1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * ZynqMP R5 Remote Processor driver 4 * 5 */ 6 7 #include <dt-bindings/power/xlnx-zynqmp-power.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/firmware/xlnx-zynqmp.h> 10 #include <linux/kernel.h> 11 #include <linux/mailbox_client.h> 12 #include <linux/mailbox/zynqmp-ipi-message.h> 13 #include <linux/module.h> 14 #include <linux/of_address.h> 15 #include <linux/of_platform.h> 16 #include <linux/of_reserved_mem.h> 17 #include <linux/platform_device.h> 18 #include <linux/remoteproc.h> 19 20 #include "remoteproc_internal.h" 21 22 /* IPI buffer MAX length */ 23 #define IPI_BUF_LEN_MAX 32U 24 25 /* RX mailbox client buffer max length */ 26 #define MBOX_CLIENT_BUF_MAX (IPI_BUF_LEN_MAX + \ 27 sizeof(struct zynqmp_ipi_message)) 28 29 #define RSC_TBL_XLNX_MAGIC ((uint32_t)'x' << 24 | (uint32_t)'a' << 16 | \ 30 (uint32_t)'m' << 8 | (uint32_t)'p') 31 32 /* 33 * settings for RPU cluster mode which 34 * reflects possible values of xlnx,cluster-mode dt-property 35 */ 36 enum zynqmp_r5_cluster_mode { 37 SPLIT_MODE = 0, /* When cores run as separate processor */ 38 LOCKSTEP_MODE = 1, /* cores execute same code in lockstep,clk-for-clk */ 39 SINGLE_CPU_MODE = 2, /* core0 is held in reset and only core1 runs */ 40 }; 41 42 /** 43 * struct mem_bank_data - Memory Bank description 44 * 45 * @addr: Start address of memory bank 46 * @da: device address 47 * @size: Size of Memory bank 48 * @pm_domain_id: Power-domains id of memory bank for firmware to turn on/off 49 * @bank_name: name of the bank for remoteproc framework 50 */ 51 struct mem_bank_data { 52 phys_addr_t addr; 53 u32 da; 54 size_t size; 55 u32 pm_domain_id; 56 char *bank_name; 57 }; 58 59 /** 60 * struct zynqmp_sram_bank - sram bank description 61 * 62 * @sram_res: sram address region information 63 * @da: device address of sram 64 */ 65 struct zynqmp_sram_bank { 66 struct resource sram_res; 67 u32 da; 68 }; 69 70 /** 71 * struct mbox_info 72 * 73 * @rx_mc_buf: to copy data from mailbox rx channel 74 * @tx_mc_buf: to copy data to mailbox tx channel 75 * @r5_core: this mailbox's corresponding r5_core pointer 76 * @mbox_work: schedule work after receiving data from mailbox 77 * @mbox_cl: mailbox client 78 * @tx_chan: mailbox tx channel 79 * @rx_chan: mailbox rx channel 80 */ 81 struct mbox_info { 82 unsigned char rx_mc_buf[MBOX_CLIENT_BUF_MAX]; 83 unsigned char tx_mc_buf[MBOX_CLIENT_BUF_MAX]; 84 struct zynqmp_r5_core *r5_core; 85 struct work_struct mbox_work; 86 struct mbox_client mbox_cl; 87 struct mbox_chan *tx_chan; 88 struct mbox_chan *rx_chan; 89 }; 90 91 /** 92 * struct rsc_tbl_data 93 * 94 * Platform specific data structure used to sync resource table address. 95 * It's important to maintain order and size of each field on remote side. 96 * 97 * @version: version of data structure 98 * @magic_num: 32-bit magic number. 99 * @comp_magic_num: complement of above magic number 100 * @rsc_tbl_size: resource table size 101 * @rsc_tbl: resource table address 102 */ 103 struct rsc_tbl_data { 104 const int version; 105 const u32 magic_num; 106 const u32 comp_magic_num; 107 const u32 rsc_tbl_size; 108 const uintptr_t rsc_tbl; 109 } __packed; 110 111 /* 112 * Hardcoded TCM bank values. This will stay in driver to maintain backward 113 * compatibility with device-tree that does not have TCM information. 114 */ 115 static const struct mem_bank_data zynqmp_tcm_banks_split[] = { 116 {0xffe00000UL, 0x0, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */ 117 {0xffe20000UL, 0x20000, 0x10000UL, PD_R5_0_BTCM, "btcm0"}, 118 {0xffe90000UL, 0x0, 0x10000UL, PD_R5_1_ATCM, "atcm1"}, 119 {0xffeb0000UL, 0x20000, 0x10000UL, PD_R5_1_BTCM, "btcm1"}, 120 }; 121 122 /* In lockstep mode cluster uses each 64KB TCM from second core as well */ 123 static const struct mem_bank_data zynqmp_tcm_banks_lockstep[] = { 124 {0xffe00000UL, 0x0, 0x10000UL, PD_R5_0_ATCM, "atcm0"}, /* TCM 64KB each */ 125 {0xffe20000UL, 0x20000, 0x10000UL, PD_R5_0_BTCM, "btcm0"}, 126 {0xffe10000UL, 0x10000, 0x10000UL, PD_R5_1_ATCM, "atcm1"}, 127 {0xffe30000UL, 0x30000, 0x10000UL, PD_R5_1_BTCM, "btcm1"}, 128 }; 129 130 /** 131 * struct zynqmp_r5_core 132 * 133 * @rsc_tbl_va: resource table virtual address 134 * @sram: Array of sram memories assigned to this core 135 * @num_sram: number of sram for this core 136 * @dev: device of RPU instance 137 * @np: device node of RPU instance 138 * @tcm_bank_count: number TCM banks accessible to this RPU 139 * @tcm_banks: array of each TCM bank data 140 * @rproc: rproc handle 141 * @rsc_tbl_size: resource table size retrieved from remote 142 * @pm_domain_id: RPU CPU power domain id 143 * @ipi: pointer to mailbox information 144 */ 145 struct zynqmp_r5_core { 146 void __iomem *rsc_tbl_va; 147 struct zynqmp_sram_bank *sram; 148 int num_sram; 149 struct device *dev; 150 struct device_node *np; 151 int tcm_bank_count; 152 struct mem_bank_data **tcm_banks; 153 struct rproc *rproc; 154 u32 rsc_tbl_size; 155 u32 pm_domain_id; 156 struct mbox_info *ipi; 157 }; 158 159 /** 160 * struct zynqmp_r5_cluster 161 * 162 * @dev: r5f subsystem cluster device node 163 * @mode: cluster mode of type zynqmp_r5_cluster_mode 164 * @core_count: number of r5 cores used for this cluster mode 165 * @r5_cores: Array of pointers pointing to r5 core 166 */ 167 struct zynqmp_r5_cluster { 168 struct device *dev; 169 enum zynqmp_r5_cluster_mode mode; 170 int core_count; 171 struct zynqmp_r5_core **r5_cores; 172 }; 173 174 /** 175 * event_notified_idr_cb() - callback for vq_interrupt per notifyid 176 * @id: rproc->notify id 177 * @ptr: pointer to idr private data 178 * @data: data passed to idr_for_each callback 179 * 180 * Pass notification to remoteproc virtio 181 * 182 * Return: 0. having return is to satisfy the idr_for_each() function 183 * pointer input argument requirement. 184 **/ 185 static int event_notified_idr_cb(int id, void *ptr, void *data) 186 { 187 struct rproc *rproc = data; 188 189 if (rproc_vq_interrupt(rproc, id) == IRQ_NONE) 190 dev_dbg(&rproc->dev, "data not found for vqid=%d\n", id); 191 192 return 0; 193 } 194 195 /** 196 * handle_event_notified() - remoteproc notification work function 197 * @work: pointer to the work structure 198 * 199 * It checks each registered remoteproc notify IDs. 200 */ 201 static void handle_event_notified(struct work_struct *work) 202 { 203 struct mbox_info *ipi; 204 struct rproc *rproc; 205 206 ipi = container_of(work, struct mbox_info, mbox_work); 207 rproc = ipi->r5_core->rproc; 208 209 /* 210 * We only use IPI for interrupt. The RPU firmware side may or may 211 * not write the notifyid when it trigger IPI. 212 * And thus, we scan through all the registered notifyids and 213 * find which one is valid to get the message. 214 * Even if message from firmware is NULL, we attempt to get vqid 215 */ 216 idr_for_each(&rproc->notifyids, event_notified_idr_cb, rproc); 217 } 218 219 /** 220 * zynqmp_r5_mb_rx_cb() - receive channel mailbox callback 221 * @cl: mailbox client 222 * @msg: message pointer 223 * 224 * Receive data from ipi buffer, ack interrupt and then 225 * it will schedule the R5 notification work. 226 */ 227 static void zynqmp_r5_mb_rx_cb(struct mbox_client *cl, void *msg) 228 { 229 struct zynqmp_ipi_message *ipi_msg, *buf_msg; 230 struct mbox_info *ipi; 231 size_t len; 232 233 ipi = container_of(cl, struct mbox_info, mbox_cl); 234 235 /* copy data from ipi buffer to r5_core */ 236 ipi_msg = (struct zynqmp_ipi_message *)msg; 237 buf_msg = (struct zynqmp_ipi_message *)ipi->rx_mc_buf; 238 len = ipi_msg->len; 239 if (len > IPI_BUF_LEN_MAX) { 240 dev_warn(cl->dev, "msg size exceeded than %d\n", 241 IPI_BUF_LEN_MAX); 242 len = IPI_BUF_LEN_MAX; 243 } 244 buf_msg->len = len; 245 memcpy(buf_msg->data, ipi_msg->data, len); 246 247 /* received and processed interrupt ack */ 248 if (mbox_send_message(ipi->rx_chan, NULL) < 0) 249 dev_err(cl->dev, "ack failed to mbox rx_chan\n"); 250 251 schedule_work(&ipi->mbox_work); 252 } 253 254 /** 255 * zynqmp_r5_setup_mbox() - Setup mailboxes related properties 256 * this is used for each individual R5 core 257 * 258 * @cdev: child node device 259 * 260 * Function to setup mailboxes related properties 261 * return : NULL if failed else pointer to mbox_info 262 */ 263 static struct mbox_info *zynqmp_r5_setup_mbox(struct device *cdev) 264 { 265 struct mbox_client *mbox_cl; 266 struct mbox_info *ipi; 267 268 ipi = kzalloc(sizeof(*ipi), GFP_KERNEL); 269 if (!ipi) 270 return NULL; 271 272 mbox_cl = &ipi->mbox_cl; 273 mbox_cl->rx_callback = zynqmp_r5_mb_rx_cb; 274 mbox_cl->tx_block = false; 275 mbox_cl->knows_txdone = false; 276 mbox_cl->tx_done = NULL; 277 mbox_cl->dev = cdev; 278 279 /* Request TX and RX channels */ 280 ipi->tx_chan = mbox_request_channel_byname(mbox_cl, "tx"); 281 if (IS_ERR(ipi->tx_chan)) { 282 ipi->tx_chan = NULL; 283 kfree(ipi); 284 dev_warn(cdev, "mbox tx channel request failed\n"); 285 return NULL; 286 } 287 288 ipi->rx_chan = mbox_request_channel_byname(mbox_cl, "rx"); 289 if (IS_ERR(ipi->rx_chan)) { 290 mbox_free_channel(ipi->tx_chan); 291 ipi->rx_chan = NULL; 292 ipi->tx_chan = NULL; 293 kfree(ipi); 294 dev_warn(cdev, "mbox rx channel request failed\n"); 295 return NULL; 296 } 297 298 INIT_WORK(&ipi->mbox_work, handle_event_notified); 299 300 return ipi; 301 } 302 303 static void zynqmp_r5_free_mbox(struct mbox_info *ipi) 304 { 305 if (!ipi) 306 return; 307 308 if (ipi->tx_chan) { 309 mbox_free_channel(ipi->tx_chan); 310 ipi->tx_chan = NULL; 311 } 312 313 if (ipi->rx_chan) { 314 mbox_free_channel(ipi->rx_chan); 315 ipi->rx_chan = NULL; 316 } 317 318 kfree(ipi); 319 } 320 321 /* 322 * zynqmp_r5_core_kick() - kick a firmware if mbox is provided 323 * @rproc: r5 core's corresponding rproc structure 324 * @vqid: virtqueue ID 325 */ 326 static void zynqmp_r5_rproc_kick(struct rproc *rproc, int vqid) 327 { 328 struct zynqmp_r5_core *r5_core = rproc->priv; 329 struct device *dev = r5_core->dev; 330 struct zynqmp_ipi_message *mb_msg; 331 struct mbox_info *ipi; 332 int ret; 333 334 ipi = r5_core->ipi; 335 if (!ipi) 336 return; 337 338 mb_msg = (struct zynqmp_ipi_message *)ipi->tx_mc_buf; 339 memcpy(mb_msg->data, &vqid, sizeof(vqid)); 340 mb_msg->len = sizeof(vqid); 341 ret = mbox_send_message(ipi->tx_chan, mb_msg); 342 if (ret < 0) 343 dev_warn(dev, "failed to send message\n"); 344 } 345 346 /* 347 * zynqmp_r5_rproc_start() 348 * @rproc: single R5 core's corresponding rproc instance 349 * 350 * Start R5 Core from designated boot address. 351 * 352 * return 0 on success, otherwise non-zero value on failure 353 */ 354 static int zynqmp_r5_rproc_start(struct rproc *rproc) 355 { 356 struct zynqmp_r5_core *r5_core = rproc->priv; 357 enum rpu_boot_mem bootmem; 358 int ret; 359 360 /* 361 * The exception vector pointers (EVP) refer to the base-address of 362 * exception vectors (for reset, IRQ, FIQ, etc). The reset-vector 363 * starts at the base-address and subsequent vectors are on 4-byte 364 * boundaries. 365 * 366 * Exception vectors can start either from 0x0000_0000 (LOVEC) or 367 * from 0xFFFF_0000 (HIVEC) which is mapped in the OCM (On-Chip Memory) 368 * 369 * Usually firmware will put Exception vectors at LOVEC. 370 * 371 * It is not recommend that you change the exception vector. 372 * Changing the EVP to HIVEC will result in increased interrupt latency 373 * and jitter. Also, if the OCM is secured and the Cortex-R5F processor 374 * is non-secured, then the Cortex-R5F processor cannot access the 375 * HIVEC exception vectors in the OCM. 376 */ 377 bootmem = (rproc->bootaddr >= 0xFFFC0000) ? 378 PM_RPU_BOOTMEM_HIVEC : PM_RPU_BOOTMEM_LOVEC; 379 380 dev_dbg(r5_core->dev, "RPU boot addr 0x%llx from %s.", rproc->bootaddr, 381 bootmem == PM_RPU_BOOTMEM_HIVEC ? "OCM" : "TCM"); 382 383 ret = zynqmp_pm_request_wake(r5_core->pm_domain_id, 1, 384 bootmem, ZYNQMP_PM_REQUEST_ACK_NO); 385 if (ret) 386 dev_err(r5_core->dev, 387 "failed to start RPU = 0x%x\n", r5_core->pm_domain_id); 388 return ret; 389 } 390 391 /* 392 * zynqmp_r5_rproc_stop() 393 * @rproc: single R5 core's corresponding rproc instance 394 * 395 * Power down R5 Core. 396 * 397 * return 0 on success, otherwise non-zero value on failure 398 */ 399 static int zynqmp_r5_rproc_stop(struct rproc *rproc) 400 { 401 struct zynqmp_r5_core *r5_core = rproc->priv; 402 int ret; 403 404 ret = zynqmp_pm_force_pwrdwn(r5_core->pm_domain_id, 405 ZYNQMP_PM_REQUEST_ACK_BLOCKING); 406 if (ret) 407 dev_err(r5_core->dev, "failed to stop remoteproc RPU %d\n", ret); 408 409 return ret; 410 } 411 412 /* 413 * zynqmp_r5_mem_region_map() 414 * @rproc: single R5 core's corresponding rproc instance 415 * @mem: mem descriptor to map reserved memory-regions 416 * 417 * Callback to map va for memory-region's carveout. 418 * 419 * return 0 on success, otherwise non-zero value on failure 420 */ 421 static int zynqmp_r5_mem_region_map(struct rproc *rproc, 422 struct rproc_mem_entry *mem) 423 { 424 void __iomem *va; 425 426 va = ioremap_wc(mem->dma, mem->len); 427 if (IS_ERR_OR_NULL(va)) 428 return -ENOMEM; 429 430 mem->va = (void *)va; 431 432 return 0; 433 } 434 435 /* 436 * zynqmp_r5_rproc_mem_unmap 437 * @rproc: single R5 core's corresponding rproc instance 438 * @mem: mem entry to unmap 439 * 440 * Unmap memory-region carveout 441 * 442 * return: always returns 0 443 */ 444 static int zynqmp_r5_mem_region_unmap(struct rproc *rproc, 445 struct rproc_mem_entry *mem) 446 { 447 iounmap((void __iomem *)mem->va); 448 return 0; 449 } 450 451 /* 452 * add_mem_regions_carveout() 453 * @rproc: single R5 core's corresponding rproc instance 454 * 455 * Construct rproc mem carveouts from memory-region property nodes 456 * 457 * return 0 on success, otherwise non-zero value on failure 458 */ 459 static int add_mem_regions_carveout(struct rproc *rproc) 460 { 461 struct rproc_mem_entry *rproc_mem; 462 struct zynqmp_r5_core *r5_core; 463 struct of_phandle_iterator it; 464 struct reserved_mem *rmem; 465 int i = 0; 466 467 r5_core = rproc->priv; 468 469 /* Register associated reserved memory regions */ 470 of_phandle_iterator_init(&it, r5_core->np, "memory-region", NULL, 0); 471 472 while (of_phandle_iterator_next(&it) == 0) { 473 rmem = of_reserved_mem_lookup(it.node); 474 if (!rmem) { 475 of_node_put(it.node); 476 dev_err(&rproc->dev, "unable to acquire memory-region\n"); 477 return -EINVAL; 478 } 479 480 if (!strcmp(it.node->name, "vdev0buffer")) { 481 /* Init reserved memory for vdev buffer */ 482 rproc_mem = rproc_of_resm_mem_entry_init(&rproc->dev, i, 483 rmem->size, 484 rmem->base, 485 it.node->name); 486 } else { 487 /* Register associated reserved memory regions */ 488 rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL, 489 (dma_addr_t)rmem->base, 490 rmem->size, rmem->base, 491 zynqmp_r5_mem_region_map, 492 zynqmp_r5_mem_region_unmap, 493 it.node->name); 494 } 495 496 if (!rproc_mem) { 497 of_node_put(it.node); 498 return -ENOMEM; 499 } 500 501 rproc_add_carveout(rproc, rproc_mem); 502 rproc_coredump_add_segment(rproc, rmem->base, rmem->size); 503 504 dev_dbg(&rproc->dev, "reserved mem carveout %s addr=%llx, size=0x%llx", 505 it.node->name, rmem->base, rmem->size); 506 i++; 507 } 508 509 return 0; 510 } 511 512 static int add_sram_carveouts(struct rproc *rproc) 513 { 514 struct zynqmp_r5_core *r5_core = rproc->priv; 515 struct rproc_mem_entry *rproc_mem; 516 struct zynqmp_sram_bank *sram; 517 dma_addr_t dma_addr; 518 size_t len; 519 int da, i; 520 521 for (i = 0; i < r5_core->num_sram; i++) { 522 sram = &r5_core->sram[i]; 523 524 dma_addr = (dma_addr_t)sram->sram_res.start; 525 526 len = resource_size(&sram->sram_res); 527 da = sram->da; 528 529 rproc_mem = rproc_mem_entry_init(&rproc->dev, NULL, 530 dma_addr, 531 len, da, 532 zynqmp_r5_mem_region_map, 533 zynqmp_r5_mem_region_unmap, 534 sram->sram_res.name); 535 if (!rproc_mem) { 536 dev_err(&rproc->dev, "failed to add sram %s da=0x%x, size=0x%lx", 537 sram->sram_res.name, da, len); 538 return -ENOMEM; 539 } 540 541 rproc_add_carveout(rproc, rproc_mem); 542 rproc_coredump_add_segment(rproc, da, len); 543 544 dev_dbg(&rproc->dev, "sram carveout %s addr=%llx, da=0x%x, size=0x%lx", 545 sram->sram_res.name, dma_addr, da, len); 546 } 547 548 return 0; 549 } 550 551 /* 552 * tcm_mem_unmap() 553 * @rproc: single R5 core's corresponding rproc instance 554 * @mem: tcm mem entry to unmap 555 * 556 * Unmap TCM banks when powering down R5 core. 557 * 558 * return always 0 559 */ 560 static int tcm_mem_unmap(struct rproc *rproc, struct rproc_mem_entry *mem) 561 { 562 iounmap((void __iomem *)mem->va); 563 564 return 0; 565 } 566 567 /* 568 * tcm_mem_map() 569 * @rproc: single R5 core's corresponding rproc instance 570 * @mem: tcm memory entry descriptor 571 * 572 * Given TCM bank entry, this func setup virtual address for TCM bank 573 * remoteproc carveout. It also takes care of va to da address translation 574 * 575 * return 0 on success, otherwise non-zero value on failure 576 */ 577 static int tcm_mem_map(struct rproc *rproc, 578 struct rproc_mem_entry *mem) 579 { 580 void __iomem *va; 581 582 va = ioremap_wc(mem->dma, mem->len); 583 if (IS_ERR_OR_NULL(va)) 584 return -ENOMEM; 585 586 /* Update memory entry va */ 587 mem->va = (void *)va; 588 589 /* clear TCMs */ 590 memset_io(va, 0, mem->len); 591 592 return 0; 593 } 594 595 /* 596 * add_tcm_banks() 597 * @rproc: single R5 core's corresponding rproc instance 598 * 599 * allocate and add remoteproc carveout for TCM memory 600 * 601 * return 0 on success, otherwise non-zero value on failure 602 */ 603 static int add_tcm_banks(struct rproc *rproc) 604 { 605 struct rproc_mem_entry *rproc_mem; 606 struct zynqmp_r5_core *r5_core; 607 int i, num_banks, ret; 608 phys_addr_t bank_addr; 609 struct device *dev; 610 u32 pm_domain_id; 611 size_t bank_size; 612 char *bank_name; 613 u32 da; 614 615 r5_core = rproc->priv; 616 dev = r5_core->dev; 617 num_banks = r5_core->tcm_bank_count; 618 619 /* 620 * Power-on Each 64KB TCM, 621 * register its address space, map and unmap functions 622 * and add carveouts accordingly 623 */ 624 for (i = 0; i < num_banks; i++) { 625 bank_addr = r5_core->tcm_banks[i]->addr; 626 da = r5_core->tcm_banks[i]->da; 627 bank_name = r5_core->tcm_banks[i]->bank_name; 628 bank_size = r5_core->tcm_banks[i]->size; 629 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; 630 631 ret = zynqmp_pm_request_node(pm_domain_id, 632 ZYNQMP_PM_CAPABILITY_ACCESS, 0, 633 ZYNQMP_PM_REQUEST_ACK_BLOCKING); 634 if (ret < 0) { 635 dev_err(dev, "failed to turn on TCM 0x%x", pm_domain_id); 636 goto release_tcm; 637 } 638 639 dev_dbg(dev, "TCM carveout %s addr=%llx, da=0x%x, size=0x%lx", 640 bank_name, bank_addr, da, bank_size); 641 642 /* 643 * In DETACHED state firmware is already running so no need to 644 * request add TCM registers. However, request TCM PD node to let 645 * platform management firmware know that TCM is in use. 646 */ 647 if (rproc->state == RPROC_DETACHED) 648 continue; 649 650 rproc_mem = rproc_mem_entry_init(dev, NULL, bank_addr, 651 bank_size, da, 652 tcm_mem_map, tcm_mem_unmap, 653 bank_name); 654 if (!rproc_mem) { 655 ret = -ENOMEM; 656 zynqmp_pm_release_node(pm_domain_id); 657 goto release_tcm; 658 } 659 660 rproc_add_carveout(rproc, rproc_mem); 661 rproc_coredump_add_segment(rproc, da, bank_size); 662 } 663 664 return 0; 665 666 release_tcm: 667 /* If failed, Turn off all TCM banks turned on before */ 668 for (i--; i >= 0; i--) { 669 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; 670 zynqmp_pm_release_node(pm_domain_id); 671 } 672 return ret; 673 } 674 675 /* 676 * zynqmp_r5_parse_fw() 677 * @rproc: single R5 core's corresponding rproc instance 678 * @fw: ptr to firmware to be loaded onto r5 core 679 * 680 * get resource table if available 681 * 682 * return 0 on success, otherwise non-zero value on failure 683 */ 684 static int zynqmp_r5_parse_fw(struct rproc *rproc, const struct firmware *fw) 685 { 686 int ret; 687 688 ret = rproc_elf_load_rsc_table(rproc, fw); 689 if (ret == -EINVAL) { 690 /* 691 * resource table only required for IPC. 692 * if not present, this is not necessarily an error; 693 * for example, loading r5 hello world application 694 * so simply inform user and keep going. 695 */ 696 dev_info(&rproc->dev, "no resource table found.\n"); 697 ret = 0; 698 } 699 return ret; 700 } 701 702 /** 703 * zynqmp_r5_rproc_prepare() 704 * adds carveouts for TCM bank and reserved memory regions 705 * 706 * @rproc: Device node of each rproc 707 * 708 * Return: 0 for success else < 0 error code 709 */ 710 static int zynqmp_r5_rproc_prepare(struct rproc *rproc) 711 { 712 int ret; 713 714 ret = add_tcm_banks(rproc); 715 if (ret) { 716 dev_err(&rproc->dev, "failed to get TCM banks, err %d\n", ret); 717 return ret; 718 } 719 720 ret = add_mem_regions_carveout(rproc); 721 if (ret) { 722 dev_err(&rproc->dev, "failed to get reserve mem regions %d\n", ret); 723 return ret; 724 } 725 726 ret = add_sram_carveouts(rproc); 727 if (ret) { 728 dev_err(&rproc->dev, "failed to get sram carveout %d\n", ret); 729 return ret; 730 } 731 732 return 0; 733 } 734 735 /** 736 * zynqmp_r5_rproc_unprepare() 737 * Turns off TCM banks using power-domain id 738 * 739 * @rproc: Device node of each rproc 740 * 741 * Return: always 0 742 */ 743 static int zynqmp_r5_rproc_unprepare(struct rproc *rproc) 744 { 745 struct zynqmp_r5_core *r5_core; 746 u32 pm_domain_id; 747 int i; 748 749 r5_core = rproc->priv; 750 751 for (i = 0; i < r5_core->tcm_bank_count; i++) { 752 pm_domain_id = r5_core->tcm_banks[i]->pm_domain_id; 753 if (zynqmp_pm_release_node(pm_domain_id)) 754 dev_warn(r5_core->dev, 755 "can't turn off TCM bank 0x%x", pm_domain_id); 756 } 757 758 return 0; 759 } 760 761 static struct resource_table *zynqmp_r5_get_loaded_rsc_table(struct rproc *rproc, 762 size_t *size) 763 { 764 struct zynqmp_r5_core *r5_core; 765 766 r5_core = rproc->priv; 767 768 *size = r5_core->rsc_tbl_size; 769 770 return (struct resource_table *)r5_core->rsc_tbl_va; 771 } 772 773 static int zynqmp_r5_get_rsc_table_va(struct zynqmp_r5_core *r5_core) 774 { 775 struct resource_table *rsc_tbl_addr; 776 struct device *dev = r5_core->dev; 777 struct rsc_tbl_data *rsc_data_va; 778 struct resource res_mem; 779 struct device_node *np; 780 int ret; 781 782 /* 783 * It is expected from remote processor firmware to provide resource 784 * table address via struct rsc_tbl_data data structure. 785 * Start address of first entry under "memory-region" property list 786 * contains that data structure which holds resource table address, size 787 * and some magic number to validate correct resource table entry. 788 */ 789 np = of_parse_phandle(r5_core->np, "memory-region", 0); 790 if (!np) { 791 dev_err(dev, "failed to get memory region dev node\n"); 792 return -EINVAL; 793 } 794 795 ret = of_address_to_resource(np, 0, &res_mem); 796 of_node_put(np); 797 if (ret) { 798 dev_err(dev, "failed to get memory-region resource addr\n"); 799 return -EINVAL; 800 } 801 802 rsc_data_va = (struct rsc_tbl_data *)ioremap_wc(res_mem.start, 803 sizeof(struct rsc_tbl_data)); 804 if (!rsc_data_va) { 805 dev_err(dev, "failed to map resource table data address\n"); 806 return -EIO; 807 } 808 809 /* 810 * If RSC_TBL_XLNX_MAGIC number and its complement isn't found then 811 * do not consider resource table address valid and don't attach 812 */ 813 if (rsc_data_va->magic_num != RSC_TBL_XLNX_MAGIC || 814 rsc_data_va->comp_magic_num != ~RSC_TBL_XLNX_MAGIC) { 815 dev_dbg(dev, "invalid magic number, won't attach\n"); 816 return -EINVAL; 817 } 818 819 r5_core->rsc_tbl_va = ioremap_wc(rsc_data_va->rsc_tbl, 820 rsc_data_va->rsc_tbl_size); 821 if (!r5_core->rsc_tbl_va) { 822 dev_err(dev, "failed to get resource table va\n"); 823 return -EINVAL; 824 } 825 826 rsc_tbl_addr = (struct resource_table *)r5_core->rsc_tbl_va; 827 828 /* 829 * As of now resource table version 1 is expected. Don't fail to attach 830 * but warn users about it. 831 */ 832 if (rsc_tbl_addr->ver != 1) 833 dev_warn(dev, "unexpected resource table version %d\n", 834 rsc_tbl_addr->ver); 835 836 r5_core->rsc_tbl_size = rsc_data_va->rsc_tbl_size; 837 838 iounmap((void __iomem *)rsc_data_va); 839 840 return 0; 841 } 842 843 static int zynqmp_r5_attach(struct rproc *rproc) 844 { 845 dev_dbg(&rproc->dev, "rproc %d attached\n", rproc->index); 846 847 return 0; 848 } 849 850 static int zynqmp_r5_detach(struct rproc *rproc) 851 { 852 /* 853 * Generate last notification to remote after clearing virtio flag. 854 * Remote can avoid polling on virtio reset flag if kick is generated 855 * during detach by host and check virtio reset flag on kick interrupt. 856 */ 857 zynqmp_r5_rproc_kick(rproc, 0); 858 859 return 0; 860 } 861 862 static const struct rproc_ops zynqmp_r5_rproc_ops = { 863 .prepare = zynqmp_r5_rproc_prepare, 864 .unprepare = zynqmp_r5_rproc_unprepare, 865 .start = zynqmp_r5_rproc_start, 866 .stop = zynqmp_r5_rproc_stop, 867 .load = rproc_elf_load_segments, 868 .parse_fw = zynqmp_r5_parse_fw, 869 .find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table, 870 .sanity_check = rproc_elf_sanity_check, 871 .get_boot_addr = rproc_elf_get_boot_addr, 872 .kick = zynqmp_r5_rproc_kick, 873 .get_loaded_rsc_table = zynqmp_r5_get_loaded_rsc_table, 874 .attach = zynqmp_r5_attach, 875 .detach = zynqmp_r5_detach, 876 }; 877 878 /** 879 * zynqmp_r5_add_rproc_core() 880 * Allocate and add struct rproc object for each r5f core 881 * This is called for each individual r5f core 882 * 883 * @cdev: Device node of each r5 core 884 * 885 * Return: zynqmp_r5_core object for success else error code pointer 886 */ 887 static struct zynqmp_r5_core *zynqmp_r5_add_rproc_core(struct device *cdev) 888 { 889 struct zynqmp_r5_core *r5_core; 890 struct rproc *r5_rproc; 891 int ret; 892 893 /* Set up DMA mask */ 894 ret = dma_set_coherent_mask(cdev, DMA_BIT_MASK(32)); 895 if (ret) 896 return ERR_PTR(ret); 897 898 /* Allocate remoteproc instance */ 899 r5_rproc = rproc_alloc(cdev, dev_name(cdev), 900 &zynqmp_r5_rproc_ops, 901 NULL, sizeof(struct zynqmp_r5_core)); 902 if (!r5_rproc) { 903 dev_err(cdev, "failed to allocate memory for rproc instance\n"); 904 return ERR_PTR(-ENOMEM); 905 } 906 907 rproc_coredump_set_elf_info(r5_rproc, ELFCLASS32, EM_ARM); 908 909 r5_rproc->auto_boot = false; 910 r5_core = r5_rproc->priv; 911 r5_core->dev = cdev; 912 r5_core->np = dev_of_node(cdev); 913 if (!r5_core->np) { 914 dev_err(cdev, "can't get device node for r5 core\n"); 915 ret = -EINVAL; 916 goto free_rproc; 917 } 918 919 /* Add R5 remoteproc core */ 920 ret = rproc_add(r5_rproc); 921 if (ret) { 922 dev_err(cdev, "failed to add r5 remoteproc\n"); 923 goto free_rproc; 924 } 925 926 /* 927 * If firmware is already available in the memory then move rproc state 928 * to DETACHED. Firmware can be preloaded via debugger or by any other 929 * agent (processors) in the system. 930 * If firmware isn't available in the memory and resource table isn't 931 * found, then rproc state remains OFFLINE. 932 */ 933 if (!zynqmp_r5_get_rsc_table_va(r5_core)) 934 r5_rproc->state = RPROC_DETACHED; 935 936 r5_core->rproc = r5_rproc; 937 return r5_core; 938 939 free_rproc: 940 rproc_free(r5_rproc); 941 return ERR_PTR(ret); 942 } 943 944 static int zynqmp_r5_get_sram_banks(struct zynqmp_r5_core *r5_core) 945 { 946 struct device_node *np = r5_core->np; 947 struct device *dev = r5_core->dev; 948 struct zynqmp_sram_bank *sram; 949 struct device_node *sram_np; 950 int num_sram, i, ret; 951 u64 abs_addr, size; 952 953 /* "sram" is optional property. Do not fail, if unavailable. */ 954 if (!of_property_present(r5_core->np, "sram")) 955 return 0; 956 957 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); 958 if (num_sram <= 0) { 959 dev_err(dev, "Invalid sram property, ret = %d\n", 960 num_sram); 961 return -EINVAL; 962 } 963 964 sram = devm_kcalloc(dev, num_sram, 965 sizeof(struct zynqmp_sram_bank), GFP_KERNEL); 966 if (!sram) 967 return -ENOMEM; 968 969 for (i = 0; i < num_sram; i++) { 970 sram_np = of_parse_phandle(np, "sram", i); 971 if (!sram_np) { 972 dev_err(dev, "failed to get sram %d phandle\n", i); 973 return -EINVAL; 974 } 975 976 if (!of_device_is_available(sram_np)) { 977 dev_err(dev, "sram device not available\n"); 978 ret = -EINVAL; 979 goto fail_sram_get; 980 } 981 982 ret = of_address_to_resource(sram_np, 0, &sram[i].sram_res); 983 if (ret) { 984 dev_err(dev, "addr to res failed\n"); 985 goto fail_sram_get; 986 } 987 988 /* Get SRAM device address */ 989 ret = of_property_read_reg(sram_np, i, &abs_addr, &size); 990 if (ret) { 991 dev_err(dev, "failed to get reg property\n"); 992 goto fail_sram_get; 993 } 994 995 sram[i].da = (u32)abs_addr; 996 997 of_node_put(sram_np); 998 999 dev_dbg(dev, "sram %d: name=%s, addr=0x%llx, da=0x%x, size=0x%llx\n", 1000 i, sram[i].sram_res.name, sram[i].sram_res.start, 1001 sram[i].da, resource_size(&sram[i].sram_res)); 1002 } 1003 1004 r5_core->sram = sram; 1005 r5_core->num_sram = num_sram; 1006 1007 return 0; 1008 1009 fail_sram_get: 1010 of_node_put(sram_np); 1011 1012 return ret; 1013 } 1014 1015 static int zynqmp_r5_get_tcm_node_from_dt(struct zynqmp_r5_cluster *cluster) 1016 { 1017 int i, j, tcm_bank_count, ret, tcm_pd_idx, pd_count; 1018 struct of_phandle_args out_args; 1019 struct zynqmp_r5_core *r5_core; 1020 struct platform_device *cpdev; 1021 struct mem_bank_data *tcm; 1022 struct device_node *np; 1023 struct resource *res; 1024 u64 abs_addr, size; 1025 struct device *dev; 1026 1027 for (i = 0; i < cluster->core_count; i++) { 1028 r5_core = cluster->r5_cores[i]; 1029 dev = r5_core->dev; 1030 np = r5_core->np; 1031 1032 pd_count = of_count_phandle_with_args(np, "power-domains", 1033 "#power-domain-cells"); 1034 1035 if (pd_count <= 0) { 1036 dev_err(dev, "invalid power-domains property, %d\n", pd_count); 1037 return -EINVAL; 1038 } 1039 1040 /* First entry in power-domains list is for r5 core, rest for TCM. */ 1041 tcm_bank_count = pd_count - 1; 1042 1043 if (tcm_bank_count <= 0) { 1044 dev_err(dev, "invalid TCM count %d\n", tcm_bank_count); 1045 return -EINVAL; 1046 } 1047 1048 r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count, 1049 sizeof(struct mem_bank_data *), 1050 GFP_KERNEL); 1051 if (!r5_core->tcm_banks) 1052 return -ENOMEM; 1053 1054 r5_core->tcm_bank_count = tcm_bank_count; 1055 for (j = 0, tcm_pd_idx = 1; j < tcm_bank_count; j++, tcm_pd_idx++) { 1056 tcm = devm_kzalloc(dev, sizeof(struct mem_bank_data), 1057 GFP_KERNEL); 1058 if (!tcm) 1059 return -ENOMEM; 1060 1061 r5_core->tcm_banks[j] = tcm; 1062 1063 /* Get power-domains id of TCM. */ 1064 ret = of_parse_phandle_with_args(np, "power-domains", 1065 "#power-domain-cells", 1066 tcm_pd_idx, &out_args); 1067 if (ret) { 1068 dev_err(r5_core->dev, 1069 "failed to get tcm %d pm domain, ret %d\n", 1070 tcm_pd_idx, ret); 1071 return ret; 1072 } 1073 tcm->pm_domain_id = out_args.args[0]; 1074 of_node_put(out_args.np); 1075 1076 /* Get TCM address without translation. */ 1077 ret = of_property_read_reg(np, j, &abs_addr, &size); 1078 if (ret) { 1079 dev_err(dev, "failed to get reg property\n"); 1080 return ret; 1081 } 1082 1083 /* 1084 * Remote processor can address only 32 bits 1085 * so convert 64-bits into 32-bits. This will discard 1086 * any unwanted upper 32-bits. 1087 */ 1088 tcm->da = (u32)abs_addr; 1089 tcm->size = (u32)size; 1090 1091 cpdev = to_platform_device(dev); 1092 res = platform_get_resource(cpdev, IORESOURCE_MEM, j); 1093 if (!res) { 1094 dev_err(dev, "failed to get tcm resource\n"); 1095 return -EINVAL; 1096 } 1097 1098 tcm->addr = (u32)res->start; 1099 tcm->bank_name = (char *)res->name; 1100 res = devm_request_mem_region(dev, tcm->addr, tcm->size, 1101 tcm->bank_name); 1102 if (!res) { 1103 dev_err(dev, "failed to request tcm resource\n"); 1104 return -EINVAL; 1105 } 1106 } 1107 } 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * zynqmp_r5_get_tcm_node() 1114 * Ideally this function should parse tcm node and store information 1115 * in r5_core instance. For now, Hardcoded TCM information is used. 1116 * This approach is used as TCM bindings for system-dt is being developed 1117 * 1118 * @cluster: pointer to zynqmp_r5_cluster type object 1119 * 1120 * Return: 0 for success and < 0 error code for failure. 1121 */ 1122 static int zynqmp_r5_get_tcm_node(struct zynqmp_r5_cluster *cluster) 1123 { 1124 const struct mem_bank_data *zynqmp_tcm_banks; 1125 struct device *dev = cluster->dev; 1126 struct zynqmp_r5_core *r5_core; 1127 int tcm_bank_count, tcm_node; 1128 int i, j; 1129 1130 if (cluster->mode == SPLIT_MODE) { 1131 zynqmp_tcm_banks = zynqmp_tcm_banks_split; 1132 tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks_split); 1133 } else { 1134 zynqmp_tcm_banks = zynqmp_tcm_banks_lockstep; 1135 tcm_bank_count = ARRAY_SIZE(zynqmp_tcm_banks_lockstep); 1136 } 1137 1138 /* count per core tcm banks */ 1139 tcm_bank_count = tcm_bank_count / cluster->core_count; 1140 1141 /* 1142 * r5 core 0 will use all of TCM banks in lockstep mode. 1143 * In split mode, r5 core0 will use 128k and r5 core1 will use another 1144 * 128k. Assign TCM banks to each core accordingly 1145 */ 1146 tcm_node = 0; 1147 for (i = 0; i < cluster->core_count; i++) { 1148 r5_core = cluster->r5_cores[i]; 1149 r5_core->tcm_banks = devm_kcalloc(dev, tcm_bank_count, 1150 sizeof(struct mem_bank_data *), 1151 GFP_KERNEL); 1152 if (!r5_core->tcm_banks) 1153 return -ENOMEM; 1154 1155 for (j = 0; j < tcm_bank_count; j++) { 1156 /* 1157 * Use pre-defined TCM reg values. 1158 * Eventually this should be replaced by values 1159 * parsed from dts. 1160 */ 1161 r5_core->tcm_banks[j] = 1162 (struct mem_bank_data *)&zynqmp_tcm_banks[tcm_node]; 1163 tcm_node++; 1164 } 1165 1166 r5_core->tcm_bank_count = tcm_bank_count; 1167 } 1168 1169 return 0; 1170 } 1171 1172 /* 1173 * zynqmp_r5_core_init() 1174 * Create and initialize zynqmp_r5_core type object 1175 * 1176 * @cluster: pointer to zynqmp_r5_cluster type object 1177 * @fw_reg_val: value expected by firmware to configure RPU cluster mode 1178 * @tcm_mode: value expected by fw to configure TCM mode (lockstep or split) 1179 * 1180 * Return: 0 for success and error code for failure. 1181 */ 1182 static int zynqmp_r5_core_init(struct zynqmp_r5_cluster *cluster, 1183 enum rpu_oper_mode fw_reg_val, 1184 enum rpu_tcm_comb tcm_mode) 1185 { 1186 struct device *dev = cluster->dev; 1187 struct zynqmp_r5_core *r5_core; 1188 int ret = -EINVAL, i; 1189 1190 r5_core = cluster->r5_cores[0]; 1191 1192 /* Maintain backward compatibility for zynqmp by using hardcode TCM address. */ 1193 if (of_property_present(r5_core->np, "reg")) 1194 ret = zynqmp_r5_get_tcm_node_from_dt(cluster); 1195 else if (device_is_compatible(dev, "xlnx,zynqmp-r5fss")) 1196 ret = zynqmp_r5_get_tcm_node(cluster); 1197 1198 if (ret) { 1199 dev_err(dev, "can't get tcm, err %d\n", ret); 1200 return ret; 1201 } 1202 1203 for (i = 0; i < cluster->core_count; i++) { 1204 r5_core = cluster->r5_cores[i]; 1205 1206 /* Initialize r5 cores with power-domains parsed from dts */ 1207 ret = of_property_read_u32_index(r5_core->np, "power-domains", 1208 1, &r5_core->pm_domain_id); 1209 if (ret) { 1210 dev_err(dev, "failed to get power-domains property\n"); 1211 return ret; 1212 } 1213 1214 ret = zynqmp_pm_set_rpu_mode(r5_core->pm_domain_id, fw_reg_val); 1215 if (ret < 0) { 1216 dev_err(r5_core->dev, "failed to set RPU mode\n"); 1217 return ret; 1218 } 1219 1220 if (of_property_present(dev_of_node(dev), "xlnx,tcm-mode") || 1221 device_is_compatible(dev, "xlnx,zynqmp-r5fss")) { 1222 ret = zynqmp_pm_set_tcm_config(r5_core->pm_domain_id, 1223 tcm_mode); 1224 if (ret < 0) { 1225 dev_err(r5_core->dev, "failed to configure TCM\n"); 1226 return ret; 1227 } 1228 } 1229 1230 ret = zynqmp_r5_get_sram_banks(r5_core); 1231 if (ret) 1232 return ret; 1233 } 1234 1235 return 0; 1236 } 1237 1238 /* 1239 * zynqmp_r5_cluster_init() 1240 * Create and initialize zynqmp_r5_cluster type object 1241 * 1242 * @cluster: pointer to zynqmp_r5_cluster type object 1243 * 1244 * Return: 0 for success and error code for failure. 1245 */ 1246 static int zynqmp_r5_cluster_init(struct zynqmp_r5_cluster *cluster) 1247 { 1248 enum zynqmp_r5_cluster_mode cluster_mode = LOCKSTEP_MODE; 1249 struct device *dev = cluster->dev; 1250 struct device_node *dev_node = dev_of_node(dev); 1251 struct platform_device *child_pdev; 1252 struct zynqmp_r5_core **r5_cores; 1253 enum rpu_oper_mode fw_reg_val; 1254 struct device **child_devs; 1255 struct device_node *child; 1256 enum rpu_tcm_comb tcm_mode; 1257 int core_count, ret, i; 1258 struct mbox_info *ipi; 1259 1260 ret = of_property_read_u32(dev_node, "xlnx,cluster-mode", &cluster_mode); 1261 1262 /* 1263 * on success returns 0, if not defined then returns -EINVAL, 1264 * In that case, default is LOCKSTEP mode. Other than that 1265 * returns relative error code < 0. 1266 */ 1267 if (ret != -EINVAL && ret != 0) { 1268 dev_err(dev, "Invalid xlnx,cluster-mode property\n"); 1269 return ret; 1270 } 1271 1272 /* 1273 * For now driver only supports split mode and lockstep mode. 1274 * fail driver probe if either of that is not set in dts. 1275 */ 1276 if (cluster_mode == LOCKSTEP_MODE) { 1277 fw_reg_val = PM_RPU_MODE_LOCKSTEP; 1278 } else if (cluster_mode == SPLIT_MODE) { 1279 fw_reg_val = PM_RPU_MODE_SPLIT; 1280 } else { 1281 dev_err(dev, "driver does not support cluster mode %d\n", cluster_mode); 1282 return -EINVAL; 1283 } 1284 1285 if (of_property_present(dev_node, "xlnx,tcm-mode")) { 1286 ret = of_property_read_u32(dev_node, "xlnx,tcm-mode", (u32 *)&tcm_mode); 1287 if (ret) 1288 return ret; 1289 } else if (device_is_compatible(dev, "xlnx,zynqmp-r5fss")) { 1290 if (cluster_mode == LOCKSTEP_MODE) 1291 tcm_mode = PM_RPU_TCM_COMB; 1292 else 1293 tcm_mode = PM_RPU_TCM_SPLIT; 1294 } else { 1295 tcm_mode = PM_RPU_TCM_COMB; 1296 } 1297 1298 /* 1299 * Number of cores is decided by number of child nodes of 1300 * r5f subsystem node in dts. If Split mode is used in dts 1301 * 2 child nodes are expected. 1302 * In lockstep mode if two child nodes are available, 1303 * only use first child node and consider it as core0 1304 * and ignore core1 dt node. 1305 */ 1306 core_count = of_get_available_child_count(dev_node); 1307 if (core_count == 0) { 1308 dev_err(dev, "Invalid number of r5 cores %d", core_count); 1309 return -EINVAL; 1310 } else if (cluster_mode == SPLIT_MODE && core_count != 2) { 1311 dev_err(dev, "Invalid number of r5 cores for split mode\n"); 1312 return -EINVAL; 1313 } else if (cluster_mode == LOCKSTEP_MODE && core_count == 2) { 1314 dev_warn(dev, "Only r5 core0 will be used\n"); 1315 core_count = 1; 1316 } 1317 1318 child_devs = kcalloc(core_count, sizeof(struct device *), GFP_KERNEL); 1319 if (!child_devs) 1320 return -ENOMEM; 1321 1322 r5_cores = kcalloc(core_count, 1323 sizeof(struct zynqmp_r5_core *), GFP_KERNEL); 1324 if (!r5_cores) { 1325 kfree(child_devs); 1326 return -ENOMEM; 1327 } 1328 1329 i = 0; 1330 for_each_available_child_of_node(dev_node, child) { 1331 child_pdev = of_find_device_by_node(child); 1332 if (!child_pdev) { 1333 of_node_put(child); 1334 ret = -ENODEV; 1335 goto release_r5_cores; 1336 } 1337 1338 child_devs[i] = &child_pdev->dev; 1339 1340 /* create and add remoteproc instance of type struct rproc */ 1341 r5_cores[i] = zynqmp_r5_add_rproc_core(&child_pdev->dev); 1342 if (IS_ERR(r5_cores[i])) { 1343 of_node_put(child); 1344 ret = PTR_ERR(r5_cores[i]); 1345 r5_cores[i] = NULL; 1346 goto release_r5_cores; 1347 } 1348 1349 /* 1350 * If mailbox nodes are disabled using "status" property then 1351 * setting up mailbox channels will fail. 1352 */ 1353 ipi = zynqmp_r5_setup_mbox(&child_pdev->dev); 1354 if (ipi) { 1355 r5_cores[i]->ipi = ipi; 1356 ipi->r5_core = r5_cores[i]; 1357 } 1358 1359 /* 1360 * If two child nodes are available in dts in lockstep mode, 1361 * then ignore second child node. 1362 */ 1363 if (cluster_mode == LOCKSTEP_MODE) { 1364 of_node_put(child); 1365 break; 1366 } 1367 1368 i++; 1369 } 1370 1371 cluster->mode = cluster_mode; 1372 cluster->core_count = core_count; 1373 cluster->r5_cores = r5_cores; 1374 1375 ret = zynqmp_r5_core_init(cluster, fw_reg_val, tcm_mode); 1376 if (ret < 0) { 1377 dev_err(dev, "failed to init r5 core err %d\n", ret); 1378 cluster->core_count = 0; 1379 cluster->r5_cores = NULL; 1380 1381 /* 1382 * at this point rproc resources for each core are allocated. 1383 * adjust index to free resources in reverse order 1384 */ 1385 i = core_count - 1; 1386 goto release_r5_cores; 1387 } 1388 1389 kfree(child_devs); 1390 return 0; 1391 1392 release_r5_cores: 1393 while (i >= 0) { 1394 put_device(child_devs[i]); 1395 if (r5_cores[i]) { 1396 zynqmp_r5_free_mbox(r5_cores[i]->ipi); 1397 of_reserved_mem_device_release(r5_cores[i]->dev); 1398 rproc_del(r5_cores[i]->rproc); 1399 rproc_free(r5_cores[i]->rproc); 1400 } 1401 i--; 1402 } 1403 kfree(r5_cores); 1404 kfree(child_devs); 1405 return ret; 1406 } 1407 1408 static void zynqmp_r5_cluster_exit(void *data) 1409 { 1410 struct platform_device *pdev = data; 1411 struct zynqmp_r5_cluster *cluster; 1412 struct zynqmp_r5_core *r5_core; 1413 int i; 1414 1415 cluster = platform_get_drvdata(pdev); 1416 if (!cluster) 1417 return; 1418 1419 for (i = 0; i < cluster->core_count; i++) { 1420 r5_core = cluster->r5_cores[i]; 1421 zynqmp_r5_free_mbox(r5_core->ipi); 1422 iounmap(r5_core->rsc_tbl_va); 1423 of_reserved_mem_device_release(r5_core->dev); 1424 put_device(r5_core->dev); 1425 rproc_del(r5_core->rproc); 1426 rproc_free(r5_core->rproc); 1427 } 1428 1429 kfree(cluster->r5_cores); 1430 kfree(cluster); 1431 platform_set_drvdata(pdev, NULL); 1432 } 1433 1434 /* 1435 * zynqmp_r5_remoteproc_probe() 1436 * parse device-tree, initialize hardware and allocate required resources 1437 * and remoteproc ops 1438 * 1439 * @pdev: domain platform device for R5 cluster 1440 * 1441 * Return: 0 for success and < 0 for failure. 1442 */ 1443 static int zynqmp_r5_remoteproc_probe(struct platform_device *pdev) 1444 { 1445 struct zynqmp_r5_cluster *cluster; 1446 struct device *dev = &pdev->dev; 1447 int ret; 1448 1449 cluster = kzalloc(sizeof(*cluster), GFP_KERNEL); 1450 if (!cluster) 1451 return -ENOMEM; 1452 1453 cluster->dev = dev; 1454 1455 ret = devm_of_platform_populate(dev); 1456 if (ret) { 1457 dev_err_probe(dev, ret, "failed to populate platform dev\n"); 1458 kfree(cluster); 1459 return ret; 1460 } 1461 1462 /* wire in so each core can be cleaned up at driver remove */ 1463 platform_set_drvdata(pdev, cluster); 1464 1465 ret = zynqmp_r5_cluster_init(cluster); 1466 if (ret) { 1467 kfree(cluster); 1468 platform_set_drvdata(pdev, NULL); 1469 dev_err_probe(dev, ret, "Invalid r5f subsystem device tree\n"); 1470 return ret; 1471 } 1472 1473 ret = devm_add_action_or_reset(dev, zynqmp_r5_cluster_exit, pdev); 1474 if (ret) 1475 return ret; 1476 1477 return 0; 1478 } 1479 1480 /* Match table for OF platform binding */ 1481 static const struct of_device_id zynqmp_r5_remoteproc_match[] = { 1482 { .compatible = "xlnx,versal-net-r52fss", }, 1483 { .compatible = "xlnx,versal-r5fss", }, 1484 { .compatible = "xlnx,zynqmp-r5fss", }, 1485 { /* end of list */ }, 1486 }; 1487 MODULE_DEVICE_TABLE(of, zynqmp_r5_remoteproc_match); 1488 1489 static struct platform_driver zynqmp_r5_remoteproc_driver = { 1490 .probe = zynqmp_r5_remoteproc_probe, 1491 .driver = { 1492 .name = "zynqmp_r5_remoteproc", 1493 .of_match_table = zynqmp_r5_remoteproc_match, 1494 }, 1495 }; 1496 module_platform_driver(zynqmp_r5_remoteproc_driver); 1497 1498 MODULE_DESCRIPTION("Xilinx R5F remote processor driver"); 1499 MODULE_AUTHOR("Xilinx Inc."); 1500 MODULE_LICENSE("GPL"); 1501