1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (C) 2025 Arm Ltd. 3 4 #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__ 5 6 #include <linux/acpi.h> 7 #include <linux/atomic.h> 8 #include <linux/arm_mpam.h> 9 #include <linux/bitfield.h> 10 #include <linux/bitmap.h> 11 #include <linux/cacheinfo.h> 12 #include <linux/cpu.h> 13 #include <linux/cpumask.h> 14 #include <linux/device.h> 15 #include <linux/errno.h> 16 #include <linux/gfp.h> 17 #include <linux/interrupt.h> 18 #include <linux/irq.h> 19 #include <linux/irqdesc.h> 20 #include <linux/list.h> 21 #include <linux/lockdep.h> 22 #include <linux/mutex.h> 23 #include <linux/platform_device.h> 24 #include <linux/printk.h> 25 #include <linux/srcu.h> 26 #include <linux/spinlock.h> 27 #include <linux/types.h> 28 #include <linux/workqueue.h> 29 30 #include "mpam_internal.h" 31 32 DEFINE_STATIC_KEY_FALSE(mpam_enabled); /* This moves to arch code */ 33 34 /* 35 * mpam_list_lock protects the SRCU lists when writing. Once the 36 * mpam_enabled key is enabled these lists are read-only, 37 * unless the error interrupt disables the driver. 38 */ 39 static DEFINE_MUTEX(mpam_list_lock); 40 static LIST_HEAD(mpam_all_msc); 41 42 struct srcu_struct mpam_srcu; 43 44 /* 45 * Number of MSCs that have been probed. Once all MSCs have been probed MPAM 46 * can be enabled. 47 */ 48 static atomic_t mpam_num_msc; 49 50 static int mpam_cpuhp_state; 51 static DEFINE_MUTEX(mpam_cpuhp_state_lock); 52 53 /* 54 * The smallest common values for any CPU or MSC in the system. 55 * Generating traffic outside this range will result in screaming interrupts. 56 */ 57 u16 mpam_partid_max; 58 u8 mpam_pmg_max; 59 static bool partid_max_init, partid_max_published; 60 static DEFINE_SPINLOCK(partid_max_lock); 61 62 /* 63 * mpam is enabled once all devices have been probed from CPU online callbacks, 64 * scheduled via this work_struct. If access to an MSC depends on a CPU that 65 * was not brought online at boot, this can happen surprisingly late. 66 */ 67 static DECLARE_WORK(mpam_enable_work, &mpam_enable); 68 69 /* 70 * All mpam error interrupts indicate a software bug. On receipt, disable the 71 * driver. 72 */ 73 static DECLARE_WORK(mpam_broken_work, &mpam_disable); 74 75 /* When mpam is disabled, the printed reason to aid debugging */ 76 static char *mpam_disable_reason; 77 78 /* 79 * An MSC is a physical container for controls and monitors, each identified by 80 * their RIS index. These share a base-address, interrupts and some MMIO 81 * registers. A vMSC is a virtual container for RIS in an MSC that control or 82 * monitor the same thing. Members of a vMSC are all RIS in the same MSC, but 83 * not all RIS in an MSC share a vMSC. 84 * 85 * Components are a group of vMSC that control or monitor the same thing but 86 * are from different MSC, so have different base-address, interrupts etc. 87 * Classes are the set components of the same type. 88 * 89 * The features of a vMSC is the union of the RIS it contains. 90 * The features of a Class and Component are the common subset of the vMSC 91 * they contain. 92 * 93 * e.g. The system cache may have bandwidth controls on multiple interfaces, 94 * for regulating traffic from devices independently of traffic from CPUs. 95 * If these are two RIS in one MSC, they will be treated as controlling 96 * different things, and will not share a vMSC/component/class. 97 * 98 * e.g. The L2 may have one MSC and two RIS, one for cache-controls another 99 * for bandwidth. These two RIS are members of the same vMSC. 100 * 101 * e.g. The set of RIS that make up the L2 are grouped as a component. These 102 * are sometimes termed slices. They should be configured the same, as if there 103 * were only one. 104 * 105 * e.g. The SoC probably has more than one L2, each attached to a distinct set 106 * of CPUs. All the L2 components are grouped as a class. 107 * 108 * When creating an MSC, struct mpam_msc is added to the all mpam_all_msc list, 109 * then linked via struct mpam_ris to a vmsc, component and class. 110 * The same MSC may exist under different class->component->vmsc paths, but the 111 * RIS index will be unique. 112 */ 113 LIST_HEAD(mpam_classes); 114 115 /* List of all objects that can be free()d after synchronise_srcu() */ 116 static LLIST_HEAD(mpam_garbage); 117 118 static inline void init_garbage(struct mpam_garbage *garbage) 119 { 120 init_llist_node(&garbage->llist); 121 } 122 123 #define add_to_garbage(x) \ 124 do { \ 125 __typeof__(x) _x = (x); \ 126 _x->garbage.to_free = _x; \ 127 llist_add(&_x->garbage.llist, &mpam_garbage); \ 128 } while (0) 129 130 static void mpam_free_garbage(void) 131 { 132 struct mpam_garbage *iter, *tmp; 133 struct llist_node *to_free = llist_del_all(&mpam_garbage); 134 135 if (!to_free) 136 return; 137 138 synchronize_srcu(&mpam_srcu); 139 140 llist_for_each_entry_safe(iter, tmp, to_free, llist) { 141 if (iter->pdev) 142 devm_kfree(&iter->pdev->dev, iter->to_free); 143 else 144 kfree(iter->to_free); 145 } 146 } 147 148 /* 149 * Once mpam is enabled, new requestors cannot further reduce the available 150 * partid. Assert that the size is fixed, and new requestors will be turned 151 * away. 152 */ 153 static void mpam_assert_partid_sizes_fixed(void) 154 { 155 WARN_ON_ONCE(!partid_max_published); 156 } 157 158 static u32 __mpam_read_reg(struct mpam_msc *msc, u16 reg) 159 { 160 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); 161 162 return readl_relaxed(msc->mapped_hwpage + reg); 163 } 164 165 static inline u32 _mpam_read_partsel_reg(struct mpam_msc *msc, u16 reg) 166 { 167 lockdep_assert_held_once(&msc->part_sel_lock); 168 return __mpam_read_reg(msc, reg); 169 } 170 171 #define mpam_read_partsel_reg(msc, reg) _mpam_read_partsel_reg(msc, MPAMF_##reg) 172 173 static void __mpam_write_reg(struct mpam_msc *msc, u16 reg, u32 val) 174 { 175 WARN_ON_ONCE(reg + sizeof(u32) > msc->mapped_hwpage_sz); 176 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); 177 178 writel_relaxed(val, msc->mapped_hwpage + reg); 179 } 180 181 static inline void _mpam_write_partsel_reg(struct mpam_msc *msc, u16 reg, u32 val) 182 { 183 lockdep_assert_held_once(&msc->part_sel_lock); 184 __mpam_write_reg(msc, reg, val); 185 } 186 187 #define mpam_write_partsel_reg(msc, reg, val) _mpam_write_partsel_reg(msc, MPAMCFG_##reg, val) 188 189 static inline u32 _mpam_read_monsel_reg(struct mpam_msc *msc, u16 reg) 190 { 191 mpam_mon_sel_lock_held(msc); 192 return __mpam_read_reg(msc, reg); 193 } 194 195 #define mpam_read_monsel_reg(msc, reg) _mpam_read_monsel_reg(msc, MSMON_##reg) 196 197 static inline void _mpam_write_monsel_reg(struct mpam_msc *msc, u16 reg, u32 val) 198 { 199 mpam_mon_sel_lock_held(msc); 200 __mpam_write_reg(msc, reg, val); 201 } 202 203 #define mpam_write_monsel_reg(msc, reg, val) _mpam_write_monsel_reg(msc, MSMON_##reg, val) 204 205 static u64 mpam_msc_read_idr(struct mpam_msc *msc) 206 { 207 u64 idr_high = 0, idr_low; 208 209 lockdep_assert_held(&msc->part_sel_lock); 210 211 idr_low = mpam_read_partsel_reg(msc, IDR); 212 if (FIELD_GET(MPAMF_IDR_EXT, idr_low)) 213 idr_high = mpam_read_partsel_reg(msc, IDR + 4); 214 215 return (idr_high << 32) | idr_low; 216 } 217 218 static void mpam_msc_clear_esr(struct mpam_msc *msc) 219 { 220 u64 esr_low = __mpam_read_reg(msc, MPAMF_ESR); 221 222 if (!esr_low) 223 return; 224 225 /* 226 * Clearing the high/low bits of MPAMF_ESR can not be atomic. 227 * Clear the top half first, so that the pending error bits in the 228 * lower half prevent hardware from updating either half of the 229 * register. 230 */ 231 if (msc->has_extd_esr) 232 __mpam_write_reg(msc, MPAMF_ESR + 4, 0); 233 __mpam_write_reg(msc, MPAMF_ESR, 0); 234 } 235 236 static u64 mpam_msc_read_esr(struct mpam_msc *msc) 237 { 238 u64 esr_high = 0, esr_low; 239 240 esr_low = __mpam_read_reg(msc, MPAMF_ESR); 241 if (msc->has_extd_esr) 242 esr_high = __mpam_read_reg(msc, MPAMF_ESR + 4); 243 244 return (esr_high << 32) | esr_low; 245 } 246 247 static void __mpam_part_sel_raw(u32 partsel, struct mpam_msc *msc) 248 { 249 lockdep_assert_held(&msc->part_sel_lock); 250 251 mpam_write_partsel_reg(msc, PART_SEL, partsel); 252 } 253 254 static void __mpam_part_sel(u8 ris_idx, u16 partid, struct mpam_msc *msc) 255 { 256 u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) | 257 FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, partid); 258 259 __mpam_part_sel_raw(partsel, msc); 260 } 261 262 static void __mpam_intpart_sel(u8 ris_idx, u16 intpartid, struct mpam_msc *msc) 263 { 264 u32 partsel = FIELD_PREP(MPAMCFG_PART_SEL_RIS, ris_idx) | 265 FIELD_PREP(MPAMCFG_PART_SEL_PARTID_SEL, intpartid) | 266 MPAMCFG_PART_SEL_INTERNAL; 267 268 __mpam_part_sel_raw(partsel, msc); 269 } 270 271 int mpam_register_requestor(u16 partid_max, u8 pmg_max) 272 { 273 guard(spinlock)(&partid_max_lock); 274 if (!partid_max_init) { 275 mpam_partid_max = partid_max; 276 mpam_pmg_max = pmg_max; 277 partid_max_init = true; 278 } else if (!partid_max_published) { 279 mpam_partid_max = min(mpam_partid_max, partid_max); 280 mpam_pmg_max = min(mpam_pmg_max, pmg_max); 281 } else { 282 /* New requestors can't lower the values */ 283 if (partid_max < mpam_partid_max || pmg_max < mpam_pmg_max) 284 return -EBUSY; 285 } 286 287 return 0; 288 } 289 EXPORT_SYMBOL(mpam_register_requestor); 290 291 static struct mpam_class * 292 mpam_class_alloc(u8 level_idx, enum mpam_class_types type) 293 { 294 struct mpam_class *class; 295 296 lockdep_assert_held(&mpam_list_lock); 297 298 class = kzalloc(sizeof(*class), GFP_KERNEL); 299 if (!class) 300 return ERR_PTR(-ENOMEM); 301 init_garbage(&class->garbage); 302 303 INIT_LIST_HEAD_RCU(&class->components); 304 /* Affinity is updated when ris are added */ 305 class->level = level_idx; 306 class->type = type; 307 INIT_LIST_HEAD_RCU(&class->classes_list); 308 ida_init(&class->ida_csu_mon); 309 ida_init(&class->ida_mbwu_mon); 310 311 list_add_rcu(&class->classes_list, &mpam_classes); 312 313 return class; 314 } 315 316 static void mpam_class_destroy(struct mpam_class *class) 317 { 318 lockdep_assert_held(&mpam_list_lock); 319 320 list_del_rcu(&class->classes_list); 321 add_to_garbage(class); 322 } 323 324 static struct mpam_class * 325 mpam_class_find(u8 level_idx, enum mpam_class_types type) 326 { 327 struct mpam_class *class; 328 329 lockdep_assert_held(&mpam_list_lock); 330 331 list_for_each_entry(class, &mpam_classes, classes_list) { 332 if (class->type == type && class->level == level_idx) 333 return class; 334 } 335 336 return mpam_class_alloc(level_idx, type); 337 } 338 339 static struct mpam_component * 340 mpam_component_alloc(struct mpam_class *class, int id) 341 { 342 struct mpam_component *comp; 343 344 lockdep_assert_held(&mpam_list_lock); 345 346 comp = kzalloc(sizeof(*comp), GFP_KERNEL); 347 if (!comp) 348 return ERR_PTR(-ENOMEM); 349 init_garbage(&comp->garbage); 350 351 comp->comp_id = id; 352 INIT_LIST_HEAD_RCU(&comp->vmsc); 353 /* Affinity is updated when RIS are added */ 354 INIT_LIST_HEAD_RCU(&comp->class_list); 355 comp->class = class; 356 357 list_add_rcu(&comp->class_list, &class->components); 358 359 return comp; 360 } 361 362 static void __destroy_component_cfg(struct mpam_component *comp); 363 364 static void mpam_component_destroy(struct mpam_component *comp) 365 { 366 struct mpam_class *class = comp->class; 367 368 lockdep_assert_held(&mpam_list_lock); 369 370 __destroy_component_cfg(comp); 371 372 list_del_rcu(&comp->class_list); 373 add_to_garbage(comp); 374 375 if (list_empty(&class->components)) 376 mpam_class_destroy(class); 377 } 378 379 static struct mpam_component * 380 mpam_component_find(struct mpam_class *class, int id) 381 { 382 struct mpam_component *comp; 383 384 lockdep_assert_held(&mpam_list_lock); 385 386 list_for_each_entry(comp, &class->components, class_list) { 387 if (comp->comp_id == id) 388 return comp; 389 } 390 391 return mpam_component_alloc(class, id); 392 } 393 394 static struct mpam_vmsc * 395 mpam_vmsc_alloc(struct mpam_component *comp, struct mpam_msc *msc) 396 { 397 struct mpam_vmsc *vmsc; 398 399 lockdep_assert_held(&mpam_list_lock); 400 401 vmsc = kzalloc(sizeof(*vmsc), GFP_KERNEL); 402 if (!vmsc) 403 return ERR_PTR(-ENOMEM); 404 init_garbage(&vmsc->garbage); 405 406 INIT_LIST_HEAD_RCU(&vmsc->ris); 407 INIT_LIST_HEAD_RCU(&vmsc->comp_list); 408 vmsc->comp = comp; 409 vmsc->msc = msc; 410 411 list_add_rcu(&vmsc->comp_list, &comp->vmsc); 412 413 return vmsc; 414 } 415 416 static void mpam_vmsc_destroy(struct mpam_vmsc *vmsc) 417 { 418 struct mpam_component *comp = vmsc->comp; 419 420 lockdep_assert_held(&mpam_list_lock); 421 422 list_del_rcu(&vmsc->comp_list); 423 add_to_garbage(vmsc); 424 425 if (list_empty(&comp->vmsc)) 426 mpam_component_destroy(comp); 427 } 428 429 static struct mpam_vmsc * 430 mpam_vmsc_find(struct mpam_component *comp, struct mpam_msc *msc) 431 { 432 struct mpam_vmsc *vmsc; 433 434 lockdep_assert_held(&mpam_list_lock); 435 436 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 437 if (vmsc->msc->id == msc->id) 438 return vmsc; 439 } 440 441 return mpam_vmsc_alloc(comp, msc); 442 } 443 444 /* 445 * The cacheinfo structures are only populated when CPUs are online. 446 * This helper walks the acpi tables to include offline CPUs too. 447 */ 448 int mpam_get_cpumask_from_cache_id(unsigned long cache_id, u32 cache_level, 449 cpumask_t *affinity) 450 { 451 return acpi_pptt_get_cpumask_from_cache_id(cache_id, affinity); 452 } 453 454 /* 455 * cpumask_of_node() only knows about online CPUs. This can't tell us whether 456 * a class is represented on all possible CPUs. 457 */ 458 static void get_cpumask_from_node_id(u32 node_id, cpumask_t *affinity) 459 { 460 int cpu; 461 462 for_each_possible_cpu(cpu) { 463 if (node_id == cpu_to_node(cpu)) 464 cpumask_set_cpu(cpu, affinity); 465 } 466 } 467 468 static int mpam_ris_get_affinity(struct mpam_msc *msc, cpumask_t *affinity, 469 enum mpam_class_types type, 470 struct mpam_class *class, 471 struct mpam_component *comp) 472 { 473 int err; 474 475 switch (type) { 476 case MPAM_CLASS_CACHE: 477 err = mpam_get_cpumask_from_cache_id(comp->comp_id, class->level, 478 affinity); 479 if (err) { 480 dev_warn_once(&msc->pdev->dev, 481 "Failed to determine CPU affinity\n"); 482 return err; 483 } 484 485 if (cpumask_empty(affinity)) 486 dev_warn_once(&msc->pdev->dev, "no CPUs associated with cache node\n"); 487 488 break; 489 case MPAM_CLASS_MEMORY: 490 get_cpumask_from_node_id(comp->comp_id, affinity); 491 /* affinity may be empty for CPU-less memory nodes */ 492 break; 493 case MPAM_CLASS_UNKNOWN: 494 return 0; 495 } 496 497 cpumask_and(affinity, affinity, &msc->accessibility); 498 499 return 0; 500 } 501 502 static int mpam_ris_create_locked(struct mpam_msc *msc, u8 ris_idx, 503 enum mpam_class_types type, u8 class_id, 504 int component_id) 505 { 506 int err; 507 struct mpam_vmsc *vmsc; 508 struct mpam_msc_ris *ris; 509 struct mpam_class *class; 510 struct mpam_component *comp; 511 struct platform_device *pdev = msc->pdev; 512 513 lockdep_assert_held(&mpam_list_lock); 514 515 if (ris_idx > MPAM_MSC_MAX_NUM_RIS) 516 return -EINVAL; 517 518 if (test_and_set_bit(ris_idx, &msc->ris_idxs)) 519 return -EBUSY; 520 521 ris = devm_kzalloc(&msc->pdev->dev, sizeof(*ris), GFP_KERNEL); 522 if (!ris) 523 return -ENOMEM; 524 init_garbage(&ris->garbage); 525 ris->garbage.pdev = pdev; 526 527 class = mpam_class_find(class_id, type); 528 if (IS_ERR(class)) 529 return PTR_ERR(class); 530 531 comp = mpam_component_find(class, component_id); 532 if (IS_ERR(comp)) { 533 if (list_empty(&class->components)) 534 mpam_class_destroy(class); 535 return PTR_ERR(comp); 536 } 537 538 vmsc = mpam_vmsc_find(comp, msc); 539 if (IS_ERR(vmsc)) { 540 if (list_empty(&comp->vmsc)) 541 mpam_component_destroy(comp); 542 return PTR_ERR(vmsc); 543 } 544 545 err = mpam_ris_get_affinity(msc, &ris->affinity, type, class, comp); 546 if (err) { 547 if (list_empty(&vmsc->ris)) 548 mpam_vmsc_destroy(vmsc); 549 return err; 550 } 551 552 ris->ris_idx = ris_idx; 553 INIT_LIST_HEAD_RCU(&ris->msc_list); 554 INIT_LIST_HEAD_RCU(&ris->vmsc_list); 555 ris->vmsc = vmsc; 556 557 cpumask_or(&comp->affinity, &comp->affinity, &ris->affinity); 558 cpumask_or(&class->affinity, &class->affinity, &ris->affinity); 559 list_add_rcu(&ris->vmsc_list, &vmsc->ris); 560 list_add_rcu(&ris->msc_list, &msc->ris); 561 562 return 0; 563 } 564 565 static void mpam_ris_destroy(struct mpam_msc_ris *ris) 566 { 567 struct mpam_vmsc *vmsc = ris->vmsc; 568 struct mpam_msc *msc = vmsc->msc; 569 struct mpam_component *comp = vmsc->comp; 570 struct mpam_class *class = comp->class; 571 572 lockdep_assert_held(&mpam_list_lock); 573 574 /* 575 * It is assumed affinities don't overlap. If they do the class becomes 576 * unusable immediately. 577 */ 578 cpumask_andnot(&class->affinity, &class->affinity, &ris->affinity); 579 cpumask_andnot(&comp->affinity, &comp->affinity, &ris->affinity); 580 clear_bit(ris->ris_idx, &msc->ris_idxs); 581 list_del_rcu(&ris->msc_list); 582 list_del_rcu(&ris->vmsc_list); 583 add_to_garbage(ris); 584 585 if (list_empty(&vmsc->ris)) 586 mpam_vmsc_destroy(vmsc); 587 } 588 589 int mpam_ris_create(struct mpam_msc *msc, u8 ris_idx, 590 enum mpam_class_types type, u8 class_id, int component_id) 591 { 592 int err; 593 594 mutex_lock(&mpam_list_lock); 595 err = mpam_ris_create_locked(msc, ris_idx, type, class_id, 596 component_id); 597 mutex_unlock(&mpam_list_lock); 598 if (err) 599 mpam_free_garbage(); 600 601 return err; 602 } 603 604 static struct mpam_msc_ris *mpam_get_or_create_ris(struct mpam_msc *msc, 605 u8 ris_idx) 606 { 607 int err; 608 struct mpam_msc_ris *ris; 609 610 lockdep_assert_held(&mpam_list_lock); 611 612 if (!test_bit(ris_idx, &msc->ris_idxs)) { 613 err = mpam_ris_create_locked(msc, ris_idx, MPAM_CLASS_UNKNOWN, 614 0, 0); 615 if (err) 616 return ERR_PTR(err); 617 } 618 619 list_for_each_entry(ris, &msc->ris, msc_list) { 620 if (ris->ris_idx == ris_idx) 621 return ris; 622 } 623 624 return ERR_PTR(-ENOENT); 625 } 626 627 /* 628 * IHI009A.a has this nugget: "If a monitor does not support automatic behaviour 629 * of NRDY, software can use this bit for any purpose" - so hardware might not 630 * implement this - but it isn't RES0. 631 * 632 * Try and see what values stick in this bit. If we can write either value, 633 * its probably not implemented by hardware. 634 */ 635 static bool _mpam_ris_hw_probe_hw_nrdy(struct mpam_msc_ris *ris, u32 mon_reg) 636 { 637 u32 now; 638 u64 mon_sel; 639 bool can_set, can_clear; 640 struct mpam_msc *msc = ris->vmsc->msc; 641 642 if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc))) 643 return false; 644 645 mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, 0) | 646 FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx); 647 _mpam_write_monsel_reg(msc, mon_reg, mon_sel); 648 649 _mpam_write_monsel_reg(msc, mon_reg, MSMON___NRDY); 650 now = _mpam_read_monsel_reg(msc, mon_reg); 651 can_set = now & MSMON___NRDY; 652 653 _mpam_write_monsel_reg(msc, mon_reg, 0); 654 now = _mpam_read_monsel_reg(msc, mon_reg); 655 can_clear = !(now & MSMON___NRDY); 656 mpam_mon_sel_unlock(msc); 657 658 return (!can_set || !can_clear); 659 } 660 661 #define mpam_ris_hw_probe_hw_nrdy(_ris, _mon_reg) \ 662 _mpam_ris_hw_probe_hw_nrdy(_ris, MSMON_##_mon_reg) 663 664 static void mpam_ris_hw_probe(struct mpam_msc_ris *ris) 665 { 666 int err; 667 struct mpam_msc *msc = ris->vmsc->msc; 668 struct device *dev = &msc->pdev->dev; 669 struct mpam_props *props = &ris->props; 670 struct mpam_class *class = ris->vmsc->comp->class; 671 672 lockdep_assert_held(&msc->probe_lock); 673 lockdep_assert_held(&msc->part_sel_lock); 674 675 /* Cache Capacity Partitioning */ 676 if (FIELD_GET(MPAMF_IDR_HAS_CCAP_PART, ris->idr)) { 677 u32 ccap_features = mpam_read_partsel_reg(msc, CCAP_IDR); 678 679 props->cmax_wd = FIELD_GET(MPAMF_CCAP_IDR_CMAX_WD, ccap_features); 680 if (props->cmax_wd && 681 FIELD_GET(MPAMF_CCAP_IDR_HAS_CMAX_SOFTLIM, ccap_features)) 682 mpam_set_feature(mpam_feat_cmax_softlim, props); 683 684 if (props->cmax_wd && 685 !FIELD_GET(MPAMF_CCAP_IDR_NO_CMAX, ccap_features)) 686 mpam_set_feature(mpam_feat_cmax_cmax, props); 687 688 if (props->cmax_wd && 689 FIELD_GET(MPAMF_CCAP_IDR_HAS_CMIN, ccap_features)) 690 mpam_set_feature(mpam_feat_cmax_cmin, props); 691 692 props->cassoc_wd = FIELD_GET(MPAMF_CCAP_IDR_CASSOC_WD, ccap_features); 693 if (props->cassoc_wd && 694 FIELD_GET(MPAMF_CCAP_IDR_HAS_CASSOC, ccap_features)) 695 mpam_set_feature(mpam_feat_cmax_cassoc, props); 696 } 697 698 /* Cache Portion partitioning */ 699 if (FIELD_GET(MPAMF_IDR_HAS_CPOR_PART, ris->idr)) { 700 u32 cpor_features = mpam_read_partsel_reg(msc, CPOR_IDR); 701 702 props->cpbm_wd = FIELD_GET(MPAMF_CPOR_IDR_CPBM_WD, cpor_features); 703 if (props->cpbm_wd) 704 mpam_set_feature(mpam_feat_cpor_part, props); 705 } 706 707 /* Memory bandwidth partitioning */ 708 if (FIELD_GET(MPAMF_IDR_HAS_MBW_PART, ris->idr)) { 709 u32 mbw_features = mpam_read_partsel_reg(msc, MBW_IDR); 710 711 /* portion bitmap resolution */ 712 props->mbw_pbm_bits = FIELD_GET(MPAMF_MBW_IDR_BWPBM_WD, mbw_features); 713 if (props->mbw_pbm_bits && 714 FIELD_GET(MPAMF_MBW_IDR_HAS_PBM, mbw_features)) 715 mpam_set_feature(mpam_feat_mbw_part, props); 716 717 props->bwa_wd = FIELD_GET(MPAMF_MBW_IDR_BWA_WD, mbw_features); 718 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MAX, mbw_features)) 719 mpam_set_feature(mpam_feat_mbw_max, props); 720 721 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_MIN, mbw_features)) 722 mpam_set_feature(mpam_feat_mbw_min, props); 723 724 if (props->bwa_wd && FIELD_GET(MPAMF_MBW_IDR_HAS_PROP, mbw_features)) 725 mpam_set_feature(mpam_feat_mbw_prop, props); 726 } 727 728 /* Priority partitioning */ 729 if (FIELD_GET(MPAMF_IDR_HAS_PRI_PART, ris->idr)) { 730 u32 pri_features = mpam_read_partsel_reg(msc, PRI_IDR); 731 732 props->intpri_wd = FIELD_GET(MPAMF_PRI_IDR_INTPRI_WD, pri_features); 733 if (props->intpri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_INTPRI, pri_features)) { 734 mpam_set_feature(mpam_feat_intpri_part, props); 735 if (FIELD_GET(MPAMF_PRI_IDR_INTPRI_0_IS_LOW, pri_features)) 736 mpam_set_feature(mpam_feat_intpri_part_0_low, props); 737 } 738 739 props->dspri_wd = FIELD_GET(MPAMF_PRI_IDR_DSPRI_WD, pri_features); 740 if (props->dspri_wd && FIELD_GET(MPAMF_PRI_IDR_HAS_DSPRI, pri_features)) { 741 mpam_set_feature(mpam_feat_dspri_part, props); 742 if (FIELD_GET(MPAMF_PRI_IDR_DSPRI_0_IS_LOW, pri_features)) 743 mpam_set_feature(mpam_feat_dspri_part_0_low, props); 744 } 745 } 746 747 /* Performance Monitoring */ 748 if (FIELD_GET(MPAMF_IDR_HAS_MSMON, ris->idr)) { 749 u32 msmon_features = mpam_read_partsel_reg(msc, MSMON_IDR); 750 751 /* 752 * If the firmware max-nrdy-us property is missing, the 753 * CSU counters can't be used. Should we wait forever? 754 */ 755 err = device_property_read_u32(&msc->pdev->dev, 756 "arm,not-ready-us", 757 &msc->nrdy_usec); 758 759 if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_CSU, msmon_features)) { 760 u32 csumonidr; 761 762 csumonidr = mpam_read_partsel_reg(msc, CSUMON_IDR); 763 props->num_csu_mon = FIELD_GET(MPAMF_CSUMON_IDR_NUM_MON, csumonidr); 764 if (props->num_csu_mon) { 765 bool hw_managed; 766 767 mpam_set_feature(mpam_feat_msmon_csu, props); 768 769 if (FIELD_GET(MPAMF_CSUMON_IDR_HAS_XCL, csumonidr)) 770 mpam_set_feature(mpam_feat_msmon_csu_xcl, props); 771 772 /* Is NRDY hardware managed? */ 773 hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, CSU); 774 if (hw_managed) 775 mpam_set_feature(mpam_feat_msmon_csu_hw_nrdy, props); 776 } 777 778 /* 779 * Accept the missing firmware property if NRDY appears 780 * un-implemented. 781 */ 782 if (err && mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, props)) 783 dev_err_once(dev, "Counters are not usable because not-ready timeout was not provided by firmware."); 784 } 785 if (FIELD_GET(MPAMF_MSMON_IDR_MSMON_MBWU, msmon_features)) { 786 bool has_long, hw_managed; 787 u32 mbwumon_idr = mpam_read_partsel_reg(msc, MBWUMON_IDR); 788 789 props->num_mbwu_mon = FIELD_GET(MPAMF_MBWUMON_IDR_NUM_MON, mbwumon_idr); 790 if (props->num_mbwu_mon) { 791 mpam_set_feature(mpam_feat_msmon_mbwu, props); 792 793 if (FIELD_GET(MPAMF_MBWUMON_IDR_HAS_RWBW, mbwumon_idr)) 794 mpam_set_feature(mpam_feat_msmon_mbwu_rwbw, props); 795 796 has_long = FIELD_GET(MPAMF_MBWUMON_IDR_HAS_LONG, mbwumon_idr); 797 if (has_long) { 798 if (FIELD_GET(MPAMF_MBWUMON_IDR_LWD, mbwumon_idr)) 799 mpam_set_feature(mpam_feat_msmon_mbwu_63counter, props); 800 else 801 mpam_set_feature(mpam_feat_msmon_mbwu_44counter, props); 802 } else { 803 mpam_set_feature(mpam_feat_msmon_mbwu_31counter, props); 804 } 805 806 /* Is NRDY hardware managed? */ 807 hw_managed = mpam_ris_hw_probe_hw_nrdy(ris, MBWU); 808 if (hw_managed) 809 mpam_set_feature(mpam_feat_msmon_mbwu_hw_nrdy, props); 810 811 /* 812 * Don't warn about any missing firmware property for 813 * MBWU NRDY - it doesn't make any sense! 814 */ 815 } 816 } 817 } 818 819 /* 820 * RIS with PARTID narrowing don't have enough storage for one 821 * configuration per PARTID. If these are in a class we could use, 822 * reduce the supported partid_max to match the number of intpartid. 823 * If the class is unknown, just ignore it. 824 */ 825 if (FIELD_GET(MPAMF_IDR_HAS_PARTID_NRW, ris->idr) && 826 class->type != MPAM_CLASS_UNKNOWN) { 827 u32 nrwidr = mpam_read_partsel_reg(msc, PARTID_NRW_IDR); 828 u16 partid_max = FIELD_GET(MPAMF_PARTID_NRW_IDR_INTPARTID_MAX, nrwidr); 829 830 mpam_set_feature(mpam_feat_partid_nrw, props); 831 msc->partid_max = min(msc->partid_max, partid_max); 832 } 833 } 834 835 static int mpam_msc_hw_probe(struct mpam_msc *msc) 836 { 837 u64 idr; 838 u16 partid_max; 839 u8 ris_idx, pmg_max; 840 struct mpam_msc_ris *ris; 841 struct device *dev = &msc->pdev->dev; 842 843 lockdep_assert_held(&msc->probe_lock); 844 845 idr = __mpam_read_reg(msc, MPAMF_AIDR); 846 if ((idr & MPAMF_AIDR_ARCH_MAJOR_REV) != MPAM_ARCHITECTURE_V1) { 847 dev_err_once(dev, "MSC does not match MPAM architecture v1.x\n"); 848 return -EIO; 849 } 850 851 /* Grab an IDR value to find out how many RIS there are */ 852 mutex_lock(&msc->part_sel_lock); 853 idr = mpam_msc_read_idr(msc); 854 mutex_unlock(&msc->part_sel_lock); 855 856 msc->ris_max = FIELD_GET(MPAMF_IDR_RIS_MAX, idr); 857 858 /* Use these values so partid/pmg always starts with a valid value */ 859 msc->partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr); 860 msc->pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr); 861 862 for (ris_idx = 0; ris_idx <= msc->ris_max; ris_idx++) { 863 mutex_lock(&msc->part_sel_lock); 864 __mpam_part_sel(ris_idx, 0, msc); 865 idr = mpam_msc_read_idr(msc); 866 mutex_unlock(&msc->part_sel_lock); 867 868 partid_max = FIELD_GET(MPAMF_IDR_PARTID_MAX, idr); 869 pmg_max = FIELD_GET(MPAMF_IDR_PMG_MAX, idr); 870 msc->partid_max = min(msc->partid_max, partid_max); 871 msc->pmg_max = min(msc->pmg_max, pmg_max); 872 msc->has_extd_esr = FIELD_GET(MPAMF_IDR_HAS_EXTD_ESR, idr); 873 874 mutex_lock(&mpam_list_lock); 875 ris = mpam_get_or_create_ris(msc, ris_idx); 876 mutex_unlock(&mpam_list_lock); 877 if (IS_ERR(ris)) 878 return PTR_ERR(ris); 879 ris->idr = idr; 880 881 mutex_lock(&msc->part_sel_lock); 882 __mpam_part_sel(ris_idx, 0, msc); 883 mpam_ris_hw_probe(ris); 884 mutex_unlock(&msc->part_sel_lock); 885 } 886 887 /* Clear any stale errors */ 888 mpam_msc_clear_esr(msc); 889 890 spin_lock(&partid_max_lock); 891 mpam_partid_max = min(mpam_partid_max, msc->partid_max); 892 mpam_pmg_max = min(mpam_pmg_max, msc->pmg_max); 893 spin_unlock(&partid_max_lock); 894 895 msc->probed = true; 896 897 return 0; 898 } 899 900 struct mon_read { 901 struct mpam_msc_ris *ris; 902 struct mon_cfg *ctx; 903 enum mpam_device_features type; 904 u64 *val; 905 int err; 906 }; 907 908 static bool mpam_ris_has_mbwu_long_counter(struct mpam_msc_ris *ris) 909 { 910 return (mpam_has_feature(mpam_feat_msmon_mbwu_63counter, &ris->props) || 911 mpam_has_feature(mpam_feat_msmon_mbwu_44counter, &ris->props)); 912 } 913 914 static u64 mpam_msc_read_mbwu_l(struct mpam_msc *msc) 915 { 916 int retry = 3; 917 u32 mbwu_l_low; 918 u64 mbwu_l_high1, mbwu_l_high2; 919 920 mpam_mon_sel_lock_held(msc); 921 922 WARN_ON_ONCE((MSMON_MBWU_L + sizeof(u64)) > msc->mapped_hwpage_sz); 923 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); 924 925 mbwu_l_high2 = __mpam_read_reg(msc, MSMON_MBWU_L + 4); 926 do { 927 mbwu_l_high1 = mbwu_l_high2; 928 mbwu_l_low = __mpam_read_reg(msc, MSMON_MBWU_L); 929 mbwu_l_high2 = __mpam_read_reg(msc, MSMON_MBWU_L + 4); 930 931 retry--; 932 } while (mbwu_l_high1 != mbwu_l_high2 && retry > 0); 933 934 if (mbwu_l_high1 == mbwu_l_high2) 935 return (mbwu_l_high1 << 32) | mbwu_l_low; 936 937 pr_warn("Failed to read a stable value\n"); 938 return MSMON___L_NRDY; 939 } 940 941 static void mpam_msc_zero_mbwu_l(struct mpam_msc *msc) 942 { 943 mpam_mon_sel_lock_held(msc); 944 945 WARN_ON_ONCE((MSMON_MBWU_L + sizeof(u64)) > msc->mapped_hwpage_sz); 946 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &msc->accessibility)); 947 948 __mpam_write_reg(msc, MSMON_MBWU_L, 0); 949 __mpam_write_reg(msc, MSMON_MBWU_L + 4, 0); 950 } 951 952 static void gen_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val, 953 u32 *flt_val) 954 { 955 struct mon_cfg *ctx = m->ctx; 956 957 /* 958 * For CSU counters its implementation-defined what happens when not 959 * filtering by partid. 960 */ 961 *ctl_val = MSMON_CFG_x_CTL_MATCH_PARTID; 962 963 *flt_val = FIELD_PREP(MSMON_CFG_x_FLT_PARTID, ctx->partid); 964 965 if (m->ctx->match_pmg) { 966 *ctl_val |= MSMON_CFG_x_CTL_MATCH_PMG; 967 *flt_val |= FIELD_PREP(MSMON_CFG_x_FLT_PMG, ctx->pmg); 968 } 969 970 switch (m->type) { 971 case mpam_feat_msmon_csu: 972 *ctl_val |= MSMON_CFG_CSU_CTL_TYPE_CSU; 973 974 if (mpam_has_feature(mpam_feat_msmon_csu_xcl, &m->ris->props)) 975 *flt_val |= FIELD_PREP(MSMON_CFG_CSU_FLT_XCL, ctx->csu_exclude_clean); 976 977 break; 978 case mpam_feat_msmon_mbwu_31counter: 979 case mpam_feat_msmon_mbwu_44counter: 980 case mpam_feat_msmon_mbwu_63counter: 981 *ctl_val |= MSMON_CFG_MBWU_CTL_TYPE_MBWU; 982 983 if (mpam_has_feature(mpam_feat_msmon_mbwu_rwbw, &m->ris->props)) 984 *flt_val |= FIELD_PREP(MSMON_CFG_MBWU_FLT_RWBW, ctx->opts); 985 986 break; 987 default: 988 pr_warn("Unexpected monitor type %d\n", m->type); 989 } 990 } 991 992 static void read_msmon_ctl_flt_vals(struct mon_read *m, u32 *ctl_val, 993 u32 *flt_val) 994 { 995 struct mpam_msc *msc = m->ris->vmsc->msc; 996 997 switch (m->type) { 998 case mpam_feat_msmon_csu: 999 *ctl_val = mpam_read_monsel_reg(msc, CFG_CSU_CTL); 1000 *flt_val = mpam_read_monsel_reg(msc, CFG_CSU_FLT); 1001 break; 1002 case mpam_feat_msmon_mbwu_31counter: 1003 case mpam_feat_msmon_mbwu_44counter: 1004 case mpam_feat_msmon_mbwu_63counter: 1005 *ctl_val = mpam_read_monsel_reg(msc, CFG_MBWU_CTL); 1006 *flt_val = mpam_read_monsel_reg(msc, CFG_MBWU_FLT); 1007 break; 1008 default: 1009 pr_warn("Unexpected monitor type %d\n", m->type); 1010 } 1011 } 1012 1013 /* Remove values set by the hardware to prevent apparent mismatches. */ 1014 static inline void clean_msmon_ctl_val(u32 *cur_ctl) 1015 { 1016 *cur_ctl &= ~MSMON_CFG_x_CTL_OFLOW_STATUS; 1017 1018 if (FIELD_GET(MSMON_CFG_x_CTL_TYPE, *cur_ctl) == MSMON_CFG_MBWU_CTL_TYPE_MBWU) 1019 *cur_ctl &= ~MSMON_CFG_MBWU_CTL_OFLOW_STATUS_L; 1020 } 1021 1022 static void write_msmon_ctl_flt_vals(struct mon_read *m, u32 ctl_val, 1023 u32 flt_val) 1024 { 1025 struct mpam_msc *msc = m->ris->vmsc->msc; 1026 1027 /* 1028 * Write the ctl_val with the enable bit cleared, reset the counter, 1029 * then enable counter. 1030 */ 1031 switch (m->type) { 1032 case mpam_feat_msmon_csu: 1033 mpam_write_monsel_reg(msc, CFG_CSU_FLT, flt_val); 1034 mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val); 1035 mpam_write_monsel_reg(msc, CSU, 0); 1036 mpam_write_monsel_reg(msc, CFG_CSU_CTL, ctl_val | MSMON_CFG_x_CTL_EN); 1037 break; 1038 case mpam_feat_msmon_mbwu_31counter: 1039 case mpam_feat_msmon_mbwu_44counter: 1040 case mpam_feat_msmon_mbwu_63counter: 1041 mpam_write_monsel_reg(msc, CFG_MBWU_FLT, flt_val); 1042 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val); 1043 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, ctl_val | MSMON_CFG_x_CTL_EN); 1044 /* Counting monitors require NRDY to be reset by software */ 1045 if (m->type == mpam_feat_msmon_mbwu_31counter) 1046 mpam_write_monsel_reg(msc, MBWU, 0); 1047 else 1048 mpam_msc_zero_mbwu_l(m->ris->vmsc->msc); 1049 break; 1050 default: 1051 pr_warn("Unexpected monitor type %d\n", m->type); 1052 } 1053 } 1054 1055 static u64 mpam_msmon_overflow_val(enum mpam_device_features type) 1056 { 1057 /* TODO: implement scaling counters */ 1058 switch (type) { 1059 case mpam_feat_msmon_mbwu_63counter: 1060 return BIT_ULL(hweight_long(MSMON___LWD_VALUE)); 1061 case mpam_feat_msmon_mbwu_44counter: 1062 return BIT_ULL(hweight_long(MSMON___L_VALUE)); 1063 case mpam_feat_msmon_mbwu_31counter: 1064 return BIT_ULL(hweight_long(MSMON___VALUE)); 1065 default: 1066 return 0; 1067 } 1068 } 1069 1070 static void __ris_msmon_read(void *arg) 1071 { 1072 u64 now; 1073 bool nrdy = false; 1074 bool config_mismatch; 1075 bool overflow; 1076 struct mon_read *m = arg; 1077 struct mon_cfg *ctx = m->ctx; 1078 bool reset_on_next_read = false; 1079 struct mpam_msc_ris *ris = m->ris; 1080 struct msmon_mbwu_state *mbwu_state; 1081 struct mpam_props *rprops = &ris->props; 1082 struct mpam_msc *msc = m->ris->vmsc->msc; 1083 u32 mon_sel, ctl_val, flt_val, cur_ctl, cur_flt; 1084 1085 if (!mpam_mon_sel_lock(msc)) { 1086 m->err = -EIO; 1087 return; 1088 } 1089 mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, ctx->mon) | 1090 FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx); 1091 mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel); 1092 1093 switch (m->type) { 1094 case mpam_feat_msmon_mbwu_31counter: 1095 case mpam_feat_msmon_mbwu_44counter: 1096 case mpam_feat_msmon_mbwu_63counter: 1097 mbwu_state = &ris->mbwu_state[ctx->mon]; 1098 if (mbwu_state) { 1099 reset_on_next_read = mbwu_state->reset_on_next_read; 1100 mbwu_state->reset_on_next_read = false; 1101 } 1102 break; 1103 default: 1104 break; 1105 } 1106 1107 /* 1108 * Read the existing configuration to avoid re-writing the same values. 1109 * This saves waiting for 'nrdy' on subsequent reads. 1110 */ 1111 read_msmon_ctl_flt_vals(m, &cur_ctl, &cur_flt); 1112 1113 if (mpam_feat_msmon_mbwu_31counter == m->type) 1114 overflow = cur_ctl & MSMON_CFG_x_CTL_OFLOW_STATUS; 1115 else if (mpam_feat_msmon_mbwu_44counter == m->type || 1116 mpam_feat_msmon_mbwu_63counter == m->type) 1117 overflow = cur_ctl & MSMON_CFG_MBWU_CTL_OFLOW_STATUS_L; 1118 1119 clean_msmon_ctl_val(&cur_ctl); 1120 gen_msmon_ctl_flt_vals(m, &ctl_val, &flt_val); 1121 config_mismatch = cur_flt != flt_val || 1122 cur_ctl != (ctl_val | MSMON_CFG_x_CTL_EN); 1123 1124 if (config_mismatch || reset_on_next_read) { 1125 write_msmon_ctl_flt_vals(m, ctl_val, flt_val); 1126 overflow = false; 1127 } else if (overflow) { 1128 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, 1129 cur_ctl & 1130 ~(MSMON_CFG_x_CTL_OFLOW_STATUS | 1131 MSMON_CFG_MBWU_CTL_OFLOW_STATUS_L)); 1132 } 1133 1134 switch (m->type) { 1135 case mpam_feat_msmon_csu: 1136 now = mpam_read_monsel_reg(msc, CSU); 1137 if (mpam_has_feature(mpam_feat_msmon_csu_hw_nrdy, rprops)) 1138 nrdy = now & MSMON___NRDY; 1139 now = FIELD_GET(MSMON___VALUE, now); 1140 break; 1141 case mpam_feat_msmon_mbwu_31counter: 1142 case mpam_feat_msmon_mbwu_44counter: 1143 case mpam_feat_msmon_mbwu_63counter: 1144 if (m->type != mpam_feat_msmon_mbwu_31counter) { 1145 now = mpam_msc_read_mbwu_l(msc); 1146 if (mpam_has_feature(mpam_feat_msmon_mbwu_hw_nrdy, rprops)) 1147 nrdy = now & MSMON___L_NRDY; 1148 1149 if (m->type == mpam_feat_msmon_mbwu_63counter) 1150 now = FIELD_GET(MSMON___LWD_VALUE, now); 1151 else 1152 now = FIELD_GET(MSMON___L_VALUE, now); 1153 } else { 1154 now = mpam_read_monsel_reg(msc, MBWU); 1155 if (mpam_has_feature(mpam_feat_msmon_mbwu_hw_nrdy, rprops)) 1156 nrdy = now & MSMON___NRDY; 1157 now = FIELD_GET(MSMON___VALUE, now); 1158 } 1159 1160 if (nrdy) 1161 break; 1162 1163 mbwu_state = &ris->mbwu_state[ctx->mon]; 1164 1165 if (overflow) 1166 mbwu_state->correction += mpam_msmon_overflow_val(m->type); 1167 1168 /* 1169 * Include bandwidth consumed before the last hardware reset and 1170 * a counter size increment for each overflow. 1171 */ 1172 now += mbwu_state->correction; 1173 break; 1174 default: 1175 m->err = -EINVAL; 1176 } 1177 mpam_mon_sel_unlock(msc); 1178 1179 if (nrdy) { 1180 m->err = -EBUSY; 1181 return; 1182 } 1183 1184 *m->val += now; 1185 } 1186 1187 static int _msmon_read(struct mpam_component *comp, struct mon_read *arg) 1188 { 1189 int err, any_err = 0; 1190 struct mpam_vmsc *vmsc; 1191 1192 guard(srcu)(&mpam_srcu); 1193 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 1194 srcu_read_lock_held(&mpam_srcu)) { 1195 struct mpam_msc *msc = vmsc->msc; 1196 struct mpam_msc_ris *ris; 1197 1198 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 1199 srcu_read_lock_held(&mpam_srcu)) { 1200 arg->ris = ris; 1201 1202 err = smp_call_function_any(&msc->accessibility, 1203 __ris_msmon_read, arg, 1204 true); 1205 if (!err && arg->err) 1206 err = arg->err; 1207 1208 /* 1209 * Save one error to be returned to the caller, but 1210 * keep reading counters so that get reprogrammed. On 1211 * platforms with NRDY this lets us wait once. 1212 */ 1213 if (err) 1214 any_err = err; 1215 } 1216 } 1217 1218 return any_err; 1219 } 1220 1221 static enum mpam_device_features mpam_msmon_choose_counter(struct mpam_class *class) 1222 { 1223 struct mpam_props *cprops = &class->props; 1224 1225 if (mpam_has_feature(mpam_feat_msmon_mbwu_63counter, cprops)) 1226 return mpam_feat_msmon_mbwu_63counter; 1227 if (mpam_has_feature(mpam_feat_msmon_mbwu_44counter, cprops)) 1228 return mpam_feat_msmon_mbwu_44counter; 1229 1230 return mpam_feat_msmon_mbwu_31counter; 1231 } 1232 1233 int mpam_msmon_read(struct mpam_component *comp, struct mon_cfg *ctx, 1234 enum mpam_device_features type, u64 *val) 1235 { 1236 int err; 1237 struct mon_read arg; 1238 u64 wait_jiffies = 0; 1239 struct mpam_class *class = comp->class; 1240 struct mpam_props *cprops = &class->props; 1241 1242 might_sleep(); 1243 1244 if (!mpam_is_enabled()) 1245 return -EIO; 1246 1247 if (!mpam_has_feature(type, cprops)) 1248 return -EOPNOTSUPP; 1249 1250 if (type == mpam_feat_msmon_mbwu) 1251 type = mpam_msmon_choose_counter(class); 1252 1253 arg = (struct mon_read) { 1254 .ctx = ctx, 1255 .type = type, 1256 .val = val, 1257 }; 1258 *val = 0; 1259 1260 err = _msmon_read(comp, &arg); 1261 if (err == -EBUSY && class->nrdy_usec) 1262 wait_jiffies = usecs_to_jiffies(class->nrdy_usec); 1263 1264 while (wait_jiffies) 1265 wait_jiffies = schedule_timeout_uninterruptible(wait_jiffies); 1266 1267 if (err == -EBUSY) { 1268 arg = (struct mon_read) { 1269 .ctx = ctx, 1270 .type = type, 1271 .val = val, 1272 }; 1273 *val = 0; 1274 1275 err = _msmon_read(comp, &arg); 1276 } 1277 1278 return err; 1279 } 1280 1281 void mpam_msmon_reset_mbwu(struct mpam_component *comp, struct mon_cfg *ctx) 1282 { 1283 struct mpam_msc *msc; 1284 struct mpam_vmsc *vmsc; 1285 struct mpam_msc_ris *ris; 1286 1287 if (!mpam_is_enabled()) 1288 return; 1289 1290 guard(srcu)(&mpam_srcu); 1291 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 1292 srcu_read_lock_held(&mpam_srcu)) { 1293 if (!mpam_has_feature(mpam_feat_msmon_mbwu, &vmsc->props)) 1294 continue; 1295 1296 msc = vmsc->msc; 1297 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 1298 srcu_read_lock_held(&mpam_srcu)) { 1299 if (!mpam_has_feature(mpam_feat_msmon_mbwu, &ris->props)) 1300 continue; 1301 1302 if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc))) 1303 continue; 1304 1305 ris->mbwu_state[ctx->mon].correction = 0; 1306 ris->mbwu_state[ctx->mon].reset_on_next_read = true; 1307 mpam_mon_sel_unlock(msc); 1308 } 1309 } 1310 } 1311 1312 static void mpam_reset_msc_bitmap(struct mpam_msc *msc, u16 reg, u16 wd) 1313 { 1314 u32 num_words, msb; 1315 u32 bm = ~0; 1316 int i; 1317 1318 lockdep_assert_held(&msc->part_sel_lock); 1319 1320 if (wd == 0) 1321 return; 1322 1323 /* 1324 * Write all ~0 to all but the last 32bit-word, which may 1325 * have fewer bits... 1326 */ 1327 num_words = DIV_ROUND_UP(wd, 32); 1328 for (i = 0; i < num_words - 1; i++, reg += sizeof(bm)) 1329 __mpam_write_reg(msc, reg, bm); 1330 1331 /* 1332 * ....and then the last (maybe) partial 32bit word. When wd is a 1333 * multiple of 32, msb should be 31 to write a full 32bit word. 1334 */ 1335 msb = (wd - 1) % 32; 1336 bm = GENMASK(msb, 0); 1337 __mpam_write_reg(msc, reg, bm); 1338 } 1339 1340 /* Called via IPI. Call while holding an SRCU reference */ 1341 static void mpam_reprogram_ris_partid(struct mpam_msc_ris *ris, u16 partid, 1342 struct mpam_config *cfg) 1343 { 1344 u32 pri_val = 0; 1345 u16 cmax = MPAMCFG_CMAX_CMAX; 1346 struct mpam_msc *msc = ris->vmsc->msc; 1347 struct mpam_props *rprops = &ris->props; 1348 u16 dspri = GENMASK(rprops->dspri_wd, 0); 1349 u16 intpri = GENMASK(rprops->intpri_wd, 0); 1350 1351 mutex_lock(&msc->part_sel_lock); 1352 __mpam_part_sel(ris->ris_idx, partid, msc); 1353 1354 if (mpam_has_feature(mpam_feat_partid_nrw, rprops)) { 1355 /* Update the intpartid mapping */ 1356 mpam_write_partsel_reg(msc, INTPARTID, 1357 MPAMCFG_INTPARTID_INTERNAL | partid); 1358 1359 /* 1360 * Then switch to the 'internal' partid to update the 1361 * configuration. 1362 */ 1363 __mpam_intpart_sel(ris->ris_idx, partid, msc); 1364 } 1365 1366 if (mpam_has_feature(mpam_feat_cpor_part, rprops) && 1367 mpam_has_feature(mpam_feat_cpor_part, cfg)) { 1368 if (cfg->reset_cpbm) 1369 mpam_reset_msc_bitmap(msc, MPAMCFG_CPBM, rprops->cpbm_wd); 1370 else 1371 mpam_write_partsel_reg(msc, CPBM, cfg->cpbm); 1372 } 1373 1374 if (mpam_has_feature(mpam_feat_mbw_part, rprops) && 1375 mpam_has_feature(mpam_feat_mbw_part, cfg)) { 1376 if (cfg->reset_mbw_pbm) 1377 mpam_reset_msc_bitmap(msc, MPAMCFG_MBW_PBM, rprops->mbw_pbm_bits); 1378 else 1379 mpam_write_partsel_reg(msc, MBW_PBM, cfg->mbw_pbm); 1380 } 1381 1382 if (mpam_has_feature(mpam_feat_mbw_min, rprops) && 1383 mpam_has_feature(mpam_feat_mbw_min, cfg)) 1384 mpam_write_partsel_reg(msc, MBW_MIN, 0); 1385 1386 if (mpam_has_feature(mpam_feat_mbw_max, rprops) && 1387 mpam_has_feature(mpam_feat_mbw_max, cfg)) { 1388 if (cfg->reset_mbw_max) 1389 mpam_write_partsel_reg(msc, MBW_MAX, MPAMCFG_MBW_MAX_MAX); 1390 else 1391 mpam_write_partsel_reg(msc, MBW_MAX, cfg->mbw_max); 1392 } 1393 1394 if (mpam_has_feature(mpam_feat_mbw_prop, rprops) && 1395 mpam_has_feature(mpam_feat_mbw_prop, cfg)) 1396 mpam_write_partsel_reg(msc, MBW_PROP, 0); 1397 1398 if (mpam_has_feature(mpam_feat_cmax_cmax, rprops)) 1399 mpam_write_partsel_reg(msc, CMAX, cmax); 1400 1401 if (mpam_has_feature(mpam_feat_cmax_cmin, rprops)) 1402 mpam_write_partsel_reg(msc, CMIN, 0); 1403 1404 if (mpam_has_feature(mpam_feat_cmax_cassoc, rprops)) 1405 mpam_write_partsel_reg(msc, CASSOC, MPAMCFG_CASSOC_CASSOC); 1406 1407 if (mpam_has_feature(mpam_feat_intpri_part, rprops) || 1408 mpam_has_feature(mpam_feat_dspri_part, rprops)) { 1409 /* aces high? */ 1410 if (!mpam_has_feature(mpam_feat_intpri_part_0_low, rprops)) 1411 intpri = 0; 1412 if (!mpam_has_feature(mpam_feat_dspri_part_0_low, rprops)) 1413 dspri = 0; 1414 1415 if (mpam_has_feature(mpam_feat_intpri_part, rprops)) 1416 pri_val |= FIELD_PREP(MPAMCFG_PRI_INTPRI, intpri); 1417 if (mpam_has_feature(mpam_feat_dspri_part, rprops)) 1418 pri_val |= FIELD_PREP(MPAMCFG_PRI_DSPRI, dspri); 1419 1420 mpam_write_partsel_reg(msc, PRI, pri_val); 1421 } 1422 1423 mutex_unlock(&msc->part_sel_lock); 1424 } 1425 1426 /* Call with msc cfg_lock held */ 1427 static int mpam_restore_mbwu_state(void *_ris) 1428 { 1429 int i; 1430 struct mon_read mwbu_arg; 1431 struct mpam_msc_ris *ris = _ris; 1432 struct mpam_class *class = ris->vmsc->comp->class; 1433 1434 for (i = 0; i < ris->props.num_mbwu_mon; i++) { 1435 if (ris->mbwu_state[i].enabled) { 1436 mwbu_arg.ris = ris; 1437 mwbu_arg.ctx = &ris->mbwu_state[i].cfg; 1438 mwbu_arg.type = mpam_msmon_choose_counter(class); 1439 1440 __ris_msmon_read(&mwbu_arg); 1441 } 1442 } 1443 1444 return 0; 1445 } 1446 1447 /* Call with MSC cfg_lock held */ 1448 static int mpam_save_mbwu_state(void *arg) 1449 { 1450 int i; 1451 u64 val; 1452 struct mon_cfg *cfg; 1453 u32 cur_flt, cur_ctl, mon_sel; 1454 struct mpam_msc_ris *ris = arg; 1455 struct msmon_mbwu_state *mbwu_state; 1456 struct mpam_msc *msc = ris->vmsc->msc; 1457 1458 for (i = 0; i < ris->props.num_mbwu_mon; i++) { 1459 mbwu_state = &ris->mbwu_state[i]; 1460 cfg = &mbwu_state->cfg; 1461 1462 if (WARN_ON_ONCE(!mpam_mon_sel_lock(msc))) 1463 return -EIO; 1464 1465 mon_sel = FIELD_PREP(MSMON_CFG_MON_SEL_MON_SEL, i) | 1466 FIELD_PREP(MSMON_CFG_MON_SEL_RIS, ris->ris_idx); 1467 mpam_write_monsel_reg(msc, CFG_MON_SEL, mon_sel); 1468 1469 cur_flt = mpam_read_monsel_reg(msc, CFG_MBWU_FLT); 1470 cur_ctl = mpam_read_monsel_reg(msc, CFG_MBWU_CTL); 1471 mpam_write_monsel_reg(msc, CFG_MBWU_CTL, 0); 1472 1473 if (mpam_ris_has_mbwu_long_counter(ris)) { 1474 val = mpam_msc_read_mbwu_l(msc); 1475 mpam_msc_zero_mbwu_l(msc); 1476 } else { 1477 val = mpam_read_monsel_reg(msc, MBWU); 1478 mpam_write_monsel_reg(msc, MBWU, 0); 1479 } 1480 1481 cfg->mon = i; 1482 cfg->pmg = FIELD_GET(MSMON_CFG_x_FLT_PMG, cur_flt); 1483 cfg->match_pmg = FIELD_GET(MSMON_CFG_x_CTL_MATCH_PMG, cur_ctl); 1484 cfg->partid = FIELD_GET(MSMON_CFG_x_FLT_PARTID, cur_flt); 1485 mbwu_state->correction += val; 1486 mbwu_state->enabled = FIELD_GET(MSMON_CFG_x_CTL_EN, cur_ctl); 1487 mpam_mon_sel_unlock(msc); 1488 } 1489 1490 return 0; 1491 } 1492 1493 static void mpam_init_reset_cfg(struct mpam_config *reset_cfg) 1494 { 1495 *reset_cfg = (struct mpam_config) { 1496 .reset_cpbm = true, 1497 .reset_mbw_pbm = true, 1498 .reset_mbw_max = true, 1499 }; 1500 bitmap_fill(reset_cfg->features, MPAM_FEATURE_LAST); 1501 } 1502 1503 /* 1504 * Called via smp_call_on_cpu() to prevent migration, while still being 1505 * pre-emptible. Caller must hold mpam_srcu. 1506 */ 1507 static int mpam_reset_ris(void *arg) 1508 { 1509 u16 partid, partid_max; 1510 struct mpam_config reset_cfg; 1511 struct mpam_msc_ris *ris = arg; 1512 1513 if (ris->in_reset_state) 1514 return 0; 1515 1516 mpam_init_reset_cfg(&reset_cfg); 1517 1518 spin_lock(&partid_max_lock); 1519 partid_max = mpam_partid_max; 1520 spin_unlock(&partid_max_lock); 1521 for (partid = 0; partid <= partid_max; partid++) 1522 mpam_reprogram_ris_partid(ris, partid, &reset_cfg); 1523 1524 return 0; 1525 } 1526 1527 /* 1528 * Get the preferred CPU for this MSC. If it is accessible from this CPU, 1529 * this CPU is preferred. This can be preempted/migrated, it will only result 1530 * in more work. 1531 */ 1532 static int mpam_get_msc_preferred_cpu(struct mpam_msc *msc) 1533 { 1534 int cpu = raw_smp_processor_id(); 1535 1536 if (cpumask_test_cpu(cpu, &msc->accessibility)) 1537 return cpu; 1538 1539 return cpumask_first_and(&msc->accessibility, cpu_online_mask); 1540 } 1541 1542 static int mpam_touch_msc(struct mpam_msc *msc, int (*fn)(void *a), void *arg) 1543 { 1544 lockdep_assert_irqs_enabled(); 1545 lockdep_assert_cpus_held(); 1546 WARN_ON_ONCE(!srcu_read_lock_held((&mpam_srcu))); 1547 1548 return smp_call_on_cpu(mpam_get_msc_preferred_cpu(msc), fn, arg, true); 1549 } 1550 1551 struct mpam_write_config_arg { 1552 struct mpam_msc_ris *ris; 1553 struct mpam_component *comp; 1554 u16 partid; 1555 }; 1556 1557 static int __write_config(void *arg) 1558 { 1559 struct mpam_write_config_arg *c = arg; 1560 1561 mpam_reprogram_ris_partid(c->ris, c->partid, &c->comp->cfg[c->partid]); 1562 1563 return 0; 1564 } 1565 1566 static void mpam_reprogram_msc(struct mpam_msc *msc) 1567 { 1568 u16 partid; 1569 bool reset; 1570 struct mpam_config *cfg; 1571 struct mpam_msc_ris *ris; 1572 struct mpam_write_config_arg arg; 1573 1574 /* 1575 * No lock for mpam_partid_max as partid_max_published has been 1576 * set by mpam_enabled(), so the values can no longer change. 1577 */ 1578 mpam_assert_partid_sizes_fixed(); 1579 1580 mutex_lock(&msc->cfg_lock); 1581 list_for_each_entry_srcu(ris, &msc->ris, msc_list, 1582 srcu_read_lock_held(&mpam_srcu)) { 1583 if (!mpam_is_enabled() && !ris->in_reset_state) { 1584 mpam_touch_msc(msc, &mpam_reset_ris, ris); 1585 ris->in_reset_state = true; 1586 continue; 1587 } 1588 1589 arg.comp = ris->vmsc->comp; 1590 arg.ris = ris; 1591 reset = true; 1592 for (partid = 0; partid <= mpam_partid_max; partid++) { 1593 cfg = &ris->vmsc->comp->cfg[partid]; 1594 if (!bitmap_empty(cfg->features, MPAM_FEATURE_LAST)) 1595 reset = false; 1596 1597 arg.partid = partid; 1598 mpam_touch_msc(msc, __write_config, &arg); 1599 } 1600 ris->in_reset_state = reset; 1601 1602 if (mpam_has_feature(mpam_feat_msmon_mbwu, &ris->props)) 1603 mpam_touch_msc(msc, &mpam_restore_mbwu_state, ris); 1604 } 1605 mutex_unlock(&msc->cfg_lock); 1606 } 1607 1608 static void _enable_percpu_irq(void *_irq) 1609 { 1610 int *irq = _irq; 1611 1612 enable_percpu_irq(*irq, IRQ_TYPE_NONE); 1613 } 1614 1615 static int mpam_cpu_online(unsigned int cpu) 1616 { 1617 struct mpam_msc *msc; 1618 1619 guard(srcu)(&mpam_srcu); 1620 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1621 srcu_read_lock_held(&mpam_srcu)) { 1622 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1623 continue; 1624 1625 if (msc->reenable_error_ppi) 1626 _enable_percpu_irq(&msc->reenable_error_ppi); 1627 1628 if (atomic_fetch_inc(&msc->online_refs) == 0) 1629 mpam_reprogram_msc(msc); 1630 } 1631 1632 return 0; 1633 } 1634 1635 /* Before mpam is enabled, try to probe new MSC */ 1636 static int mpam_discovery_cpu_online(unsigned int cpu) 1637 { 1638 int err = 0; 1639 struct mpam_msc *msc; 1640 bool new_device_probed = false; 1641 1642 if (mpam_is_enabled()) 1643 return 0; 1644 1645 guard(srcu)(&mpam_srcu); 1646 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1647 srcu_read_lock_held(&mpam_srcu)) { 1648 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1649 continue; 1650 1651 mutex_lock(&msc->probe_lock); 1652 if (!msc->probed) 1653 err = mpam_msc_hw_probe(msc); 1654 mutex_unlock(&msc->probe_lock); 1655 1656 if (err) 1657 break; 1658 new_device_probed = true; 1659 } 1660 1661 if (new_device_probed && !err) 1662 schedule_work(&mpam_enable_work); 1663 if (err) { 1664 mpam_disable_reason = "error during probing"; 1665 schedule_work(&mpam_broken_work); 1666 } 1667 1668 return err; 1669 } 1670 1671 static int mpam_cpu_offline(unsigned int cpu) 1672 { 1673 struct mpam_msc *msc; 1674 1675 guard(srcu)(&mpam_srcu); 1676 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 1677 srcu_read_lock_held(&mpam_srcu)) { 1678 if (!cpumask_test_cpu(cpu, &msc->accessibility)) 1679 continue; 1680 1681 if (msc->reenable_error_ppi) 1682 disable_percpu_irq(msc->reenable_error_ppi); 1683 1684 if (atomic_dec_and_test(&msc->online_refs)) { 1685 struct mpam_msc_ris *ris; 1686 1687 mutex_lock(&msc->cfg_lock); 1688 list_for_each_entry_srcu(ris, &msc->ris, msc_list, 1689 srcu_read_lock_held(&mpam_srcu)) { 1690 mpam_touch_msc(msc, &mpam_reset_ris, ris); 1691 1692 /* 1693 * The reset state for non-zero partid may be 1694 * lost while the CPUs are offline. 1695 */ 1696 ris->in_reset_state = false; 1697 1698 if (mpam_is_enabled()) 1699 mpam_touch_msc(msc, &mpam_save_mbwu_state, ris); 1700 } 1701 mutex_unlock(&msc->cfg_lock); 1702 } 1703 } 1704 1705 return 0; 1706 } 1707 1708 static void mpam_register_cpuhp_callbacks(int (*online)(unsigned int online), 1709 int (*offline)(unsigned int offline), 1710 char *name) 1711 { 1712 mutex_lock(&mpam_cpuhp_state_lock); 1713 if (mpam_cpuhp_state) { 1714 cpuhp_remove_state(mpam_cpuhp_state); 1715 mpam_cpuhp_state = 0; 1716 } 1717 1718 mpam_cpuhp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, name, online, 1719 offline); 1720 if (mpam_cpuhp_state <= 0) { 1721 pr_err("Failed to register cpuhp callbacks"); 1722 mpam_cpuhp_state = 0; 1723 } 1724 mutex_unlock(&mpam_cpuhp_state_lock); 1725 } 1726 1727 static int __setup_ppi(struct mpam_msc *msc) 1728 { 1729 int cpu; 1730 1731 msc->error_dev_id = alloc_percpu(struct mpam_msc *); 1732 if (!msc->error_dev_id) 1733 return -ENOMEM; 1734 1735 for_each_cpu(cpu, &msc->accessibility) 1736 *per_cpu_ptr(msc->error_dev_id, cpu) = msc; 1737 1738 return 0; 1739 } 1740 1741 static int mpam_msc_setup_error_irq(struct mpam_msc *msc) 1742 { 1743 int irq; 1744 1745 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 1746 if (irq <= 0) 1747 return 0; 1748 1749 /* Allocate and initialise the percpu device pointer for PPI */ 1750 if (irq_is_percpu(irq)) 1751 return __setup_ppi(msc); 1752 1753 /* sanity check: shared interrupts can be routed anywhere? */ 1754 if (!cpumask_equal(&msc->accessibility, cpu_possible_mask)) { 1755 pr_err_once("msc:%u is a private resource with a shared error interrupt", 1756 msc->id); 1757 return -EINVAL; 1758 } 1759 1760 return 0; 1761 } 1762 1763 /* 1764 * An MSC can control traffic from a set of CPUs, but may only be accessible 1765 * from a (hopefully wider) set of CPUs. The common reason for this is power 1766 * management. If all the CPUs in a cluster are in PSCI:CPU_SUSPEND, the 1767 * corresponding cache may also be powered off. By making accesses from 1768 * one of those CPUs, we ensure we don't access a cache that's powered off. 1769 */ 1770 static void update_msc_accessibility(struct mpam_msc *msc) 1771 { 1772 u32 affinity_id; 1773 int err; 1774 1775 err = device_property_read_u32(&msc->pdev->dev, "cpu_affinity", 1776 &affinity_id); 1777 if (err) 1778 cpumask_copy(&msc->accessibility, cpu_possible_mask); 1779 else 1780 acpi_pptt_get_cpus_from_container(affinity_id, &msc->accessibility); 1781 } 1782 1783 /* 1784 * There are two ways of reaching a struct mpam_msc_ris. Via the 1785 * class->component->vmsc->ris, or via the msc. 1786 * When destroying the msc, the other side needs unlinking and cleaning up too. 1787 */ 1788 static void mpam_msc_destroy(struct mpam_msc *msc) 1789 { 1790 struct platform_device *pdev = msc->pdev; 1791 struct mpam_msc_ris *ris, *tmp; 1792 1793 lockdep_assert_held(&mpam_list_lock); 1794 1795 list_for_each_entry_safe(ris, tmp, &msc->ris, msc_list) 1796 mpam_ris_destroy(ris); 1797 1798 list_del_rcu(&msc->all_msc_list); 1799 platform_set_drvdata(pdev, NULL); 1800 1801 add_to_garbage(msc); 1802 } 1803 1804 static void mpam_msc_drv_remove(struct platform_device *pdev) 1805 { 1806 struct mpam_msc *msc = platform_get_drvdata(pdev); 1807 1808 mutex_lock(&mpam_list_lock); 1809 mpam_msc_destroy(msc); 1810 mutex_unlock(&mpam_list_lock); 1811 1812 mpam_free_garbage(); 1813 } 1814 1815 static struct mpam_msc *do_mpam_msc_drv_probe(struct platform_device *pdev) 1816 { 1817 int err; 1818 u32 tmp; 1819 struct mpam_msc *msc; 1820 struct resource *msc_res; 1821 struct device *dev = &pdev->dev; 1822 1823 lockdep_assert_held(&mpam_list_lock); 1824 1825 msc = devm_kzalloc(&pdev->dev, sizeof(*msc), GFP_KERNEL); 1826 if (!msc) 1827 return ERR_PTR(-ENOMEM); 1828 init_garbage(&msc->garbage); 1829 msc->garbage.pdev = pdev; 1830 1831 err = devm_mutex_init(dev, &msc->probe_lock); 1832 if (err) 1833 return ERR_PTR(err); 1834 1835 err = devm_mutex_init(dev, &msc->part_sel_lock); 1836 if (err) 1837 return ERR_PTR(err); 1838 1839 err = devm_mutex_init(dev, &msc->error_irq_lock); 1840 if (err) 1841 return ERR_PTR(err); 1842 1843 err = devm_mutex_init(dev, &msc->cfg_lock); 1844 if (err) 1845 return ERR_PTR(err); 1846 1847 mpam_mon_sel_lock_init(msc); 1848 msc->id = pdev->id; 1849 msc->pdev = pdev; 1850 INIT_LIST_HEAD_RCU(&msc->all_msc_list); 1851 INIT_LIST_HEAD_RCU(&msc->ris); 1852 1853 update_msc_accessibility(msc); 1854 if (cpumask_empty(&msc->accessibility)) { 1855 dev_err_once(dev, "MSC is not accessible from any CPU!"); 1856 return ERR_PTR(-EINVAL); 1857 } 1858 1859 err = mpam_msc_setup_error_irq(msc); 1860 if (err) 1861 return ERR_PTR(err); 1862 1863 if (device_property_read_u32(&pdev->dev, "pcc-channel", &tmp)) 1864 msc->iface = MPAM_IFACE_MMIO; 1865 else 1866 msc->iface = MPAM_IFACE_PCC; 1867 1868 if (msc->iface == MPAM_IFACE_MMIO) { 1869 void __iomem *io; 1870 1871 io = devm_platform_get_and_ioremap_resource(pdev, 0, 1872 &msc_res); 1873 if (IS_ERR(io)) { 1874 dev_err_once(dev, "Failed to map MSC base address\n"); 1875 return ERR_CAST(io); 1876 } 1877 msc->mapped_hwpage_sz = msc_res->end - msc_res->start; 1878 msc->mapped_hwpage = io; 1879 } else { 1880 return ERR_PTR(-EINVAL); 1881 } 1882 1883 list_add_rcu(&msc->all_msc_list, &mpam_all_msc); 1884 platform_set_drvdata(pdev, msc); 1885 1886 return msc; 1887 } 1888 1889 static int fw_num_msc; 1890 1891 static int mpam_msc_drv_probe(struct platform_device *pdev) 1892 { 1893 int err; 1894 struct mpam_msc *msc = NULL; 1895 void *plat_data = pdev->dev.platform_data; 1896 1897 mutex_lock(&mpam_list_lock); 1898 msc = do_mpam_msc_drv_probe(pdev); 1899 mutex_unlock(&mpam_list_lock); 1900 1901 if (IS_ERR(msc)) 1902 return PTR_ERR(msc); 1903 1904 /* Create RIS entries described by firmware */ 1905 err = acpi_mpam_parse_resources(msc, plat_data); 1906 if (err) { 1907 mpam_msc_drv_remove(pdev); 1908 return err; 1909 } 1910 1911 if (atomic_add_return(1, &mpam_num_msc) == fw_num_msc) 1912 mpam_register_cpuhp_callbacks(mpam_discovery_cpu_online, NULL, 1913 "mpam:drv_probe"); 1914 1915 return 0; 1916 } 1917 1918 static struct platform_driver mpam_msc_driver = { 1919 .driver = { 1920 .name = "mpam_msc", 1921 }, 1922 .probe = mpam_msc_drv_probe, 1923 .remove = mpam_msc_drv_remove, 1924 }; 1925 1926 /* Any of these features mean the BWA_WD field is valid. */ 1927 static bool mpam_has_bwa_wd_feature(struct mpam_props *props) 1928 { 1929 if (mpam_has_feature(mpam_feat_mbw_min, props)) 1930 return true; 1931 if (mpam_has_feature(mpam_feat_mbw_max, props)) 1932 return true; 1933 if (mpam_has_feature(mpam_feat_mbw_prop, props)) 1934 return true; 1935 return false; 1936 } 1937 1938 /* Any of these features mean the CMAX_WD field is valid. */ 1939 static bool mpam_has_cmax_wd_feature(struct mpam_props *props) 1940 { 1941 if (mpam_has_feature(mpam_feat_cmax_cmax, props)) 1942 return true; 1943 if (mpam_has_feature(mpam_feat_cmax_cmin, props)) 1944 return true; 1945 return false; 1946 } 1947 1948 #define MISMATCHED_HELPER(parent, child, helper, field, alias) \ 1949 helper(parent) && \ 1950 ((helper(child) && (parent)->field != (child)->field) || \ 1951 (!helper(child) && !(alias))) 1952 1953 #define MISMATCHED_FEAT(parent, child, feat, field, alias) \ 1954 mpam_has_feature((feat), (parent)) && \ 1955 ((mpam_has_feature((feat), (child)) && (parent)->field != (child)->field) || \ 1956 (!mpam_has_feature((feat), (child)) && !(alias))) 1957 1958 #define CAN_MERGE_FEAT(parent, child, feat, alias) \ 1959 (alias) && !mpam_has_feature((feat), (parent)) && \ 1960 mpam_has_feature((feat), (child)) 1961 1962 /* 1963 * Combine two props fields. 1964 * If this is for controls that alias the same resource, it is safe to just 1965 * copy the values over. If two aliasing controls implement the same scheme 1966 * a safe value must be picked. 1967 * For non-aliasing controls, these control different resources, and the 1968 * resulting safe value must be compatible with both. When merging values in 1969 * the tree, all the aliasing resources must be handled first. 1970 * On mismatch, parent is modified. 1971 */ 1972 static void __props_mismatch(struct mpam_props *parent, 1973 struct mpam_props *child, bool alias) 1974 { 1975 if (CAN_MERGE_FEAT(parent, child, mpam_feat_cpor_part, alias)) { 1976 parent->cpbm_wd = child->cpbm_wd; 1977 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_cpor_part, 1978 cpbm_wd, alias)) { 1979 pr_debug("cleared cpor_part\n"); 1980 mpam_clear_feature(mpam_feat_cpor_part, parent); 1981 parent->cpbm_wd = 0; 1982 } 1983 1984 if (CAN_MERGE_FEAT(parent, child, mpam_feat_mbw_part, alias)) { 1985 parent->mbw_pbm_bits = child->mbw_pbm_bits; 1986 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_mbw_part, 1987 mbw_pbm_bits, alias)) { 1988 pr_debug("cleared mbw_part\n"); 1989 mpam_clear_feature(mpam_feat_mbw_part, parent); 1990 parent->mbw_pbm_bits = 0; 1991 } 1992 1993 /* bwa_wd is a count of bits, fewer bits means less precision */ 1994 if (alias && !mpam_has_bwa_wd_feature(parent) && 1995 mpam_has_bwa_wd_feature(child)) { 1996 parent->bwa_wd = child->bwa_wd; 1997 } else if (MISMATCHED_HELPER(parent, child, mpam_has_bwa_wd_feature, 1998 bwa_wd, alias)) { 1999 pr_debug("took the min bwa_wd\n"); 2000 parent->bwa_wd = min(parent->bwa_wd, child->bwa_wd); 2001 } 2002 2003 if (alias && !mpam_has_cmax_wd_feature(parent) && mpam_has_cmax_wd_feature(child)) { 2004 parent->cmax_wd = child->cmax_wd; 2005 } else if (MISMATCHED_HELPER(parent, child, mpam_has_cmax_wd_feature, 2006 cmax_wd, alias)) { 2007 pr_debug("%s took the min cmax_wd\n", __func__); 2008 parent->cmax_wd = min(parent->cmax_wd, child->cmax_wd); 2009 } 2010 2011 if (CAN_MERGE_FEAT(parent, child, mpam_feat_cmax_cassoc, alias)) { 2012 parent->cassoc_wd = child->cassoc_wd; 2013 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_cmax_cassoc, 2014 cassoc_wd, alias)) { 2015 pr_debug("%s cleared cassoc_wd\n", __func__); 2016 mpam_clear_feature(mpam_feat_cmax_cassoc, parent); 2017 parent->cassoc_wd = 0; 2018 } 2019 2020 /* For num properties, take the minimum */ 2021 if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_csu, alias)) { 2022 parent->num_csu_mon = child->num_csu_mon; 2023 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_csu, 2024 num_csu_mon, alias)) { 2025 pr_debug("took the min num_csu_mon\n"); 2026 parent->num_csu_mon = min(parent->num_csu_mon, 2027 child->num_csu_mon); 2028 } 2029 2030 if (CAN_MERGE_FEAT(parent, child, mpam_feat_msmon_mbwu, alias)) { 2031 parent->num_mbwu_mon = child->num_mbwu_mon; 2032 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_msmon_mbwu, 2033 num_mbwu_mon, alias)) { 2034 pr_debug("took the min num_mbwu_mon\n"); 2035 parent->num_mbwu_mon = min(parent->num_mbwu_mon, 2036 child->num_mbwu_mon); 2037 } 2038 2039 if (CAN_MERGE_FEAT(parent, child, mpam_feat_intpri_part, alias)) { 2040 parent->intpri_wd = child->intpri_wd; 2041 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_intpri_part, 2042 intpri_wd, alias)) { 2043 pr_debug("%s took the min intpri_wd\n", __func__); 2044 parent->intpri_wd = min(parent->intpri_wd, child->intpri_wd); 2045 } 2046 2047 if (CAN_MERGE_FEAT(parent, child, mpam_feat_dspri_part, alias)) { 2048 parent->dspri_wd = child->dspri_wd; 2049 } else if (MISMATCHED_FEAT(parent, child, mpam_feat_dspri_part, 2050 dspri_wd, alias)) { 2051 pr_debug("%s took the min dspri_wd\n", __func__); 2052 parent->dspri_wd = min(parent->dspri_wd, child->dspri_wd); 2053 } 2054 2055 /* TODO: alias support for these two */ 2056 /* {int,ds}pri may not have differing 0-low behaviour */ 2057 if (mpam_has_feature(mpam_feat_intpri_part, parent) && 2058 (!mpam_has_feature(mpam_feat_intpri_part, child) || 2059 mpam_has_feature(mpam_feat_intpri_part_0_low, parent) != 2060 mpam_has_feature(mpam_feat_intpri_part_0_low, child))) { 2061 pr_debug("%s cleared intpri_part\n", __func__); 2062 mpam_clear_feature(mpam_feat_intpri_part, parent); 2063 mpam_clear_feature(mpam_feat_intpri_part_0_low, parent); 2064 } 2065 if (mpam_has_feature(mpam_feat_dspri_part, parent) && 2066 (!mpam_has_feature(mpam_feat_dspri_part, child) || 2067 mpam_has_feature(mpam_feat_dspri_part_0_low, parent) != 2068 mpam_has_feature(mpam_feat_dspri_part_0_low, child))) { 2069 pr_debug("%s cleared dspri_part\n", __func__); 2070 mpam_clear_feature(mpam_feat_dspri_part, parent); 2071 mpam_clear_feature(mpam_feat_dspri_part_0_low, parent); 2072 } 2073 2074 if (alias) { 2075 /* Merge features for aliased resources */ 2076 bitmap_or(parent->features, parent->features, child->features, MPAM_FEATURE_LAST); 2077 } else { 2078 /* Clear missing features for non aliasing */ 2079 bitmap_and(parent->features, parent->features, child->features, MPAM_FEATURE_LAST); 2080 } 2081 } 2082 2083 /* 2084 * If a vmsc doesn't match class feature/configuration, do the right thing(tm). 2085 * For 'num' properties we can just take the minimum. 2086 * For properties where the mismatched unused bits would make a difference, we 2087 * nobble the class feature, as we can't configure all the resources. 2088 * e.g. The L3 cache is composed of two resources with 13 and 17 portion 2089 * bitmaps respectively. 2090 */ 2091 static void 2092 __class_props_mismatch(struct mpam_class *class, struct mpam_vmsc *vmsc) 2093 { 2094 struct mpam_props *cprops = &class->props; 2095 struct mpam_props *vprops = &vmsc->props; 2096 struct device *dev = &vmsc->msc->pdev->dev; 2097 2098 lockdep_assert_held(&mpam_list_lock); /* we modify class */ 2099 2100 dev_dbg(dev, "Merging features for class:0x%lx &= vmsc:0x%lx\n", 2101 (long)cprops->features, (long)vprops->features); 2102 2103 /* Take the safe value for any common features */ 2104 __props_mismatch(cprops, vprops, false); 2105 } 2106 2107 static void 2108 __vmsc_props_mismatch(struct mpam_vmsc *vmsc, struct mpam_msc_ris *ris) 2109 { 2110 struct mpam_props *rprops = &ris->props; 2111 struct mpam_props *vprops = &vmsc->props; 2112 struct device *dev = &vmsc->msc->pdev->dev; 2113 2114 lockdep_assert_held(&mpam_list_lock); /* we modify vmsc */ 2115 2116 dev_dbg(dev, "Merging features for vmsc:0x%lx |= ris:0x%lx\n", 2117 (long)vprops->features, (long)rprops->features); 2118 2119 /* 2120 * Merge mismatched features - Copy any features that aren't common, 2121 * but take the safe value for any common features. 2122 */ 2123 __props_mismatch(vprops, rprops, true); 2124 } 2125 2126 /* 2127 * Copy the first component's first vMSC's properties and features to the 2128 * class. __class_props_mismatch() will remove conflicts. 2129 * It is not possible to have a class with no components, or a component with 2130 * no resources. The vMSC properties have already been built. 2131 */ 2132 static void mpam_enable_init_class_features(struct mpam_class *class) 2133 { 2134 struct mpam_vmsc *vmsc; 2135 struct mpam_component *comp; 2136 2137 comp = list_first_entry(&class->components, 2138 struct mpam_component, class_list); 2139 vmsc = list_first_entry(&comp->vmsc, 2140 struct mpam_vmsc, comp_list); 2141 2142 class->props = vmsc->props; 2143 } 2144 2145 static void mpam_enable_merge_vmsc_features(struct mpam_component *comp) 2146 { 2147 struct mpam_vmsc *vmsc; 2148 struct mpam_msc_ris *ris; 2149 struct mpam_class *class = comp->class; 2150 2151 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 2152 list_for_each_entry(ris, &vmsc->ris, vmsc_list) { 2153 __vmsc_props_mismatch(vmsc, ris); 2154 class->nrdy_usec = max(class->nrdy_usec, 2155 vmsc->msc->nrdy_usec); 2156 } 2157 } 2158 } 2159 2160 static void mpam_enable_merge_class_features(struct mpam_component *comp) 2161 { 2162 struct mpam_vmsc *vmsc; 2163 struct mpam_class *class = comp->class; 2164 2165 list_for_each_entry(vmsc, &comp->vmsc, comp_list) 2166 __class_props_mismatch(class, vmsc); 2167 } 2168 2169 /* 2170 * Merge all the common resource features into class. 2171 * vmsc features are bitwise-or'd together by mpam_enable_merge_vmsc_features() 2172 * as the first step so that mpam_enable_init_class_features() can initialise 2173 * the class with a representative set of features. 2174 * Next the mpam_enable_merge_class_features() bitwise-and's all the vmsc 2175 * features to form the class features. 2176 * Other features are the min/max as appropriate. 2177 * 2178 * To avoid walking the whole tree twice, the class->nrdy_usec property is 2179 * updated when working with the vmsc as it is a max(), and doesn't need 2180 * initialising first. 2181 */ 2182 static void mpam_enable_merge_features(struct list_head *all_classes_list) 2183 { 2184 struct mpam_class *class; 2185 struct mpam_component *comp; 2186 2187 lockdep_assert_held(&mpam_list_lock); 2188 2189 list_for_each_entry(class, all_classes_list, classes_list) { 2190 list_for_each_entry(comp, &class->components, class_list) 2191 mpam_enable_merge_vmsc_features(comp); 2192 2193 mpam_enable_init_class_features(class); 2194 2195 list_for_each_entry(comp, &class->components, class_list) 2196 mpam_enable_merge_class_features(comp); 2197 } 2198 } 2199 2200 static char *mpam_errcode_names[16] = { 2201 [MPAM_ERRCODE_NONE] = "No error", 2202 [MPAM_ERRCODE_PARTID_SEL_RANGE] = "PARTID_SEL_Range", 2203 [MPAM_ERRCODE_REQ_PARTID_RANGE] = "Req_PARTID_Range", 2204 [MPAM_ERRCODE_MSMONCFG_ID_RANGE] = "MSMONCFG_ID_RANGE", 2205 [MPAM_ERRCODE_REQ_PMG_RANGE] = "Req_PMG_Range", 2206 [MPAM_ERRCODE_MONITOR_RANGE] = "Monitor_Range", 2207 [MPAM_ERRCODE_INTPARTID_RANGE] = "intPARTID_Range", 2208 [MPAM_ERRCODE_UNEXPECTED_INTERNAL] = "Unexpected_INTERNAL", 2209 [MPAM_ERRCODE_UNDEFINED_RIS_PART_SEL] = "Undefined_RIS_PART_SEL", 2210 [MPAM_ERRCODE_RIS_NO_CONTROL] = "RIS_No_Control", 2211 [MPAM_ERRCODE_UNDEFINED_RIS_MON_SEL] = "Undefined_RIS_MON_SEL", 2212 [MPAM_ERRCODE_RIS_NO_MONITOR] = "RIS_No_Monitor", 2213 [12 ... 15] = "Reserved" 2214 }; 2215 2216 static int mpam_enable_msc_ecr(void *_msc) 2217 { 2218 struct mpam_msc *msc = _msc; 2219 2220 __mpam_write_reg(msc, MPAMF_ECR, MPAMF_ECR_INTEN); 2221 2222 return 0; 2223 } 2224 2225 /* This can run in mpam_disable(), and the interrupt handler on the same CPU */ 2226 static int mpam_disable_msc_ecr(void *_msc) 2227 { 2228 struct mpam_msc *msc = _msc; 2229 2230 __mpam_write_reg(msc, MPAMF_ECR, 0); 2231 2232 return 0; 2233 } 2234 2235 static irqreturn_t __mpam_irq_handler(int irq, struct mpam_msc *msc) 2236 { 2237 u64 reg; 2238 u16 partid; 2239 u8 errcode, pmg, ris; 2240 2241 if (WARN_ON_ONCE(!msc) || 2242 WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), 2243 &msc->accessibility))) 2244 return IRQ_NONE; 2245 2246 reg = mpam_msc_read_esr(msc); 2247 2248 errcode = FIELD_GET(MPAMF_ESR_ERRCODE, reg); 2249 if (!errcode) 2250 return IRQ_NONE; 2251 2252 /* Clear level triggered irq */ 2253 mpam_msc_clear_esr(msc); 2254 2255 partid = FIELD_GET(MPAMF_ESR_PARTID_MON, reg); 2256 pmg = FIELD_GET(MPAMF_ESR_PMG, reg); 2257 ris = FIELD_GET(MPAMF_ESR_RIS, reg); 2258 2259 pr_err_ratelimited("error irq from msc:%u '%s', partid:%u, pmg: %u, ris: %u\n", 2260 msc->id, mpam_errcode_names[errcode], partid, pmg, 2261 ris); 2262 2263 /* Disable this interrupt. */ 2264 mpam_disable_msc_ecr(msc); 2265 2266 /* Are we racing with the thread disabling MPAM? */ 2267 if (!mpam_is_enabled()) 2268 return IRQ_HANDLED; 2269 2270 /* 2271 * Schedule the teardown work. Don't use a threaded IRQ as we can't 2272 * unregister the interrupt from the threaded part of the handler. 2273 */ 2274 mpam_disable_reason = "hardware error interrupt"; 2275 schedule_work(&mpam_broken_work); 2276 2277 return IRQ_HANDLED; 2278 } 2279 2280 static irqreturn_t mpam_ppi_handler(int irq, void *dev_id) 2281 { 2282 struct mpam_msc *msc = *(struct mpam_msc **)dev_id; 2283 2284 return __mpam_irq_handler(irq, msc); 2285 } 2286 2287 static irqreturn_t mpam_spi_handler(int irq, void *dev_id) 2288 { 2289 struct mpam_msc *msc = dev_id; 2290 2291 return __mpam_irq_handler(irq, msc); 2292 } 2293 2294 static int mpam_register_irqs(void) 2295 { 2296 int err, irq; 2297 struct mpam_msc *msc; 2298 2299 lockdep_assert_cpus_held(); 2300 2301 guard(srcu)(&mpam_srcu); 2302 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 2303 srcu_read_lock_held(&mpam_srcu)) { 2304 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 2305 if (irq <= 0) 2306 continue; 2307 2308 /* The MPAM spec says the interrupt can be SPI, PPI or LPI */ 2309 /* We anticipate sharing the interrupt with other MSCs */ 2310 if (irq_is_percpu(irq)) { 2311 err = request_percpu_irq(irq, &mpam_ppi_handler, 2312 "mpam:msc:error", 2313 msc->error_dev_id); 2314 if (err) 2315 return err; 2316 2317 msc->reenable_error_ppi = irq; 2318 smp_call_function_many(&msc->accessibility, 2319 &_enable_percpu_irq, &irq, 2320 true); 2321 } else { 2322 err = devm_request_irq(&msc->pdev->dev, irq, 2323 &mpam_spi_handler, IRQF_SHARED, 2324 "mpam:msc:error", msc); 2325 if (err) 2326 return err; 2327 } 2328 2329 mutex_lock(&msc->error_irq_lock); 2330 msc->error_irq_req = true; 2331 mpam_touch_msc(msc, mpam_enable_msc_ecr, msc); 2332 msc->error_irq_hw_enabled = true; 2333 mutex_unlock(&msc->error_irq_lock); 2334 } 2335 2336 return 0; 2337 } 2338 2339 static void mpam_unregister_irqs(void) 2340 { 2341 int irq; 2342 struct mpam_msc *msc; 2343 2344 guard(cpus_read_lock)(); 2345 guard(srcu)(&mpam_srcu); 2346 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 2347 srcu_read_lock_held(&mpam_srcu)) { 2348 irq = platform_get_irq_byname_optional(msc->pdev, "error"); 2349 if (irq <= 0) 2350 continue; 2351 2352 mutex_lock(&msc->error_irq_lock); 2353 if (msc->error_irq_hw_enabled) { 2354 mpam_touch_msc(msc, mpam_disable_msc_ecr, msc); 2355 msc->error_irq_hw_enabled = false; 2356 } 2357 2358 if (msc->error_irq_req) { 2359 if (irq_is_percpu(irq)) { 2360 msc->reenable_error_ppi = 0; 2361 free_percpu_irq(irq, msc->error_dev_id); 2362 } else { 2363 devm_free_irq(&msc->pdev->dev, irq, msc); 2364 } 2365 msc->error_irq_req = false; 2366 } 2367 mutex_unlock(&msc->error_irq_lock); 2368 } 2369 } 2370 2371 static void __destroy_component_cfg(struct mpam_component *comp) 2372 { 2373 struct mpam_msc *msc; 2374 struct mpam_vmsc *vmsc; 2375 struct mpam_msc_ris *ris; 2376 2377 lockdep_assert_held(&mpam_list_lock); 2378 2379 add_to_garbage(comp->cfg); 2380 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 2381 msc = vmsc->msc; 2382 2383 if (mpam_mon_sel_lock(msc)) { 2384 list_for_each_entry(ris, &vmsc->ris, vmsc_list) 2385 add_to_garbage(ris->mbwu_state); 2386 mpam_mon_sel_unlock(msc); 2387 } 2388 } 2389 } 2390 2391 static void mpam_reset_component_cfg(struct mpam_component *comp) 2392 { 2393 int i; 2394 struct mpam_props *cprops = &comp->class->props; 2395 2396 mpam_assert_partid_sizes_fixed(); 2397 2398 if (!comp->cfg) 2399 return; 2400 2401 for (i = 0; i <= mpam_partid_max; i++) { 2402 comp->cfg[i] = (struct mpam_config) {}; 2403 if (cprops->cpbm_wd) 2404 comp->cfg[i].cpbm = GENMASK(cprops->cpbm_wd - 1, 0); 2405 if (cprops->mbw_pbm_bits) 2406 comp->cfg[i].mbw_pbm = GENMASK(cprops->mbw_pbm_bits - 1, 0); 2407 if (cprops->bwa_wd) 2408 comp->cfg[i].mbw_max = GENMASK(15, 16 - cprops->bwa_wd); 2409 } 2410 } 2411 2412 static int __allocate_component_cfg(struct mpam_component *comp) 2413 { 2414 struct mpam_vmsc *vmsc; 2415 2416 mpam_assert_partid_sizes_fixed(); 2417 2418 if (comp->cfg) 2419 return 0; 2420 2421 comp->cfg = kcalloc(mpam_partid_max + 1, sizeof(*comp->cfg), GFP_KERNEL); 2422 if (!comp->cfg) 2423 return -ENOMEM; 2424 2425 /* 2426 * The array is free()d in one go, so only cfg[0]'s structure needs 2427 * to be initialised. 2428 */ 2429 init_garbage(&comp->cfg[0].garbage); 2430 2431 mpam_reset_component_cfg(comp); 2432 2433 list_for_each_entry(vmsc, &comp->vmsc, comp_list) { 2434 struct mpam_msc *msc; 2435 struct mpam_msc_ris *ris; 2436 struct msmon_mbwu_state *mbwu_state; 2437 2438 if (!vmsc->props.num_mbwu_mon) 2439 continue; 2440 2441 msc = vmsc->msc; 2442 list_for_each_entry(ris, &vmsc->ris, vmsc_list) { 2443 if (!ris->props.num_mbwu_mon) 2444 continue; 2445 2446 mbwu_state = kcalloc(ris->props.num_mbwu_mon, 2447 sizeof(*ris->mbwu_state), 2448 GFP_KERNEL); 2449 if (!mbwu_state) { 2450 __destroy_component_cfg(comp); 2451 return -ENOMEM; 2452 } 2453 2454 init_garbage(&mbwu_state[0].garbage); 2455 2456 if (mpam_mon_sel_lock(msc)) { 2457 ris->mbwu_state = mbwu_state; 2458 mpam_mon_sel_unlock(msc); 2459 } 2460 } 2461 } 2462 2463 return 0; 2464 } 2465 2466 static int mpam_allocate_config(void) 2467 { 2468 struct mpam_class *class; 2469 struct mpam_component *comp; 2470 2471 lockdep_assert_held(&mpam_list_lock); 2472 2473 list_for_each_entry(class, &mpam_classes, classes_list) { 2474 list_for_each_entry(comp, &class->components, class_list) { 2475 int err = __allocate_component_cfg(comp); 2476 if (err) 2477 return err; 2478 } 2479 } 2480 2481 return 0; 2482 } 2483 2484 static void mpam_enable_once(void) 2485 { 2486 int err; 2487 2488 /* 2489 * Once the cpuhp callbacks have been changed, mpam_partid_max can no 2490 * longer change. 2491 */ 2492 spin_lock(&partid_max_lock); 2493 partid_max_published = true; 2494 spin_unlock(&partid_max_lock); 2495 2496 /* 2497 * If all the MSC have been probed, enabling the IRQs happens next. 2498 * That involves cross-calling to a CPU that can reach the MSC, and 2499 * the locks must be taken in this order: 2500 */ 2501 cpus_read_lock(); 2502 mutex_lock(&mpam_list_lock); 2503 do { 2504 mpam_enable_merge_features(&mpam_classes); 2505 2506 err = mpam_register_irqs(); 2507 if (err) { 2508 pr_warn("Failed to register irqs: %d\n", err); 2509 break; 2510 } 2511 2512 err = mpam_allocate_config(); 2513 if (err) { 2514 pr_err("Failed to allocate configuration arrays.\n"); 2515 break; 2516 } 2517 } while (0); 2518 mutex_unlock(&mpam_list_lock); 2519 cpus_read_unlock(); 2520 2521 if (err) { 2522 mpam_disable_reason = "Failed to enable."; 2523 schedule_work(&mpam_broken_work); 2524 return; 2525 } 2526 2527 static_branch_enable(&mpam_enabled); 2528 mpam_register_cpuhp_callbacks(mpam_cpu_online, mpam_cpu_offline, 2529 "mpam:online"); 2530 2531 /* Use printk() to avoid the pr_fmt adding the function name. */ 2532 printk(KERN_INFO "MPAM enabled with %u PARTIDs and %u PMGs\n", 2533 mpam_partid_max + 1, mpam_pmg_max + 1); 2534 } 2535 2536 static void mpam_reset_component_locked(struct mpam_component *comp) 2537 { 2538 struct mpam_vmsc *vmsc; 2539 2540 lockdep_assert_cpus_held(); 2541 mpam_assert_partid_sizes_fixed(); 2542 2543 mpam_reset_component_cfg(comp); 2544 2545 guard(srcu)(&mpam_srcu); 2546 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 2547 srcu_read_lock_held(&mpam_srcu)) { 2548 struct mpam_msc *msc = vmsc->msc; 2549 struct mpam_msc_ris *ris; 2550 2551 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 2552 srcu_read_lock_held(&mpam_srcu)) { 2553 if (!ris->in_reset_state) 2554 mpam_touch_msc(msc, mpam_reset_ris, ris); 2555 ris->in_reset_state = true; 2556 } 2557 } 2558 } 2559 2560 static void mpam_reset_class_locked(struct mpam_class *class) 2561 { 2562 struct mpam_component *comp; 2563 2564 lockdep_assert_cpus_held(); 2565 2566 guard(srcu)(&mpam_srcu); 2567 list_for_each_entry_srcu(comp, &class->components, class_list, 2568 srcu_read_lock_held(&mpam_srcu)) 2569 mpam_reset_component_locked(comp); 2570 } 2571 2572 static void mpam_reset_class(struct mpam_class *class) 2573 { 2574 cpus_read_lock(); 2575 mpam_reset_class_locked(class); 2576 cpus_read_unlock(); 2577 } 2578 2579 /* 2580 * Called in response to an error IRQ. 2581 * All of MPAMs errors indicate a software bug, restore any modified 2582 * controls to their reset values. 2583 */ 2584 void mpam_disable(struct work_struct *ignored) 2585 { 2586 int idx; 2587 struct mpam_class *class; 2588 struct mpam_msc *msc, *tmp; 2589 2590 mutex_lock(&mpam_cpuhp_state_lock); 2591 if (mpam_cpuhp_state) { 2592 cpuhp_remove_state(mpam_cpuhp_state); 2593 mpam_cpuhp_state = 0; 2594 } 2595 mutex_unlock(&mpam_cpuhp_state_lock); 2596 2597 static_branch_disable(&mpam_enabled); 2598 2599 mpam_unregister_irqs(); 2600 2601 idx = srcu_read_lock(&mpam_srcu); 2602 list_for_each_entry_srcu(class, &mpam_classes, classes_list, 2603 srcu_read_lock_held(&mpam_srcu)) 2604 mpam_reset_class(class); 2605 srcu_read_unlock(&mpam_srcu, idx); 2606 2607 mutex_lock(&mpam_list_lock); 2608 list_for_each_entry_safe(msc, tmp, &mpam_all_msc, all_msc_list) 2609 mpam_msc_destroy(msc); 2610 mutex_unlock(&mpam_list_lock); 2611 mpam_free_garbage(); 2612 2613 pr_err_once("MPAM disabled due to %s\n", mpam_disable_reason); 2614 } 2615 2616 /* 2617 * Enable mpam once all devices have been probed. 2618 * Scheduled by mpam_discovery_cpu_online() once all devices have been created. 2619 * Also scheduled when new devices are probed when new CPUs come online. 2620 */ 2621 void mpam_enable(struct work_struct *work) 2622 { 2623 static atomic_t once; 2624 struct mpam_msc *msc; 2625 bool all_devices_probed = true; 2626 2627 /* Have we probed all the hw devices? */ 2628 guard(srcu)(&mpam_srcu); 2629 list_for_each_entry_srcu(msc, &mpam_all_msc, all_msc_list, 2630 srcu_read_lock_held(&mpam_srcu)) { 2631 mutex_lock(&msc->probe_lock); 2632 if (!msc->probed) 2633 all_devices_probed = false; 2634 mutex_unlock(&msc->probe_lock); 2635 2636 if (!all_devices_probed) 2637 break; 2638 } 2639 2640 if (all_devices_probed && !atomic_fetch_inc(&once)) 2641 mpam_enable_once(); 2642 } 2643 2644 #define maybe_update_config(cfg, feature, newcfg, member, changes) do { \ 2645 if (mpam_has_feature(feature, newcfg) && \ 2646 (newcfg)->member != (cfg)->member) { \ 2647 (cfg)->member = (newcfg)->member; \ 2648 mpam_set_feature(feature, cfg); \ 2649 \ 2650 (changes) = true; \ 2651 } \ 2652 } while (0) 2653 2654 static bool mpam_update_config(struct mpam_config *cfg, 2655 const struct mpam_config *newcfg) 2656 { 2657 bool has_changes = false; 2658 2659 maybe_update_config(cfg, mpam_feat_cpor_part, newcfg, cpbm, has_changes); 2660 maybe_update_config(cfg, mpam_feat_mbw_part, newcfg, mbw_pbm, has_changes); 2661 maybe_update_config(cfg, mpam_feat_mbw_max, newcfg, mbw_max, has_changes); 2662 2663 return has_changes; 2664 } 2665 2666 int mpam_apply_config(struct mpam_component *comp, u16 partid, 2667 struct mpam_config *cfg) 2668 { 2669 struct mpam_write_config_arg arg; 2670 struct mpam_msc_ris *ris; 2671 struct mpam_vmsc *vmsc; 2672 struct mpam_msc *msc; 2673 2674 lockdep_assert_cpus_held(); 2675 2676 /* Don't pass in the current config! */ 2677 WARN_ON_ONCE(&comp->cfg[partid] == cfg); 2678 2679 if (!mpam_update_config(&comp->cfg[partid], cfg)) 2680 return 0; 2681 2682 arg.comp = comp; 2683 arg.partid = partid; 2684 2685 guard(srcu)(&mpam_srcu); 2686 list_for_each_entry_srcu(vmsc, &comp->vmsc, comp_list, 2687 srcu_read_lock_held(&mpam_srcu)) { 2688 msc = vmsc->msc; 2689 2690 mutex_lock(&msc->cfg_lock); 2691 list_for_each_entry_srcu(ris, &vmsc->ris, vmsc_list, 2692 srcu_read_lock_held(&mpam_srcu)) { 2693 arg.ris = ris; 2694 mpam_touch_msc(msc, __write_config, &arg); 2695 } 2696 mutex_unlock(&msc->cfg_lock); 2697 } 2698 2699 return 0; 2700 } 2701 2702 static int __init mpam_msc_driver_init(void) 2703 { 2704 if (!system_supports_mpam()) 2705 return -EOPNOTSUPP; 2706 2707 init_srcu_struct(&mpam_srcu); 2708 2709 fw_num_msc = acpi_mpam_count_msc(); 2710 if (fw_num_msc <= 0) { 2711 pr_err("No MSC devices found in firmware\n"); 2712 return -EINVAL; 2713 } 2714 2715 return platform_driver_register(&mpam_msc_driver); 2716 } 2717 2718 /* Must occur after arm64_mpam_register_cpus() from arch_initcall() */ 2719 subsys_initcall(mpam_msc_driver_init); 2720 2721 #ifdef CONFIG_MPAM_KUNIT_TEST 2722 #include "test_mpam_devices.c" 2723 #endif 2724