xref: /linux/drivers/remoteproc/xlnx_r5_remoteproc.c (revision 23ca32e4ead48f68e37000f2552b973ef1439acb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * ZynqMP R5 Remote Processor driver
4  *
5  */
6 
7 #include <dt-bindings/power/xlnx-zynqmp-power.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/firmware/xlnx-zynqmp.h>
10 #include <linux/kernel.h>
11 #include <linux/mailbox_client.h>
12 #include <linux/mailbox/zynqmp-ipi-message.h>
13 #include <linux/module.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/of_reserved_mem.h>
17 #include <linux/platform_device.h>
18 #include <linux/remoteproc.h>
19 
20 #include "remoteproc_internal.h"
21 
22 /* IPI buffer MAX length */
23 #define IPI_BUF_LEN_MAX	32U
24 
25 /* RX mailbox client buffer max length */
26 #define MBOX_CLIENT_BUF_MAX	(IPI_BUF_LEN_MAX + \
27 				 sizeof(struct zynqmp_ipi_message))
28 
29 #define RSC_TBL_XLNX_MAGIC	((uint32_t)'x' << 24 | (uint32_t)'a' << 16 | \
30 				 (uint32_t)'m' << 8 | (uint32_t)'p')
31 
32 /*
33  * settings for RPU cluster mode which
34  * reflects possible values of xlnx,cluster-mode dt-property
35  */
36 enum zynqmp_r5_cluster_mode {
37 	SPLIT_MODE = 0, /* When cores run as separate processor */
38 	LOCKSTEP_MODE = 1, /* cores execute same code in lockstep,clk-for-clk */
39 	SINGLE_CPU_MODE = 2, /* core0 is held in reset and only core1 runs */
40 };
41 
42 /**
43  * struct mem_bank_data - Memory Bank description
44  *
45  * @addr: Start address of memory bank
46  * @da: device address
47  * @size: Size of Memory bank
48  * @pm_domain_id: Power-domains id of memory bank for firmware to turn on/off
49  * @bank_name: name of the bank for remoteproc framework
50  */
51 struct mem_bank_data {
52 	phys_addr_t addr;
53 	u32 da;
54 	size_t size;
55 	u32 pm_domain_id;
56 	char *bank_name;
57 };
58 
59 /**
60  * struct zynqmp_sram_bank - sram bank description
61  *
62  * @sram_res: sram address region information
63  * @da: device address of sram
64  */
65 struct zynqmp_sram_bank {
66 	struct resource sram_res;
67 	u32 da;
68 };
69 
70 /**
71  * struct mbox_info
72  *
73  * @rx_mc_buf: to copy data from mailbox rx channel
74  * @tx_mc_buf: to copy data to mailbox tx channel
75  * @r5_core: this mailbox's corresponding r5_core pointer
76  * @mbox_work: schedule work after receiving data from mailbox
77  * @mbox_cl: mailbox client
78  * @tx_chan: mailbox tx channel
79  * @rx_chan: mailbox rx channel
80  */
81 struct mbox_info {
82 	unsigned char rx_mc_buf[MBOX_CLIENT_BUF_MAX];
83 	unsigned char tx_mc_buf[MBOX_CLIENT_BUF_MAX];
84 	struct zynqmp_r5_core *r5_core;
85 	struct work_struct mbox_work;
86 	struct mbox_client mbox_cl;
87 	struct mbox_chan *tx_chan;
88 	struct mbox_chan *rx_chan;
89 };
90 
91 /**
92  * struct rsc_tbl_data
93  *
94  * Platform specific data structure used to sync resource table address.
95  * It's important to maintain order and size of each field on remote side.
96  *
97  * @version: version of data structure
98  * @magic_num: 32-bit magic number.
99  * @comp_magic_num: complement of above magic number
100  * @rsc_tbl_size: resource table size
101  * @rsc_tbl: resource table address
102  */
103 struct rsc_tbl_data {
104 	const int version;
105 	const u32 magic_num;
106 	const u32 comp_magic_num;
107 	const u32 rsc_tbl_size;
108 	const uintptr_t rsc_tbl;
109 } __packed;
110 
111 /*
112  * Hardcoded TCM bank values. This will stay in driver to maintain backward
113  * compatibility with device-tree that does not have TCM information.
114  */
115 static const struct mem_bank_data zynqmp_tcm_banks_split[] = {
116 	{0xffe00000UL, 0x0, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */
117 	{0xffe20000UL, 0x20000, 0x10000UL, PD_R5_0_BTCM, "btcm0"},
118 	{0xffe90000UL, 0x0, 0x10000UL, PD_R5_1_ATCM, "atcm1"},
119 	{0xffeb0000UL, 0x20000, 0x10000UL, PD_R5_1_BTCM, "btcm1"},
120 };
121 
122 /* In lockstep mode cluster uses each 64KB TCM from second core as well */
123 static const struct mem_bank_data zynqmp_tcm_banks_lockstep[] = {
124 	{0xffe00000UL, 0x0, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */
125 	{0xffe20000UL, 0x20000, 0x10000UL, PD_R5_0_BTCM, "btcm0"},
126 	{0xffe10000UL, 0x10000, 0x10000UL, PD_R5_1_ATCM, "atcm1"},
127 	{0xffe30000UL, 0x30000, 0x10000UL, PD_R5_1_BTCM, "btcm1"},
128 };
129 
130 /**
131  * struct zynqmp_r5_core
132  *
133  * @rsc_tbl_va: resource table virtual address
134  * @sram: Array of sram memories assigned to this core
135  * @num_sram: number of sram for this core
136  * @dev: device of RPU instance
137  * @np: device node of RPU instance
138  * @tcm_bank_count: number TCM banks accessible to this RPU
139  * @tcm_banks: array of each TCM bank data
140  * @rproc: rproc handle
141  * @rsc_tbl_size: resource table size retrieved from remote
142  * @pm_domain_id: RPU CPU power domain id
143  * @ipi: pointer to mailbox information
144  */
145 struct zynqmp_r5_core {
146 	void __iomem *rsc_tbl_va;
147 	struct zynqmp_sram_bank *sram;
148 	int num_sram;
149 	struct device *dev;
150 	struct device_node *np;
151 	int tcm_bank_count;
152 	struct mem_bank_data **tcm_banks;
153 	struct rproc *rproc;
154 	u32 rsc_tbl_size;
155 	u32 pm_domain_id;
156 	struct mbox_info *ipi;
157 };
158 
159 /**
160  * struct zynqmp_r5_cluster
161  *
162  * @dev: r5f subsystem cluster device node
163  * @mode: cluster mode of type zynqmp_r5_cluster_mode
164  * @core_count: number of r5 cores used for this cluster mode
165  * @r5_cores: Array of pointers pointing to r5 core
166  */
167 struct zynqmp_r5_cluster {
168 	struct device *dev;
169 	enum  zynqmp_r5_cluster_mode mode;
170 	int core_count;
171 	struct zynqmp_r5_core **r5_cores;
172 };
173 
174 /**
175  * event_notified_idr_cb() - callback for vq_interrupt per notifyid
176  * @id: rproc->notify id
177  * @ptr: pointer to idr private data
178  * @data: data passed to idr_for_each callback
179  *
180  * Pass notification to remoteproc virtio
181  *
182  * Return: 0. having return is to satisfy the idr_for_each() function
183  *          pointer input argument requirement.
184  **/
185 static int event_notified_idr_cb(int id, void *ptr, void *data)
186 {
187 	struct rproc *rproc = data;
188 
189 	if (rproc_vq_interrupt(rproc, id) == IRQ_NONE)
190 		dev_dbg(&rproc->dev, "data not found for vqid=%d\n", id);
191 
192 	return 0;
193 }
194 
195 /**
196  * handle_event_notified() - remoteproc notification work function
197  * @work: pointer to the work structure
198  *
199  * It checks each registered remoteproc notify IDs.
200  */
201 static void handle_event_notified(struct work_struct *work)
202 {
203 	struct mbox_info *ipi;
204 	struct rproc *rproc;
205 
206 	ipi = container_of(work, struct mbox_info, mbox_work);
207 	rproc = ipi->r5_core->rproc;
208 
209 	/*
210 	 * We only use IPI for interrupt. The RPU firmware side may or may
211 	 * not write the notifyid when it trigger IPI.
212 	 * And thus, we scan through all the registered notifyids and
213 	 * find which one is valid to get the message.
214 	 * Even if message from firmware is NULL, we attempt to get vqid
215 	 */
216 	idr_for_each(&rproc->notifyids, event_notified_idr_cb, rproc);
217 }
218 
219 /**
220  * zynqmp_r5_mb_rx_cb() - receive channel mailbox callback
221  * @cl: mailbox client
222  * @msg: message pointer
223  *
224  * Receive data from ipi buffer, ack interrupt and then
225  * it will schedule the R5 notification work.
226  */
227 static void zynqmp_r5_mb_rx_cb(struct mbox_client *cl, void *msg)
228 {
229 	struct zynqmp_ipi_message *ipi_msg, *buf_msg;
230 	struct mbox_info *ipi;
231 	size_t len;
232 
233 	ipi = container_of(cl, struct mbox_info, mbox_cl);
234 
235 	/* copy data from ipi buffer to r5_core */
236 	ipi_msg = (struct zynqmp_ipi_message *)msg;
237 	buf_msg = (struct zynqmp_ipi_message *)ipi->rx_mc_buf;
238 	len = ipi_msg->len;
239 	if (len > IPI_BUF_LEN_MAX) {
240 		dev_warn(cl->dev, "msg size exceeded than %d\n",
241 			 IPI_BUF_LEN_MAX);
242 		len = IPI_BUF_LEN_MAX;
243 	}
244 	buf_msg->len = len;
245 	memcpy(buf_msg->data, ipi_msg->data, len);
246 
247 	/* received and processed interrupt ack */
248 	if (mbox_send_message(ipi->rx_chan, NULL) < 0)
249 		dev_err(cl->dev, "ack failed to mbox rx_chan\n");
250 
251 	schedule_work(&ipi->mbox_work);
252 }
253 
254 /**
255  * zynqmp_r5_setup_mbox() - Setup mailboxes related properties
256  *			    this is used for each individual R5 core
257  *
258  * @cdev: child node device
259  *
260  * Function to setup mailboxes related properties
261  * return : NULL if failed else pointer to mbox_info
262  */
263 static struct mbox_info *zynqmp_r5_setup_mbox(struct device *cdev)
264 {
265 	struct mbox_client *mbox_cl;
266 	struct mbox_info *ipi;
267 
268 	ipi = kzalloc(sizeof(*ipi), GFP_KERNEL);
269 	if (!ipi)
270 		return NULL;
271 
272 	mbox_cl = &ipi->mbox_cl;
273 	mbox_cl->rx_callback = zynqmp_r5_mb_rx_cb;
274 	mbox_cl->tx_block = false;
275 	mbox_cl->knows_txdone = false;
276 	mbox_cl->tx_done = NULL;
277 	mbox_cl->dev = cdev;
278 
279 	/* Request TX and RX channels */
280 	ipi->tx_chan = mbox_request_channel_byname(mbox_cl, "tx");
281 	if (IS_ERR(ipi->tx_chan)) {
282 		ipi->tx_chan = NULL;
283 		kfree(ipi);
284 		dev_warn(cdev, "mbox tx channel request failed\n");
285 		return NULL;
286 	}
287 
288 	ipi->rx_chan = mbox_request_channel_byname(mbox_cl, "rx");
289 	if (IS_ERR(ipi->rx_chan)) {
290 		mbox_free_channel(ipi->tx_chan);
291 		ipi->rx_chan = NULL;
292 		ipi->tx_chan = NULL;
293 		kfree(ipi);
294 		dev_warn(cdev, "mbox rx channel request failed\n");
295 		return NULL;
296 	}
297 
298 	INIT_WORK(&ipi->mbox_work, handle_event_notified);
299 
300 	return ipi;
301 }
302 
303 static void zynqmp_r5_free_mbox(struct mbox_info *ipi)
304 {
305 	if (!ipi)
306 		return;
307 
308 	if (ipi->tx_chan) {
309 		mbox_free_channel(ipi->tx_chan);
310 		ipi->tx_chan = NULL;
311 	}
312 
313 	if (ipi->rx_chan) {
314 		mbox_free_channel(ipi->rx_chan);
315 		ipi->rx_chan = NULL;
316 	}
317 
318 	kfree(ipi);
319 }
320 
321 /*
322  * zynqmp_r5_core_kick() - kick a firmware if mbox is provided
323  * @rproc: r5 core's corresponding rproc structure
324  * @vqid: virtqueue ID
325  */
326 static void zynqmp_r5_rproc_kick(struct rproc *rproc, int vqid)
327 {
328 	struct zynqmp_r5_core *r5_core = rproc->priv;
329 	struct device *dev = r5_core->dev;
330 	struct zynqmp_ipi_message *mb_msg;
331 	struct mbox_info *ipi;
332 	int ret;
333 
334 	ipi = r5_core->ipi;
335 	if (!ipi)
336 		return;
337 
338 	mb_msg = (struct zynqmp_ipi_message *)ipi->tx_mc_buf;
339 	memcpy(mb_msg->data, &vqid, sizeof(vqid));
340 	mb_msg->len = sizeof(vqid);
341 	ret = mbox_send_message(ipi->tx_chan, mb_msg);
342 	if (ret < 0)
343 		dev_warn(dev, "failed to send message\n");
344 }
345 
346 /*
347  * zynqmp_r5_rproc_start()
348  * @rproc: single R5 core's corresponding rproc instance
349  *
350  * Start R5 Core from designated boot address.
351  *
352  * return 0 on success, otherwise non-zero value on failure
353  */
354 static int zynqmp_r5_rproc_start(struct rproc *rproc)
355 {
356 	struct zynqmp_r5_core *r5_core = rproc->priv;
357 	enum rpu_boot_mem bootmem;
358 	int ret;
359 
360 	/*
361 	 * The exception vector pointers (EVP) refer to the base-address of
362 	 * exception vectors (for reset, IRQ, FIQ, etc). The reset-vector
363 	 * starts at the base-address and subsequent vectors are on 4-byte
364 	 * boundaries.
365 	 *
366 	 * Exception vectors can start either from 0x0000_0000 (LOVEC) or
367 	 * from 0xFFFF_0000 (HIVEC) which is mapped in the OCM (On-Chip Memory)
368 	 *
369 	 * Usually firmware will put Exception vectors at LOVEC.
370 	 *
371 	 * It is not recommend that you change the exception vector.
372 	 * Changing the EVP to HIVEC will result in increased interrupt latency
373 	 * and jitter. Also, if the OCM is secured and the Cortex-R5F processor
374 	 * is non-secured, then the Cortex-R5F processor cannot access the
375 	 * HIVEC exception vectors in the OCM.
376 	 */
377 	bootmem = (rproc->bootaddr >= 0xFFFC0000) ?
378 		   PM_RPU_BOOTMEM_HIVEC : PM_RPU_BOOTMEM_LOVEC;
379 
380 	dev_dbg(r5_core->dev, "RPU boot addr 0x%llx from %s.", rproc->bootaddr,
381 		bootmem == PM_RPU_BOOTMEM_HIVEC ? "OCM" : "TCM");
382 
383 	/* Request node before starting RPU core if new version of API is supported */
384 	if (zynqmp_pm_feature(PM_REQUEST_NODE) > 1) {
385 		ret = zynqmp_pm_request_node(r5_core->pm_domain_id,
386 					     ZYNQMP_PM_CAPABILITY_ACCESS, 0,
387 					     ZYNQMP_PM_REQUEST_ACK_BLOCKING);
388 		if (ret < 0) {
389 			dev_err(r5_core->dev, "failed to request 0x%x",
390 				r5_core->pm_domain_id);
391 			return ret;
392 		}
393 	}
394 
395 	ret = zynqmp_pm_request_wake(r5_core->pm_domain_id, 1,
396 				     bootmem, ZYNQMP_PM_REQUEST_ACK_NO);
397 	if (ret)
398 		dev_err(r5_core->dev,
399 			"failed to start RPU = 0x%x\n", r5_core->pm_domain_id);
400 	return ret;
401 }
402 
403 /*
404  * zynqmp_r5_rproc_stop()
405  * @rproc: single R5 core's corresponding rproc instance
406  *
407  * Power down  R5 Core.
408  *
409  * return 0 on success, otherwise non-zero value on failure
410  */
411 static int zynqmp_r5_rproc_stop(struct rproc *rproc)
412 {
413 	struct zynqmp_r5_core *r5_core = rproc->priv;
414 	int ret;
415 
416 	/* Use release node API to stop core if new version of API is supported */
417 	if (zynqmp_pm_feature(PM_RELEASE_NODE) > 1) {
418 		ret = zynqmp_pm_release_node(r5_core->pm_domain_id);
419 		if (ret)
420 			dev_err(r5_core->dev, "failed to stop remoteproc RPU %d\n", ret);
421 		return ret;
422 	}
423 
424 	/*
425 	 * Check expected version of EEMI call before calling it. This avoids
426 	 * any error or warning prints from firmware as it is expected that fw
427 	 * doesn't support it.
428 	 */
429 	if (zynqmp_pm_feature(PM_FORCE_POWERDOWN) != 1) {
430 		dev_dbg(r5_core->dev, "EEMI interface %d ver 1 not supported\n",
431 			PM_FORCE_POWERDOWN);
432 		return -EOPNOTSUPP;
433 	}
434 
435 	/* maintain force pwr down for backward compatibility */
436 	ret = zynqmp_pm_force_pwrdwn(r5_core->pm_domain_id,
437 				     ZYNQMP_PM_REQUEST_ACK_BLOCKING);
438 	if (ret)
439 		dev_err(r5_core->dev, "core force power down failed\n");
440 
441 	return ret;
442 }
443 
444 /*
445  * zynqmp_r5_mem_region_map()
446  * @rproc: single R5 core's corresponding rproc instance
447  * @mem: mem descriptor to map reserved memory-regions
448  *
449  * Callback to map va for memory-region's carveout.
450  *
451  * return 0 on success, otherwise non-zero value on failure
452  */
453 static int zynqmp_r5_mem_region_map(struct rproc *rproc,
454 				    struct rproc_mem_entry *mem)
455 {
456 	void __iomem *va;
457 
458 	va = ioremap_wc(mem->dma, mem->len);
459 	if (IS_ERR_OR_NULL(va))
460 		return -ENOMEM;
461 
462 	mem->va = (void *)va;
463 
464 	return 0;
465 }
466 
467 /*
468  * zynqmp_r5_rproc_mem_unmap
469  * @rproc: single R5 core's corresponding rproc instance
470  * @mem: mem entry to unmap
471  *
472  * Unmap memory-region carveout
473  *
474  * return: always returns 0
475  */
476 static int zynqmp_r5_mem_region_unmap(struct rproc *rproc,
477 				      struct rproc_mem_entry *mem)
478 {
479 	iounmap((void __iomem *)mem->va);
480 	return 0;
481 }
482 
483 /*
484  * add_mem_regions_carveout()
485  * @rproc: single R5 core's corresponding rproc instance
486  *
487  * Construct rproc mem carveouts from memory-region property nodes
488  *
489  * return 0 on success, otherwise non-zero value on failure
490  */
491 static int add_mem_regions_carveout(struct rproc *rproc)
492 {
493 	struct rproc_mem_entry *rproc_mem;
494 	struct zynqmp_r5_core *r5_core;
495 	struct of_phandle_iterator it;
496 	struct reserved_mem *rmem;
497 	int i = 0;
498 
499 	r5_core = rproc->priv;
500 
501 	/* Register associated reserved memory regions */
502 	of_phandle_iterator_init(&it, r5_core->np, "memory-region", NULL, 0);
503 
504 	while (of_phandle_iterator_next(&it) == 0) {
505 		rmem = of_reserved_mem_lookup(it.node);
506 		if (!rmem) {
507 			of_node_put(it.node);
508 			dev_err(&rproc->dev, "unable to acquire memory-region\n");
509 			return -EINVAL;
510 		}
511 
512 		if (!strcmp(it.node->name, "vdev0buffer")) {
513 			/* Init reserved memory for vdev buffer */
514 			rproc_mem = rproc_of_resm_mem_entry_init(&rproc->dev, i,
515 								 rmem->size,
516 								 rmem->base,
517 								 it.node->name);
518 		} else {
519 			/* Register associated reserved memory regions */
520 			rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL,
521 							 (dma_addr_t)rmem->base,
522 							 rmem->size, rmem->base,
523 							 zynqmp_r5_mem_region_map,
524 							 zynqmp_r5_mem_region_unmap,
525 							 it.node->name);
526 		}
527 
528 		if (!rproc_mem) {
529 			of_node_put(it.node);
530 			return -ENOMEM;
531 		}
532 
533 		rproc_add_carveout(rproc, rproc_mem);
534 		rproc_coredump_add_segment(rproc, rmem->base, rmem->size);
535 
536 		dev_dbg(&rproc->dev, "reserved mem carveout %s addr=%llx, size=0x%llx",
537 			it.node->name, rmem->base, rmem->size);
538 		i++;
539 	}
540 
541 	return 0;
542 }
543 
544 static int add_sram_carveouts(struct rproc *rproc)
545 {
546 	struct zynqmp_r5_core *r5_core = rproc->priv;
547 	struct rproc_mem_entry *rproc_mem;
548 	struct zynqmp_sram_bank *sram;
549 	dma_addr_t dma_addr;
550 	size_t len;
551 	int da, i;
552 
553 	for (i = 0; i < r5_core->num_sram; i++) {
554 		sram = &r5_core->sram[i];
555 
556 		dma_addr = (dma_addr_t)sram->sram_res.start;
557 
558 		len = resource_size(&sram->sram_res);
559 		da = sram->da;
560 
561 		rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL,
562 						 dma_addr,
563 						 len, da,
564 						 zynqmp_r5_mem_region_map,
565 						 zynqmp_r5_mem_region_unmap,
566 						 sram->sram_res.name);
567 		if (!rproc_mem) {
568 			dev_err(&rproc->dev, "failed to add sram %s da=0x%x, size=0x%lx",
569 				sram->sram_res.name, da, len);
570 			return -ENOMEM;
571 		}
572 
573 		rproc_add_carveout(rproc, rproc_mem);
574 		rproc_coredump_add_segment(rproc, da, len);
575 
576 		dev_dbg(&rproc->dev, "sram carveout %s addr=%llx, da=0x%x, size=0x%lx",
577 			sram->sram_res.name, dma_addr, da, len);
578 	}
579 
580 	return 0;
581 }
582 
583 /*
584  * tcm_mem_unmap()
585  * @rproc: single R5 core's corresponding rproc instance
586  * @mem: tcm mem entry to unmap
587  *
588  * Unmap TCM banks when powering down R5 core.
589  *
590  * return always 0
591  */
592 static int tcm_mem_unmap(struct rproc *rproc, struct rproc_mem_entry *mem)
593 {
594 	iounmap((void __iomem *)mem->va);
595 
596 	return 0;
597 }
598 
599 /*
600  * tcm_mem_map()
601  * @rproc: single R5 core's corresponding rproc instance
602  * @mem: tcm memory entry descriptor
603  *
604  * Given TCM bank entry, this func setup virtual address for TCM bank
605  * remoteproc carveout. It also takes care of va to da address translation
606  *
607  * return 0 on success, otherwise non-zero value on failure
608  */
609 static int tcm_mem_map(struct rproc *rproc,
610 		       struct rproc_mem_entry *mem)
611 {
612 	void __iomem *va;
613 
614 	va = ioremap_wc(mem->dma, mem->len);
615 	if (IS_ERR_OR_NULL(va))
616 		return -ENOMEM;
617 
618 	/* Update memory entry va */
619 	mem->va = (void *)va;
620 
621 	/* clear TCMs */
622 	memset_io(va, 0, mem->len);
623 
624 	return 0;
625 }
626 
627 /*
628  * add_tcm_banks()
629  * @rproc: single R5 core's corresponding rproc instance
630  *
631  * allocate and add remoteproc carveout for TCM memory
632  *
633  * return 0 on success, otherwise non-zero value on failure
634  */
635 static int add_tcm_banks(struct rproc *rproc)
636 {
637 	struct rproc_mem_entry *rproc_mem;
638 	struct zynqmp_r5_core *r5_core;
639 	int i, num_banks, ret;
640 	phys_addr_t bank_addr;
641 	struct device *dev;
642 	u32 pm_domain_id;
643 	size_t bank_size;
644 	char *bank_name;
645 	u32 da;
646 
647 	r5_core = rproc->priv;
648 	dev = r5_core->dev;
649 	num_banks = r5_core->tcm_bank_count;
650 
651 	/*
652 	 * Power-on Each 64KB TCM,
653 	 * register its address space, map and unmap functions
654 	 * and add carveouts accordingly
655 	 */
656 	for (i = 0; i < num_banks; i++) {
657 		bank_addr = r5_core->tcm_banks[i]->addr;
658 		da = r5_core->tcm_banks[i]->da;
659 		bank_name = r5_core->tcm_banks[i]->bank_name;
660 		bank_size = r5_core->tcm_banks[i]->size;
661 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
662 
663 		ret = zynqmp_pm_request_node(pm_domain_id,
664 					     ZYNQMP_PM_CAPABILITY_ACCESS, 0,
665 					     ZYNQMP_PM_REQUEST_ACK_BLOCKING);
666 		if (ret < 0) {
667 			dev_err(dev, "failed to turn on TCM 0x%x", pm_domain_id);
668 			goto release_tcm;
669 		}
670 
671 		dev_dbg(dev, "TCM carveout %s addr=%llx, da=0x%x, size=0x%lx",
672 			bank_name, bank_addr, da, bank_size);
673 
674 		/*
675 		 * In DETACHED state firmware is already running so no need to
676 		 * request add TCM registers. However, request TCM PD node to let
677 		 * platform management firmware know that TCM is in use.
678 		 */
679 		if (rproc->state == RPROC_DETACHED)
680 			continue;
681 
682 		rproc_mem = rproc_mem_entry_init(dev, NULL, bank_addr,
683 						 bank_size, da,
684 						 tcm_mem_map, tcm_mem_unmap,
685 						 bank_name);
686 		if (!rproc_mem) {
687 			ret = -ENOMEM;
688 			zynqmp_pm_release_node(pm_domain_id);
689 			goto release_tcm;
690 		}
691 
692 		rproc_add_carveout(rproc, rproc_mem);
693 		rproc_coredump_add_segment(rproc, da, bank_size);
694 	}
695 
696 	return 0;
697 
698 release_tcm:
699 	/* If failed, Turn off all TCM banks turned on before */
700 	for (i--; i >= 0; i--) {
701 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
702 		zynqmp_pm_release_node(pm_domain_id);
703 	}
704 	return ret;
705 }
706 
707 /*
708  * zynqmp_r5_parse_fw()
709  * @rproc: single R5 core's corresponding rproc instance
710  * @fw: ptr to firmware to be loaded onto r5 core
711  *
712  * get resource table if available
713  *
714  * return 0 on success, otherwise non-zero value on failure
715  */
716 static int zynqmp_r5_parse_fw(struct rproc *rproc, const struct firmware *fw)
717 {
718 	int ret;
719 
720 	ret = rproc_elf_load_rsc_table(rproc, fw);
721 	if (ret == -EINVAL) {
722 		/*
723 		 * resource table only required for IPC.
724 		 * if not present, this is not necessarily an error;
725 		 * for example, loading r5 hello world application
726 		 * so simply inform user and keep going.
727 		 */
728 		dev_info(&rproc->dev, "no resource table found.\n");
729 		ret = 0;
730 	}
731 	return ret;
732 }
733 
734 /**
735  * zynqmp_r5_rproc_prepare()
736  * adds carveouts for TCM bank and reserved memory regions
737  *
738  * @rproc: Device node of each rproc
739  *
740  * Return: 0 for success else < 0 error code
741  */
742 static int zynqmp_r5_rproc_prepare(struct rproc *rproc)
743 {
744 	int ret;
745 
746 	ret = add_tcm_banks(rproc);
747 	if (ret) {
748 		dev_err(&rproc->dev, "failed to get TCM banks, err %d\n", ret);
749 		return ret;
750 	}
751 
752 	ret = add_mem_regions_carveout(rproc);
753 	if (ret) {
754 		dev_err(&rproc->dev, "failed to get reserve mem regions %d\n", ret);
755 		return ret;
756 	}
757 
758 	ret = add_sram_carveouts(rproc);
759 	if (ret) {
760 		dev_err(&rproc->dev, "failed to get sram carveout %d\n", ret);
761 		return ret;
762 	}
763 
764 	return 0;
765 }
766 
767 /**
768  * zynqmp_r5_rproc_unprepare()
769  * Turns off TCM banks using power-domain id
770  *
771  * @rproc: Device node of each rproc
772  *
773  * Return: always 0
774  */
775 static int zynqmp_r5_rproc_unprepare(struct rproc *rproc)
776 {
777 	struct zynqmp_r5_core *r5_core;
778 	u32 pm_domain_id;
779 	int i;
780 
781 	r5_core = rproc->priv;
782 
783 	for (i = 0; i < r5_core->tcm_bank_count; i++) {
784 		pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id;
785 		if (zynqmp_pm_release_node(pm_domain_id))
786 			dev_warn(r5_core->dev,
787 				 "can't turn off TCM bank 0x%x", pm_domain_id);
788 	}
789 
790 	return 0;
791 }
792 
793 static struct resource_table *zynqmp_r5_get_loaded_rsc_table(struct rproc *rproc,
794 							     size_t *size)
795 {
796 	struct zynqmp_r5_core *r5_core;
797 
798 	r5_core = rproc->priv;
799 
800 	*size = r5_core->rsc_tbl_size;
801 
802 	return (struct resource_table *)r5_core->rsc_tbl_va;
803 }
804 
805 static int zynqmp_r5_get_rsc_table_va(struct zynqmp_r5_core *r5_core)
806 {
807 	struct resource_table *rsc_tbl_addr;
808 	struct device *dev = r5_core->dev;
809 	struct rsc_tbl_data *rsc_data_va;
810 	struct resource res_mem;
811 	struct device_node *np;
812 	int ret;
813 
814 	/*
815 	 * It is expected from remote processor firmware to provide resource
816 	 * table address via struct rsc_tbl_data data structure.
817 	 * Start address of first entry under "memory-region" property list
818 	 * contains that data structure which holds resource table address, size
819 	 * and some magic number to validate correct resource table entry.
820 	 */
821 	np = of_parse_phandle(r5_core->np, "memory-region", 0);
822 	if (!np) {
823 		dev_err(dev, "failed to get memory region dev node\n");
824 		return -EINVAL;
825 	}
826 
827 	ret = of_address_to_resource(np, 0, &res_mem);
828 	of_node_put(np);
829 	if (ret) {
830 		dev_err(dev, "failed to get memory-region resource addr\n");
831 		return -EINVAL;
832 	}
833 
834 	rsc_data_va = (struct rsc_tbl_data *)ioremap_wc(res_mem.start,
835 							sizeof(struct rsc_tbl_data));
836 	if (!rsc_data_va) {
837 		dev_err(dev, "failed to map resource table data address\n");
838 		return -EIO;
839 	}
840 
841 	/*
842 	 * If RSC_TBL_XLNX_MAGIC number and its complement isn't found then
843 	 * do not consider resource table address valid and don't attach
844 	 */
845 	if (rsc_data_va->magic_num != RSC_TBL_XLNX_MAGIC ||
846 	    rsc_data_va->comp_magic_num != ~RSC_TBL_XLNX_MAGIC) {
847 		dev_dbg(dev, "invalid magic number, won't attach\n");
848 		return -EINVAL;
849 	}
850 
851 	r5_core->rsc_tbl_va = ioremap_wc(rsc_data_va->rsc_tbl,
852 					 rsc_data_va->rsc_tbl_size);
853 	if (!r5_core->rsc_tbl_va) {
854 		dev_err(dev, "failed to get resource table va\n");
855 		return -EINVAL;
856 	}
857 
858 	rsc_tbl_addr = (struct resource_table *)r5_core->rsc_tbl_va;
859 
860 	/*
861 	 * As of now resource table version 1 is expected. Don't fail to attach
862 	 * but warn users about it.
863 	 */
864 	if (rsc_tbl_addr->ver != 1)
865 		dev_warn(dev, "unexpected resource table version %d\n",
866 			 rsc_tbl_addr->ver);
867 
868 	r5_core->rsc_tbl_size = rsc_data_va->rsc_tbl_size;
869 
870 	iounmap((void __iomem *)rsc_data_va);
871 
872 	return 0;
873 }
874 
875 static int zynqmp_r5_attach(struct rproc *rproc)
876 {
877 	dev_dbg(&rproc->dev, "rproc %d attached\n", rproc->index);
878 
879 	return 0;
880 }
881 
882 static int zynqmp_r5_detach(struct rproc *rproc)
883 {
884 	/*
885 	 * Generate last notification to remote after clearing virtio flag.
886 	 * Remote can avoid polling on virtio reset flag if kick is generated
887 	 * during detach by host and check virtio reset flag on kick interrupt.
888 	 */
889 	zynqmp_r5_rproc_kick(rproc, 0);
890 
891 	return 0;
892 }
893 
894 static const struct rproc_ops zynqmp_r5_rproc_ops = {
895 	.prepare	= zynqmp_r5_rproc_prepare,
896 	.unprepare	= zynqmp_r5_rproc_unprepare,
897 	.start		= zynqmp_r5_rproc_start,
898 	.stop		= zynqmp_r5_rproc_stop,
899 	.load		= rproc_elf_load_segments,
900 	.parse_fw	= zynqmp_r5_parse_fw,
901 	.find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table,
902 	.sanity_check	= rproc_elf_sanity_check,
903 	.get_boot_addr	= rproc_elf_get_boot_addr,
904 	.kick		= zynqmp_r5_rproc_kick,
905 	.get_loaded_rsc_table = zynqmp_r5_get_loaded_rsc_table,
906 	.attach		= zynqmp_r5_attach,
907 	.detach		= zynqmp_r5_detach,
908 };
909 
910 /**
911  * zynqmp_r5_add_rproc_core()
912  * Allocate and add struct rproc object for each r5f core
913  * This is called for each individual r5f core
914  *
915  * @cdev: Device node of each r5 core
916  *
917  * Return: zynqmp_r5_core object for success else error code pointer
918  */
919 static struct zynqmp_r5_core *zynqmp_r5_add_rproc_core(struct device *cdev)
920 {
921 	struct zynqmp_r5_core *r5_core;
922 	struct rproc *r5_rproc;
923 	int ret;
924 
925 	/* Set up DMA mask */
926 	ret = dma_set_coherent_mask(cdev, DMA_BIT_MASK(32));
927 	if (ret)
928 		return ERR_PTR(ret);
929 
930 	/* Allocate remoteproc instance */
931 	r5_rproc = rproc_alloc(cdev, dev_name(cdev),
932 			       &zynqmp_r5_rproc_ops,
933 			       NULL, sizeof(struct zynqmp_r5_core));
934 	if (!r5_rproc) {
935 		dev_err(cdev, "failed to allocate memory for rproc instance\n");
936 		return ERR_PTR(-ENOMEM);
937 	}
938 
939 	rproc_coredump_set_elf_info(r5_rproc, ELFCLASS32, EM_ARM);
940 
941 	r5_rproc->auto_boot = false;
942 	r5_core = r5_rproc->priv;
943 	r5_core->dev = cdev;
944 	r5_core->np = dev_of_node(cdev);
945 	if (!r5_core->np) {
946 		dev_err(cdev, "can't get device node for r5 core\n");
947 		ret = -EINVAL;
948 		goto free_rproc;
949 	}
950 
951 	/* Add R5 remoteproc core */
952 	ret = rproc_add(r5_rproc);
953 	if (ret) {
954 		dev_err(cdev, "failed to add r5 remoteproc\n");
955 		goto free_rproc;
956 	}
957 
958 	/*
959 	 * If firmware is already available in the memory then move rproc state
960 	 * to DETACHED. Firmware can be preloaded via debugger or by any other
961 	 * agent (processors) in the system.
962 	 * If firmware isn't available in the memory and resource table isn't
963 	 * found, then rproc state remains OFFLINE.
964 	 */
965 	if (!zynqmp_r5_get_rsc_table_va(r5_core))
966 		r5_rproc->state = RPROC_DETACHED;
967 
968 	r5_core->rproc = r5_rproc;
969 	return r5_core;
970 
971 free_rproc:
972 	rproc_free(r5_rproc);
973 	return ERR_PTR(ret);
974 }
975 
976 static int zynqmp_r5_get_sram_banks(struct zynqmp_r5_core *r5_core)
977 {
978 	struct device_node *np = r5_core->np;
979 	struct device *dev = r5_core->dev;
980 	struct zynqmp_sram_bank *sram;
981 	struct device_node *sram_np;
982 	int num_sram, i, ret;
983 	u64 abs_addr, size;
984 
985 	/* "sram" is optional property. Do not fail, if unavailable. */
986 	if (!of_property_present(r5_core->np, "sram"))
987 		return 0;
988 
989 	num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
990 	if (num_sram <= 0) {
991 		dev_err(dev, "Invalid sram property, ret = %d\n",
992 			num_sram);
993 		return -EINVAL;
994 	}
995 
996 	sram = devm_kcalloc(dev, num_sram,
997 			    sizeof(struct zynqmp_sram_bank), GFP_KERNEL);
998 	if (!sram)
999 		return -ENOMEM;
1000 
1001 	for (i = 0; i < num_sram; i++) {
1002 		sram_np = of_parse_phandle(np, "sram", i);
1003 		if (!sram_np) {
1004 			dev_err(dev, "failed to get sram %d phandle\n", i);
1005 			return -EINVAL;
1006 		}
1007 
1008 		if (!of_device_is_available(sram_np)) {
1009 			dev_err(dev, "sram device not available\n");
1010 			ret = -EINVAL;
1011 			goto fail_sram_get;
1012 		}
1013 
1014 		ret = of_address_to_resource(sram_np, 0, &sram[i].sram_res);
1015 		if (ret) {
1016 			dev_err(dev, "addr to res failed\n");
1017 			goto fail_sram_get;
1018 		}
1019 
1020 		/* Get SRAM device address */
1021 		ret = of_property_read_reg(sram_np, i, &abs_addr, &size);
1022 		if (ret) {
1023 			dev_err(dev, "failed to get reg property\n");
1024 			goto fail_sram_get;
1025 		}
1026 
1027 		sram[i].da = (u32)abs_addr;
1028 
1029 		of_node_put(sram_np);
1030 
1031 		dev_dbg(dev, "sram %d: name=%s, addr=0x%llx, da=0x%x, size=0x%llx\n",
1032 			i, sram[i].sram_res.name, sram[i].sram_res.start,
1033 			sram[i].da, resource_size(&sram[i].sram_res));
1034 	}
1035 
1036 	r5_core->sram = sram;
1037 	r5_core->num_sram = num_sram;
1038 
1039 	return 0;
1040 
1041 fail_sram_get:
1042 	of_node_put(sram_np);
1043 
1044 	return ret;
1045 }
1046 
1047 static int zynqmp_r5_get_tcm_node_from_dt(struct zynqmp_r5_cluster *cluster)
1048 {
1049 	int i, j, tcm_bank_count, ret, tcm_pd_idx, pd_count;
1050 	struct of_phandle_args out_args;
1051 	struct zynqmp_r5_core *r5_core;
1052 	struct platform_device *cpdev;
1053 	struct mem_bank_data *tcm;
1054 	struct device_node *np;
1055 	struct resource *res;
1056 	u64 abs_addr, size;
1057 	struct device *dev;
1058 
1059 	for (i = 0; i < cluster->core_count; i++) {
1060 		r5_core = cluster->r5_cores[i];
1061 		dev = r5_core->dev;
1062 		np = r5_core->np;
1063 
1064 		pd_count = of_count_phandle_with_args(np, "power-domains",
1065 						      "#power-domain-cells");
1066 
1067 		if (pd_count <= 0) {
1068 			dev_err(dev, "invalid power-domains property, %d\n", pd_count);
1069 			return -EINVAL;
1070 		}
1071 
1072 		/* First entry in power-domains list is for r5 core, rest for TCM. */
1073 		tcm_bank_count = pd_count - 1;
1074 
1075 		if (tcm_bank_count <= 0) {
1076 			dev_err(dev, "invalid TCM count %d\n", tcm_bank_count);
1077 			return -EINVAL;
1078 		}
1079 
1080 		r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count,
1081 						  sizeof(struct mem_bank_data *),
1082 						  GFP_KERNEL);
1083 		if (!r5_core->tcm_banks)
1084 			return -ENOMEM;
1085 
1086 		r5_core->tcm_bank_count = tcm_bank_count;
1087 		for (j = 0, tcm_pd_idx = 1; j < tcm_bank_count; j++, tcm_pd_idx++) {
1088 			tcm = devm_kzalloc(dev, sizeof(struct mem_bank_data),
1089 					   GFP_KERNEL);
1090 			if (!tcm)
1091 				return -ENOMEM;
1092 
1093 			r5_core->tcm_banks[j] = tcm;
1094 
1095 			/* Get power-domains id of TCM. */
1096 			ret = of_parse_phandle_with_args(np, "power-domains",
1097 							 "#power-domain-cells",
1098 							 tcm_pd_idx, &out_args);
1099 			if (ret) {
1100 				dev_err(r5_core->dev,
1101 					"failed to get tcm %d pm domain, ret %d\n",
1102 					tcm_pd_idx, ret);
1103 				return ret;
1104 			}
1105 			tcm->pm_domain_id = out_args.args[0];
1106 			of_node_put(out_args.np);
1107 
1108 			/* Get TCM address without translation. */
1109 			ret = of_property_read_reg(np, j, &abs_addr, &size);
1110 			if (ret) {
1111 				dev_err(dev, "failed to get reg property\n");
1112 				return ret;
1113 			}
1114 
1115 			/*
1116 			 * Remote processor can address only 32 bits
1117 			 * so convert 64-bits into 32-bits. This will discard
1118 			 * any unwanted upper 32-bits.
1119 			 */
1120 			tcm->da = (u32)abs_addr;
1121 			tcm->size = (u32)size;
1122 
1123 			cpdev = to_platform_device(dev);
1124 			res = platform_get_resource(cpdev, IORESOURCE_MEM, j);
1125 			if (!res) {
1126 				dev_err(dev, "failed to get tcm resource\n");
1127 				return -EINVAL;
1128 			}
1129 
1130 			tcm->addr = (u32)res->start;
1131 			tcm->bank_name = (char *)res->name;
1132 			res = devm_request_mem_region(dev, tcm->addr, tcm->size,
1133 						      tcm->bank_name);
1134 			if (!res) {
1135 				dev_err(dev, "failed to request tcm resource\n");
1136 				return -EINVAL;
1137 			}
1138 		}
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 /**
1145  * zynqmp_r5_get_tcm_node()
1146  * Ideally this function should parse tcm node and store information
1147  * in r5_core instance. For now, Hardcoded TCM information is used.
1148  * This approach is used as TCM bindings for system-dt is being developed
1149  *
1150  * @cluster: pointer to zynqmp_r5_cluster type object
1151  *
1152  * Return: 0 for success and < 0 error code for failure.
1153  */
1154 static int zynqmp_r5_get_tcm_node(struct zynqmp_r5_cluster *cluster)
1155 {
1156 	const struct mem_bank_data *zynqmp_tcm_banks;
1157 	struct device *dev = cluster->dev;
1158 	struct zynqmp_r5_core *r5_core;
1159 	int tcm_bank_count, tcm_node;
1160 	int i, j;
1161 
1162 	if (cluster->mode == SPLIT_MODE) {
1163 		zynqmp_tcm_banks = zynqmp_tcm_banks_split;
1164 		tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks_split);
1165 	} else {
1166 		zynqmp_tcm_banks = zynqmp_tcm_banks_lockstep;
1167 		tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks_lockstep);
1168 	}
1169 
1170 	/* count per core tcm banks */
1171 	tcm_bank_count = tcm_bank_count / cluster->core_count;
1172 
1173 	/*
1174 	 * r5 core 0 will use all of TCM banks in lockstep mode.
1175 	 * In split mode, r5 core0 will use 128k and r5 core1 will use another
1176 	 * 128k. Assign TCM banks to each core accordingly
1177 	 */
1178 	tcm_node = 0;
1179 	for (i = 0; i < cluster->core_count; i++) {
1180 		r5_core = cluster->r5_cores[i];
1181 		r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count,
1182 						  sizeof(struct mem_bank_data *),
1183 						  GFP_KERNEL);
1184 		if (!r5_core->tcm_banks)
1185 			return -ENOMEM;
1186 
1187 		for (j = 0; j < tcm_bank_count; j++) {
1188 			/*
1189 			 * Use pre-defined TCM reg values.
1190 			 * Eventually this should be replaced by values
1191 			 * parsed from dts.
1192 			 */
1193 			r5_core->tcm_banks[j] =
1194 				(struct mem_bank_data *)&zynqmp_tcm_banks[tcm_node];
1195 			tcm_node++;
1196 		}
1197 
1198 		r5_core->tcm_bank_count = tcm_bank_count;
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * zynqmp_r5_core_init()
1206  * Create and initialize zynqmp_r5_core type object
1207  *
1208  * @cluster: pointer to zynqmp_r5_cluster type object
1209  * @fw_reg_val: value expected by firmware to configure RPU cluster mode
1210  * @tcm_mode: value expected by fw to configure TCM mode (lockstep or split)
1211  *
1212  * Return: 0 for success and error code for failure.
1213  */
1214 static int zynqmp_r5_core_init(struct zynqmp_r5_cluster *cluster,
1215 			       enum rpu_oper_mode fw_reg_val,
1216 			       enum rpu_tcm_comb tcm_mode)
1217 {
1218 	struct device *dev = cluster->dev;
1219 	struct zynqmp_r5_core *r5_core;
1220 	int ret = -EINVAL, i;
1221 
1222 	r5_core = cluster->r5_cores[0];
1223 
1224 	/* Maintain backward compatibility for zynqmp by using hardcode TCM address. */
1225 	if (of_property_present(r5_core->np, "reg"))
1226 		ret = zynqmp_r5_get_tcm_node_from_dt(cluster);
1227 	else if (device_is_compatible(dev, "xlnx,zynqmp-r5fss"))
1228 		ret = zynqmp_r5_get_tcm_node(cluster);
1229 
1230 	if (ret) {
1231 		dev_err(dev, "can't get tcm, err %d\n", ret);
1232 		return ret;
1233 	}
1234 
1235 	for (i = 0; i < cluster->core_count; i++) {
1236 		r5_core = cluster->r5_cores[i];
1237 
1238 		/* Initialize r5 cores with power-domains parsed from dts */
1239 		ret = of_property_read_u32_index(r5_core->np, "power-domains",
1240 						 1, &r5_core->pm_domain_id);
1241 		if (ret) {
1242 			dev_err(dev, "failed to get power-domains property\n");
1243 			return ret;
1244 		}
1245 
1246 		ret = zynqmp_pm_set_rpu_mode(r5_core->pm_domain_id, fw_reg_val);
1247 		if (ret < 0) {
1248 			dev_err(r5_core->dev, "failed to set RPU mode\n");
1249 			return ret;
1250 		}
1251 
1252 		if (of_property_present(dev_of_node(dev), "xlnx,tcm-mode") ||
1253 		    device_is_compatible(dev, "xlnx,zynqmp-r5fss")) {
1254 			ret = zynqmp_pm_set_tcm_config(r5_core->pm_domain_id,
1255 						       tcm_mode);
1256 			if (ret < 0) {
1257 				dev_err(r5_core->dev, "failed to configure TCM\n");
1258 				return ret;
1259 			}
1260 		}
1261 
1262 		ret = zynqmp_r5_get_sram_banks(r5_core);
1263 		if (ret)
1264 			return ret;
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 /*
1271  * zynqmp_r5_cluster_init()
1272  * Create and initialize zynqmp_r5_cluster type object
1273  *
1274  * @cluster: pointer to zynqmp_r5_cluster type object
1275  *
1276  * Return: 0 for success and error code for failure.
1277  */
1278 static int zynqmp_r5_cluster_init(struct zynqmp_r5_cluster *cluster)
1279 {
1280 	enum zynqmp_r5_cluster_mode cluster_mode = LOCKSTEP_MODE;
1281 	struct device *dev = cluster->dev;
1282 	struct device_node *dev_node = dev_of_node(dev);
1283 	struct platform_device *child_pdev;
1284 	struct zynqmp_r5_core **r5_cores;
1285 	enum rpu_oper_mode fw_reg_val;
1286 	struct device **child_devs;
1287 	struct device_node *child;
1288 	enum rpu_tcm_comb tcm_mode;
1289 	int core_count, ret, i;
1290 	struct mbox_info *ipi;
1291 
1292 	ret = of_property_read_u32(dev_node, "xlnx,cluster-mode", &cluster_mode);
1293 
1294 	/*
1295 	 * on success returns 0, if not defined then returns -EINVAL,
1296 	 * In that case, default is LOCKSTEP mode. Other than that
1297 	 * returns relative error code < 0.
1298 	 */
1299 	if (ret != -EINVAL && ret != 0) {
1300 		dev_err(dev, "Invalid xlnx,cluster-mode property\n");
1301 		return ret;
1302 	}
1303 
1304 	/*
1305 	 * For now driver only supports split mode and lockstep mode.
1306 	 * fail driver probe if either of that is not set in dts.
1307 	 */
1308 	if (cluster_mode == LOCKSTEP_MODE) {
1309 		fw_reg_val = PM_RPU_MODE_LOCKSTEP;
1310 	} else if (cluster_mode == SPLIT_MODE) {
1311 		fw_reg_val = PM_RPU_MODE_SPLIT;
1312 	} else {
1313 		dev_err(dev, "driver does not support cluster mode %d\n", cluster_mode);
1314 		return -EINVAL;
1315 	}
1316 
1317 	if (of_property_present(dev_node, "xlnx,tcm-mode")) {
1318 		ret = of_property_read_u32(dev_node, "xlnx,tcm-mode", (u32 *)&tcm_mode);
1319 		if (ret)
1320 			return ret;
1321 	} else if (device_is_compatible(dev, "xlnx,zynqmp-r5fss")) {
1322 		if (cluster_mode == LOCKSTEP_MODE)
1323 			tcm_mode = PM_RPU_TCM_COMB;
1324 		else
1325 			tcm_mode = PM_RPU_TCM_SPLIT;
1326 	} else {
1327 		tcm_mode = PM_RPU_TCM_COMB;
1328 	}
1329 
1330 	/*
1331 	 * Number of cores is decided by number of child nodes of
1332 	 * r5f subsystem node in dts. If Split mode is used in dts
1333 	 * 2 child nodes are expected.
1334 	 * In lockstep mode if two child nodes are available,
1335 	 * only use first child node and consider it as core0
1336 	 * and ignore core1 dt node.
1337 	 */
1338 	core_count = of_get_available_child_count(dev_node);
1339 	if (core_count == 0) {
1340 		dev_err(dev, "Invalid number of r5 cores %d", core_count);
1341 		return -EINVAL;
1342 	} else if (cluster_mode == SPLIT_MODE && core_count != 2) {
1343 		dev_err(dev, "Invalid number of r5 cores for split mode\n");
1344 		return -EINVAL;
1345 	} else if (cluster_mode == LOCKSTEP_MODE && core_count == 2) {
1346 		dev_warn(dev, "Only r5 core0 will be used\n");
1347 		core_count = 1;
1348 	}
1349 
1350 	child_devs = kcalloc(core_count, sizeof(struct device *), GFP_KERNEL);
1351 	if (!child_devs)
1352 		return -ENOMEM;
1353 
1354 	r5_cores = kcalloc(core_count,
1355 			   sizeof(struct zynqmp_r5_core *), GFP_KERNEL);
1356 	if (!r5_cores) {
1357 		kfree(child_devs);
1358 		return -ENOMEM;
1359 	}
1360 
1361 	i = 0;
1362 	for_each_available_child_of_node(dev_node, child) {
1363 		child_pdev = of_find_device_by_node(child);
1364 		if (!child_pdev) {
1365 			of_node_put(child);
1366 			ret = -ENODEV;
1367 			goto release_r5_cores;
1368 		}
1369 
1370 		child_devs[i] = &child_pdev->dev;
1371 
1372 		/* create and add remoteproc instance of type struct rproc */
1373 		r5_cores[i] = zynqmp_r5_add_rproc_core(&child_pdev->dev);
1374 		if (IS_ERR(r5_cores[i])) {
1375 			of_node_put(child);
1376 			ret = PTR_ERR(r5_cores[i]);
1377 			r5_cores[i] = NULL;
1378 			goto release_r5_cores;
1379 		}
1380 
1381 		/*
1382 		 * If mailbox nodes are disabled using "status" property then
1383 		 * setting up mailbox channels will fail.
1384 		 */
1385 		ipi = zynqmp_r5_setup_mbox(&child_pdev->dev);
1386 		if (ipi) {
1387 			r5_cores[i]->ipi = ipi;
1388 			ipi->r5_core = r5_cores[i];
1389 		}
1390 
1391 		/*
1392 		 * If two child nodes are available in dts in lockstep mode,
1393 		 * then ignore second child node.
1394 		 */
1395 		if (cluster_mode == LOCKSTEP_MODE) {
1396 			of_node_put(child);
1397 			break;
1398 		}
1399 
1400 		i++;
1401 	}
1402 
1403 	cluster->mode = cluster_mode;
1404 	cluster->core_count = core_count;
1405 	cluster->r5_cores = r5_cores;
1406 
1407 	ret = zynqmp_r5_core_init(cluster, fw_reg_val, tcm_mode);
1408 	if (ret < 0) {
1409 		dev_err(dev, "failed to init r5 core err %d\n", ret);
1410 		cluster->core_count = 0;
1411 		cluster->r5_cores = NULL;
1412 
1413 		/*
1414 		 * at this point rproc resources for each core are allocated.
1415 		 * adjust index to free resources in reverse order
1416 		 */
1417 		i = core_count - 1;
1418 		goto release_r5_cores;
1419 	}
1420 
1421 	kfree(child_devs);
1422 	return 0;
1423 
1424 release_r5_cores:
1425 	while (i >= 0) {
1426 		put_device(child_devs[i]);
1427 		if (r5_cores[i]) {
1428 			zynqmp_r5_free_mbox(r5_cores[i]->ipi);
1429 			of_reserved_mem_device_release(r5_cores[i]->dev);
1430 			rproc_del(r5_cores[i]->rproc);
1431 			rproc_free(r5_cores[i]->rproc);
1432 		}
1433 		i--;
1434 	}
1435 	kfree(r5_cores);
1436 	kfree(child_devs);
1437 	return ret;
1438 }
1439 
1440 static void zynqmp_r5_cluster_exit(void *data)
1441 {
1442 	struct platform_device *pdev = data;
1443 	struct zynqmp_r5_cluster *cluster;
1444 	struct zynqmp_r5_core *r5_core;
1445 	int i;
1446 
1447 	cluster = platform_get_drvdata(pdev);
1448 	if (!cluster)
1449 		return;
1450 
1451 	for (i = 0; i < cluster->core_count; i++) {
1452 		r5_core = cluster->r5_cores[i];
1453 		zynqmp_r5_free_mbox(r5_core->ipi);
1454 		iounmap(r5_core->rsc_tbl_va);
1455 		of_reserved_mem_device_release(r5_core->dev);
1456 		put_device(r5_core->dev);
1457 		rproc_del(r5_core->rproc);
1458 		rproc_free(r5_core->rproc);
1459 	}
1460 
1461 	kfree(cluster->r5_cores);
1462 	kfree(cluster);
1463 	platform_set_drvdata(pdev, NULL);
1464 }
1465 
1466 /*
1467  * zynqmp_r5_remoteproc_probe()
1468  * parse device-tree, initialize hardware and allocate required resources
1469  * and remoteproc ops
1470  *
1471  * @pdev: domain platform device for R5 cluster
1472  *
1473  * Return: 0 for success and < 0 for failure.
1474  */
1475 static int zynqmp_r5_remoteproc_probe(struct platform_device *pdev)
1476 {
1477 	struct zynqmp_r5_cluster *cluster;
1478 	struct device *dev = &pdev->dev;
1479 	int ret;
1480 
1481 	cluster = kzalloc(sizeof(*cluster), GFP_KERNEL);
1482 	if (!cluster)
1483 		return -ENOMEM;
1484 
1485 	cluster->dev = dev;
1486 
1487 	ret = devm_of_platform_populate(dev);
1488 	if (ret) {
1489 		dev_err_probe(dev, ret, "failed to populate platform dev\n");
1490 		kfree(cluster);
1491 		return ret;
1492 	}
1493 
1494 	/* wire in so each core can be cleaned up at driver remove */
1495 	platform_set_drvdata(pdev, cluster);
1496 
1497 	ret = zynqmp_r5_cluster_init(cluster);
1498 	if (ret) {
1499 		kfree(cluster);
1500 		platform_set_drvdata(pdev, NULL);
1501 		dev_err_probe(dev, ret, "Invalid r5f subsystem device tree\n");
1502 		return ret;
1503 	}
1504 
1505 	ret = devm_add_action_or_reset(dev, zynqmp_r5_cluster_exit, pdev);
1506 	if (ret)
1507 		return ret;
1508 
1509 	return 0;
1510 }
1511 
1512 /* Match table for OF platform binding */
1513 static const struct of_device_id zynqmp_r5_remoteproc_match[] = {
1514 	{ .compatible = "xlnx,versal-net-r52fss", },
1515 	{ .compatible = "xlnx,versal-r5fss", },
1516 	{ .compatible = "xlnx,zynqmp-r5fss", },
1517 	{ /* end of list */ },
1518 };
1519 MODULE_DEVICE_TABLE(of, zynqmp_r5_remoteproc_match);
1520 
1521 static struct platform_driver zynqmp_r5_remoteproc_driver = {
1522 	.probe = zynqmp_r5_remoteproc_probe,
1523 	.driver = {
1524 		.name = "zynqmp_r5_remoteproc",
1525 		.of_match_table = zynqmp_r5_remoteproc_match,
1526 	},
1527 };
1528 module_platform_driver(zynqmp_r5_remoteproc_driver);
1529 
1530 MODULE_DESCRIPTION("Xilinx R5F remote processor driver");
1531 MODULE_AUTHOR("Xilinx Inc.");
1532 MODULE_LICENSE("GPL");
1533