1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2025 Arm Ltd. 3 4 #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__ 5 6 #include <linux/acpi.h> 7 #include <linux/atomic.h> 8 #include <linux/arm_mpam.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cacheinfo.h> 12 #include <linux/cpu.h> 13 #include <linux/cpumask.h> 14 #include <linux/device.h> 15 #include <linux/errno.h> 16 #include <linux/gfp.h> 17 #include <linux/interrupt.h> 18 #include <linux/irq.h> 19 #include <linux/irqdesc.h> 20 #include <linux/list.h> 21 #include <linux/lockdep.h> 22 #include <linux/mutex.h> 23 #include <linux/platform_device.h> 24 #include <linux/printk.h> 25 #include <linux/srcu.h> 26 #include <linux/spinlock.h> 27 #include <linux/types.h> 28 #include <linux/workqueue.h> 29 30 #include "mpam_internal.h" 31 32 DEFINE_STATIC_KEY_FALSE(mpam_enabled); /* This moves to arch code */ 33 34 /* 35 * mpam_list_lock protects the SRCU lists when writing. Once the 36 * mpam_enabled key is enabled these lists are read-only, 37 * unless the error interrupt disables the driver. 38 */ 39 static DEFINE_MUTEX(mpam_list_lock); 40 static LIST_HEAD(mpam_all_msc); 41 42 struct srcu_struct mpam_srcu; 43 44 /* 45 * Number of MSCs that have been probed. Once all MSCs have been probed MPAM 46 * can be enabled. 47 */ 48 static atomic_t mpam_num_msc; 49 50 static int mpam_cpuhp_state; 51 static DEFINE_MUTEX(mpam_cpuhp_state_lock); 52 53 /* 54 * The smallest common values for any CPU or MSC in the system. 55 * Generating traffic outside this range will result in screaming interrupts. 56 */ 57 u16 mpam_partid_max; 58 u8 mpam_pmg_max; 59 static bool partid_max_init, partid_max_published; 60 static DEFINE_SPINLOCK(partid_max_lock); 61 62 /* 63 * mpam is enabled once all devices have been probed from CPU online callbacks, 64 * scheduled via this work_struct. If access to an MSC depends on a CPU that 65 * was not brought online at boot, this can happen surprisingly late. 66 */ 67 static DECLARE_WORK(mpam_enable_work, &mpam_enable); 68 69 /* 70 * All mpam error interrupts indicate a software bug. On receipt, disable the 71 * driver. 72 */ 73 static DECLARE_WORK(mpam_broken_work, &mpam_disable); 74 75 /* When mpam is disabled, the printed reason to aid debugging */ 76 static char *mpam_disable_reason; 77 78 /* 79 * An MSC is a physical container for controls and monitors, each identified by 80 * their RIS index. These share a base-address, interrupts and some MMIO 81 * registers. A vMSC is a virtual container for RIS in an MSC that control or 82 * monitor the same thing. Members of a vMSC are all RIS in the same MSC, but 83 * not all RIS in an MSC share a vMSC. 84 * 85 * Components are a group of vMSC that control or monitor the same thing but 86 * are from different MSC, so have different base-address, interrupts etc. 87 * Classes are the set components of the same type. 88 * 89 * The features of a vMSC is the union of the RIS it contains. 90 * The features of a Class and Component are the common subset of the vMSC 91 * they contain. 92 * 93 * e.g. The system cache may have bandwidth controls on multiple interfaces, 94 * for regulating traffic from devices independently of traffic from CPUs. 95 * If these are two RIS in one MSC, they will be treated as controlling 96 * different things, and will not share a vMSC/component/class. 97 * 98 * e.g. The L2 may have one MSC and two RIS, one for cache-controls another 99 * for bandwidth. These two RIS are members of the same vMSC. 100 * 101 * e.g. The set of RIS that make up the L2 are grouped as a component. These 102 * are sometimes termed slices. They should be configured the same, as if there 103 * were only one. 104 * 105 * e.g. The SoC probably has more than one L2, each attached to a distinct set 106 * of CPUs. All the L2 components are grouped as a class. 107 * 108 * When creating an MSC, struct mpam_msc is added to the all mpam_all_msc list, 109 * then linked via struct mpam_ris to a vmsc, component and class. 110 * The same MSC may exist under different class->component->vmsc paths, but the 111 * RIS index will be unique. 112 */ 113 LIST_HEAD(mpam_classes); 114 115 /* List of all objects that can be free()d after synchronise_srcu() */ 116 static LLIST_HEAD(mpam_garbage); 117 118 static inline void init_garbage(struct mpam_garbage *garbage) 119 { 120 init_llist_node(&garbage->llist); 121 } 122 123 #define add_to_garbage(x) \ 124 do { \ 125 __typeof__(x) _x = (x); \ 126 _x->garbage.to_free = _x; \ 127 llist_add(&_x->garbage.llist, &mpam_garbage); \ 128 } while (0) 129 130 static void mpam_free_garbage(void) 131 { 132 struct mpam_garbage *iter, *tmp; 133 struct llist_node *to_free = llist_del_all(&mpam_garbage); 134 135 if (!to_free) 136 return; 137 138 synchronize_srcu(&mpam_srcu); 139 140 llist_for_each_entry_safe(iter, tmp, to_free, llist) { 141 if (iter->pdev) 142 devm_kfree(&iter->pdev->dev, iter->to_free); 143 else 144 kfree(iter->to_free); 145 } 146 } 147 148 /* 149 * Once mpam is enabled, new requestors cannot further reduce the available 150 * partid. Assert that the size is fixed, and new requestors will be turned 151 * away. 152 */ 153 static void mpam_assert_partid_sizes_fixed(void) 154 { 155 WARN_ON_ONCE(!partid_max_published); 156 } 157 158 static u32 __mpam_read_reg(struct mpam_msc *msc, u16 reg) 159 { 160 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); 161 162 return readl_relaxed(msc->mapped_hwpage + reg); 163 } 164 165 static inline u32 _mpam_read_partsel_reg(struct mpam_msc *msc, u16 reg) 166 { 167 lockdep_assert_held_once(&msc->part_sel_lock); 168 return __mpam_read_reg(msc, reg); 169 } 170 171 #define mpam_read_partsel_reg(msc, reg) _mpam_read_partsel_reg(msc, MPAMF_##reg) 172 173 static void __mpam_write_reg(struct mpam_msc *msc, u16 reg, u32 val) 174 { 175 WARN_ON_ONCE(reg + sizeof(u32) > msc->mapped_hwpage_sz); 176 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); 177 178 writel_relaxed(val, msc->mapped_hwpage + reg); 179 } 180 181 static inline void _mpam_write_partsel_reg(struct mpam_msc *msc, u16 reg, u32 val) 182 { 183 lockdep_assert_held_once(&msc->part_sel_lock); 184 __mpam_write_reg(msc, reg, val); 185 } 186 187 #define mpam_write_partsel_reg(msc, reg, val) _mpam_write_partsel_reg(msc, MPAMCFG_##reg, val) 188 189 static inline u32 _mpam_read_monsel_reg(struct mpam_msc *msc, u16 reg) 190 { 191 mpam_mon_sel_lock_held(msc); 192 return __mpam_read_reg(msc, reg); 193 } 194 195 #define mpam_read_monsel_reg(msc, reg) _mpam_read_monsel_reg(msc, MSMON_##reg) 196 197 static inline void _mpam_write_monsel_reg(struct mpam_msc *msc, u16 reg, u32 val) 198 { 199 mpam_mon_sel_lock_held(msc); 200 __mpam_write_reg(msc, reg, val); 201 } 202 203 #define mpam_write_monsel_reg(msc, reg, val) _mpam_write_monsel_reg(msc, MSMON_##reg, val) 204 205 static u64 mpam_msc_read_idr(struct mpam_msc *msc) 206 { 207 u64 idr_high = 0, idr_low; 208 209 lockdep_assert_held(&msc->part_sel_lock); 210 211 idr_low = mpam_read_partsel_reg(msc, IDR); 212 if (FIELD_GET(MPAMF_IDR_EXT, idr_low)) 213 idr_high = mpam_read_partsel_reg(msc, IDR + 4); 214 215 return (idr_high << 32) | idr_low; 216 } 217 218 static void mpam_msc_clear_esr(struct mpam_msc *msc) 219 { 220 u64 esr_low = __mpam_read_reg(msc, MPAMF_ESR); 221 222 if (!esr_low) 223 return; 224 225 /* 226 * Clearing the high/low bits of MPAMF_ESR can not be atomic. 227 * Clear the top half first, so that the pending error bits in the 228 * lower half prevent hardware from updating either half of the 229 * register. 230 */ 231 if (msc->has_extd_esr) 232 __mpam_write_reg(msc, MPAMF_ESR + 4, 0); 233 __mpam_write_reg(msc, MPAMF_ESR, 0); 234 } 235 236 static u64 mpam_msc_read_esr(struct mpam_msc *msc) 237 { 238 u64 esr_high = 0, esr_low; 239 240 esr_low = __mpam_read_reg(msc, MPAMF_ESR); 241 if (msc->has_extd_esr) 242 esr_high = __mpam_read_reg(msc, MPAMF_ESR + 4); 243 244 return (esr_high << 32) | esr_low; 245 } 246 247 static void __mpam_part_sel_raw(u32 partsel, struct mpam_msc *msc) 248 { 249 lockdep_assert_held(&msc->part_sel_lock); 250 251 mpam_write_partsel_reg(msc, PART_SEL, partsel); 252 } 253 254 static void __mpam_part_sel(u8 ris_idx, u16 partid, struct mpam_msc *msc) 255 { 256 u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) | 257 FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, partid); 258 259 __mpam_part_sel_raw(partsel, msc); 260 } 261 262 static void __mpam_intpart_sel(u8 ris_idx, u16 intpartid, struct mpam_msc *msc) 263 { 264 u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) | 265 FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, intpartid) | 266 MPAMCFG_PART_SEL_INTERNAL; 267 268 __mpam_part_sel_raw(partsel, msc); 269 } 270 271 int mpam_register_requestor(u16 partid_max, u8 pmg_max) 272 { 273 guard(spinlock)(&partid_max_lock); 274 if (!partid_max_init) { 275 mpam_partid_max = partid_max; 276 mpam_pmg_max = pmg_max; 277 partid_max_init = true; 278 } else if (!partid_max_published) { 279 mpam_partid_max = min(mpam_partid_max, partid_max); 280 mpam_pmg_max = min(mpam_pmg_max, pmg_max); 281 } else { 282 /* New requestors can't lower the values */ 283 if (partid_max < mpam_partid_max || pmg_max < mpam_pmg_max) 284 return -EBUSY; 285 } 286 287 return 0; 288 } 289 EXPORT_SYMBOL(mpam_register_requestor); 290 291 static struct mpam_class * 292 mpam_class_alloc(u8 level_idx, enum mpam_class_types type) 293 { 294 struct mpam_class *class; 295 296 lockdep_assert_held(&mpam_list_lock); 297 298 class = kzalloc(sizeof(*class), GFP_KERNEL); 299 if (!class) 300 return ERR_PTR(-ENOMEM); 301 init_garbage(&class->garbage); 302 303 INIT_LIST_HEAD_RCU(&class->components); 304 /* Affinity is updated when ris are added */ 305 class->level = level_idx; 306 class->type = type; 307 INIT_LIST_HEAD_RCU(&class->classes_list); 308 ida_init(&class->ida_csu_mon); 309 ida_init(&class->ida_mbwu_mon); 310 311 list_add_rcu(&class->classes_list, &mpam_classes); 312 313 return class; 314 } 315 316 static void mpam_class_destroy(struct mpam_class *class) 317 { 318 lockdep_assert_held(&mpam_list_lock); 319 320 list_del_rcu(&class->classes_list); 321 add_to_garbage(class); 322 } 323 324 static struct mpam_class * 325 mpam_class_find(u8 level_idx, enum mpam_class_types type) 326 { 327 struct mpam_class *class; 328 329 lockdep_assert_held(&mpam_list_lock); 330 331 list_for_each_entry(class, &mpam_classes, classes_list) { 332 if (class->type == type && class->level == level_idx) 333 return class; 334 } 335 336 return mpam_class_alloc(level_idx, type); 337 } 338 339 static struct mpam_component * 340 mpam_component_alloc(struct mpam_class *class, int id) 341 { 342 struct mpam_component *comp; 343 344 lockdep_assert_held(&mpam_list_lock); 345 346 comp = kzalloc(sizeof(*comp), GFP_KERNEL); 347 if (!comp) 348 return ERR_PTR(-ENOMEM); 349 init_garbage(&comp->garbage); 350 351 comp->comp_id = id; 352 INIT_LIST_HEAD_RCU(&comp->vmsc); 353 /* Affinity is updated when RIS are added */ 354 INIT_LIST_HEAD_RCU(&comp->class_list); 355 comp->class = class; 356 357 list_add_rcu(&comp->class_list, &class->components); 358 359 return comp; 360 } 361 362 static void __destroy_component_cfg(struct mpam_component *comp); 363 364 static void mpam_component_destroy(struct mpam_component *comp) 365 { 366 struct mpam_class *class = comp->class; 367 368 lockdep_assert_held(&mpam_list_lock); 369 370 __destroy_component_cfg(comp); 371 372 list_del_rcu(&comp->class_list); 373 add_to_garbage(comp); 374 375 if (list_empty(&class->components)) 376 mpam_class_destroy(class); 377 } 378 379 static struct mpam_component * 380 mpam_component_find(struct mpam_class *class, int id) 381 { 382 struct mpam_component *comp; 383 384 lockdep_assert_held(&mpam_list_lock); 385 386 list_for_each_entry(comp, &class->components, class_list) { 387 if (comp->comp_id == id) 388 return comp; 389 } 390 391 return mpam_component_alloc(class, id); 392 } 393 394 static struct mpam_vmsc * 395 mpam_vmsc_alloc(struct mpam_component *comp, struct mpam_msc *msc) 396 { 397 struct mpam_vmsc *vmsc; 398 399 lockdep_assert_held(&mpam_list_lock); 400 401 vmsc = kzalloc(sizeof(*vmsc), GFP_KERNEL); 402 if (!vmsc) 403 return ERR_PTR(-ENOMEM); 404 init_garbage(&vmsc->garbage); 405 406 INIT_LIST_HEAD_RCU(&vmsc->ris); 407 INIT_LIST_HEAD_RCU(&vmsc->comp_list); 408 vmsc->comp = comp; 409 vmsc->msc = msc; 410 411 list_add_rcu(&vmsc->comp_list, &comp->vmsc); 412 413 return vmsc; 414 } 415 416 static void mpam_vmsc_destroy(struct mpam_vmsc *vmsc) 417 { 418 struct mpam_component *comp = vmsc->comp; 419 420 lockdep_assert_held(&mpam_list_lock); 421 422 list_del_rcu(&vmsc->comp_list); 423 add_to_garbage(vmsc); 424 425 if (list_empty(&comp->vmsc)) 426 mpam_component_destroy(comp); 427 } 428 429 static struct mpam_vmsc * 430 mpam_vmsc_find(struct mpam_component *comp, struct mpam_msc *msc) 431 { 432 struct mpam_vmsc *vmsc; 433 434 lockdep_assert_held(&mpam_list_lock); 435 436 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 437 if (vmsc->msc->id == msc->id) 438 return vmsc; 439 } 440 441 return mpam_vmsc_alloc(comp, msc); 442 } 443 444 /* 445 * The cacheinfo structures are only populated when CPUs are online. 446 * This helper walks the acpi tables to include offline CPUs too. 447 */ 448 int mpam_get_cpumask_from_cache_id(unsigned long cache_id, u32 cache_level, 449 cpumask_t *affinity) 450 { 451 return acpi_pptt_get_cpumask_from_cache_id(cache_id, affinity); 452 } 453 454 /* 455 * cpumask_of_node() only knows about online CPUs. This can't tell us whether 456 * a class is represented on all possible CPUs. 457 */ 458 static void get_cpumask_from_node_id(u32 node_id, cpumask_t *affinity) 459 { 460 int cpu; 461 462 for_each_possible_cpu(cpu) { 463 if (node_id == cpu_to_node(cpu)) 464 cpumask_set_cpu(cpu, affinity); 465 } 466 } 467 468 static int mpam_ris_get_affinity(struct mpam_msc *msc, cpumask_t *affinity, 469 enum mpam_class_types type, 470 struct mpam_class *class, 471 struct mpam_component *comp) 472 { 473 int err; 474 475 switch (type) { 476 case MPAM_CLASS_CACHE: 477 err = mpam_get_cpumask_from_cache_id(comp->comp_id, class->level, 478 affinity); 479 if (err) { 480 dev_warn_once(&msc->pdev->dev, 481 "Failed to determine CPU affinity\n"); 482 return err; 483 } 484 485 if (cpumask_empty(affinity)) 486 dev_warn_once(&msc->pdev->dev, "no CPUs associated with cache node\n"); 487 488 break; 489 case MPAM_CLASS_MEMORY: 490 get_cpumask_from_node_id(comp->comp_id, affinity); 491 /* affinity may be empty for CPU-less memory nodes */ 492 break; 493 case MPAM_CLASS_UNKNOWN: 494 return 0; 495 } 496 497 cpumask_and(affinity, affinity, &msc->accessibility); 498 499 return 0; 500 } 501 502 static int mpam_ris_create_locked(struct mpam_msc *msc, u8 ris_idx, 503 enum mpam_class_types type, u8 class_id, 504 int component_id) 505 { 506 int err; 507 struct mpam_vmsc *vmsc; 508 struct mpam_msc_ris *ris; 509 struct mpam_class *class; 510 struct mpam_component *comp; 511 struct platform_device *pdev = msc->pdev; 512 513 lockdep_assert_held(&mpam_list_lock); 514 515 if (ris_idx > MPAM_MSC_MAX_NUM_RIS) 516 return -EINVAL; 517 518 if (test_and_set_bit(ris_idx, &msc->ris_idxs)) 519 return -EBUSY; 520 521 ris = devm_kzalloc(&msc->pdev->dev, sizeof(*ris), GFP_KERNEL); 522 if (!ris) 523 return -ENOMEM; 524 init_garbage(&ris->garbage); 525 ris->garbage.pdev = pdev; 526 527 class = mpam_class_find(class_id, type); 528 if (IS_ERR(class)) 529 return PTR_ERR(class); 530 531 comp = mpam_component_find(class, component_id); 532 if (IS_ERR(comp)) { 533 if (list_empty(&class->components)) 534 mpam_class_destroy(class); 535 return PTR_ERR(comp); 536 } 537 538 vmsc = mpam_vmsc_find(comp, msc); 539 if (IS_ERR(vmsc)) { 540 if (list_empty(&comp->vmsc)) 541 mpam_component_destroy(comp); 542 return PTR_ERR(vmsc); 543 } 544 545 err = mpam_ris_get_affinity(msc, &ris->affinity, type, class, comp); 546 if (err) { 547 if (list_empty(&vmsc->ris)) 548 mpam_vmsc_destroy(vmsc); 549 return err; 550 } 551 552 ris->ris_idx = ris_idx; 553 INIT_LIST_HEAD_RCU(&ris->msc_list); 554 INIT_LIST_HEAD_RCU(&ris->vmsc_list); 555 ris->vmsc = vmsc; 556 557 cpumask_or(&comp->affinity, &comp->affinity, &ris->affinity); 558 cpumask_or(&class->affinity, &class->affinity, &ris->affinity); 559 list_add_rcu(&ris->vmsc_list, &vmsc->ris); 560 list_add_rcu(&ris->msc_list, &msc->ris); 561 562 return 0; 563 } 564 565 static void mpam_ris_destroy(struct mpam_msc_ris *ris) 566 { 567 struct mpam_vmsc *vmsc = ris->vmsc; 568 struct mpam_msc *msc = vmsc->msc; 569 struct mpam_component *comp = vmsc->comp; 570 struct mpam_class *class = comp->class; 571 572 lockdep_assert_held(&mpam_list_lock); 573 574 /* 575 * It is assumed affinities don't overlap. If they do the class becomes 576 * unusable immediately. 577 */ 578 cpumask_andnot(&class->affinity, &class->affinity, &ris->affinity); 579 cpumask_andnot(&comp->affinity, &comp->affinity, &ris->affinity); 580 clear_bit(ris->ris_idx, &msc->ris_idxs); 581 list_del_rcu(&ris->msc_list); 582 list_del_rcu(&ris->vmsc_list); 583 add_to_garbage(ris); 584 585 if (list_empty(&vmsc->ris)) 586 mpam_vmsc_destroy(vmsc); 587 } 588 589 int mpam_ris_create(struct mpam_msc *msc, u8 ris_idx, 590 enum mpam_class_types type, u8 class_id, int component_id) 591 { 592 int err; 593 594 mutex_lock(&mpam_list_lock); 595 err = mpam_ris_create_locked(msc, ris_idx, type, class_id, 596 component_id); 597 mutex_unlock(&mpam_list_lock); 598 if (err) 599 mpam_free_garbage(); 600 601 return err; 602 } 603 604 static struct mpam_msc_ris *mpam_get_or_create_ris(struct mpam_msc *msc, 605 u8 ris_idx) 606 { 607 int err; 608 struct mpam_msc_ris *ris; 609 610 lockdep_assert_held(&mpam_list_lock); 611 612 if (!test_bit(ris_idx, &msc->ris_idxs)) { 613 err = mpam_ris_create_locked(msc, ris_idx, MPAM_CLASS_UNKNOWN, 614 0, 0); 615 if (err) 616 return ERR_PTR(err); 617 } 618 619 list_for_each_entry(ris, &msc->ris, msc_list) { 620 if (ris->ris_idx == ris_idx) 621 return ris; 622 } 623 624 return ERR_PTR(-ENOENT); 625 } 626 627 /* 628 * IHI009A.a has this nugget: "If a monitor does not support automatic behaviour 629 * of NRDY, software can use this bit for any purpose" - so hardware might not 630 * implement this - but it isn't RES0. 631 * 632 * Try and see what values stick in this bit. If we can write either value, 633 * its probably not implemented by hardware. 634 */ 635 static bool _mpam_ris_hw_probe_hw_nrdy(struct mpam_msc_ris *ris, u32 mon_reg) 636 { 637 u32 now; 638 u64 mon_sel; 639 bool can_set, can_clear; 640 struct mpam_msc *msc = ris->vmsc->msc; 641 642 if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc))) 643 return false; 644 645 mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, 0) | 646 FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx); 647 _mpam_write_monsel_reg(msc, mon_reg, mon_sel); 648 649 _mpam_write_monsel_reg(msc, mon_reg, MSMON___NRDY); 650 now = _mpam_read_monsel_reg(msc, mon_reg); 651 can_set = now & MSMON___NRDY; 652 653 _mpam_write_monsel_reg(msc, mon_reg, 0); 654 now = _mpam_read_monsel_reg(msc, mon_reg); 655 can_clear = !(now & MSMON___NRDY); 656 mpam_mon_sel_unlock(msc); 657 658 return (!can_set || !can_clear); 659 } 660 661 #define mpam_ris_hw_probe_hw_nrdy(_ris, _mon_reg) \ 662 _mpam_ris_hw_probe_hw_nrdy(_ris, MSMON_##_mon_reg) 663 664 static void mpam_ris_hw_probe(struct mpam_msc_ris *ris) 665 { 666 int err; 667 struct mpam_msc *msc = ris->vmsc->msc; 668 struct device *dev = &msc->pdev->dev; 669 struct mpam_props *props = &ris->props; 670 struct mpam_class *class = ris->vmsc->comp->class; 671 672 lockdep_assert_held(&msc->probe_lock); 673 lockdep_assert_held(&msc->part_sel_lock); 674 675 /* Cache Capacity Partitioning */ 676 if (FIELD_GET(MPAMF_IDR_HAS_CCAP_PART, ris->idr)) { 677 u32 ccap_features = mpam_read_partsel_reg(msc, CCAP_IDR); 678 679 props->cmax_wd = FIELD_GET(MPAMF_CCAP_IDR_CMAX_WD, ccap_features); 680 if (props->cmax_wd && 681 FIELD_GET(MPAMF_CCAP_IDR_HAS_CMAX_SOFTLIM, ccap_features)) 682 mpam_set_feature(mpam_feat_cmax_softlim, props); 683 684 if (props->cmax_wd && 685 !FIELD_GET(MPAMF_CCAP_IDR_NO_CMAX, ccap_features)) 686 mpam_set_feature(mpam_feat_cmax_cmax, props); 687 688 if (props->cmax_wd && 689 FIELD_GET(MPAMF_CCAP_IDR_HAS_CMIN, ccap_features)) 690 mpam_set_feature(mpam_feat_cmax_cmin, props); 691 692 props->cassoc_wd = FIELD_GET(MPAMF_CCAP_IDR_CASSOC_WD, ccap_features); 693 if (props->cassoc_wd && 694 FIELD_GET(MPAMF_CCAP_IDR_HAS_CASSOC, ccap_features)) 695 mpam_set_feature(mpam_feat_cmax_cassoc, props); 696 } 697 698 /* Cache Portion partitioning */ 699 if (FIELD_GET(MPAMF_IDR_HAS_CPOR_PART, ris->idr)) { 700 u32 cpor_features = mpam_read_partsel_reg(msc, CPOR_IDR); 701 702 props->cpbm_wd = FIELD_GET(MPAMF_CPOR_IDR_CPBM_WD, cpor_features); 703 if (props->cpbm_wd) 704 mpam_set_feature(mpam_feat_cpor_part, props); 705 } 706 707 /* Memory bandwidth partitioning */ 708 if (FIELD_GET(MPAMF_IDR_HAS_MBW_PART, ris->idr)) { 709 u32 mbw_features = mpam_read_partsel_reg(msc, MBW_IDR); 710 711 /* portion bitmap resolution */ 712 props->mbw_pbm_bits = FIELD_GET(MPAMF_MBW_IDR_BWPBM_WD, mbw_features); 713 if (props->mbw_pbm_bits && 714 FIELD_GET(MPAMF_MBW_IDR_HAS_PBM, mbw_features)) 715 mpam_set_feature(mpam_feat_mbw_part, props); 716 717 props->bwa_wd = FIELD_GET(MPAMF_MBW_IDR_BWA_WD, mbw_features); 718 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MAX, mbw_features)) 719 mpam_set_feature(mpam_feat_mbw_max, props); 720 721 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MIN, mbw_features)) 722 mpam_set_feature(mpam_feat_mbw_min, props); 723 724 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_PROP, mbw_features)) 725 mpam_set_feature(mpam_feat_mbw_prop, props); 726 } 727 728 /* Priority partitioning */ 729 if (FIELD_GET(MPAMF_IDR_HAS_PRI_PART, ris->idr)) { 730 u32 pri_features = mpam_read_partsel_reg(msc, PRI_IDR); 731 732 props->intpri_wd = FIELD_GET(MPAMF_PRI_IDR_INTPRI_WD, pri_features); 733 if (props->intpri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_INTPRI, pri_features)) { 734 mpam_set_feature(mpam_feat_intpri_part, props); 735 if (FIELD_GET(MPAMF_PRI_IDR_INTPRI_0_IS_LOW, pri_features)) 736 mpam_set_feature(mpam_feat_intpri_part_0_low, props); 737 } 738 739 props->dspri_wd = FIELD_GET(MPAMF_PRI_IDR_DSPRI_WD, pri_features); 740 if (props->dspri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_DSPRI, pri_features)) { 741 mpam_set_feature(mpam_feat_dspri_part, props); 742 if (FIELD_GET(MPAMF_PRI_IDR_DSPRI_0_IS_LOW, pri_features)) 743 mpam_set_feature(mpam_feat_dspri_part_0_low, props); 744 } 745 } 746 747 /* Performance Monitoring */ 748 if (FIELD_GET(MPAMF_IDR_HAS_MSMON, ris->idr)) { 749 u32 msmon_features = mpam_read_partsel_reg(msc, MSMON_IDR); 750 751 /* 752 * If the firmware max-nrdy-us property is missing, the 753 * CSU counters can't be used. Should we wait forever? 754 */ 755 err = device_property_read_u32(&msc->pdev->dev, 756 "arm,not-ready-us", 757 &msc->nrdy_usec); 758 759 if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_CSU, msmon_features)) { 760 u32 csumonidr; 761 762 csumonidr = mpam_read_partsel_reg(msc, CSUMON_IDR); 763 props->num_csu_mon = FIELD_GET(MPAMF_CSUMON_IDR_NUM_MON, csumonidr); 764 if (props->num_csu_mon) { 765 bool hw_managed; 766 767 mpam_set_feature(mpam_feat_msmon_csu, props); 768 769 if (FIELD_GET(MPAMF_CSUMON_IDR_HAS_XCL, csumonidr)) 770 mpam_set_feature(mpam_feat_msmon_csu_xcl, props); 771 772 /* Is NRDY hardware managed? */ 773 hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, CSU); 774 if (hw_managed) 775 mpam_set_feature(mpam_feat_msmon_csu_hw_nrdy, props); 776 } 777 778 /* 779 * Accept the missing firmware property if NRDY appears 780 * un-implemented. 781 */ 782 if (err && mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, props)) 783 dev_err_once(dev, "Counters are not usable because not-ready timeout was not provided by firmware."); 784 } 785 if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_MBWU, msmon_features)) { 786 bool hw_managed; 787 u32 mbwumon_idr = mpam_read_partsel_reg(msc, MBWUMON_IDR); 788 789 props->num_mbwu_mon = FIELD_GET(MPAMF_MBWUMON_IDR_NUM_MON, mbwumon_idr); 790 if (props->num_mbwu_mon) 791 mpam_set_feature(mpam_feat_msmon_mbwu, props); 792 793 if (FIELD_GET(MPAMF_MBWUMON_IDR_HAS_RWBW, mbwumon_idr)) 794 mpam_set_feature(mpam_feat_msmon_mbwu_rwbw, props); 795 796 /* Is NRDY hardware managed? */ 797 hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, MBWU); 798 if (hw_managed) 799 mpam_set_feature(mpam_feat_msmon_mbwu_hw_nrdy, props); 800 801 /* 802 * Don't warn about any missing firmware property for 803 * MBWU NRDY - it doesn't make any sense! 804 */ 805 } 806 } 807 808 /* 809 * RIS with PARTID narrowing don't have enough storage for one 810 * configuration per PARTID. If these are in a class we could use, 811 * reduce the supported partid_max to match the number of intpartid. 812 * If the class is unknown, just ignore it. 813 */ 814 if (FIELD_GET(MPAMF_IDR_HAS_PARTID_NRW, ris->idr) && 815 class->type != MPAM_CLASS_UNKNOWN) { 816 u32 nrwidr = mpam_read_partsel_reg(msc, PARTID_NRW_IDR); 817 u16 partid_max = FIELD_GET(MPAMF_PARTID_NRW_IDR_INTPARTID_MAX, nrwidr); 818 819 mpam_set_feature(mpam_feat_partid_nrw, props); 820 msc->partid_max = min(msc->partid_max, partid_max); 821 } 822 } 823 824 static int mpam_msc_hw_probe(struct mpam_msc *msc) 825 { 826 u64 idr; 827 u16 partid_max; 828 u8 ris_idx, pmg_max; 829 struct mpam_msc_ris *ris; 830 struct device *dev = &msc->pdev->dev; 831 832 lockdep_assert_held(&msc->probe_lock); 833 834 idr = __mpam_read_reg(msc, MPAMF_AIDR); 835 if ((idr & MPAMF_AIDR_ARCH_MAJOR_REV) != MPAM_ARCHITECTURE_V1) { 836 dev_err_once(dev, "MSC does not match MPAM architecture v1.x\n"); 837 return -EIO; 838 } 839 840 /* Grab an IDR value to find out how many RIS there are */ 841 mutex_lock(&msc->part_sel_lock); 842 idr = mpam_msc_read_idr(msc); 843 mutex_unlock(&msc->part_sel_lock); 844 845 msc->ris_max = FIELD_GET(MPAMF_IDR_RIS_MAX, idr); 846 847 /* Use these values so partid/pmg always starts with a valid value */ 848 msc->partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr); 849 msc->pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr); 850 851 for (ris_idx = 0; ris_idx <= msc->ris_max; ris_idx++) { 852 mutex_lock(&msc->part_sel_lock); 853 __mpam_part_sel(ris_idx, 0, msc); 854 idr = mpam_msc_read_idr(msc); 855 mutex_unlock(&msc->part_sel_lock); 856 857 partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr); 858 pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr); 859 msc->partid_max = min(msc->partid_max, partid_max); 860 msc->pmg_max = min(msc->pmg_max, pmg_max); 861 msc->has_extd_esr = FIELD_GET(MPAMF_IDR_HAS_EXTD_ESR, idr); 862 863 mutex_lock(&mpam_list_lock); 864 ris = mpam_get_or_create_ris(msc, ris_idx); 865 mutex_unlock(&mpam_list_lock); 866 if (IS_ERR(ris)) 867 return PTR_ERR(ris); 868 ris->idr = idr; 869 870 mutex_lock(&msc->part_sel_lock); 871 __mpam_part_sel(ris_idx, 0, msc); 872 mpam_ris_hw_probe(ris); 873 mutex_unlock(&msc->part_sel_lock); 874 } 875 876 /* Clear any stale errors */ 877 mpam_msc_clear_esr(msc); 878 879 spin_lock(&partid_max_lock); 880 mpam_partid_max = min(mpam_partid_max, msc->partid_max); 881 mpam_pmg_max = min(mpam_pmg_max, msc->pmg_max); 882 spin_unlock(&partid_max_lock); 883 884 msc->probed = true; 885 886 return 0; 887 } 888 889 struct mon_read { 890 struct mpam_msc_ris *ris; 891 struct mon_cfg *ctx; 892 enum mpam_device_features type; 893 u64 *val; 894 int err; 895 }; 896 897 static void gen_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val, 898 u32 *flt_val) 899 { 900 struct mon_cfg *ctx = m->ctx; 901 902 /* 903 * For CSU counters its implementation-defined what happens when not 904 * filtering by partid. 905 */ 906 *ctl_val = MSMON_CFG_x_CTL_MATCH_PARTID; 907 908 *flt_val = FIELD_PREP(MSMON_CFG_x_FLT_PARTID, ctx->partid); 909 910 if (m->ctx->match_pmg) { 911 *ctl_val |= MSMON_CFG_x_CTL_MATCH_PMG; 912 *flt_val |= FIELD_PREP(MSMON_CFG_x_FLT_PMG, ctx->pmg); 913 } 914 915 switch (m->type) { 916 case mpam_feat_msmon_csu: 917 *ctl_val |= MSMON_CFG_CSU_CTL_TYPE_CSU; 918 919 if (mpam_has_feature(mpam_feat_msmon_csu_xcl, &m->ris->props)) 920 *flt_val |= FIELD_PREP(MSMON_CFG_CSU_FLT_XCL, ctx->csu_exclude_clean); 921 922 break; 923 case mpam_feat_msmon_mbwu: 924 *ctl_val |= MSMON_CFG_MBWU_CTL_TYPE_MBWU; 925 926 if (mpam_has_feature(mpam_feat_msmon_mbwu_rwbw, &m->ris->props)) 927 *flt_val |= FIELD_PREP(MSMON_CFG_MBWU_FLT_RWBW, ctx->opts); 928 929 break; 930 default: 931 pr_warn("Unexpected monitor type %d\n", m->type); 932 } 933 } 934 935 static void read_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val, 936 u32 *flt_val) 937 { 938 struct mpam_msc *msc = m->ris->vmsc->msc; 939 940 switch (m->type) { 941 case mpam_feat_msmon_csu: 942 *ctl_val = mpam_read_monsel_reg(msc, CFG_CSU_CTL); 943 *flt_val = mpam_read_monsel_reg(msc, CFG_CSU_FLT); 944 break; 945 case mpam_feat_msmon_mbwu: 946 *ctl_val = mpam_read_monsel_reg(msc, CFG_MBWU_CTL); 947 *flt_val = mpam_read_monsel_reg(msc, CFG_MBWU_FLT); 948 break; 949 default: 950 pr_warn("Unexpected monitor type %d\n", m->type); 951 } 952 } 953 954 /* Remove values set by the hardware to prevent apparent mismatches. */ 955 static inline void clean_msmon_ctl_val(u32 *cur_ctl) 956 { 957 *cur_ctl &= ~MSMON_CFG_x_CTL_OFLOW_STATUS; 958 } 959 960 static void write_msmon_ctl_flt_vals(struct mon_read *m, u32 ctl_val, 961 u32 flt_val) 962 { 963 struct mpam_msc *msc = m->ris->vmsc->msc; 964 965 /* 966 * Write the ctl_val with the enable bit cleared, reset the counter, 967 * then enable counter. 968 */ 969 switch (m->type) { 970 case mpam_feat_msmon_csu: 971 mpam_write_monsel_reg(msc, CFG_CSU_FLT, flt_val); 972 mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val); 973 mpam_write_monsel_reg(msc, CSU, 0); 974 mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val | MSMON_CFG_x_CTL_EN); 975 break; 976 case mpam_feat_msmon_mbwu: 977 mpam_write_monsel_reg(msc, CFG_MBWU_FLT, flt_val); 978 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val); 979 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val | MSMON_CFG_x_CTL_EN); 980 /* Counting monitors require NRDY to be reset by software */ 981 mpam_write_monsel_reg(msc, MBWU, 0); 982 break; 983 default: 984 pr_warn("Unexpected monitor type %d\n", m->type); 985 } 986 } 987 988 static void __ris_msmon_read(void *arg) 989 { 990 u64 now; 991 bool nrdy = false; 992 bool config_mismatch; 993 struct mon_read *m = arg; 994 struct mon_cfg *ctx = m->ctx; 995 struct mpam_msc_ris *ris = m->ris; 996 struct msmon_mbwu_state *mbwu_state; 997 struct mpam_props *rprops = &ris->props; 998 struct mpam_msc *msc = m->ris->vmsc->msc; 999 u32 mon_sel, ctl_val, flt_val, cur_ctl, cur_flt; 1000 1001 if (!mpam_mon_sel_lock(msc)) { 1002 m->err = -EIO; 1003 return; 1004 } 1005 mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, ctx->mon) | 1006 FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx); 1007 mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel); 1008 1009 /* 1010 * Read the existing configuration to avoid re-writing the same values. 1011 * This saves waiting for 'nrdy' on subsequent reads. 1012 */ 1013 read_msmon_ctl_flt_vals(m, &cur_ctl, &cur_flt); 1014 clean_msmon_ctl_val(&cur_ctl); 1015 gen_msmon_ctl_flt_vals(m, &ctl_val, &flt_val); 1016 config_mismatch = cur_flt != flt_val || 1017 cur_ctl != (ctl_val | MSMON_CFG_x_CTL_EN); 1018 1019 if (config_mismatch) 1020 write_msmon_ctl_flt_vals(m, ctl_val, flt_val); 1021 1022 switch (m->type) { 1023 case mpam_feat_msmon_csu: 1024 now = mpam_read_monsel_reg(msc, CSU); 1025 if (mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, rprops)) 1026 nrdy = now & MSMON___NRDY; 1027 now = FIELD_GET(MSMON___VALUE, now); 1028 break; 1029 case mpam_feat_msmon_mbwu: 1030 now = mpam_read_monsel_reg(msc, MBWU); 1031 if (mpam_has_feature(mpam_feat_msmon_mbwu_hw_nrdy, rprops)) 1032 nrdy = now & MSMON___NRDY; 1033 now = FIELD_GET(MSMON___VALUE, now); 1034 1035 if (nrdy) 1036 break; 1037 1038 mbwu_state = &ris->mbwu_state[ctx->mon]; 1039 1040 /* Include bandwidth consumed before the last hardware reset */ 1041 now += mbwu_state->correction; 1042 break; 1043 default: 1044 m->err = -EINVAL; 1045 } 1046 mpam_mon_sel_unlock(msc); 1047 1048 if (nrdy) { 1049 m->err = -EBUSY; 1050 return; 1051 } 1052 1053 *m->val += now; 1054 } 1055 1056 static int _msmon_read(struct mpam_component *comp, struct mon_read *arg) 1057 { 1058 int err, any_err = 0; 1059 struct mpam_vmsc *vmsc; 1060 1061 guard(srcu)(&mpam_srcu); 1062 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 1063 srcu_read_lock_held(&mpam_srcu)) { 1064 struct mpam_msc *msc = vmsc->msc; 1065 struct mpam_msc_ris *ris; 1066 1067 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 1068 srcu_read_lock_held(&mpam_srcu)) { 1069 arg->ris = ris; 1070 1071 err = smp_call_function_any(&msc->accessibility, 1072 __ris_msmon_read, arg, 1073 true); 1074 if (!err && arg->err) 1075 err = arg->err; 1076 1077 /* 1078 * Save one error to be returned to the caller, but 1079 * keep reading counters so that get reprogrammed. On 1080 * platforms with NRDY this lets us wait once. 1081 */ 1082 if (err) 1083 any_err = err; 1084 } 1085 } 1086 1087 return any_err; 1088 } 1089 1090 int mpam_msmon_read(struct mpam_component *comp, struct mon_cfg *ctx, 1091 enum mpam_device_features type, u64 *val) 1092 { 1093 int err; 1094 struct mon_read arg; 1095 u64 wait_jiffies = 0; 1096 struct mpam_props *cprops = &comp->class->props; 1097 1098 might_sleep(); 1099 1100 if (!mpam_is_enabled()) 1101 return -EIO; 1102 1103 if (!mpam_has_feature(type, cprops)) 1104 return -EOPNOTSUPP; 1105 1106 arg = (struct mon_read) { 1107 .ctx = ctx, 1108 .type = type, 1109 .val = val, 1110 }; 1111 *val = 0; 1112 1113 err = _msmon_read(comp, &arg); 1114 if (err == -EBUSY && comp->class->nrdy_usec) 1115 wait_jiffies = usecs_to_jiffies(comp->class->nrdy_usec); 1116 1117 while (wait_jiffies) 1118 wait_jiffies = schedule_timeout_uninterruptible(wait_jiffies); 1119 1120 if (err == -EBUSY) { 1121 arg = (struct mon_read) { 1122 .ctx = ctx, 1123 .type = type, 1124 .val = val, 1125 }; 1126 *val = 0; 1127 1128 err = _msmon_read(comp, &arg); 1129 } 1130 1131 return err; 1132 } 1133 1134 static void mpam_reset_msc_bitmap(struct mpam_msc *msc, u16 reg, u16 wd) 1135 { 1136 u32 num_words, msb; 1137 u32 bm = ~0; 1138 int i; 1139 1140 lockdep_assert_held(&msc->part_sel_lock); 1141 1142 if (wd == 0) 1143 return; 1144 1145 /* 1146 * Write all ~0 to all but the last 32bit-word, which may 1147 * have fewer bits... 1148 */ 1149 num_words = DIV_ROUND_UP(wd, 32); 1150 for (i = 0; i < num_words - 1; i++, reg += sizeof(bm)) 1151 __mpam_write_reg(msc, reg, bm); 1152 1153 /* 1154 * ....and then the last (maybe) partial 32bit word. When wd is a 1155 * multiple of 32, msb should be 31 to write a full 32bit word. 1156 */ 1157 msb = (wd - 1) % 32; 1158 bm = GENMASK(msb, 0); 1159 __mpam_write_reg(msc, reg, bm); 1160 } 1161 1162 /* Called via IPI. Call while holding an SRCU reference */ 1163 static void mpam_reprogram_ris_partid(struct mpam_msc_ris *ris, u16 partid, 1164 struct mpam_config *cfg) 1165 { 1166 u32 pri_val = 0; 1167 u16 cmax = MPAMCFG_CMAX_CMAX; 1168 struct mpam_msc *msc = ris->vmsc->msc; 1169 struct mpam_props *rprops = &ris->props; 1170 u16 dspri = GENMASK(rprops->dspri_wd, 0); 1171 u16 intpri = GENMASK(rprops->intpri_wd, 0); 1172 1173 mutex_lock(&msc->part_sel_lock); 1174 __mpam_part_sel(ris->ris_idx, partid, msc); 1175 1176 if (mpam_has_feature(mpam_feat_partid_nrw, rprops)) { 1177 /* Update the intpartid mapping */ 1178 mpam_write_partsel_reg(msc, INTPARTID, 1179 MPAMCFG_INTPARTID_INTERNAL | partid); 1180 1181 /* 1182 * Then switch to the 'internal' partid to update the 1183 * configuration. 1184 */ 1185 __mpam_intpart_sel(ris->ris_idx, partid, msc); 1186 } 1187 1188 if (mpam_has_feature(mpam_feat_cpor_part, rprops) && 1189 mpam_has_feature(mpam_feat_cpor_part, cfg)) { 1190 if (cfg->reset_cpbm) 1191 mpam_reset_msc_bitmap(msc, MPAMCFG_CPBM, rprops->cpbm_wd); 1192 else 1193 mpam_write_partsel_reg(msc, CPBM, cfg->cpbm); 1194 } 1195 1196 if (mpam_has_feature(mpam_feat_mbw_part, rprops) && 1197 mpam_has_feature(mpam_feat_mbw_part, cfg)) { 1198 if (cfg->reset_mbw_pbm) 1199 mpam_reset_msc_bitmap(msc, MPAMCFG_MBW_PBM, rprops->mbw_pbm_bits); 1200 else 1201 mpam_write_partsel_reg(msc, MBW_PBM, cfg->mbw_pbm); 1202 } 1203 1204 if (mpam_has_feature(mpam_feat_mbw_min, rprops) && 1205 mpam_has_feature(mpam_feat_mbw_min, cfg)) 1206 mpam_write_partsel_reg(msc, MBW_MIN, 0); 1207 1208 if (mpam_has_feature(mpam_feat_mbw_max, rprops) && 1209 mpam_has_feature(mpam_feat_mbw_max, cfg)) { 1210 if (cfg->reset_mbw_max) 1211 mpam_write_partsel_reg(msc, MBW_MAX, MPAMCFG_MBW_MAX_MAX); 1212 else 1213 mpam_write_partsel_reg(msc, MBW_MAX, cfg->mbw_max); 1214 } 1215 1216 if (mpam_has_feature(mpam_feat_mbw_prop, rprops) && 1217 mpam_has_feature(mpam_feat_mbw_prop, cfg)) 1218 mpam_write_partsel_reg(msc, MBW_PROP, 0); 1219 1220 if (mpam_has_feature(mpam_feat_cmax_cmax, rprops)) 1221 mpam_write_partsel_reg(msc, CMAX, cmax); 1222 1223 if (mpam_has_feature(mpam_feat_cmax_cmin, rprops)) 1224 mpam_write_partsel_reg(msc, CMIN, 0); 1225 1226 if (mpam_has_feature(mpam_feat_cmax_cassoc, rprops)) 1227 mpam_write_partsel_reg(msc, CASSOC, MPAMCFG_CASSOC_CASSOC); 1228 1229 if (mpam_has_feature(mpam_feat_intpri_part, rprops) || 1230 mpam_has_feature(mpam_feat_dspri_part, rprops)) { 1231 /* aces high? */ 1232 if (!mpam_has_feature(mpam_feat_intpri_part_0_low, rprops)) 1233 intpri = 0; 1234 if (!mpam_has_feature(mpam_feat_dspri_part_0_low, rprops)) 1235 dspri = 0; 1236 1237 if (mpam_has_feature(mpam_feat_intpri_part, rprops)) 1238 pri_val |= FIELD_PREP(MPAMCFG_PRI_INTPRI, intpri); 1239 if (mpam_has_feature(mpam_feat_dspri_part, rprops)) 1240 pri_val |= FIELD_PREP(MPAMCFG_PRI_DSPRI, dspri); 1241 1242 mpam_write_partsel_reg(msc, PRI, pri_val); 1243 } 1244 1245 mutex_unlock(&msc->part_sel_lock); 1246 } 1247 1248 /* Call with msc cfg_lock held */ 1249 static int mpam_restore_mbwu_state(void *_ris) 1250 { 1251 int i; 1252 struct mon_read mwbu_arg; 1253 struct mpam_msc_ris *ris = _ris; 1254 1255 for (i = 0; i < ris->props.num_mbwu_mon; i++) { 1256 if (ris->mbwu_state[i].enabled) { 1257 mwbu_arg.ris = ris; 1258 mwbu_arg.ctx = &ris->mbwu_state[i].cfg; 1259 mwbu_arg.type = mpam_feat_msmon_mbwu; 1260 1261 __ris_msmon_read(&mwbu_arg); 1262 } 1263 } 1264 1265 return 0; 1266 } 1267 1268 /* Call with MSC cfg_lock held */ 1269 static int mpam_save_mbwu_state(void *arg) 1270 { 1271 int i; 1272 u64 val; 1273 struct mon_cfg *cfg; 1274 u32 cur_flt, cur_ctl, mon_sel; 1275 struct mpam_msc_ris *ris = arg; 1276 struct msmon_mbwu_state *mbwu_state; 1277 struct mpam_msc *msc = ris->vmsc->msc; 1278 1279 for (i = 0; i < ris->props.num_mbwu_mon; i++) { 1280 mbwu_state = &ris->mbwu_state[i]; 1281 cfg = &mbwu_state->cfg; 1282 1283 if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc))) 1284 return -EIO; 1285 1286 mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, i) | 1287 FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx); 1288 mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel); 1289 1290 cur_flt = mpam_read_monsel_reg(msc, CFG_MBWU_FLT); 1291 cur_ctl = mpam_read_monsel_reg(msc, CFG_MBWU_CTL); 1292 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, 0); 1293 1294 val = mpam_read_monsel_reg(msc, MBWU); 1295 mpam_write_monsel_reg(msc, MBWU, 0); 1296 1297 cfg->mon = i; 1298 cfg->pmg = FIELD_GET(MSMON_CFG_x_FLT_PMG, cur_flt); 1299 cfg->match_pmg = FIELD_GET(MSMON_CFG_x_CTL_MATCH_PMG, cur_ctl); 1300 cfg->partid = FIELD_GET(MSMON_CFG_x_FLT_PARTID, cur_flt); 1301 mbwu_state->correction += val; 1302 mbwu_state->enabled = FIELD_GET(MSMON_CFG_x_CTL_EN, cur_ctl); 1303 mpam_mon_sel_unlock(msc); 1304 } 1305 1306 return 0; 1307 } 1308 1309 static void mpam_init_reset_cfg(struct mpam_config *reset_cfg) 1310 { 1311 *reset_cfg = (struct mpam_config) { 1312 .reset_cpbm = true, 1313 .reset_mbw_pbm = true, 1314 .reset_mbw_max = true, 1315 }; 1316 bitmap_fill(reset_cfg->features, MPAM_FEATURE_LAST); 1317 } 1318 1319 /* 1320 * Called via smp_call_on_cpu() to prevent migration, while still being 1321 * pre-emptible. Caller must hold mpam_srcu. 1322 */ 1323 static int mpam_reset_ris(void *arg) 1324 { 1325 u16 partid, partid_max; 1326 struct mpam_config reset_cfg; 1327 struct mpam_msc_ris *ris = arg; 1328 1329 if (ris->in_reset_state) 1330 return 0; 1331 1332 mpam_init_reset_cfg(&reset_cfg); 1333 1334 spin_lock(&partid_max_lock); 1335 partid_max = mpam_partid_max; 1336 spin_unlock(&partid_max_lock); 1337 for (partid = 0; partid <= partid_max; partid++) 1338 mpam_reprogram_ris_partid(ris, partid, &reset_cfg); 1339 1340 return 0; 1341 } 1342 1343 /* 1344 * Get the preferred CPU for this MSC. If it is accessible from this CPU, 1345 * this CPU is preferred. This can be preempted/migrated, it will only result 1346 * in more work. 1347 */ 1348 static int mpam_get_msc_preferred_cpu(struct mpam_msc *msc) 1349 { 1350 int cpu = raw_smp_processor_id(); 1351 1352 if (cpumask_test_cpu(cpu, &msc->accessibility)) 1353 return cpu; 1354 1355 return cpumask_first_and(&msc->accessibility, cpu_online_mask); 1356 } 1357 1358 static int mpam_touch_msc(struct mpam_msc *msc, int (*fn)(void *a), void *arg) 1359 { 1360 lockdep_assert_irqs_enabled(); 1361 lockdep_assert_cpus_held(); 1362 WARN_ON_ONCE(!srcu_read_lock_held((&mpam_srcu))); 1363 1364 return smp_call_on_cpu(mpam_get_msc_preferred_cpu(msc), fn, arg, true); 1365 } 1366 1367 struct mpam_write_config_arg { 1368 struct mpam_msc_ris *ris; 1369 struct mpam_component *comp; 1370 u16 partid; 1371 }; 1372 1373 static int __write_config(void *arg) 1374 { 1375 struct mpam_write_config_arg *c = arg; 1376 1377 mpam_reprogram_ris_partid(c->ris, c->partid, &c->comp->cfg[c->partid]); 1378 1379 return 0; 1380 } 1381 1382 static void mpam_reprogram_msc(struct mpam_msc *msc) 1383 { 1384 u16 partid; 1385 bool reset; 1386 struct mpam_config *cfg; 1387 struct mpam_msc_ris *ris; 1388 struct mpam_write_config_arg arg; 1389 1390 /* 1391 * No lock for mpam_partid_max as partid_max_published has been 1392 * set by mpam_enabled(), so the values can no longer change. 1393 */ 1394 mpam_assert_partid_sizes_fixed(); 1395 1396 mutex_lock(&msc->cfg_lock); 1397 list_for_each_entry_srcu(ris, &msc->ris, msc_list, 1398 srcu_read_lock_held(&mpam_srcu)) { 1399 if (!mpam_is_enabled() && !ris->in_reset_state) { 1400 mpam_touch_msc(msc, &mpam_reset_ris, ris); 1401 ris->in_reset_state = true; 1402 continue; 1403 } 1404 1405 arg.comp = ris->vmsc->comp; 1406 arg.ris = ris; 1407 reset = true; 1408 for (partid = 0; partid <= mpam_partid_max; partid++) { 1409 cfg = &ris->vmsc->comp->cfg[partid]; 1410 if (!bitmap_empty(cfg->features, MPAM_FEATURE_LAST)) 1411 reset = false; 1412 1413 arg.partid = partid; 1414 mpam_touch_msc(msc, __write_config, &arg); 1415 } 1416 ris->in_reset_state = reset; 1417 1418 if (mpam_has_feature(mpam_feat_msmon_mbwu, &ris->props)) 1419 mpam_touch_msc(msc, &mpam_restore_mbwu_state, ris); 1420 } 1421 mutex_unlock(&msc->cfg_lock); 1422 } 1423 1424 static void _enable_percpu_irq(void *_irq) 1425 { 1426 int *irq = _irq; 1427 1428 enable_percpu_irq(*irq, IRQ_TYPE_NONE); 1429 } 1430 1431 static int mpam_cpu_online(unsigned int cpu) 1432 { 1433 struct mpam_msc *msc; 1434 1435 guard(srcu)(&mpam_srcu); 1436 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1437 srcu_read_lock_held(&mpam_srcu)) { 1438 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1439 continue; 1440 1441 if (msc->reenable_error_ppi) 1442 _enable_percpu_irq(&msc->reenable_error_ppi); 1443 1444 if (atomic_fetch_inc(&msc->online_refs) == 0) 1445 mpam_reprogram_msc(msc); 1446 } 1447 1448 return 0; 1449 } 1450 1451 /* Before mpam is enabled, try to probe new MSC */ 1452 static int mpam_discovery_cpu_online(unsigned int cpu) 1453 { 1454 int err = 0; 1455 struct mpam_msc *msc; 1456 bool new_device_probed = false; 1457 1458 if (mpam_is_enabled()) 1459 return 0; 1460 1461 guard(srcu)(&mpam_srcu); 1462 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1463 srcu_read_lock_held(&mpam_srcu)) { 1464 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1465 continue; 1466 1467 mutex_lock(&msc->probe_lock); 1468 if (!msc->probed) 1469 err = mpam_msc_hw_probe(msc); 1470 mutex_unlock(&msc->probe_lock); 1471 1472 if (err) 1473 break; 1474 new_device_probed = true; 1475 } 1476 1477 if (new_device_probed && !err) 1478 schedule_work(&mpam_enable_work); 1479 if (err) { 1480 mpam_disable_reason = "error during probing"; 1481 schedule_work(&mpam_broken_work); 1482 } 1483 1484 return err; 1485 } 1486 1487 static int mpam_cpu_offline(unsigned int cpu) 1488 { 1489 struct mpam_msc *msc; 1490 1491 guard(srcu)(&mpam_srcu); 1492 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1493 srcu_read_lock_held(&mpam_srcu)) { 1494 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1495 continue; 1496 1497 if (msc->reenable_error_ppi) 1498 disable_percpu_irq(msc->reenable_error_ppi); 1499 1500 if (atomic_dec_and_test(&msc->online_refs)) { 1501 struct mpam_msc_ris *ris; 1502 1503 mutex_lock(&msc->cfg_lock); 1504 list_for_each_entry_srcu(ris, &msc->ris, msc_list, 1505 srcu_read_lock_held(&mpam_srcu)) { 1506 mpam_touch_msc(msc, &mpam_reset_ris, ris); 1507 1508 /* 1509 * The reset state for non-zero partid may be 1510 * lost while the CPUs are offline. 1511 */ 1512 ris->in_reset_state = false; 1513 1514 if (mpam_is_enabled()) 1515 mpam_touch_msc(msc, &mpam_save_mbwu_state, ris); 1516 } 1517 mutex_unlock(&msc->cfg_lock); 1518 } 1519 } 1520 1521 return 0; 1522 } 1523 1524 static void mpam_register_cpuhp_callbacks(int (*online)(unsigned int online), 1525 int (*offline)(unsigned int offline), 1526 char *name) 1527 { 1528 mutex_lock(&mpam_cpuhp_state_lock); 1529 if (mpam_cpuhp_state) { 1530 cpuhp_remove_state(mpam_cpuhp_state); 1531 mpam_cpuhp_state = 0; 1532 } 1533 1534 mpam_cpuhp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, name, online, 1535 offline); 1536 if (mpam_cpuhp_state <= 0) { 1537 pr_err("Failed to register cpuhp callbacks"); 1538 mpam_cpuhp_state = 0; 1539 } 1540 mutex_unlock(&mpam_cpuhp_state_lock); 1541 } 1542 1543 static int __setup_ppi(struct mpam_msc *msc) 1544 { 1545 int cpu; 1546 1547 msc->error_dev_id = alloc_percpu(struct mpam_msc *); 1548 if (!msc->error_dev_id) 1549 return -ENOMEM; 1550 1551 for_each_cpu(cpu, &msc->accessibility) 1552 *per_cpu_ptr(msc->error_dev_id, cpu) = msc; 1553 1554 return 0; 1555 } 1556 1557 static int mpam_msc_setup_error_irq(struct mpam_msc *msc) 1558 { 1559 int irq; 1560 1561 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 1562 if (irq <= 0) 1563 return 0; 1564 1565 /* Allocate and initialise the percpu device pointer for PPI */ 1566 if (irq_is_percpu(irq)) 1567 return __setup_ppi(msc); 1568 1569 /* sanity check: shared interrupts can be routed anywhere? */ 1570 if (!cpumask_equal(&msc->accessibility, cpu_possible_mask)) { 1571 pr_err_once("msc:%u is a private resource with a shared error interrupt", 1572 msc->id); 1573 return -EINVAL; 1574 } 1575 1576 return 0; 1577 } 1578 1579 /* 1580 * An MSC can control traffic from a set of CPUs, but may only be accessible 1581 * from a (hopefully wider) set of CPUs. The common reason for this is power 1582 * management. If all the CPUs in a cluster are in PSCI:CPU_SUSPEND, the 1583 * corresponding cache may also be powered off. By making accesses from 1584 * one of those CPUs, we ensure we don't access a cache that's powered off. 1585 */ 1586 static void update_msc_accessibility(struct mpam_msc *msc) 1587 { 1588 u32 affinity_id; 1589 int err; 1590 1591 err = device_property_read_u32(&msc->pdev->dev, "cpu_affinity", 1592 &affinity_id); 1593 if (err) 1594 cpumask_copy(&msc->accessibility, cpu_possible_mask); 1595 else 1596 acpi_pptt_get_cpus_from_container(affinity_id, &msc->accessibility); 1597 } 1598 1599 /* 1600 * There are two ways of reaching a struct mpam_msc_ris. Via the 1601 * class->component->vmsc->ris, or via the msc. 1602 * When destroying the msc, the other side needs unlinking and cleaning up too. 1603 */ 1604 static void mpam_msc_destroy(struct mpam_msc *msc) 1605 { 1606 struct platform_device *pdev = msc->pdev; 1607 struct mpam_msc_ris *ris, *tmp; 1608 1609 lockdep_assert_held(&mpam_list_lock); 1610 1611 list_for_each_entry_safe(ris, tmp, &msc->ris, msc_list) 1612 mpam_ris_destroy(ris); 1613 1614 list_del_rcu(&msc->all_msc_list); 1615 platform_set_drvdata(pdev, NULL); 1616 1617 add_to_garbage(msc); 1618 } 1619 1620 static void mpam_msc_drv_remove(struct platform_device *pdev) 1621 { 1622 struct mpam_msc *msc = platform_get_drvdata(pdev); 1623 1624 mutex_lock(&mpam_list_lock); 1625 mpam_msc_destroy(msc); 1626 mutex_unlock(&mpam_list_lock); 1627 1628 mpam_free_garbage(); 1629 } 1630 1631 static struct mpam_msc *do_mpam_msc_drv_probe(struct platform_device *pdev) 1632 { 1633 int err; 1634 u32 tmp; 1635 struct mpam_msc *msc; 1636 struct resource *msc_res; 1637 struct device *dev = &pdev->dev; 1638 1639 lockdep_assert_held(&mpam_list_lock); 1640 1641 msc = devm_kzalloc(&pdev->dev, sizeof(*msc), GFP_KERNEL); 1642 if (!msc) 1643 return ERR_PTR(-ENOMEM); 1644 init_garbage(&msc->garbage); 1645 msc->garbage.pdev = pdev; 1646 1647 err = devm_mutex_init(dev, &msc->probe_lock); 1648 if (err) 1649 return ERR_PTR(err); 1650 1651 err = devm_mutex_init(dev, &msc->part_sel_lock); 1652 if (err) 1653 return ERR_PTR(err); 1654 1655 err = devm_mutex_init(dev, &msc->error_irq_lock); 1656 if (err) 1657 return ERR_PTR(err); 1658 1659 err = devm_mutex_init(dev, &msc->cfg_lock); 1660 if (err) 1661 return ERR_PTR(err); 1662 1663 mpam_mon_sel_lock_init(msc); 1664 msc->id = pdev->id; 1665 msc->pdev = pdev; 1666 INIT_LIST_HEAD_RCU(&msc->all_msc_list); 1667 INIT_LIST_HEAD_RCU(&msc->ris); 1668 1669 update_msc_accessibility(msc); 1670 if (cpumask_empty(&msc->accessibility)) { 1671 dev_err_once(dev, "MSC is not accessible from any CPU!"); 1672 return ERR_PTR(-EINVAL); 1673 } 1674 1675 err = mpam_msc_setup_error_irq(msc); 1676 if (err) 1677 return ERR_PTR(err); 1678 1679 if (device_property_read_u32(&pdev->dev, "pcc-channel", &tmp)) 1680 msc->iface = MPAM_IFACE_MMIO; 1681 else 1682 msc->iface = MPAM_IFACE_PCC; 1683 1684 if (msc->iface == MPAM_IFACE_MMIO) { 1685 void __iomem *io; 1686 1687 io = devm_platform_get_and_ioremap_resource(pdev, 0, 1688 &msc_res); 1689 if (IS_ERR(io)) { 1690 dev_err_once(dev, "Failed to map MSC base address\n"); 1691 return ERR_CAST(io); 1692 } 1693 msc->mapped_hwpage_sz = msc_res->end - msc_res->start; 1694 msc->mapped_hwpage = io; 1695 } else { 1696 return ERR_PTR(-EINVAL); 1697 } 1698 1699 list_add_rcu(&msc->all_msc_list, &mpam_all_msc); 1700 platform_set_drvdata(pdev, msc); 1701 1702 return msc; 1703 } 1704 1705 static int fw_num_msc; 1706 1707 static int mpam_msc_drv_probe(struct platform_device *pdev) 1708 { 1709 int err; 1710 struct mpam_msc *msc = NULL; 1711 void *plat_data = pdev->dev.platform_data; 1712 1713 mutex_lock(&mpam_list_lock); 1714 msc = do_mpam_msc_drv_probe(pdev); 1715 mutex_unlock(&mpam_list_lock); 1716 1717 if (IS_ERR(msc)) 1718 return PTR_ERR(msc); 1719 1720 /* Create RIS entries described by firmware */ 1721 err = acpi_mpam_parse_resources(msc, plat_data); 1722 if (err) { 1723 mpam_msc_drv_remove(pdev); 1724 return err; 1725 } 1726 1727 if (atomic_add_return(1, &mpam_num_msc) == fw_num_msc) 1728 mpam_register_cpuhp_callbacks(mpam_discovery_cpu_online, NULL, 1729 "mpam:drv_probe"); 1730 1731 return 0; 1732 } 1733 1734 static struct platform_driver mpam_msc_driver = { 1735 .driver = { 1736 .name = "mpam_msc", 1737 }, 1738 .probe = mpam_msc_drv_probe, 1739 .remove = mpam_msc_drv_remove, 1740 }; 1741 1742 /* Any of these features mean the BWA_WD field is valid. */ 1743 static bool mpam_has_bwa_wd_feature(struct mpam_props *props) 1744 { 1745 if (mpam_has_feature(mpam_feat_mbw_min, props)) 1746 return true; 1747 if (mpam_has_feature(mpam_feat_mbw_max, props)) 1748 return true; 1749 if (mpam_has_feature(mpam_feat_mbw_prop, props)) 1750 return true; 1751 return false; 1752 } 1753 1754 /* Any of these features mean the CMAX_WD field is valid. */ 1755 static bool mpam_has_cmax_wd_feature(struct mpam_props *props) 1756 { 1757 if (mpam_has_feature(mpam_feat_cmax_cmax, props)) 1758 return true; 1759 if (mpam_has_feature(mpam_feat_cmax_cmin, props)) 1760 return true; 1761 return false; 1762 } 1763 1764 #define MISMATCHED_HELPER(parent, child, helper, field, alias) \ 1765 helper(parent) && \ 1766 ((helper(child) && (parent)->field != (child)->field) || \ 1767 (!helper(child) && !(alias))) 1768 1769 #define MISMATCHED_FEAT(parent, child, feat, field, alias) \ 1770 mpam_has_feature((feat), (parent)) && \ 1771 ((mpam_has_feature((feat), (child)) && (parent)->field != (child)->field) || \ 1772 (!mpam_has_feature((feat), (child)) && !(alias))) 1773 1774 #define CAN_MERGE_FEAT(parent, child, feat, alias) \ 1775 (alias) && !mpam_has_feature((feat), (parent)) && \ 1776 mpam_has_feature((feat), (child)) 1777 1778 /* 1779 * Combine two props fields. 1780 * If this is for controls that alias the same resource, it is safe to just 1781 * copy the values over. If two aliasing controls implement the same scheme 1782 * a safe value must be picked. 1783 * For non-aliasing controls, these control different resources, and the 1784 * resulting safe value must be compatible with both. When merging values in 1785 * the tree, all the aliasing resources must be handled first. 1786 * On mismatch, parent is modified. 1787 */ 1788 static void __props_mismatch(struct mpam_props *parent, 1789 struct mpam_props *child, bool alias) 1790 { 1791 if (CAN_MERGE_FEAT(parent, child, mpam_feat_cpor_part, alias)) { 1792 parent->cpbm_wd = child->cpbm_wd; 1793 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_cpor_part, 1794 cpbm_wd, alias)) { 1795 pr_debug("cleared cpor_part\n"); 1796 mpam_clear_feature(mpam_feat_cpor_part, parent); 1797 parent->cpbm_wd = 0; 1798 } 1799 1800 if (CAN_MERGE_FEAT(parent, child, mpam_feat_mbw_part, alias)) { 1801 parent->mbw_pbm_bits = child->mbw_pbm_bits; 1802 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_mbw_part, 1803 mbw_pbm_bits, alias)) { 1804 pr_debug("cleared mbw_part\n"); 1805 mpam_clear_feature(mpam_feat_mbw_part, parent); 1806 parent->mbw_pbm_bits = 0; 1807 } 1808 1809 /* bwa_wd is a count of bits, fewer bits means less precision */ 1810 if (alias && !mpam_has_bwa_wd_feature(parent) && 1811 mpam_has_bwa_wd_feature(child)) { 1812 parent->bwa_wd = child->bwa_wd; 1813 } else if (MISMATCHED_HELPER(parent, child, mpam_has_bwa_wd_feature, 1814 bwa_wd, alias)) { 1815 pr_debug("took the min bwa_wd\n"); 1816 parent->bwa_wd = min(parent->bwa_wd, child->bwa_wd); 1817 } 1818 1819 if (alias && !mpam_has_cmax_wd_feature(parent) && mpam_has_cmax_wd_feature(child)) { 1820 parent->cmax_wd = child->cmax_wd; 1821 } else if (MISMATCHED_HELPER(parent, child, mpam_has_cmax_wd_feature, 1822 cmax_wd, alias)) { 1823 pr_debug("%s took the min cmax_wd\n", __func__); 1824 parent->cmax_wd = min(parent->cmax_wd, child->cmax_wd); 1825 } 1826 1827 if (CAN_MERGE_FEAT(parent, child, mpam_feat_cmax_cassoc, alias)) { 1828 parent->cassoc_wd = child->cassoc_wd; 1829 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_cmax_cassoc, 1830 cassoc_wd, alias)) { 1831 pr_debug("%s cleared cassoc_wd\n", __func__); 1832 mpam_clear_feature(mpam_feat_cmax_cassoc, parent); 1833 parent->cassoc_wd = 0; 1834 } 1835 1836 /* For num properties, take the minimum */ 1837 if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_csu, alias)) { 1838 parent->num_csu_mon = child->num_csu_mon; 1839 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_csu, 1840 num_csu_mon, alias)) { 1841 pr_debug("took the min num_csu_mon\n"); 1842 parent->num_csu_mon = min(parent->num_csu_mon, 1843 child->num_csu_mon); 1844 } 1845 1846 if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_mbwu, alias)) { 1847 parent->num_mbwu_mon = child->num_mbwu_mon; 1848 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_mbwu, 1849 num_mbwu_mon, alias)) { 1850 pr_debug("took the min num_mbwu_mon\n"); 1851 parent->num_mbwu_mon = min(parent->num_mbwu_mon, 1852 child->num_mbwu_mon); 1853 } 1854 1855 if (CAN_MERGE_FEAT(parent, child, mpam_feat_intpri_part, alias)) { 1856 parent->intpri_wd = child->intpri_wd; 1857 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_intpri_part, 1858 intpri_wd, alias)) { 1859 pr_debug("%s took the min intpri_wd\n", __func__); 1860 parent->intpri_wd = min(parent->intpri_wd, child->intpri_wd); 1861 } 1862 1863 if (CAN_MERGE_FEAT(parent, child, mpam_feat_dspri_part, alias)) { 1864 parent->dspri_wd = child->dspri_wd; 1865 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_dspri_part, 1866 dspri_wd, alias)) { 1867 pr_debug("%s took the min dspri_wd\n", __func__); 1868 parent->dspri_wd = min(parent->dspri_wd, child->dspri_wd); 1869 } 1870 1871 /* TODO: alias support for these two */ 1872 /* {int,ds}pri may not have differing 0-low behaviour */ 1873 if (mpam_has_feature(mpam_feat_intpri_part, parent) && 1874 (!mpam_has_feature(mpam_feat_intpri_part, child) || 1875 mpam_has_feature(mpam_feat_intpri_part_0_low, parent) != 1876 mpam_has_feature(mpam_feat_intpri_part_0_low, child))) { 1877 pr_debug("%s cleared intpri_part\n", __func__); 1878 mpam_clear_feature(mpam_feat_intpri_part, parent); 1879 mpam_clear_feature(mpam_feat_intpri_part_0_low, parent); 1880 } 1881 if (mpam_has_feature(mpam_feat_dspri_part, parent) && 1882 (!mpam_has_feature(mpam_feat_dspri_part, child) || 1883 mpam_has_feature(mpam_feat_dspri_part_0_low, parent) != 1884 mpam_has_feature(mpam_feat_dspri_part_0_low, child))) { 1885 pr_debug("%s cleared dspri_part\n", __func__); 1886 mpam_clear_feature(mpam_feat_dspri_part, parent); 1887 mpam_clear_feature(mpam_feat_dspri_part_0_low, parent); 1888 } 1889 1890 if (alias) { 1891 /* Merge features for aliased resources */ 1892 bitmap_or(parent->features, parent->features, child->features, MPAM_FEATURE_LAST); 1893 } else { 1894 /* Clear missing features for non aliasing */ 1895 bitmap_and(parent->features, parent->features, child->features, MPAM_FEATURE_LAST); 1896 } 1897 } 1898 1899 /* 1900 * If a vmsc doesn't match class feature/configuration, do the right thing(tm). 1901 * For 'num' properties we can just take the minimum. 1902 * For properties where the mismatched unused bits would make a difference, we 1903 * nobble the class feature, as we can't configure all the resources. 1904 * e.g. The L3 cache is composed of two resources with 13 and 17 portion 1905 * bitmaps respectively. 1906 */ 1907 static void 1908 __class_props_mismatch(struct mpam_class *class, struct mpam_vmsc *vmsc) 1909 { 1910 struct mpam_props *cprops = &class->props; 1911 struct mpam_props *vprops = &vmsc->props; 1912 struct device *dev = &vmsc->msc->pdev->dev; 1913 1914 lockdep_assert_held(&mpam_list_lock); /* we modify class */ 1915 1916 dev_dbg(dev, "Merging features for class:0x%lx &= vmsc:0x%lx\n", 1917 (long)cprops->features, (long)vprops->features); 1918 1919 /* Take the safe value for any common features */ 1920 __props_mismatch(cprops, vprops, false); 1921 } 1922 1923 static void 1924 __vmsc_props_mismatch(struct mpam_vmsc *vmsc, struct mpam_msc_ris *ris) 1925 { 1926 struct mpam_props *rprops = &ris->props; 1927 struct mpam_props *vprops = &vmsc->props; 1928 struct device *dev = &vmsc->msc->pdev->dev; 1929 1930 lockdep_assert_held(&mpam_list_lock); /* we modify vmsc */ 1931 1932 dev_dbg(dev, "Merging features for vmsc:0x%lx |= ris:0x%lx\n", 1933 (long)vprops->features, (long)rprops->features); 1934 1935 /* 1936 * Merge mismatched features - Copy any features that aren't common, 1937 * but take the safe value for any common features. 1938 */ 1939 __props_mismatch(vprops, rprops, true); 1940 } 1941 1942 /* 1943 * Copy the first component's first vMSC's properties and features to the 1944 * class. __class_props_mismatch() will remove conflicts. 1945 * It is not possible to have a class with no components, or a component with 1946 * no resources. The vMSC properties have already been built. 1947 */ 1948 static void mpam_enable_init_class_features(struct mpam_class *class) 1949 { 1950 struct mpam_vmsc *vmsc; 1951 struct mpam_component *comp; 1952 1953 comp = list_first_entry(&class->components, 1954 struct mpam_component, class_list); 1955 vmsc = list_first_entry(&comp->vmsc, 1956 struct mpam_vmsc, comp_list); 1957 1958 class->props = vmsc->props; 1959 } 1960 1961 static void mpam_enable_merge_vmsc_features(struct mpam_component *comp) 1962 { 1963 struct mpam_vmsc *vmsc; 1964 struct mpam_msc_ris *ris; 1965 struct mpam_class *class = comp->class; 1966 1967 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 1968 list_for_each_entry(ris, &vmsc->ris, vmsc_list) { 1969 __vmsc_props_mismatch(vmsc, ris); 1970 class->nrdy_usec = max(class->nrdy_usec, 1971 vmsc->msc->nrdy_usec); 1972 } 1973 } 1974 } 1975 1976 static void mpam_enable_merge_class_features(struct mpam_component *comp) 1977 { 1978 struct mpam_vmsc *vmsc; 1979 struct mpam_class *class = comp->class; 1980 1981 list_for_each_entry(vmsc, &comp->vmsc, comp_list) 1982 __class_props_mismatch(class, vmsc); 1983 } 1984 1985 /* 1986 * Merge all the common resource features into class. 1987 * vmsc features are bitwise-or'd together by mpam_enable_merge_vmsc_features() 1988 * as the first step so that mpam_enable_init_class_features() can initialise 1989 * the class with a representative set of features. 1990 * Next the mpam_enable_merge_class_features() bitwise-and's all the vmsc 1991 * features to form the class features. 1992 * Other features are the min/max as appropriate. 1993 * 1994 * To avoid walking the whole tree twice, the class->nrdy_usec property is 1995 * updated when working with the vmsc as it is a max(), and doesn't need 1996 * initialising first. 1997 */ 1998 static void mpam_enable_merge_features(struct list_head *all_classes_list) 1999 { 2000 struct mpam_class *class; 2001 struct mpam_component *comp; 2002 2003 lockdep_assert_held(&mpam_list_lock); 2004 2005 list_for_each_entry(class, all_classes_list, classes_list) { 2006 list_for_each_entry(comp, &class->components, class_list) 2007 mpam_enable_merge_vmsc_features(comp); 2008 2009 mpam_enable_init_class_features(class); 2010 2011 list_for_each_entry(comp, &class->components, class_list) 2012 mpam_enable_merge_class_features(comp); 2013 } 2014 } 2015 2016 static char *mpam_errcode_names[16] = { 2017 [MPAM_ERRCODE_NONE] = "No error", 2018 [MPAM_ERRCODE_PARTID_SEL_RANGE] = "PARTID_SEL_Range", 2019 [MPAM_ERRCODE_REQ_PARTID_RANGE] = "Req_PARTID_Range", 2020 [MPAM_ERRCODE_MSMONCFG_ID_RANGE] = "MSMONCFG_ID_RANGE", 2021 [MPAM_ERRCODE_REQ_PMG_RANGE] = "Req_PMG_Range", 2022 [MPAM_ERRCODE_MONITOR_RANGE] = "Monitor_Range", 2023 [MPAM_ERRCODE_INTPARTID_RANGE] = "intPARTID_Range", 2024 [MPAM_ERRCODE_UNEXPECTED_INTERNAL] = "Unexpected_INTERNAL", 2025 [MPAM_ERRCODE_UNDEFINED_RIS_PART_SEL] = "Undefined_RIS_PART_SEL", 2026 [MPAM_ERRCODE_RIS_NO_CONTROL] = "RIS_No_Control", 2027 [MPAM_ERRCODE_UNDEFINED_RIS_MON_SEL] = "Undefined_RIS_MON_SEL", 2028 [MPAM_ERRCODE_RIS_NO_MONITOR] = "RIS_No_Monitor", 2029 [12 ... 15] = "Reserved" 2030 }; 2031 2032 static int mpam_enable_msc_ecr(void *_msc) 2033 { 2034 struct mpam_msc *msc = _msc; 2035 2036 __mpam_write_reg(msc, MPAMF_ECR, MPAMF_ECR_INTEN); 2037 2038 return 0; 2039 } 2040 2041 /* This can run in mpam_disable(), and the interrupt handler on the same CPU */ 2042 static int mpam_disable_msc_ecr(void *_msc) 2043 { 2044 struct mpam_msc *msc = _msc; 2045 2046 __mpam_write_reg(msc, MPAMF_ECR, 0); 2047 2048 return 0; 2049 } 2050 2051 static irqreturn_t __mpam_irq_handler(int irq, struct mpam_msc *msc) 2052 { 2053 u64 reg; 2054 u16 partid; 2055 u8 errcode, pmg, ris; 2056 2057 if (WARN_ON_ONCE(!msc) || 2058 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), 2059 &msc->accessibility))) 2060 return IRQ_NONE; 2061 2062 reg = mpam_msc_read_esr(msc); 2063 2064 errcode = FIELD_GET(MPAMF_ESR_ERRCODE, reg); 2065 if (!errcode) 2066 return IRQ_NONE; 2067 2068 /* Clear level triggered irq */ 2069 mpam_msc_clear_esr(msc); 2070 2071 partid = FIELD_GET(MPAMF_ESR_PARTID_MON, reg); 2072 pmg = FIELD_GET(MPAMF_ESR_PMG, reg); 2073 ris = FIELD_GET(MPAMF_ESR_RIS, reg); 2074 2075 pr_err_ratelimited("error irq from msc:%u '%s', partid:%u, pmg: %u, ris: %u\n", 2076 msc->id, mpam_errcode_names[errcode], partid, pmg, 2077 ris); 2078 2079 /* Disable this interrupt. */ 2080 mpam_disable_msc_ecr(msc); 2081 2082 /* Are we racing with the thread disabling MPAM? */ 2083 if (!mpam_is_enabled()) 2084 return IRQ_HANDLED; 2085 2086 /* 2087 * Schedule the teardown work. Don't use a threaded IRQ as we can't 2088 * unregister the interrupt from the threaded part of the handler. 2089 */ 2090 mpam_disable_reason = "hardware error interrupt"; 2091 schedule_work(&mpam_broken_work); 2092 2093 return IRQ_HANDLED; 2094 } 2095 2096 static irqreturn_t mpam_ppi_handler(int irq, void *dev_id) 2097 { 2098 struct mpam_msc *msc = *(struct mpam_msc **)dev_id; 2099 2100 return __mpam_irq_handler(irq, msc); 2101 } 2102 2103 static irqreturn_t mpam_spi_handler(int irq, void *dev_id) 2104 { 2105 struct mpam_msc *msc = dev_id; 2106 2107 return __mpam_irq_handler(irq, msc); 2108 } 2109 2110 static int mpam_register_irqs(void) 2111 { 2112 int err, irq; 2113 struct mpam_msc *msc; 2114 2115 lockdep_assert_cpus_held(); 2116 2117 guard(srcu)(&mpam_srcu); 2118 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 2119 srcu_read_lock_held(&mpam_srcu)) { 2120 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 2121 if (irq <= 0) 2122 continue; 2123 2124 /* The MPAM spec says the interrupt can be SPI, PPI or LPI */ 2125 /* We anticipate sharing the interrupt with other MSCs */ 2126 if (irq_is_percpu(irq)) { 2127 err = request_percpu_irq(irq, &mpam_ppi_handler, 2128 "mpam:msc:error", 2129 msc->error_dev_id); 2130 if (err) 2131 return err; 2132 2133 msc->reenable_error_ppi = irq; 2134 smp_call_function_many(&msc->accessibility, 2135 &_enable_percpu_irq, &irq, 2136 true); 2137 } else { 2138 err = devm_request_irq(&msc->pdev->dev, irq, 2139 &mpam_spi_handler, IRQF_SHARED, 2140 "mpam:msc:error", msc); 2141 if (err) 2142 return err; 2143 } 2144 2145 mutex_lock(&msc->error_irq_lock); 2146 msc->error_irq_req = true; 2147 mpam_touch_msc(msc, mpam_enable_msc_ecr, msc); 2148 msc->error_irq_hw_enabled = true; 2149 mutex_unlock(&msc->error_irq_lock); 2150 } 2151 2152 return 0; 2153 } 2154 2155 static void mpam_unregister_irqs(void) 2156 { 2157 int irq; 2158 struct mpam_msc *msc; 2159 2160 guard(cpus_read_lock)(); 2161 guard(srcu)(&mpam_srcu); 2162 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 2163 srcu_read_lock_held(&mpam_srcu)) { 2164 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 2165 if (irq <= 0) 2166 continue; 2167 2168 mutex_lock(&msc->error_irq_lock); 2169 if (msc->error_irq_hw_enabled) { 2170 mpam_touch_msc(msc, mpam_disable_msc_ecr, msc); 2171 msc->error_irq_hw_enabled = false; 2172 } 2173 2174 if (msc->error_irq_req) { 2175 if (irq_is_percpu(irq)) { 2176 msc->reenable_error_ppi = 0; 2177 free_percpu_irq(irq, msc->error_dev_id); 2178 } else { 2179 devm_free_irq(&msc->pdev->dev, irq, msc); 2180 } 2181 msc->error_irq_req = false; 2182 } 2183 mutex_unlock(&msc->error_irq_lock); 2184 } 2185 } 2186 2187 static void __destroy_component_cfg(struct mpam_component *comp) 2188 { 2189 struct mpam_msc *msc; 2190 struct mpam_vmsc *vmsc; 2191 struct mpam_msc_ris *ris; 2192 2193 lockdep_assert_held(&mpam_list_lock); 2194 2195 add_to_garbage(comp->cfg); 2196 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 2197 msc = vmsc->msc; 2198 2199 if (mpam_mon_sel_lock(msc)) { 2200 list_for_each_entry(ris, &vmsc->ris, vmsc_list) 2201 add_to_garbage(ris->mbwu_state); 2202 mpam_mon_sel_unlock(msc); 2203 } 2204 } 2205 } 2206 2207 static void mpam_reset_component_cfg(struct mpam_component *comp) 2208 { 2209 int i; 2210 struct mpam_props *cprops = &comp->class->props; 2211 2212 mpam_assert_partid_sizes_fixed(); 2213 2214 if (!comp->cfg) 2215 return; 2216 2217 for (i = 0; i <= mpam_partid_max; i++) { 2218 comp->cfg[i] = (struct mpam_config) {}; 2219 if (cprops->cpbm_wd) 2220 comp->cfg[i].cpbm = GENMASK(cprops->cpbm_wd - 1, 0); 2221 if (cprops->mbw_pbm_bits) 2222 comp->cfg[i].mbw_pbm = GENMASK(cprops->mbw_pbm_bits - 1, 0); 2223 if (cprops->bwa_wd) 2224 comp->cfg[i].mbw_max = GENMASK(15, 16 - cprops->bwa_wd); 2225 } 2226 } 2227 2228 static int __allocate_component_cfg(struct mpam_component *comp) 2229 { 2230 struct mpam_vmsc *vmsc; 2231 2232 mpam_assert_partid_sizes_fixed(); 2233 2234 if (comp->cfg) 2235 return 0; 2236 2237 comp->cfg = kcalloc(mpam_partid_max + 1, sizeof(*comp->cfg), GFP_KERNEL); 2238 if (!comp->cfg) 2239 return -ENOMEM; 2240 2241 /* 2242 * The array is free()d in one go, so only cfg[0]'s structure needs 2243 * to be initialised. 2244 */ 2245 init_garbage(&comp->cfg[0].garbage); 2246 2247 mpam_reset_component_cfg(comp); 2248 2249 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 2250 struct mpam_msc *msc; 2251 struct mpam_msc_ris *ris; 2252 struct msmon_mbwu_state *mbwu_state; 2253 2254 if (!vmsc->props.num_mbwu_mon) 2255 continue; 2256 2257 msc = vmsc->msc; 2258 list_for_each_entry(ris, &vmsc->ris, vmsc_list) { 2259 if (!ris->props.num_mbwu_mon) 2260 continue; 2261 2262 mbwu_state = kcalloc(ris->props.num_mbwu_mon, 2263 sizeof(*ris->mbwu_state), 2264 GFP_KERNEL); 2265 if (!mbwu_state) { 2266 __destroy_component_cfg(comp); 2267 return -ENOMEM; 2268 } 2269 2270 init_garbage(&mbwu_state[0].garbage); 2271 2272 if (mpam_mon_sel_lock(msc)) { 2273 ris->mbwu_state = mbwu_state; 2274 mpam_mon_sel_unlock(msc); 2275 } 2276 } 2277 } 2278 2279 return 0; 2280 } 2281 2282 static int mpam_allocate_config(void) 2283 { 2284 struct mpam_class *class; 2285 struct mpam_component *comp; 2286 2287 lockdep_assert_held(&mpam_list_lock); 2288 2289 list_for_each_entry(class, &mpam_classes, classes_list) { 2290 list_for_each_entry(comp, &class->components, class_list) { 2291 int err = __allocate_component_cfg(comp); 2292 if (err) 2293 return err; 2294 } 2295 } 2296 2297 return 0; 2298 } 2299 2300 static void mpam_enable_once(void) 2301 { 2302 int err; 2303 2304 /* 2305 * Once the cpuhp callbacks have been changed, mpam_partid_max can no 2306 * longer change. 2307 */ 2308 spin_lock(&partid_max_lock); 2309 partid_max_published = true; 2310 spin_unlock(&partid_max_lock); 2311 2312 /* 2313 * If all the MSC have been probed, enabling the IRQs happens next. 2314 * That involves cross-calling to a CPU that can reach the MSC, and 2315 * the locks must be taken in this order: 2316 */ 2317 cpus_read_lock(); 2318 mutex_lock(&mpam_list_lock); 2319 do { 2320 mpam_enable_merge_features(&mpam_classes); 2321 2322 err = mpam_register_irqs(); 2323 if (err) { 2324 pr_warn("Failed to register irqs: %d\n", err); 2325 break; 2326 } 2327 2328 err = mpam_allocate_config(); 2329 if (err) { 2330 pr_err("Failed to allocate configuration arrays.\n"); 2331 break; 2332 } 2333 } while (0); 2334 mutex_unlock(&mpam_list_lock); 2335 cpus_read_unlock(); 2336 2337 if (err) { 2338 mpam_disable_reason = "Failed to enable."; 2339 schedule_work(&mpam_broken_work); 2340 return; 2341 } 2342 2343 static_branch_enable(&mpam_enabled); 2344 mpam_register_cpuhp_callbacks(mpam_cpu_online, mpam_cpu_offline, 2345 "mpam:online"); 2346 2347 /* Use printk() to avoid the pr_fmt adding the function name. */ 2348 printk(KERN_INFO "MPAM enabled with %u PARTIDs and %u PMGs\n", 2349 mpam_partid_max + 1, mpam_pmg_max + 1); 2350 } 2351 2352 static void mpam_reset_component_locked(struct mpam_component *comp) 2353 { 2354 struct mpam_vmsc *vmsc; 2355 2356 lockdep_assert_cpus_held(); 2357 mpam_assert_partid_sizes_fixed(); 2358 2359 mpam_reset_component_cfg(comp); 2360 2361 guard(srcu)(&mpam_srcu); 2362 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 2363 srcu_read_lock_held(&mpam_srcu)) { 2364 struct mpam_msc *msc = vmsc->msc; 2365 struct mpam_msc_ris *ris; 2366 2367 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 2368 srcu_read_lock_held(&mpam_srcu)) { 2369 if (!ris->in_reset_state) 2370 mpam_touch_msc(msc, mpam_reset_ris, ris); 2371 ris->in_reset_state = true; 2372 } 2373 } 2374 } 2375 2376 static void mpam_reset_class_locked(struct mpam_class *class) 2377 { 2378 struct mpam_component *comp; 2379 2380 lockdep_assert_cpus_held(); 2381 2382 guard(srcu)(&mpam_srcu); 2383 list_for_each_entry_srcu(comp, &class->components, class_list, 2384 srcu_read_lock_held(&mpam_srcu)) 2385 mpam_reset_component_locked(comp); 2386 } 2387 2388 static void mpam_reset_class(struct mpam_class *class) 2389 { 2390 cpus_read_lock(); 2391 mpam_reset_class_locked(class); 2392 cpus_read_unlock(); 2393 } 2394 2395 /* 2396 * Called in response to an error IRQ. 2397 * All of MPAMs errors indicate a software bug, restore any modified 2398 * controls to their reset values. 2399 */ 2400 void mpam_disable(struct work_struct *ignored) 2401 { 2402 int idx; 2403 struct mpam_class *class; 2404 struct mpam_msc *msc, *tmp; 2405 2406 mutex_lock(&mpam_cpuhp_state_lock); 2407 if (mpam_cpuhp_state) { 2408 cpuhp_remove_state(mpam_cpuhp_state); 2409 mpam_cpuhp_state = 0; 2410 } 2411 mutex_unlock(&mpam_cpuhp_state_lock); 2412 2413 static_branch_disable(&mpam_enabled); 2414 2415 mpam_unregister_irqs(); 2416 2417 idx = srcu_read_lock(&mpam_srcu); 2418 list_for_each_entry_srcu(class, &mpam_classes, classes_list, 2419 srcu_read_lock_held(&mpam_srcu)) 2420 mpam_reset_class(class); 2421 srcu_read_unlock(&mpam_srcu, idx); 2422 2423 mutex_lock(&mpam_list_lock); 2424 list_for_each_entry_safe(msc, tmp, &mpam_all_msc, all_msc_list) 2425 mpam_msc_destroy(msc); 2426 mutex_unlock(&mpam_list_lock); 2427 mpam_free_garbage(); 2428 2429 pr_err_once("MPAM disabled due to %s\n", mpam_disable_reason); 2430 } 2431 2432 /* 2433 * Enable mpam once all devices have been probed. 2434 * Scheduled by mpam_discovery_cpu_online() once all devices have been created. 2435 * Also scheduled when new devices are probed when new CPUs come online. 2436 */ 2437 void mpam_enable(struct work_struct *work) 2438 { 2439 static atomic_t once; 2440 struct mpam_msc *msc; 2441 bool all_devices_probed = true; 2442 2443 /* Have we probed all the hw devices? */ 2444 guard(srcu)(&mpam_srcu); 2445 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 2446 srcu_read_lock_held(&mpam_srcu)) { 2447 mutex_lock(&msc->probe_lock); 2448 if (!msc->probed) 2449 all_devices_probed = false; 2450 mutex_unlock(&msc->probe_lock); 2451 2452 if (!all_devices_probed) 2453 break; 2454 } 2455 2456 if (all_devices_probed && !atomic_fetch_inc(&once)) 2457 mpam_enable_once(); 2458 } 2459 2460 #define maybe_update_config(cfg, feature, newcfg, member, changes) do { \ 2461 if (mpam_has_feature(feature, newcfg) && \ 2462 (newcfg)->member != (cfg)->member) { \ 2463 (cfg)->member = (newcfg)->member; \ 2464 mpam_set_feature(feature, cfg); \ 2465 \ 2466 (changes) = true; \ 2467 } \ 2468 } while (0) 2469 2470 static bool mpam_update_config(struct mpam_config *cfg, 2471 const struct mpam_config *newcfg) 2472 { 2473 bool has_changes = false; 2474 2475 maybe_update_config(cfg, mpam_feat_cpor_part, newcfg, cpbm, has_changes); 2476 maybe_update_config(cfg, mpam_feat_mbw_part, newcfg, mbw_pbm, has_changes); 2477 maybe_update_config(cfg, mpam_feat_mbw_max, newcfg, mbw_max, has_changes); 2478 2479 return has_changes; 2480 } 2481 2482 int mpam_apply_config(struct mpam_component *comp, u16 partid, 2483 struct mpam_config *cfg) 2484 { 2485 struct mpam_write_config_arg arg; 2486 struct mpam_msc_ris *ris; 2487 struct mpam_vmsc *vmsc; 2488 struct mpam_msc *msc; 2489 2490 lockdep_assert_cpus_held(); 2491 2492 /* Don't pass in the current config! */ 2493 WARN_ON_ONCE(&comp->cfg[partid] == cfg); 2494 2495 if (!mpam_update_config(&comp->cfg[partid], cfg)) 2496 return 0; 2497 2498 arg.comp = comp; 2499 arg.partid = partid; 2500 2501 guard(srcu)(&mpam_srcu); 2502 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 2503 srcu_read_lock_held(&mpam_srcu)) { 2504 msc = vmsc->msc; 2505 2506 mutex_lock(&msc->cfg_lock); 2507 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 2508 srcu_read_lock_held(&mpam_srcu)) { 2509 arg.ris = ris; 2510 mpam_touch_msc(msc, __write_config, &arg); 2511 } 2512 mutex_unlock(&msc->cfg_lock); 2513 } 2514 2515 return 0; 2516 } 2517 2518 static int __init mpam_msc_driver_init(void) 2519 { 2520 if (!system_supports_mpam()) 2521 return -EOPNOTSUPP; 2522 2523 init_srcu_struct(&mpam_srcu); 2524 2525 fw_num_msc = acpi_mpam_count_msc(); 2526 if (fw_num_msc <= 0) { 2527 pr_err("No MSC devices found in firmware\n"); 2528 return -EINVAL; 2529 } 2530 2531 return platform_driver_register(&mpam_msc_driver); 2532 } 2533 2534 /* Must occur after arm64_mpam_register_cpus() from arch_initcall() */ 2535 subsys_initcall(mpam_msc_driver_init); 2536