		}
785 		if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_MBWU, msmon_features)) {
786 			bool hw_managed;
787 			u32 mbwumon_idr = mpam_read_partsel_reg(msc, MBWUMON_IDR);
788 
789 			props->num_mbwu_mon = FIELD_GET(MPAMF_MBWUMON_IDR_NUM_MON, mbwumon_idr);
790 			if (props->num_mbwu_mon)
791 				mpam_set_feature(mpam_feat_msmon_mbwu, props);
792 
793 			if (FIELD_GET(MPAMF_MBWUMON_IDR_HAS_RWBW, mbwumon_idr))
794 				mpam_set_feature(mpam_feat_msmon_mbwu_rwbw, props);
795 
796 			/* Is NRDY hardware managed? */
797 			hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, MBWU);
798 			if (hw_managed)
799 				mpam_set_feature(mpam_feat_msmon_mbwu_hw_nrdy, props);
800 
801 			/*
802 			 * Don't warn about any missing firmware property for
803 			 * MBWU NRDY - it doesn't make any sense!
804 			 */
805 		}
806 	}
807 
808 	/*
809 	 * RIS with PARTID narrowing don't have enough storage for one
810 	 * configuration per PARTID. If these are in a class we could use,
811 	 * reduce the supported partid_max to match the number of intpartid.
812 	 * If the class is unknown, just ignore it.
813 	 */
814 	if (FIELD_GET(MPAMF_IDR_HAS_PARTID_NRW, ris->idr) &&
815 	    class->type != MPAM_CLASS_UNKNOWN) {
816 		u32 nrwidr = mpam_read_partsel_reg(msc, PARTID_NRW_IDR);
817 		u16 partid_max = FIELD_GET(MPAMF_PARTID_NRW_IDR_INTPARTID_MAX, nrwidr);
818 
819 		mpam_set_feature(mpam_feat_partid_nrw, props);
820 		msc->partid_max = min(msc->partid_max, partid_max);
821 	}
822 }
823 
824 static int mpam_msc_hw_probe(struct mpam_msc *msc)
825 {
826 	u64 idr;
827 	u16 partid_max;
828 	u8 ris_idx, pmg_max;
829 	struct mpam_msc_ris *ris;
830 	struct device *dev = &msc->pdev->dev;
831 
832 	lockdep_assert_held(&msc->probe_lock);
833 
834 	idr = __mpam_read_reg(msc, MPAMF_AIDR);
835 	if ((idr & MPAMF_AIDR_ARCH_MAJOR_REV) != MPAM_ARCHITECTURE_V1) {
836 		dev_err_once(dev, "MSC does not match MPAM architecture v1.x\n");
837 		return -EIO;
838 	}
839 
840 	/* Grab an IDR value to find out how many RIS there are */
841 	mutex_lock(&msc->part_sel_lock);
842 	idr = mpam_msc_read_idr(msc);
843 	mutex_unlock(&msc->part_sel_lock);
844 
845 	msc->ris_max = FIELD_GET(MPAMF_IDR_RIS_MAX, idr);
846 
847 	/* Use these values so partid/pmg always starts with a valid value */
848 	msc->partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr);
849 	msc->pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr);
850 
851 	for (ris_idx = 0; ris_idx <= msc->ris_max; ris_idx++) {
852 		mutex_lock(&msc->part_sel_lock);
853 		__mpam_part_sel(ris_idx, 0, msc);
854 		idr = mpam_msc_read_idr(msc);
855 		mutex_unlock(&msc->part_sel_lock);
856 
857 		partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr);
858 		pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr);
859 		msc->partid_max = min(msc->partid_max, partid_max);
860 		msc->pmg_max = min(msc->pmg_max, pmg_max);
861 		msc->has_extd_esr = FIELD_GET(MPAMF_IDR_HAS_EXTD_ESR, idr);
862 
863 		mutex_lock(&mpam_list_lock);
864 		ris = mpam_get_or_create_ris(msc, ris_idx);
865 		mutex_unlock(&mpam_list_lock);
866 		if (IS_ERR(ris))
867 			return PTR_ERR(ris);
868 		ris->idr = idr;
869 
870 		mutex_lock(&msc->part_sel_lock);
871 		__mpam_part_sel(ris_idx, 0, msc);
872 		mpam_ris_hw_probe(ris);
873 		mutex_unlock(&msc->part_sel_lock);
874 	}
875 
876 	/* Clear any stale errors */
877 	mpam_msc_clear_esr(msc);
878 
879 	spin_lock(&partid_max_lock);
880 	mpam_partid_max = min(mpam_partid_max, msc->partid_max);
881 	mpam_pmg_max = min(mpam_pmg_max, msc->pmg_max);
882 	spin_unlock(&partid_max_lock);
883 
884 	msc->probed = true;
885 
886 	return 0;
887 }
888 
889 struct mon_read {
890 	struct mpam_msc_ris		*ris;
891 	struct mon_cfg			*ctx;
892 	enum mpam_device_features	type;
893 	u64				*val;
894 	int				err;
895 };
896 
897 static void gen_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val,
898 				   u32 *flt_val)
899 {
900 	struct mon_cfg *ctx = m->ctx;
901 
902 	/*
903 	 * For CSU counters its implementation-defined what happens when not
904 	 * filtering by partid.
905 	 */
906 	*ctl_val = MSMON_CFG_x_CTL_MATCH_PARTID;
907 
908 	*flt_val = FIELD_PREP(MSMON_CFG_x_FLT_PARTID, ctx->partid);
909 
910 	if (m->ctx->match_pmg) {
911 		*ctl_val |= MSMON_CFG_x_CTL_MATCH_PMG;
912 		*flt_val |= FIELD_PREP(MSMON_CFG_x_FLT_PMG, ctx->pmg);
913 	}
914 
915 	switch (m->type) {
916 	case mpam_feat_msmon_csu:
917 		*ctl_val |= MSMON_CFG_CSU_CTL_TYPE_CSU;
918 
919 		if (mpam_has_feature(mpam_feat_msmon_csu_xcl, &m->ris->props))
920 			*flt_val |= FIELD_PREP(MSMON_CFG_CSU_FLT_XCL, ctx->csu_exclude_clean);
921 
922 		break;
923 	case mpam_feat_msmon_mbwu:
924 		*ctl_val |= MSMON_CFG_MBWU_CTL_TYPE_MBWU;
925 
926 		if (mpam_has_feature(mpam_feat_msmon_mbwu_rwbw, &m->ris->props))
927 			*flt_val |= FIELD_PREP(MSMON_CFG_MBWU_FLT_RWBW, ctx->opts);
928 
929 		break;
930 	default:
931 		pr_warn("Unexpected monitor type %d\n", m->type);
932 	}
933 }
934 
935 static void read_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val,
936 				    u32 *flt_val)
937 {
938 	struct mpam_msc *msc = m->ris->vmsc->msc;
939 
940 	switch (m->type) {
941 	case mpam_feat_msmon_csu:
942 		*ctl_val = mpam_read_monsel_reg(msc, CFG_CSU_CTL);
943 		*flt_val = mpam_read_monsel_reg(msc, CFG_CSU_FLT);
944 		break;
945 	case mpam_feat_msmon_mbwu:
946 		*ctl_val = mpam_read_monsel_reg(msc, CFG_MBWU_CTL);
947 		*flt_val = mpam_read_monsel_reg(msc, CFG_MBWU_FLT);
948 		break;
949 	default:
950 		pr_warn("Unexpected monitor type %d\n", m->type);
951 	}
952 }
953 
954 /* Remove values set by the hardware to prevent apparent mismatches. */
955 static inline void clean_msmon_ctl_val(u32 *cur_ctl)
956 {
957 	*cur_ctl &= ~MSMON_CFG_x_CTL_OFLOW_STATUS;
958 }
959 
960 static void write_msmon_ctl_flt_vals(struct mon_read *m, u32 ctl_val,
961 				     u32 flt_val)
962 {
963 	struct mpam_msc *msc = m->ris->vmsc->msc;
964 
965 	/*
966 	 * Write the ctl_val with the enable bit cleared, reset the counter,
967 	 * then enable counter.
968 	 */
969 	switch (m->type) {
970 	case mpam_feat_msmon_csu:
971 		mpam_write_monsel_reg(msc, CFG_CSU_FLT, flt_val);
972 		mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val);
973 		mpam_write_monsel_reg(msc, CSU, 0);
974 		mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val | MSMON_CFG_x_CTL_EN);
975 		break;
976 	case mpam_feat_msmon_mbwu:
977 		mpam_write_monsel_reg(msc, CFG_MBWU_FLT, flt_val);
978 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val);
979 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val | MSMON_CFG_x_CTL_EN);
980 		/* Counting monitors require NRDY to be reset by software */
981 		mpam_write_monsel_reg(msc, MBWU, 0);
982 		break;
983 	default:
984 		pr_warn("Unexpected monitor type %d\n", m->type);
985 	}
986 }
987 
988 static void __ris_msmon_read(void *arg)
989 {
990 	u64 now;
991 	bool nrdy = false;
992 	bool config_mismatch;
993 	struct mon_read *m = arg;
994 	struct mon_cfg *ctx = m->ctx;
995 	struct mpam_msc_ris *ris = m->ris;
996 	struct msmon_mbwu_state *mbwu_state;
997 	struct mpam_props *rprops = &ris->props;
998 	struct mpam_msc *msc = m->ris->vmsc->msc;
999 	u32 mon_sel, ctl_val, flt_val, cur_ctl, cur_flt;
1000 
1001 	if (!mpam_mon_sel_lock(msc)) {
1002 		m->err = -EIO;
1003 		return;
1004 	}
1005 	mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, ctx->mon) |
1006 		  FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx);
1007 	mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel);
1008 
1009 	/*
1010 	 * Read the existing configuration to avoid re-writing the same values.
1011 	 * This saves waiting for 'nrdy' on subsequent reads.
1012 	 */
1013 	read_msmon_ctl_flt_vals(m, &cur_ctl, &cur_flt);
1014 	clean_msmon_ctl_val(&cur_ctl);
1015 	gen_msmon_ctl_flt_vals(m, &ctl_val, &flt_val);
1016 	config_mismatch = cur_flt != flt_val ||
1017 			  cur_ctl != (ctl_val | MSMON_CFG_x_CTL_EN);
1018 
1019 	if (config_mismatch)
1020 		write_msmon_ctl_flt_vals(m, ctl_val, flt_val);
1021 
1022 	switch (m->type) {
1023 	case mpam_feat_msmon_csu:
1024 		now = mpam_read_monsel_reg(msc, CSU);
1025 		if (mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, rprops))
1026 			nrdy = now & MSMON___NRDY;
1027 		now = FIELD_GET(MSMON___VALUE, now);
1028 		break;
1029 	case mpam_feat_msmon_mbwu:
1030 		now = mpam_read_monsel_reg(msc, MBWU);
1031 		if (mpam_has_feature(mpam_feat_msmon_mbwu_hw_nrdy, rprops))
1032 			nrdy = now & MSMON___NRDY;
1033 		now = FIELD_GET(MSMON___VALUE, now);
1034 
1035 		if (nrdy)
1036 			break;
1037 
1038 		mbwu_state = &ris->mbwu_state[ctx->mon];
1039 
1040 		/* Include bandwidth consumed before the last hardware reset */
1041 		now += mbwu_state->correction;
1042 		break;
1043 	default:
1044 		m->err = -EINVAL;
1045 	}
1046 	mpam_mon_sel_unlock(msc);
1047 
1048 	if (nrdy) {
1049 		m->err = -EBUSY;
1050 		return;
1051 	}
1052 
1053 	*m->val += now;
1054 }
1055 
1056 static int _msmon_read(struct mpam_component *comp, struct mon_read *arg)
1057 {
1058 	int err, any_err = 0;
1059 	struct mpam_vmsc *vmsc;
1060 
1061 	guard(srcu)(&mpam_srcu);
1062 	list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list,
1063 				 srcu_read_lock_held(&mpam_srcu)) {
1064 		struct mpam_msc *msc = vmsc->msc;
1065 		struct mpam_msc_ris *ris;
1066 
1067 		list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list,
1068 					 srcu_read_lock_held(&mpam_srcu)) {
1069 			arg->ris = ris;
1070 
1071 			err = smp_call_function_any(&msc->accessibility,
1072 						    __ris_msmon_read, arg,
1073 						    true);
1074 			if (!err && arg->err)
1075 				err = arg->err;
1076 
1077 			/*
1078 			 * Save one error to be returned to the caller, but
1079 			 * keep reading counters so that get reprogrammed. On
1080 			 * platforms with NRDY this lets us wait once.
1081 			 */
1082 			if (err)
1083 				any_err = err;
1084 		}
1085 	}
1086 
1087 	return any_err;
1088 }
1089 
1090 int mpam_msmon_read(struct mpam_component *comp, struct mon_cfg *ctx,
1091 		    enum mpam_device_features type, u64 *val)
1092 {
1093 	int err;
1094 	struct mon_read arg;
1095 	u64 wait_jiffies = 0;
1096 	struct mpam_props *cprops = &comp->class->props;
1097 
1098 	might_sleep();
1099 
1100 	if (!mpam_is_enabled())
1101 		return -EIO;
1102 
1103 	if (!mpam_has_feature(type, cprops))
1104 		return -EOPNOTSUPP;
1105 
1106 	arg = (struct mon_read) {
1107 		.ctx = ctx,
1108 		.type = type,
1109 		.val = val,
1110 	};
1111 	*val = 0;
1112 
1113 	err = _msmon_read(comp, &arg);
1114 	if (err == -EBUSY && comp->class->nrdy_usec)
1115 		wait_jiffies = usecs_to_jiffies(comp->class->nrdy_usec);
1116 
1117 	while (wait_jiffies)
1118 		wait_jiffies = schedule_timeout_uninterruptible(wait_jiffies);
1119 
1120 	if (err == -EBUSY) {
1121 		arg = (struct mon_read) {
1122 			.ctx = ctx,
1123 			.type = type,
1124 			.val = val,
1125 		};
1126 		*val = 0;
1127 
1128 		err = _msmon_read(comp, &arg);
1129 	}
1130 
1131 	return err;
1132 }
1133 
1134 static void mpam_reset_msc_bitmap(struct mpam_msc *msc, u16 reg, u16 wd)
1135 {
1136 	u32 num_words, msb;
1137 	u32 bm = ~0;
1138 	int i;
1139 
1140 	lockdep_assert_held(&msc->part_sel_lock);
1141 
1142 	if (wd == 0)
1143 		return;
1144 
1145 	/*
1146 	 * Write all ~0 to all but the last 32bit-word, which may
1147 	 * have fewer bits...
1148 	 */
1149 	num_words = DIV_ROUND_UP(wd, 32);
1150 	for (i = 0; i < num_words - 1; i++, reg += sizeof(bm))
1151 		__mpam_write_reg(msc, reg, bm);
1152 
1153 	/*
1154 	 * ....and then the last (maybe) partial 32bit word. When wd is a
1155 	 * multiple of 32, msb should be 31 to write a full 32bit word.
1156 	 */
1157 	msb = (wd - 1) % 32;
1158 	bm = GENMASK(msb, 0);
1159 	__mpam_write_reg(msc, reg, bm);
1160 }
1161 
1162 /* Called via IPI. Call while holding an SRCU reference */
1163 static void mpam_reprogram_ris_partid(struct mpam_msc_ris *ris, u16 partid,
1164 				      struct mpam_config *cfg)
1165 {
1166 	u32 pri_val = 0;
1167 	u16 cmax = MPAMCFG_CMAX_CMAX;
1168 	struct mpam_msc *msc = ris->vmsc->msc;
1169 	struct mpam_props *rprops = &ris->props;
1170 	u16 dspri = GENMASK(rprops->dspri_wd, 0);
1171 	u16 intpri = GENMASK(rprops->intpri_wd, 0);
1172 
1173 	mutex_lock(&msc->part_sel_lock);
1174 	__mpam_part_sel(ris->ris_idx, partid, msc);
1175 
1176 	if (mpam_has_feature(mpam_feat_partid_nrw, rprops)) {
1177 		/* Update the intpartid mapping */
1178 		mpam_write_partsel_reg(msc, INTPARTID,
1179 				       MPAMCFG_INTPARTID_INTERNAL | partid);
1180 
1181 		/*
1182 		 * Then switch to the 'internal' partid to update the
1183 		 * configuration.
1184 		 */
1185 		__mpam_intpart_sel(ris->ris_idx, partid, msc);
1186 	}
1187 
1188 	if (mpam_has_feature(mpam_feat_cpor_part, rprops) &&
1189 	    mpam_has_feature(mpam_feat_cpor_part, cfg)) {
1190 		if (cfg->reset_cpbm)
1191 			mpam_reset_msc_bitmap(msc, MPAMCFG_CPBM, rprops->cpbm_wd);
1192 		else
1193 			mpam_write_partsel_reg(msc, CPBM, cfg->cpbm);
1194 	}
1195 
1196 	if (mpam_has_feature(mpam_feat_mbw_part, rprops) &&
1197 	    mpam_has_feature(mpam_feat_mbw_part, cfg)) {
1198 		if (cfg->reset_mbw_pbm)
1199 			mpam_reset_msc_bitmap(msc, MPAMCFG_MBW_PBM, rprops->mbw_pbm_bits);
1200 		else
1201 			mpam_write_partsel_reg(msc, MBW_PBM, cfg->mbw_pbm);
1202 	}
1203 
1204 	if (mpam_has_feature(mpam_feat_mbw_min, rprops) &&
1205 	    mpam_has_feature(mpam_feat_mbw_min, cfg))
1206 		mpam_write_partsel_reg(msc, MBW_MIN, 0);
1207 
1208 	if (mpam_has_feature(mpam_feat_mbw_max, rprops) &&
1209 	    mpam_has_feature(mpam_feat_mbw_max, cfg)) {
1210 		if (cfg->reset_mbw_max)
1211 			mpam_write_partsel_reg(msc, MBW_MAX, MPAMCFG_MBW_MAX_MAX);
1212 		else
1213 			mpam_write_partsel_reg(msc, MBW_MAX, cfg->mbw_max);
1214 	}
1215 
1216 	if (mpam_has_feature(mpam_feat_mbw_prop, rprops) &&
1217 	    mpam_has_feature(mpam_feat_mbw_prop, cfg))
1218 		mpam_write_partsel_reg(msc, MBW_PROP, 0);
1219 
1220 	if (mpam_has_feature(mpam_feat_cmax_cmax, rprops))
1221 		mpam_write_partsel_reg(msc, CMAX, cmax);
1222 
1223 	if (mpam_has_feature(mpam_feat_cmax_cmin, rprops))
1224 		mpam_write_partsel_reg(msc, CMIN, 0);
1225 
1226 	if (mpam_has_feature(mpam_feat_cmax_cassoc, rprops))
1227 		mpam_write_partsel_reg(msc, CASSOC, MPAMCFG_CASSOC_CASSOC);
1228 
1229 	if (mpam_has_feature(mpam_feat_intpri_part, rprops) ||
1230 	    mpam_has_feature(mpam_feat_dspri_part, rprops)) {
1231 		/* aces high? */
1232 		if (!mpam_has_feature(mpam_feat_intpri_part_0_low, rprops))
1233 			intpri = 0;
1234 		if (!mpam_has_feature(mpam_feat_dspri_part_0_low, rprops))
1235 			dspri = 0;
1236 
1237 		if (mpam_has_feature(mpam_feat_intpri_part, rprops))
1238 			pri_val |= FIELD_PREP(MPAMCFG_PRI_INTPRI, intpri);
1239 		if (mpam_has_feature(mpam_feat_dspri_part, rprops))
1240 			pri_val |= FIELD_PREP(MPAMCFG_PRI_DSPRI, dspri);
1241 
1242 		mpam_write_partsel_reg(msc, PRI, pri_val);
1243 	}
1244 
1245 	mutex_unlock(&msc->part_sel_lock);
1246 }
1247 
1248 /* Call with msc cfg_lock held */
1249 static int mpam_restore_mbwu_state(void *_ris)
1250 {
1251 	int i;
1252 	struct mon_read mwbu_arg;
1253 	struct mpam_msc_ris *ris = _ris;
1254 
1255 	for (i = 0; i < ris->props.num_mbwu_mon; i++) {
1256 		if (ris->mbwu_state[i].enabled) {
1257 			mwbu_arg.ris = ris;
1258 			mwbu_arg.ctx = &ris->mbwu_state[i].cfg;
1259 			mwbu_arg.type = mpam_feat_msmon_mbwu;
1260 
1261 			__ris_msmon_read(&mwbu_arg);
1262 		}
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /* Call with MSC cfg_lock held */
1269 static int mpam_save_mbwu_state(void *arg)
1270 {
1271 	int i;
1272 	u64 val;
1273 	struct mon_cfg *cfg;
1274 	u32 cur_flt, cur_ctl, mon_sel;
1275 	struct mpam_msc_ris *ris = arg;
1276 	struct msmon_mbwu_state *mbwu_state;
1277 	struct mpam_msc *msc = ris->vmsc->msc;
1278 
1279 	for (i = 0; i < ris->props.num_mbwu_mon; i++) {
1280 		mbwu_state = &ris->mbwu_state[i];
1281 		cfg = &mbwu_state->cfg;
1282 
1283 		if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc)))
1284 			return -EIO;
1285 
1286 		mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, i) |
1287 			  FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx);
1288 		mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel);
1289 
1290 		cur_flt = mpam_read_monsel_reg(msc, CFG_MBWU_FLT);
1291 		cur_ctl = mpam_read_monsel_reg(msc, CFG_MBWU_CTL);
1292 		mpam_write_monsel_reg(msc, CFG_MBWU_CTL, 0);
1293 
1294 		val = mpam_read_monsel_reg(msc, MBWU);
1295 		mpam_write_monsel_reg(msc, MBWU, 0);
1296 
1297 		cfg->mon = i;
1298 		cfg->pmg = FIELD_GET(MSMON_CFG_x_FLT_PMG, cur_flt);
1299 		cfg->match_pmg = FIELD_GET(MSMON_CFG_x_CTL_MATCH_PMG, cur_ctl);
1300 		cfg->partid = FIELD_GET(MSMON_CFG_x_FLT_PARTID, cur_flt);
1301 		mbwu_state->correction += val;
1302 		mbwu_state->enabled = FIELD_GET(MSMON_CFG_x_CTL_EN, cur_ctl);
1303 		mpam_mon_sel_unlock(msc);
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 static void mpam_init_reset_cfg(struct mpam_config *reset_cfg)
1310 {
1311 	*reset_cfg = (struct mpam_config) {
1312 		.reset_cpbm = true,
1313 		.reset_mbw_pbm = true,
1314 		.reset_mbw_max = true,
1315 	};
1316 	bitmap_fill(reset_cfg->features, MPAM_FEATURE_LAST);
1317 }
1318 
1319 /*
1320  * Called via smp_call_on_cpu() to prevent migration, while still being
1321  * pre-emptible. Caller must hold mpam_srcu.
1322  */
1323 static int mpam_reset_ris(void *arg)
1324 {
1325 	u16 partid, partid_max;
1326 	struct mpam_config reset_cfg;
1327 	struct mpam_msc_ris *ris = arg;
1328 
1329 	if (ris->in_reset_state)
1330 		return 0;
1331 
1332 	mpam_init_reset_cfg(&reset_cfg);
1333 
1334 	spin_lock(&partid_max_lock);
1335 	partid_max = mpam_partid_max;
1336 	spin_unlock(&partid_max_lock);
1337 	for (partid = 0; partid <= partid_max; partid++)
1338 		mpam_reprogram_ris_partid(ris, partid, &reset_cfg);
1339 
1340 	return 0;
1341 }
1342 
1343 /*
1344  * Get the preferred CPU for this MSC. If it is accessible from this CPU,
1345  * this CPU is preferred. This can be preempted/migrated, it will only result
1346  * in more work.
1347  */
1348 static int mpam_get_msc_preferred_cpu(struct mpam_msc *msc)
1349 {
1350 	int cpu = raw_smp_processor_id();
1351 
1352 	if (cpumask_test_cpu(cpu, &msc->accessibility))
1353 		return cpu;
1354 
1355 	return cpumask_first_and(&msc->accessibility, cpu_online_mask);
1356 }
1357 
1358 static int mpam_touch_msc(struct mpam_msc *msc, int (*fn)(void *a), void *arg)
1359 {
1360 	lockdep_assert_irqs_enabled();
1361 	lockdep_assert_cpus_held();
1362 	WARN_ON_ONCE(!srcu_read_lock_held((&mpam_srcu)));
1363 
1364 	return smp_call_on_cpu(mpam_get_msc_preferred_cpu(msc), fn, arg, true);
1365 }
1366 
1367 struct mpam_write_config_arg {
1368 	struct mpam_msc_ris *ris;
1369 	struct mpam_component *comp;
1370 	u16 partid;
1371 };
1372 
1373 static int __write_config(void *arg)
1374 {
1375 	struct mpam_write_config_arg *c = arg;
1376 
1377 	mpam_reprogram_ris_partid(c->ris, c->partid, &c->comp->cfg[c->partid]);
1378 
1379 	return 0;
1380 }
1381 
1382 static void mpam_reprogram_msc(struct mpam_msc *msc)
1383 {
1384 	u16 partid;
1385 	bool reset;
1386 	struct mpam_config *cfg;
1387 	struct mpam_msc_ris *ris;
1388 	struct mpam_write_config_arg arg;
1389 
1390 	/*
1391 	 * No lock for mpam_partid_max as partid_max_published has been
1392 	 * set by mpam_enabled(), so the values can no longer change.
1393 	 */
1394 	mpam_assert_partid_sizes_fixed();
1395 
1396 	mutex_lock(&msc->cfg_lock);
1397 	list_for_each_entry_srcu(ris, &msc->ris, msc_list,
1398 				 srcu_read_lock_held(&mpam_srcu)) {
1399 		if (!mpam_is_enabled() && !ris->in_reset_state) {
1400 			mpam_touch_msc(msc, &mpam_reset_ris, ris);
1401 			ris->in_reset_state = true;
1402 			continue;
1403 		}
1404 
1405 		arg.comp = ris->vmsc->comp;
1406 		arg.ris = ris;
1407 		reset = true;
1408 		for (partid = 0; partid <= mpam_partid_max; partid++) {
1409 			cfg = &ris->vmsc->comp->cfg[partid];
1410 			if (!bitmap_empty(cfg->features, MPAM_FEATURE_LAST))
1411 				reset = false;
1412 
1413 			arg.partid = partid;
1414 			mpam_touch_msc(msc, __write_config, &arg);
1415 		}
1416 		ris->in_reset_state = reset;
1417 
1418 		if (mpam_has_feature(mpam_feat_msmon_mbwu, &ris->props))
1419 			mpam_touch_msc(msc, &mpam_restore_mbwu_state, ris);
1420 	}
1421 	mutex_unlock(&msc->cfg_lock);
1422 }
1423 
1424 static void _enable_percpu_irq(void *_irq)
1425 {
1426 	int *irq = _irq;
1427 
1428 	enable_percpu_irq(*irq, IRQ_TYPE_NONE);
1429 }
1430 
1431 static int mpam_cpu_online(unsigned int cpu)
1432 {
1433 	struct mpam_msc *msc;
1434 
1435 	guard(srcu)(&mpam_srcu);
1436 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
1437 				 srcu_read_lock_held(&mpam_srcu)) {
1438 		if (!cpumask_test_cpu(cpu, &msc->accessibility))
1439 			continue;
1440 
1441 		if (msc->reenable_error_ppi)
1442 			_enable_percpu_irq(&msc->reenable_error_ppi);
1443 
1444 		if (atomic_fetch_inc(&msc->online_refs) == 0)
1445 			mpam_reprogram_msc(msc);
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 /* Before mpam is enabled, try to probe new MSC */
1452 static int mpam_discovery_cpu_online(unsigned int cpu)
1453 {
1454 	int err = 0;
1455 	struct mpam_msc *msc;
1456 	bool new_device_probed = false;
1457 
1458 	if (mpam_is_enabled())
1459 		return 0;
1460 
1461 	guard(srcu)(&mpam_srcu);
1462 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
1463 				 srcu_read_lock_held(&mpam_srcu)) {
1464 		if (!cpumask_test_cpu(cpu, &msc->accessibility))
1465 			continue;
1466 
1467 		mutex_lock(&msc->probe_lock);
1468 		if (!msc->probed)
1469 			err = mpam_msc_hw_probe(msc);
1470 		mutex_unlock(&msc->probe_lock);
1471 
1472 		if (err)
1473 			break;
1474 		new_device_probed = true;
1475 	}
1476 
1477 	if (new_device_probed && !err)
1478 		schedule_work(&mpam_enable_work);
1479 	if (err) {
1480 		mpam_disable_reason = "error during probing";
1481 		schedule_work(&mpam_broken_work);
1482 	}
1483 
1484 	return err;
1485 }
1486 
1487 static int mpam_cpu_offline(unsigned int cpu)
1488 {
1489 	struct mpam_msc *msc;
1490 
1491 	guard(srcu)(&mpam_srcu);
1492 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
1493 				 srcu_read_lock_held(&mpam_srcu)) {
1494 		if (!cpumask_test_cpu(cpu, &msc->accessibility))
1495 			continue;
1496 
1497 		if (msc->reenable_error_ppi)
1498 			disable_percpu_irq(msc->reenable_error_ppi);
1499 
1500 		if (atomic_dec_and_test(&msc->online_refs)) {
1501 			struct mpam_msc_ris *ris;
1502 
1503 			mutex_lock(&msc->cfg_lock);
1504 			list_for_each_entry_srcu(ris, &msc->ris, msc_list,
1505 						 srcu_read_lock_held(&mpam_srcu)) {
1506 				mpam_touch_msc(msc, &mpam_reset_ris, ris);
1507 
1508 				/*
1509 				 * The reset state for non-zero partid may be
1510 				 * lost while the CPUs are offline.
1511 				 */
1512 				ris->in_reset_state = false;
1513 
1514 				if (mpam_is_enabled())
1515 					mpam_touch_msc(msc, &mpam_save_mbwu_state, ris);
1516 			}
1517 			mutex_unlock(&msc->cfg_lock);
1518 		}
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 static void mpam_register_cpuhp_callbacks(int (*online)(unsigned int online),
1525 					  int (*offline)(unsigned int offline),
1526 					  char *name)
1527 {
1528 	mutex_lock(&mpam_cpuhp_state_lock);
1529 	if (mpam_cpuhp_state) {
1530 		cpuhp_remove_state(mpam_cpuhp_state);
1531 		mpam_cpuhp_state = 0;
1532 	}
1533 
1534 	mpam_cpuhp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, name, online,
1535 					     offline);
1536 	if (mpam_cpuhp_state <= 0) {
1537 		pr_err("Failed to register cpuhp callbacks");
1538 		mpam_cpuhp_state = 0;
1539 	}
1540 	mutex_unlock(&mpam_cpuhp_state_lock);
1541 }
1542 
1543 static int __setup_ppi(struct mpam_msc *msc)
1544 {
1545 	int cpu;
1546 
1547 	msc->error_dev_id = alloc_percpu(struct mpam_msc *);
1548 	if (!msc->error_dev_id)
1549 		return -ENOMEM;
1550 
1551 	for_each_cpu(cpu, &msc->accessibility)
1552 		*per_cpu_ptr(msc->error_dev_id, cpu) = msc;
1553 
1554 	return 0;
1555 }
1556 
1557 static int mpam_msc_setup_error_irq(struct mpam_msc *msc)
1558 {
1559 	int irq;
1560 
1561 	irq = platform_get_irq_byname_optional(msc->pdev, "error");
1562 	if (irq <= 0)
1563 		return 0;
1564 
1565 	/* Allocate and initialise the percpu device pointer for PPI */
1566 	if (irq_is_percpu(irq))
1567 		return __setup_ppi(msc);
1568 
1569 	/* sanity check: shared interrupts can be routed anywhere? */
1570 	if (!cpumask_equal(&msc->accessibility, cpu_possible_mask)) {
1571 		pr_err_once("msc:%u is a private resource with a shared error interrupt",
1572 			    msc->id);
1573 		return -EINVAL;
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 /*
1580  * An MSC can control traffic from a set of CPUs, but may only be accessible
1581  * from a (hopefully wider) set of CPUs. The common reason for this is power
1582  * management. If all the CPUs in a cluster are in PSCI:CPU_SUSPEND, the
1583  * corresponding cache may also be powered off. By making accesses from
1584  * one of those CPUs, we ensure we don't access a cache that's powered off.
1585  */
1586 static void update_msc_accessibility(struct mpam_msc *msc)
1587 {
1588 	u32 affinity_id;
1589 	int err;
1590 
1591 	err = device_property_read_u32(&msc->pdev->dev, "cpu_affinity",
1592 				       &affinity_id);
1593 	if (err)
1594 		cpumask_copy(&msc->accessibility, cpu_possible_mask);
1595 	else
1596 		acpi_pptt_get_cpus_from_container(affinity_id, &msc->accessibility);
1597 }
1598 
1599 /*
1600  * There are two ways of reaching a struct mpam_msc_ris. Via the
1601  * class->component->vmsc->ris, or via the msc.
1602  * When destroying the msc, the other side needs unlinking and cleaning up too.
1603  */
1604 static void mpam_msc_destroy(struct mpam_msc *msc)
1605 {
1606 	struct platform_device *pdev = msc->pdev;
1607 	struct mpam_msc_ris *ris, *tmp;
1608 
1609 	lockdep_assert_held(&mpam_list_lock);
1610 
1611 	list_for_each_entry_safe(ris, tmp, &msc->ris, msc_list)
1612 		mpam_ris_destroy(ris);
1613 
1614 	list_del_rcu(&msc->all_msc_list);
1615 	platform_set_drvdata(pdev, NULL);
1616 
1617 	add_to_garbage(msc);
1618 }
1619 
1620 static void mpam_msc_drv_remove(struct platform_device *pdev)
1621 {
1622 	struct mpam_msc *msc = platform_get_drvdata(pdev);
1623 
1624 	mutex_lock(&mpam_list_lock);
1625 	mpam_msc_destroy(msc);
1626 	mutex_unlock(&mpam_list_lock);
1627 
1628 	mpam_free_garbage();
1629 }
1630 
1631 static struct mpam_msc *do_mpam_msc_drv_probe(struct platform_device *pdev)
1632 {
1633 	int err;
1634 	u32 tmp;
1635 	struct mpam_msc *msc;
1636 	struct resource *msc_res;
1637 	struct device *dev = &pdev->dev;
1638 
1639 	lockdep_assert_held(&mpam_list_lock);
1640 
1641 	msc = devm_kzalloc(&pdev->dev, sizeof(*msc), GFP_KERNEL);
1642 	if (!msc)
1643 		return ERR_PTR(-ENOMEM);
1644 	init_garbage(&msc->garbage);
1645 	msc->garbage.pdev = pdev;
1646 
1647 	err = devm_mutex_init(dev, &msc->probe_lock);
1648 	if (err)
1649 		return ERR_PTR(err);
1650 
1651 	err = devm_mutex_init(dev, &msc->part_sel_lock);
1652 	if (err)
1653 		return ERR_PTR(err);
1654 
1655 	err = devm_mutex_init(dev, &msc->error_irq_lock);
1656 	if (err)
1657 		return ERR_PTR(err);
1658 
1659 	err = devm_mutex_init(dev, &msc->cfg_lock);
1660 	if (err)
1661 		return ERR_PTR(err);
1662 
1663 	mpam_mon_sel_lock_init(msc);
1664 	msc->id = pdev->id;
1665 	msc->pdev = pdev;
1666 	INIT_LIST_HEAD_RCU(&msc->all_msc_list);
1667 	INIT_LIST_HEAD_RCU(&msc->ris);
1668 
1669 	update_msc_accessibility(msc);
1670 	if (cpumask_empty(&msc->accessibility)) {
1671 		dev_err_once(dev, "MSC is not accessible from any CPU!");
1672 		return ERR_PTR(-EINVAL);
1673 	}
1674 
1675 	err = mpam_msc_setup_error_irq(msc);
1676 	if (err)
1677 		return ERR_PTR(err);
1678 
1679 	if (device_property_read_u32(&pdev->dev, "pcc-channel", &tmp))
1680 		msc->iface = MPAM_IFACE_MMIO;
1681 	else
1682 		msc->iface = MPAM_IFACE_PCC;
1683 
1684 	if (msc->iface == MPAM_IFACE_MMIO) {
1685 		void __iomem *io;
1686 
1687 		io = devm_platform_get_and_ioremap_resource(pdev, 0,
1688 							    &msc_res);
1689 		if (IS_ERR(io)) {
1690 			dev_err_once(dev, "Failed to map MSC base address\n");
1691 			return ERR_CAST(io);
1692 		}
1693 		msc->mapped_hwpage_sz = msc_res->end - msc_res->start;
1694 		msc->mapped_hwpage = io;
1695 	} else {
1696 		return ERR_PTR(-EINVAL);
1697 	}
1698 
1699 	list_add_rcu(&msc->all_msc_list, &mpam_all_msc);
1700 	platform_set_drvdata(pdev, msc);
1701 
1702 	return msc;
1703 }
1704 
1705 static int fw_num_msc;
1706 
1707 static int mpam_msc_drv_probe(struct platform_device *pdev)
1708 {
1709 	int err;
1710 	struct mpam_msc *msc = NULL;
1711 	void *plat_data = pdev->dev.platform_data;
1712 
1713 	mutex_lock(&mpam_list_lock);
1714 	msc = do_mpam_msc_drv_probe(pdev);
1715 	mutex_unlock(&mpam_list_lock);
1716 
1717 	if (IS_ERR(msc))
1718 		return PTR_ERR(msc);
1719 
1720 	/* Create RIS entries described by firmware */
1721 	err = acpi_mpam_parse_resources(msc, plat_data);
1722 	if (err) {
1723 		mpam_msc_drv_remove(pdev);
1724 		return err;
1725 	}
1726 
1727 	if (atomic_add_return(1, &mpam_num_msc) == fw_num_msc)
1728 		mpam_register_cpuhp_callbacks(mpam_discovery_cpu_online, NULL,
1729 					      "mpam:drv_probe");
1730 
1731 	return 0;
1732 }
1733 
1734 static struct platform_driver mpam_msc_driver = {
1735 	.driver = {
1736 		.name = "mpam_msc",
1737 	},
1738 	.probe = mpam_msc_drv_probe,
1739 	.remove = mpam_msc_drv_remove,
1740 };
1741 
1742 /* Any of these features mean the BWA_WD field is valid. */
1743 static bool mpam_has_bwa_wd_feature(struct mpam_props *props)
1744 {
1745 	if (mpam_has_feature(mpam_feat_mbw_min, props))
1746 		return true;
1747 	if (mpam_has_feature(mpam_feat_mbw_max, props))
1748 		return true;
1749 	if (mpam_has_feature(mpam_feat_mbw_prop, props))
1750 		return true;
1751 	return false;
1752 }
1753 
1754 /* Any of these features mean the CMAX_WD field is valid. */
1755 static bool mpam_has_cmax_wd_feature(struct mpam_props *props)
1756 {
1757 	if (mpam_has_feature(mpam_feat_cmax_cmax, props))
1758 		return true;
1759 	if (mpam_has_feature(mpam_feat_cmax_cmin, props))
1760 		return true;
1761 	return false;
1762 }
1763 
1764 #define MISMATCHED_HELPER(parent, child, helper, field, alias)		\
1765 	helper(parent) &&						\
1766 	((helper(child) && (parent)->field != (child)->field) ||	\
1767 	 (!helper(child) && !(alias)))
1768 
1769 #define MISMATCHED_FEAT(parent, child, feat, field, alias)		     \
1770 	mpam_has_feature((feat), (parent)) &&				     \
1771 	((mpam_has_feature((feat), (child)) && (parent)->field != (child)->field) || \
1772 	 (!mpam_has_feature((feat), (child)) && !(alias)))
1773 
1774 #define CAN_MERGE_FEAT(parent, child, feat, alias)			\
1775 	(alias) && !mpam_has_feature((feat), (parent)) &&		\
1776 	mpam_has_feature((feat), (child))
1777 
1778 /*
1779  * Combine two props fields.
1780  * If this is for controls that alias the same resource, it is safe to just
1781  * copy the values over. If two aliasing controls implement the same scheme
1782  * a safe value must be picked.
1783  * For non-aliasing controls, these control different resources, and the
1784  * resulting safe value must be compatible with both. When merging values in
1785  * the tree, all the aliasing resources must be handled first.
1786  * On mismatch, parent is modified.
1787  */
1788 static void __props_mismatch(struct mpam_props *parent,
1789 			     struct mpam_props *child, bool alias)
1790 {
1791 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_cpor_part, alias)) {
1792 		parent->cpbm_wd = child->cpbm_wd;
1793 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_cpor_part,
1794 				   cpbm_wd, alias)) {
1795 		pr_debug("cleared cpor_part\n");
1796 		mpam_clear_feature(mpam_feat_cpor_part, parent);
1797 		parent->cpbm_wd = 0;
1798 	}
1799 
1800 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_mbw_part, alias)) {
1801 		parent->mbw_pbm_bits = child->mbw_pbm_bits;
1802 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_mbw_part,
1803 				   mbw_pbm_bits, alias)) {
1804 		pr_debug("cleared mbw_part\n");
1805 		mpam_clear_feature(mpam_feat_mbw_part, parent);
1806 		parent->mbw_pbm_bits = 0;
1807 	}
1808 
1809 	/* bwa_wd is a count of bits, fewer bits means less precision */
1810 	if (alias && !mpam_has_bwa_wd_feature(parent) &&
1811 	    mpam_has_bwa_wd_feature(child)) {
1812 		parent->bwa_wd = child->bwa_wd;
1813 	} else if (MISMATCHED_HELPER(parent, child, mpam_has_bwa_wd_feature,
1814 				     bwa_wd, alias)) {
1815 		pr_debug("took the min bwa_wd\n");
1816 		parent->bwa_wd = min(parent->bwa_wd, child->bwa_wd);
1817 	}
1818 
1819 	if (alias && !mpam_has_cmax_wd_feature(parent) && mpam_has_cmax_wd_feature(child)) {
1820 		parent->cmax_wd = child->cmax_wd;
1821 	} else if (MISMATCHED_HELPER(parent, child, mpam_has_cmax_wd_feature,
1822 				     cmax_wd, alias)) {
1823 		pr_debug("%s took the min cmax_wd\n", __func__);
1824 		parent->cmax_wd = min(parent->cmax_wd, child->cmax_wd);
1825 	}
1826 
1827 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_cmax_cassoc, alias)) {
1828 		parent->cassoc_wd = child->cassoc_wd;
1829 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_cmax_cassoc,
1830 				   cassoc_wd, alias)) {
1831 		pr_debug("%s cleared cassoc_wd\n", __func__);
1832 		mpam_clear_feature(mpam_feat_cmax_cassoc, parent);
1833 		parent->cassoc_wd = 0;
1834 	}
1835 
1836 	/* For num properties, take the minimum */
1837 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_csu, alias)) {
1838 		parent->num_csu_mon = child->num_csu_mon;
1839 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_csu,
1840 				   num_csu_mon, alias)) {
1841 		pr_debug("took the min num_csu_mon\n");
1842 		parent->num_csu_mon = min(parent->num_csu_mon,
1843 					  child->num_csu_mon);
1844 	}
1845 
1846 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_mbwu, alias)) {
1847 		parent->num_mbwu_mon = child->num_mbwu_mon;
1848 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_mbwu,
1849 				   num_mbwu_mon, alias)) {
1850 		pr_debug("took the min num_mbwu_mon\n");
1851 		parent->num_mbwu_mon = min(parent->num_mbwu_mon,
1852 					   child->num_mbwu_mon);
1853 	}
1854 
1855 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_intpri_part, alias)) {
1856 		parent->intpri_wd = child->intpri_wd;
1857 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_intpri_part,
1858 				   intpri_wd, alias)) {
1859 		pr_debug("%s took the min intpri_wd\n", __func__);
1860 		parent->intpri_wd = min(parent->intpri_wd, child->intpri_wd);
1861 	}
1862 
1863 	if (CAN_MERGE_FEAT(parent, child, mpam_feat_dspri_part, alias)) {
1864 		parent->dspri_wd = child->dspri_wd;
1865 	} else if (MISMATCHED_FEAT(parent, child, mpam_feat_dspri_part,
1866 				   dspri_wd, alias)) {
1867 		pr_debug("%s took the min dspri_wd\n", __func__);
1868 		parent->dspri_wd = min(parent->dspri_wd, child->dspri_wd);
1869 	}
1870 
1871 	/* TODO: alias support for these two */
1872 	/* {int,ds}pri may not have differing 0-low behaviour */
1873 	if (mpam_has_feature(mpam_feat_intpri_part, parent) &&
1874 	    (!mpam_has_feature(mpam_feat_intpri_part, child) ||
1875 	     mpam_has_feature(mpam_feat_intpri_part_0_low, parent) !=
1876 	     mpam_has_feature(mpam_feat_intpri_part_0_low, child))) {
1877 		pr_debug("%s cleared intpri_part\n", __func__);
1878 		mpam_clear_feature(mpam_feat_intpri_part, parent);
1879 		mpam_clear_feature(mpam_feat_intpri_part_0_low, parent);
1880 	}
1881 	if (mpam_has_feature(mpam_feat_dspri_part, parent) &&
1882 	    (!mpam_has_feature(mpam_feat_dspri_part, child) ||
1883 	     mpam_has_feature(mpam_feat_dspri_part_0_low, parent) !=
1884 	     mpam_has_feature(mpam_feat_dspri_part_0_low, child))) {
1885 		pr_debug("%s cleared dspri_part\n", __func__);
1886 		mpam_clear_feature(mpam_feat_dspri_part, parent);
1887 		mpam_clear_feature(mpam_feat_dspri_part_0_low, parent);
1888 	}
1889 
1890 	if (alias) {
1891 		/* Merge features for aliased resources */
1892 		bitmap_or(parent->features, parent->features, child->features, MPAM_FEATURE_LAST);
1893 	} else {
1894 		/* Clear missing features for non aliasing */
1895 		bitmap_and(parent->features, parent->features, child->features, MPAM_FEATURE_LAST);
1896 	}
1897 }
1898 
1899 /*
1900  * If a vmsc doesn't match class feature/configuration, do the right thing(tm).
1901  * For 'num' properties we can just take the minimum.
1902  * For properties where the mismatched unused bits would make a difference, we
1903  * nobble the class feature, as we can't configure all the resources.
1904  * e.g. The L3 cache is composed of two resources with 13 and 17 portion
1905  * bitmaps respectively.
1906  */
1907 static void
1908 __class_props_mismatch(struct mpam_class *class, struct mpam_vmsc *vmsc)
1909 {
1910 	struct mpam_props *cprops = &class->props;
1911 	struct mpam_props *vprops = &vmsc->props;
1912 	struct device *dev = &vmsc->msc->pdev->dev;
1913 
1914 	lockdep_assert_held(&mpam_list_lock); /* we modify class */
1915 
1916 	dev_dbg(dev, "Merging features for class:0x%lx &= vmsc:0x%lx\n",
1917 		(long)cprops->features, (long)vprops->features);
1918 
1919 	/* Take the safe value for any common features */
1920 	__props_mismatch(cprops, vprops, false);
1921 }
1922 
1923 static void
1924 __vmsc_props_mismatch(struct mpam_vmsc *vmsc, struct mpam_msc_ris *ris)
1925 {
1926 	struct mpam_props *rprops = &ris->props;
1927 	struct mpam_props *vprops = &vmsc->props;
1928 	struct device *dev = &vmsc->msc->pdev->dev;
1929 
1930 	lockdep_assert_held(&mpam_list_lock); /* we modify vmsc */
1931 
1932 	dev_dbg(dev, "Merging features for vmsc:0x%lx |= ris:0x%lx\n",
1933 		(long)vprops->features, (long)rprops->features);
1934 
1935 	/*
1936 	 * Merge mismatched features - Copy any features that aren't common,
1937 	 * but take the safe value for any common features.
1938 	 */
1939 	__props_mismatch(vprops, rprops, true);
1940 }
1941 
1942 /*
1943  * Copy the first component's first vMSC's properties and features to the
1944  * class. __class_props_mismatch() will remove conflicts.
1945  * It is not possible to have a class with no components, or a component with
1946  * no resources. The vMSC properties have already been built.
1947  */
1948 static void mpam_enable_init_class_features(struct mpam_class *class)
1949 {
1950 	struct mpam_vmsc *vmsc;
1951 	struct mpam_component *comp;
1952 
1953 	comp = list_first_entry(&class->components,
1954 				struct mpam_component, class_list);
1955 	vmsc = list_first_entry(&comp->vmsc,
1956 				struct mpam_vmsc, comp_list);
1957 
1958 	class->props = vmsc->props;
1959 }
1960 
1961 static void mpam_enable_merge_vmsc_features(struct mpam_component *comp)
1962 {
1963 	struct mpam_vmsc *vmsc;
1964 	struct mpam_msc_ris *ris;
1965 	struct mpam_class *class = comp->class;
1966 
1967 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
1968 		list_for_each_entry(ris, &vmsc->ris, vmsc_list) {
1969 			__vmsc_props_mismatch(vmsc, ris);
1970 			class->nrdy_usec = max(class->nrdy_usec,
1971 					       vmsc->msc->nrdy_usec);
1972 		}
1973 	}
1974 }
1975 
1976 static void mpam_enable_merge_class_features(struct mpam_component *comp)
1977 {
1978 	struct mpam_vmsc *vmsc;
1979 	struct mpam_class *class = comp->class;
1980 
1981 	list_for_each_entry(vmsc, &comp->vmsc, comp_list)
1982 		__class_props_mismatch(class, vmsc);
1983 }
1984 
1985 /*
1986  * Merge all the common resource features into class.
1987  * vmsc features are bitwise-or'd together by mpam_enable_merge_vmsc_features()
1988  * as the first step so that mpam_enable_init_class_features() can initialise
1989  * the class with a representative set of features.
1990  * Next the mpam_enable_merge_class_features() bitwise-and's all the vmsc
1991  * features to form the class features.
1992  * Other features are the min/max as appropriate.
1993  *
1994  * To avoid walking the whole tree twice, the class->nrdy_usec property is
1995  * updated when working with the vmsc as it is a max(), and doesn't need
1996  * initialising first.
1997  */
1998 static void mpam_enable_merge_features(struct list_head *all_classes_list)
1999 {
2000 	struct mpam_class *class;
2001 	struct mpam_component *comp;
2002 
2003 	lockdep_assert_held(&mpam_list_lock);
2004 
2005 	list_for_each_entry(class, all_classes_list, classes_list) {
2006 		list_for_each_entry(comp, &class->components, class_list)
2007 			mpam_enable_merge_vmsc_features(comp);
2008 
2009 		mpam_enable_init_class_features(class);
2010 
2011 		list_for_each_entry(comp, &class->components, class_list)
2012 			mpam_enable_merge_class_features(comp);
2013 	}
2014 }
2015 
2016 static char *mpam_errcode_names[16] = {
2017 	[MPAM_ERRCODE_NONE]			= "No error",
2018 	[MPAM_ERRCODE_PARTID_SEL_RANGE]		= "PARTID_SEL_Range",
2019 	[MPAM_ERRCODE_REQ_PARTID_RANGE]		= "Req_PARTID_Range",
2020 	[MPAM_ERRCODE_MSMONCFG_ID_RANGE]	= "MSMONCFG_ID_RANGE",
2021 	[MPAM_ERRCODE_REQ_PMG_RANGE]		= "Req_PMG_Range",
2022 	[MPAM_ERRCODE_MONITOR_RANGE]		= "Monitor_Range",
2023 	[MPAM_ERRCODE_INTPARTID_RANGE]		= "intPARTID_Range",
2024 	[MPAM_ERRCODE_UNEXPECTED_INTERNAL]	= "Unexpected_INTERNAL",
2025 	[MPAM_ERRCODE_UNDEFINED_RIS_PART_SEL]	= "Undefined_RIS_PART_SEL",
2026 	[MPAM_ERRCODE_RIS_NO_CONTROL]		= "RIS_No_Control",
2027 	[MPAM_ERRCODE_UNDEFINED_RIS_MON_SEL]	= "Undefined_RIS_MON_SEL",
2028 	[MPAM_ERRCODE_RIS_NO_MONITOR]		= "RIS_No_Monitor",
2029 	[12 ... 15] = "Reserved"
2030 };
2031 
2032 static int mpam_enable_msc_ecr(void *_msc)
2033 {
2034 	struct mpam_msc *msc = _msc;
2035 
2036 	__mpam_write_reg(msc, MPAMF_ECR, MPAMF_ECR_INTEN);
2037 
2038 	return 0;
2039 }
2040 
2041 /* This can run in mpam_disable(), and the interrupt handler on the same CPU */
2042 static int mpam_disable_msc_ecr(void *_msc)
2043 {
2044 	struct mpam_msc *msc = _msc;
2045 
2046 	__mpam_write_reg(msc, MPAMF_ECR, 0);
2047 
2048 	return 0;
2049 }
2050 
2051 static irqreturn_t __mpam_irq_handler(int irq, struct mpam_msc *msc)
2052 {
2053 	u64 reg;
2054 	u16 partid;
2055 	u8 errcode, pmg, ris;
2056 
2057 	if (WARN_ON_ONCE(!msc) ||
2058 	    WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
2059 					   &msc->accessibility)))
2060 		return IRQ_NONE;
2061 
2062 	reg = mpam_msc_read_esr(msc);
2063 
2064 	errcode = FIELD_GET(MPAMF_ESR_ERRCODE, reg);
2065 	if (!errcode)
2066 		return IRQ_NONE;
2067 
2068 	/* Clear level triggered irq */
2069 	mpam_msc_clear_esr(msc);
2070 
2071 	partid = FIELD_GET(MPAMF_ESR_PARTID_MON, reg);
2072 	pmg = FIELD_GET(MPAMF_ESR_PMG, reg);
2073 	ris = FIELD_GET(MPAMF_ESR_RIS, reg);
2074 
2075 	pr_err_ratelimited("error irq from msc:%u '%s', partid:%u, pmg: %u, ris: %u\n",
2076 			   msc->id, mpam_errcode_names[errcode], partid, pmg,
2077 			   ris);
2078 
2079 	/* Disable this interrupt. */
2080 	mpam_disable_msc_ecr(msc);
2081 
2082 	/* Are we racing with the thread disabling MPAM? */
2083 	if (!mpam_is_enabled())
2084 		return IRQ_HANDLED;
2085 
2086 	/*
2087 	 * Schedule the teardown work. Don't use a threaded IRQ as we can't
2088 	 * unregister the interrupt from the threaded part of the handler.
2089 	 */
2090 	mpam_disable_reason = "hardware error interrupt";
2091 	schedule_work(&mpam_broken_work);
2092 
2093 	return IRQ_HANDLED;
2094 }
2095 
2096 static irqreturn_t mpam_ppi_handler(int irq, void *dev_id)
2097 {
2098 	struct mpam_msc *msc = *(struct mpam_msc **)dev_id;
2099 
2100 	return __mpam_irq_handler(irq, msc);
2101 }
2102 
2103 static irqreturn_t mpam_spi_handler(int irq, void *dev_id)
2104 {
2105 	struct mpam_msc *msc = dev_id;
2106 
2107 	return __mpam_irq_handler(irq, msc);
2108 }
2109 
2110 static int mpam_register_irqs(void)
2111 {
2112 	int err, irq;
2113 	struct mpam_msc *msc;
2114 
2115 	lockdep_assert_cpus_held();
2116 
2117 	guard(srcu)(&mpam_srcu);
2118 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
2119 				 srcu_read_lock_held(&mpam_srcu)) {
2120 		irq = platform_get_irq_byname_optional(msc->pdev, "error");
2121 		if (irq <= 0)
2122 			continue;
2123 
2124 		/* The MPAM spec says the interrupt can be SPI, PPI or LPI */
2125 		/* We anticipate sharing the interrupt with other MSCs */
2126 		if (irq_is_percpu(irq)) {
2127 			err = request_percpu_irq(irq, &mpam_ppi_handler,
2128 						 "mpam:msc:error",
2129 						 msc->error_dev_id);
2130 			if (err)
2131 				return err;
2132 
2133 			msc->reenable_error_ppi = irq;
2134 			smp_call_function_many(&msc->accessibility,
2135 					       &_enable_percpu_irq, &irq,
2136 					       true);
2137 		} else {
2138 			err = devm_request_irq(&msc->pdev->dev, irq,
2139 					       &mpam_spi_handler, IRQF_SHARED,
2140 					       "mpam:msc:error", msc);
2141 			if (err)
2142 				return err;
2143 		}
2144 
2145 		mutex_lock(&msc->error_irq_lock);
2146 		msc->error_irq_req = true;
2147 		mpam_touch_msc(msc, mpam_enable_msc_ecr, msc);
2148 		msc->error_irq_hw_enabled = true;
2149 		mutex_unlock(&msc->error_irq_lock);
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 static void mpam_unregister_irqs(void)
2156 {
2157 	int irq;
2158 	struct mpam_msc *msc;
2159 
2160 	guard(cpus_read_lock)();
2161 	guard(srcu)(&mpam_srcu);
2162 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
2163 				 srcu_read_lock_held(&mpam_srcu)) {
2164 		irq = platform_get_irq_byname_optional(msc->pdev, "error");
2165 		if (irq <= 0)
2166 			continue;
2167 
2168 		mutex_lock(&msc->error_irq_lock);
2169 		if (msc->error_irq_hw_enabled) {
2170 			mpam_touch_msc(msc, mpam_disable_msc_ecr, msc);
2171 			msc->error_irq_hw_enabled = false;
2172 		}
2173 
2174 		if (msc->error_irq_req) {
2175 			if (irq_is_percpu(irq)) {
2176 				msc->reenable_error_ppi = 0;
2177 				free_percpu_irq(irq, msc->error_dev_id);
2178 			} else {
2179 				devm_free_irq(&msc->pdev->dev, irq, msc);
2180 			}
2181 			msc->error_irq_req = false;
2182 		}
2183 		mutex_unlock(&msc->error_irq_lock);
2184 	}
2185 }
2186 
2187 static void __destroy_component_cfg(struct mpam_component *comp)
2188 {
2189 	struct mpam_msc *msc;
2190 	struct mpam_vmsc *vmsc;
2191 	struct mpam_msc_ris *ris;
2192 
2193 	lockdep_assert_held(&mpam_list_lock);
2194 
2195 	add_to_garbage(comp->cfg);
2196 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
2197 		msc = vmsc->msc;
2198 
2199 		if (mpam_mon_sel_lock(msc)) {
2200 			list_for_each_entry(ris, &vmsc->ris, vmsc_list)
2201 				add_to_garbage(ris->mbwu_state);
2202 			mpam_mon_sel_unlock(msc);
2203 		}
2204 	}
2205 }
2206 
2207 static void mpam_reset_component_cfg(struct mpam_component *comp)
2208 {
2209 	int i;
2210 	struct mpam_props *cprops = &comp->class->props;
2211 
2212 	mpam_assert_partid_sizes_fixed();
2213 
2214 	if (!comp->cfg)
2215 		return;
2216 
2217 	for (i = 0; i <= mpam_partid_max; i++) {
2218 		comp->cfg[i] = (struct mpam_config) {};
2219 		if (cprops->cpbm_wd)
2220 			comp->cfg[i].cpbm = GENMASK(cprops->cpbm_wd - 1, 0);
2221 		if (cprops->mbw_pbm_bits)
2222 			comp->cfg[i].mbw_pbm = GENMASK(cprops->mbw_pbm_bits - 1, 0);
2223 		if (cprops->bwa_wd)
2224 			comp->cfg[i].mbw_max = GENMASK(15, 16 - cprops->bwa_wd);
2225 	}
2226 }
2227 
2228 static int __allocate_component_cfg(struct mpam_component *comp)
2229 {
2230 	struct mpam_vmsc *vmsc;
2231 
2232 	mpam_assert_partid_sizes_fixed();
2233 
2234 	if (comp->cfg)
2235 		return 0;
2236 
2237 	comp->cfg = kcalloc(mpam_partid_max + 1, sizeof(*comp->cfg), GFP_KERNEL);
2238 	if (!comp->cfg)
2239 		return -ENOMEM;
2240 
2241 	/*
2242 	 * The array is free()d in one go, so only cfg[0]'s structure needs
2243 	 * to be initialised.
2244 	 */
2245 	init_garbage(&comp->cfg[0].garbage);
2246 
2247 	mpam_reset_component_cfg(comp);
2248 
2249 	list_for_each_entry(vmsc, &comp->vmsc, comp_list) {
2250 		struct mpam_msc *msc;
2251 		struct mpam_msc_ris *ris;
2252 		struct msmon_mbwu_state *mbwu_state;
2253 
2254 		if (!vmsc->props.num_mbwu_mon)
2255 			continue;
2256 
2257 		msc = vmsc->msc;
2258 		list_for_each_entry(ris, &vmsc->ris, vmsc_list) {
2259 			if (!ris->props.num_mbwu_mon)
2260 				continue;
2261 
2262 			mbwu_state = kcalloc(ris->props.num_mbwu_mon,
2263 					     sizeof(*ris->mbwu_state),
2264 					     GFP_KERNEL);
2265 			if (!mbwu_state) {
2266 				__destroy_component_cfg(comp);
2267 				return -ENOMEM;
2268 			}
2269 
2270 			init_garbage(&mbwu_state[0].garbage);
2271 
2272 			if (mpam_mon_sel_lock(msc)) {
2273 				ris->mbwu_state = mbwu_state;
2274 				mpam_mon_sel_unlock(msc);
2275 			}
2276 		}
2277 	}
2278 
2279 	return 0;
2280 }
2281 
2282 static int mpam_allocate_config(void)
2283 {
2284 	struct mpam_class *class;
2285 	struct mpam_component *comp;
2286 
2287 	lockdep_assert_held(&mpam_list_lock);
2288 
2289 	list_for_each_entry(class, &mpam_classes, classes_list) {
2290 		list_for_each_entry(comp, &class->components, class_list) {
2291 			int err = __allocate_component_cfg(comp);
2292 			if (err)
2293 				return err;
2294 		}
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 static void mpam_enable_once(void)
2301 {
2302 	int err;
2303 
2304 	/*
2305 	 * Once the cpuhp callbacks have been changed, mpam_partid_max can no
2306 	 * longer change.
2307 	 */
2308 	spin_lock(&partid_max_lock);
2309 	partid_max_published = true;
2310 	spin_unlock(&partid_max_lock);
2311 
2312 	/*
2313 	 * If all the MSC have been probed, enabling the IRQs happens next.
2314 	 * That involves cross-calling to a CPU that can reach the MSC, and
2315 	 * the locks must be taken in this order:
2316 	 */
2317 	cpus_read_lock();
2318 	mutex_lock(&mpam_list_lock);
2319 	do {
2320 		mpam_enable_merge_features(&mpam_classes);
2321 
2322 		err = mpam_register_irqs();
2323 		if (err) {
2324 			pr_warn("Failed to register irqs: %d\n", err);
2325 			break;
2326 		}
2327 
2328 		err = mpam_allocate_config();
2329 		if (err) {
2330 			pr_err("Failed to allocate configuration arrays.\n");
2331 			break;
2332 		}
2333 	} while (0);
2334 	mutex_unlock(&mpam_list_lock);
2335 	cpus_read_unlock();
2336 
2337 	if (err) {
2338 		mpam_disable_reason = "Failed to enable.";
2339 		schedule_work(&mpam_broken_work);
2340 		return;
2341 	}
2342 
2343 	static_branch_enable(&mpam_enabled);
2344 	mpam_register_cpuhp_callbacks(mpam_cpu_online, mpam_cpu_offline,
2345 				      "mpam:online");
2346 
2347 	/* Use printk() to avoid the pr_fmt adding the function name. */
2348 	printk(KERN_INFO "MPAM enabled with %u PARTIDs and %u PMGs\n",
2349 	       mpam_partid_max + 1, mpam_pmg_max + 1);
2350 }
2351 
2352 static void mpam_reset_component_locked(struct mpam_component *comp)
2353 {
2354 	struct mpam_vmsc *vmsc;
2355 
2356 	lockdep_assert_cpus_held();
2357 	mpam_assert_partid_sizes_fixed();
2358 
2359 	mpam_reset_component_cfg(comp);
2360 
2361 	guard(srcu)(&mpam_srcu);
2362 	list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list,
2363 				 srcu_read_lock_held(&mpam_srcu)) {
2364 		struct mpam_msc *msc = vmsc->msc;
2365 		struct mpam_msc_ris *ris;
2366 
2367 		list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list,
2368 					 srcu_read_lock_held(&mpam_srcu)) {
2369 			if (!ris->in_reset_state)
2370 				mpam_touch_msc(msc, mpam_reset_ris, ris);
2371 			ris->in_reset_state = true;
2372 		}
2373 	}
2374 }
2375 
2376 static void mpam_reset_class_locked(struct mpam_class *class)
2377 {
2378 	struct mpam_component *comp;
2379 
2380 	lockdep_assert_cpus_held();
2381 
2382 	guard(srcu)(&mpam_srcu);
2383 	list_for_each_entry_srcu(comp, &class->components, class_list,
2384 				 srcu_read_lock_held(&mpam_srcu))
2385 		mpam_reset_component_locked(comp);
2386 }
2387 
2388 static void mpam_reset_class(struct mpam_class *class)
2389 {
2390 	cpus_read_lock();
2391 	mpam_reset_class_locked(class);
2392 	cpus_read_unlock();
2393 }
2394 
2395 /*
2396  * Called in response to an error IRQ.
2397  * All of MPAMs errors indicate a software bug, restore any modified
2398  * controls to their reset values.
2399  */
2400 void mpam_disable(struct work_struct *ignored)
2401 {
2402 	int idx;
2403 	struct mpam_class *class;
2404 	struct mpam_msc *msc, *tmp;
2405 
2406 	mutex_lock(&mpam_cpuhp_state_lock);
2407 	if (mpam_cpuhp_state) {
2408 		cpuhp_remove_state(mpam_cpuhp_state);
2409 		mpam_cpuhp_state = 0;
2410 	}
2411 	mutex_unlock(&mpam_cpuhp_state_lock);
2412 
2413 	static_branch_disable(&mpam_enabled);
2414 
2415 	mpam_unregister_irqs();
2416 
2417 	idx = srcu_read_lock(&mpam_srcu);
2418 	list_for_each_entry_srcu(class, &mpam_classes, classes_list,
2419 				 srcu_read_lock_held(&mpam_srcu))
2420 		mpam_reset_class(class);
2421 	srcu_read_unlock(&mpam_srcu, idx);
2422 
2423 	mutex_lock(&mpam_list_lock);
2424 	list_for_each_entry_safe(msc, tmp, &mpam_all_msc, all_msc_list)
2425 		mpam_msc_destroy(msc);
2426 	mutex_unlock(&mpam_list_lock);
2427 	mpam_free_garbage();
2428 
2429 	pr_err_once("MPAM disabled due to %s\n", mpam_disable_reason);
2430 }
2431 
2432 /*
2433  * Enable mpam once all devices have been probed.
2434  * Scheduled by mpam_discovery_cpu_online() once all devices have been created.
2435  * Also scheduled when new devices are probed when new CPUs come online.
2436  */
2437 void mpam_enable(struct work_struct *work)
2438 {
2439 	static atomic_t once;
2440 	struct mpam_msc *msc;
2441 	bool all_devices_probed = true;
2442 
2443 	/* Have we probed all the hw devices? */
2444 	guard(srcu)(&mpam_srcu);
2445 	list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list,
2446 				 srcu_read_lock_held(&mpam_srcu)) {
2447 		mutex_lock(&msc->probe_lock);
2448 		if (!msc->probed)
2449 			all_devices_probed = false;
2450 		mutex_unlock(&msc->probe_lock);
2451 
2452 		if (!all_devices_probed)
2453 			break;
2454 	}
2455 
2456 	if (all_devices_probed && !atomic_fetch_inc(&once))
2457 		mpam_enable_once();
2458 }
2459 
2460 #define maybe_update_config(cfg, feature, newcfg, member, changes) do { \
2461 	if (mpam_has_feature(feature, newcfg) &&			\
2462 	    (newcfg)->member != (cfg)->member) {			\
2463 		(cfg)->member = (newcfg)->member;			\
2464 		mpam_set_feature(feature, cfg);				\
2465 									\
2466 		(changes) = true;					\
2467 	}								\
2468 } while (0)
2469 
2470 static bool mpam_update_config(struct mpam_config *cfg,
2471 			       const struct mpam_config *newcfg)
2472 {
2473 	bool has_changes = false;
2474 
2475 	maybe_update_config(cfg, mpam_feat_cpor_part, newcfg, cpbm, has_changes);
2476 	maybe_update_config(cfg, mpam_feat_mbw_part, newcfg, mbw_pbm, has_changes);
2477 	maybe_update_config(cfg, mpam_feat_mbw_max, newcfg, mbw_max, has_changes);
2478 
2479 	return has_changes;
2480 }
2481 
2482 int mpam_apply_config(struct mpam_component *comp, u16 partid,
2483 		      struct mpam_config *cfg)
2484 {
2485 	struct mpam_write_config_arg arg;
2486 	struct mpam_msc_ris *ris;
2487 	struct mpam_vmsc *vmsc;
2488 	struct mpam_msc *msc;
2489 
2490 	lockdep_assert_cpus_held();
2491 
2492 	/* Don't pass in the current config! */
2493 	WARN_ON_ONCE(&comp->cfg[partid] == cfg);
2494 
2495 	if (!mpam_update_config(&comp->cfg[partid], cfg))
2496 		return 0;
2497 
2498 	arg.comp = comp;
2499 	arg.partid = partid;
2500 
2501 	guard(srcu)(&mpam_srcu);
2502 	list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list,
2503 				 srcu_read_lock_held(&mpam_srcu)) {
2504 		msc = vmsc->msc;
2505 
2506 		mutex_lock(&msc->cfg_lock);
2507 		list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list,
2508 					 srcu_read_lock_held(&mpam_srcu)) {
2509 			arg.ris = ris;
2510 			mpam_touch_msc(msc, __write_config, &arg);
2511 		}
2512 		mutex_unlock(&msc->cfg_lock);
2513 	}
2514 
2515 	return 0;
2516 }
2517 
2518 static int __init mpam_msc_driver_init(void)
2519 {
2520 	if (!system_supports_mpam())
2521 		return -EOPNOTSUPP;
2522 
2523 	init_srcu_struct(&mpam_srcu);
2524 
2525 	fw_num_msc = acpi_mpam_count_msc();
2526 	if (fw_num_msc <= 0) {
2527 		pr_err("No MSC devices found in firmware\n");
2528 		return -EINVAL;
2529 	}
2530 
2531 	return platform_driver_register(&mpam_msc_driver);
2532 }
2533 
2534 /* Must occur after arm64_mpam_register_cpus() from arch_initcall() */
2535 subsys_initcall(mpam_msc_driver_init);
2536