xref: /linux/drivers/remoteproc/ti_k3_r5_remoteproc.c (revision 9dbbc3b9d09d6deba9f3b9e1d5b355032ed46a75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI K3 R5F (MCU) Remote Processor driver
4  *
5  * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/
6  *	Suman Anna <s-anna@ti.com>
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/mailbox_client.h>
14 #include <linux/module.h>
15 #include <linux/of_address.h>
16 #include <linux/of_device.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/omap-mailbox.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/remoteproc.h>
22 #include <linux/reset.h>
23 #include <linux/slab.h>
24 
25 #include "omap_remoteproc.h"
26 #include "remoteproc_internal.h"
27 #include "ti_sci_proc.h"
28 
29 /* This address can either be for ATCM or BTCM with the other at address 0x0 */
30 #define K3_R5_TCM_DEV_ADDR	0x41010000
31 
32 /* R5 TI-SCI Processor Configuration Flags */
33 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN			0x00000001
34 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN			0x00000002
35 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP			0x00000100
36 #define PROC_BOOT_CFG_FLAG_R5_TEINIT			0x00000200
37 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN			0x00000400
38 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE		0x00000800
39 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN			0x00001000
40 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN			0x00002000
41 /* Available from J7200 SoCs onwards */
42 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS		0x00004000
43 /* Applicable to only AM64x SoCs */
44 #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE		0x00008000
45 
46 /* R5 TI-SCI Processor Control Flags */
47 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT		0x00000001
48 
49 /* R5 TI-SCI Processor Status Flags */
50 #define PROC_BOOT_STATUS_FLAG_R5_WFE			0x00000001
51 #define PROC_BOOT_STATUS_FLAG_R5_WFI			0x00000002
52 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED		0x00000004
53 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED	0x00000100
54 /* Applicable to only AM64x SoCs */
55 #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY	0x00000200
56 
57 /**
58  * struct k3_r5_mem - internal memory structure
59  * @cpu_addr: MPU virtual address of the memory region
60  * @bus_addr: Bus address used to access the memory region
61  * @dev_addr: Device address from remoteproc view
62  * @size: Size of the memory region
63  */
64 struct k3_r5_mem {
65 	void __iomem *cpu_addr;
66 	phys_addr_t bus_addr;
67 	u32 dev_addr;
68 	size_t size;
69 };
70 
71 /*
72  * All cluster mode values are not applicable on all SoCs. The following
73  * are the modes supported on various SoCs:
74  *   Split mode      : AM65x, J721E, J7200 and AM64x SoCs
75  *   LockStep mode   : AM65x, J721E and J7200 SoCs
76  *   Single-CPU mode : AM64x SoCs only
77  */
78 enum cluster_mode {
79 	CLUSTER_MODE_SPLIT = 0,
80 	CLUSTER_MODE_LOCKSTEP,
81 	CLUSTER_MODE_SINGLECPU,
82 };
83 
84 /**
85  * struct k3_r5_soc_data - match data to handle SoC variations
86  * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
87  * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
88  * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
89  */
90 struct k3_r5_soc_data {
91 	bool tcm_is_double;
92 	bool tcm_ecc_autoinit;
93 	bool single_cpu_mode;
94 };
95 
96 /**
97  * struct k3_r5_cluster - K3 R5F Cluster structure
98  * @dev: cached device pointer
99  * @mode: Mode to configure the Cluster - Split or LockStep
100  * @cores: list of R5 cores within the cluster
101  * @soc_data: SoC-specific feature data for a R5FSS
102  */
103 struct k3_r5_cluster {
104 	struct device *dev;
105 	enum cluster_mode mode;
106 	struct list_head cores;
107 	const struct k3_r5_soc_data *soc_data;
108 };
109 
110 /**
111  * struct k3_r5_core - K3 R5 core structure
112  * @elem: linked list item
113  * @dev: cached device pointer
114  * @rproc: rproc handle representing this core
115  * @mem: internal memory regions data
116  * @sram: on-chip SRAM memory regions data
117  * @num_mems: number of internal memory regions
118  * @num_sram: number of on-chip SRAM memory regions
119  * @reset: reset control handle
120  * @tsp: TI-SCI processor control handle
121  * @ti_sci: TI-SCI handle
122  * @ti_sci_id: TI-SCI device identifier
123  * @atcm_enable: flag to control ATCM enablement
124  * @btcm_enable: flag to control BTCM enablement
125  * @loczrama: flag to dictate which TCM is at device address 0x0
126  */
127 struct k3_r5_core {
128 	struct list_head elem;
129 	struct device *dev;
130 	struct rproc *rproc;
131 	struct k3_r5_mem *mem;
132 	struct k3_r5_mem *sram;
133 	int num_mems;
134 	int num_sram;
135 	struct reset_control *reset;
136 	struct ti_sci_proc *tsp;
137 	const struct ti_sci_handle *ti_sci;
138 	u32 ti_sci_id;
139 	u32 atcm_enable;
140 	u32 btcm_enable;
141 	u32 loczrama;
142 };
143 
144 /**
145  * struct k3_r5_rproc - K3 remote processor state
146  * @dev: cached device pointer
147  * @cluster: cached pointer to parent cluster structure
148  * @mbox: mailbox channel handle
149  * @client: mailbox client to request the mailbox channel
150  * @rproc: rproc handle
151  * @core: cached pointer to r5 core structure being used
152  * @rmem: reserved memory regions data
153  * @num_rmems: number of reserved memory regions
154  */
155 struct k3_r5_rproc {
156 	struct device *dev;
157 	struct k3_r5_cluster *cluster;
158 	struct mbox_chan *mbox;
159 	struct mbox_client client;
160 	struct rproc *rproc;
161 	struct k3_r5_core *core;
162 	struct k3_r5_mem *rmem;
163 	int num_rmems;
164 };
165 
166 /**
167  * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
168  * @client: mailbox client pointer used for requesting the mailbox channel
169  * @data: mailbox payload
170  *
171  * This handler is invoked by the OMAP mailbox driver whenever a mailbox
172  * message is received. Usually, the mailbox payload simply contains
173  * the index of the virtqueue that is kicked by the remote processor,
174  * and we let remoteproc core handle it.
175  *
176  * In addition to virtqueue indices, we also have some out-of-band values
177  * that indicate different events. Those values are deliberately very
178  * large so they don't coincide with virtqueue indices.
179  */
180 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
181 {
182 	struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
183 						client);
184 	struct device *dev = kproc->rproc->dev.parent;
185 	const char *name = kproc->rproc->name;
186 	u32 msg = omap_mbox_message(data);
187 
188 	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
189 
190 	switch (msg) {
191 	case RP_MBOX_CRASH:
192 		/*
193 		 * remoteproc detected an exception, but error recovery is not
194 		 * supported. So, just log this for now
195 		 */
196 		dev_err(dev, "K3 R5F rproc %s crashed\n", name);
197 		break;
198 	case RP_MBOX_ECHO_REPLY:
199 		dev_info(dev, "received echo reply from %s\n", name);
200 		break;
201 	default:
202 		/* silently handle all other valid messages */
203 		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
204 			return;
205 		if (msg > kproc->rproc->max_notifyid) {
206 			dev_dbg(dev, "dropping unknown message 0x%x", msg);
207 			return;
208 		}
209 		/* msg contains the index of the triggered vring */
210 		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
211 			dev_dbg(dev, "no message was found in vqid %d\n", msg);
212 	}
213 }
214 
215 /* kick a virtqueue */
216 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
217 {
218 	struct k3_r5_rproc *kproc = rproc->priv;
219 	struct device *dev = rproc->dev.parent;
220 	mbox_msg_t msg = (mbox_msg_t)vqid;
221 	int ret;
222 
223 	/* send the index of the triggered virtqueue in the mailbox payload */
224 	ret = mbox_send_message(kproc->mbox, (void *)msg);
225 	if (ret < 0)
226 		dev_err(dev, "failed to send mailbox message, status = %d\n",
227 			ret);
228 }
229 
230 static int k3_r5_split_reset(struct k3_r5_core *core)
231 {
232 	int ret;
233 
234 	ret = reset_control_assert(core->reset);
235 	if (ret) {
236 		dev_err(core->dev, "local-reset assert failed, ret = %d\n",
237 			ret);
238 		return ret;
239 	}
240 
241 	ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
242 						   core->ti_sci_id);
243 	if (ret) {
244 		dev_err(core->dev, "module-reset assert failed, ret = %d\n",
245 			ret);
246 		if (reset_control_deassert(core->reset))
247 			dev_warn(core->dev, "local-reset deassert back failed\n");
248 	}
249 
250 	return ret;
251 }
252 
253 static int k3_r5_split_release(struct k3_r5_core *core)
254 {
255 	int ret;
256 
257 	ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
258 						   core->ti_sci_id);
259 	if (ret) {
260 		dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
261 			ret);
262 		return ret;
263 	}
264 
265 	ret = reset_control_deassert(core->reset);
266 	if (ret) {
267 		dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
268 			ret);
269 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
270 							 core->ti_sci_id))
271 			dev_warn(core->dev, "module-reset assert back failed\n");
272 	}
273 
274 	return ret;
275 }
276 
277 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
278 {
279 	struct k3_r5_core *core;
280 	int ret;
281 
282 	/* assert local reset on all applicable cores */
283 	list_for_each_entry(core, &cluster->cores, elem) {
284 		ret = reset_control_assert(core->reset);
285 		if (ret) {
286 			dev_err(core->dev, "local-reset assert failed, ret = %d\n",
287 				ret);
288 			core = list_prev_entry(core, elem);
289 			goto unroll_local_reset;
290 		}
291 	}
292 
293 	/* disable PSC modules on all applicable cores */
294 	list_for_each_entry(core, &cluster->cores, elem) {
295 		ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
296 							   core->ti_sci_id);
297 		if (ret) {
298 			dev_err(core->dev, "module-reset assert failed, ret = %d\n",
299 				ret);
300 			goto unroll_module_reset;
301 		}
302 	}
303 
304 	return 0;
305 
306 unroll_module_reset:
307 	list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
308 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
309 							 core->ti_sci_id))
310 			dev_warn(core->dev, "module-reset assert back failed\n");
311 	}
312 	core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
313 unroll_local_reset:
314 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
315 		if (reset_control_deassert(core->reset))
316 			dev_warn(core->dev, "local-reset deassert back failed\n");
317 	}
318 
319 	return ret;
320 }
321 
322 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
323 {
324 	struct k3_r5_core *core;
325 	int ret;
326 
327 	/* enable PSC modules on all applicable cores */
328 	list_for_each_entry_reverse(core, &cluster->cores, elem) {
329 		ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
330 							   core->ti_sci_id);
331 		if (ret) {
332 			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
333 				ret);
334 			core = list_next_entry(core, elem);
335 			goto unroll_module_reset;
336 		}
337 	}
338 
339 	/* deassert local reset on all applicable cores */
340 	list_for_each_entry_reverse(core, &cluster->cores, elem) {
341 		ret = reset_control_deassert(core->reset);
342 		if (ret) {
343 			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
344 				ret);
345 			goto unroll_local_reset;
346 		}
347 	}
348 
349 	return 0;
350 
351 unroll_local_reset:
352 	list_for_each_entry_continue(core, &cluster->cores, elem) {
353 		if (reset_control_assert(core->reset))
354 			dev_warn(core->dev, "local-reset assert back failed\n");
355 	}
356 	core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
357 unroll_module_reset:
358 	list_for_each_entry_from(core, &cluster->cores, elem) {
359 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
360 							 core->ti_sci_id))
361 			dev_warn(core->dev, "module-reset assert back failed\n");
362 	}
363 
364 	return ret;
365 }
366 
367 static inline int k3_r5_core_halt(struct k3_r5_core *core)
368 {
369 	return ti_sci_proc_set_control(core->tsp,
370 				       PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
371 }
372 
373 static inline int k3_r5_core_run(struct k3_r5_core *core)
374 {
375 	return ti_sci_proc_set_control(core->tsp,
376 				       0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
377 }
378 
379 /*
380  * The R5F cores have controls for both a reset and a halt/run. The code
381  * execution from DDR requires the initial boot-strapping code to be run
382  * from the internal TCMs. This function is used to release the resets on
383  * applicable cores to allow loading into the TCMs. The .prepare() ops is
384  * invoked by remoteproc core before any firmware loading, and is followed
385  * by the .start() ops after loading to actually let the R5 cores run.
386  *
387  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
388  * execute code, but combines the TCMs from both cores. The resets for both
389  * cores need to be released to make this possible, as the TCMs are in general
390  * private to each core. Only Core0 needs to be unhalted for running the
391  * cluster in this mode. The function uses the same reset logic as LockStep
392  * mode for this (though the behavior is agnostic of the reset release order).
393  */
394 static int k3_r5_rproc_prepare(struct rproc *rproc)
395 {
396 	struct k3_r5_rproc *kproc = rproc->priv;
397 	struct k3_r5_cluster *cluster = kproc->cluster;
398 	struct k3_r5_core *core = kproc->core;
399 	struct device *dev = kproc->dev;
400 	u32 ctrl = 0, cfg = 0, stat = 0;
401 	u64 boot_vec = 0;
402 	bool mem_init_dis;
403 	int ret;
404 
405 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
406 	if (ret < 0)
407 		return ret;
408 	mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
409 
410 	/* Re-use LockStep-mode reset logic for Single-CPU mode */
411 	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
412 	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
413 		k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
414 	if (ret) {
415 		dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
416 			ret);
417 		return ret;
418 	}
419 
420 	/*
421 	 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
422 	 * of TCMs, so there is no need to perform the s/w memzero. This bit is
423 	 * configurable through System Firmware, the default value does perform
424 	 * auto-init, but account for it in case it is disabled
425 	 */
426 	if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
427 		dev_dbg(dev, "leveraging h/w init for TCM memories\n");
428 		return 0;
429 	}
430 
431 	/*
432 	 * Zero out both TCMs unconditionally (access from v8 Arm core is not
433 	 * affected by ATCM & BTCM enable configuration values) so that ECC
434 	 * can be effective on all TCM addresses.
435 	 */
436 	dev_dbg(dev, "zeroing out ATCM memory\n");
437 	memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
438 
439 	dev_dbg(dev, "zeroing out BTCM memory\n");
440 	memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
441 
442 	return 0;
443 }
444 
445 /*
446  * This function implements the .unprepare() ops and performs the complimentary
447  * operations to that of the .prepare() ops. The function is used to assert the
448  * resets on all applicable cores for the rproc device (depending on LockStep
449  * or Split mode). This completes the second portion of powering down the R5F
450  * cores. The cores themselves are only halted in the .stop() ops, and the
451  * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
452  * stopped.
453  *
454  * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
455  * both cores. The access is made possible only with releasing the resets for
456  * both cores, but with only Core0 unhalted. This function re-uses the same
457  * reset assert logic as LockStep mode for this mode (though the behavior is
458  * agnostic of the reset assert order).
459  */
460 static int k3_r5_rproc_unprepare(struct rproc *rproc)
461 {
462 	struct k3_r5_rproc *kproc = rproc->priv;
463 	struct k3_r5_cluster *cluster = kproc->cluster;
464 	struct k3_r5_core *core = kproc->core;
465 	struct device *dev = kproc->dev;
466 	int ret;
467 
468 	/* Re-use LockStep-mode reset logic for Single-CPU mode */
469 	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
470 	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
471 		k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
472 	if (ret)
473 		dev_err(dev, "unable to disable cores, ret = %d\n", ret);
474 
475 	return ret;
476 }
477 
478 /*
479  * The R5F start sequence includes two different operations
480  * 1. Configure the boot vector for R5F core(s)
481  * 2. Unhalt/Run the R5F core(s)
482  *
483  * The sequence is different between LockStep and Split modes. The LockStep
484  * mode requires the boot vector to be configured only for Core0, and then
485  * unhalt both the cores to start the execution - Core1 needs to be unhalted
486  * first followed by Core0. The Split-mode requires that Core0 to be maintained
487  * always in a higher power state that Core1 (implying Core1 needs to be started
488  * always only after Core0 is started).
489  *
490  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
491  * code, so only Core0 needs to be unhalted. The function uses the same logic
492  * flow as Split-mode for this.
493  */
494 static int k3_r5_rproc_start(struct rproc *rproc)
495 {
496 	struct k3_r5_rproc *kproc = rproc->priv;
497 	struct k3_r5_cluster *cluster = kproc->cluster;
498 	struct mbox_client *client = &kproc->client;
499 	struct device *dev = kproc->dev;
500 	struct k3_r5_core *core;
501 	u32 boot_addr;
502 	int ret;
503 
504 	client->dev = dev;
505 	client->tx_done = NULL;
506 	client->rx_callback = k3_r5_rproc_mbox_callback;
507 	client->tx_block = false;
508 	client->knows_txdone = false;
509 
510 	kproc->mbox = mbox_request_channel(client, 0);
511 	if (IS_ERR(kproc->mbox)) {
512 		ret = -EBUSY;
513 		dev_err(dev, "mbox_request_channel failed: %ld\n",
514 			PTR_ERR(kproc->mbox));
515 		return ret;
516 	}
517 
518 	/*
519 	 * Ping the remote processor, this is only for sanity-sake for now;
520 	 * there is no functional effect whatsoever.
521 	 *
522 	 * Note that the reply will _not_ arrive immediately: this message
523 	 * will wait in the mailbox fifo until the remote processor is booted.
524 	 */
525 	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
526 	if (ret < 0) {
527 		dev_err(dev, "mbox_send_message failed: %d\n", ret);
528 		goto put_mbox;
529 	}
530 
531 	boot_addr = rproc->bootaddr;
532 	/* TODO: add boot_addr sanity checking */
533 	dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
534 
535 	/* boot vector need not be programmed for Core1 in LockStep mode */
536 	core = kproc->core;
537 	ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
538 	if (ret)
539 		goto put_mbox;
540 
541 	/* unhalt/run all applicable cores */
542 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
543 		list_for_each_entry_reverse(core, &cluster->cores, elem) {
544 			ret = k3_r5_core_run(core);
545 			if (ret)
546 				goto unroll_core_run;
547 		}
548 	} else {
549 		ret = k3_r5_core_run(core);
550 		if (ret)
551 			goto put_mbox;
552 	}
553 
554 	return 0;
555 
556 unroll_core_run:
557 	list_for_each_entry_continue(core, &cluster->cores, elem) {
558 		if (k3_r5_core_halt(core))
559 			dev_warn(core->dev, "core halt back failed\n");
560 	}
561 put_mbox:
562 	mbox_free_channel(kproc->mbox);
563 	return ret;
564 }
565 
566 /*
567  * The R5F stop function includes the following operations
568  * 1. Halt R5F core(s)
569  *
570  * The sequence is different between LockStep and Split modes, and the order
571  * of cores the operations are performed are also in general reverse to that
572  * of the start function. The LockStep mode requires each operation to be
573  * performed first on Core0 followed by Core1. The Split-mode requires that
574  * Core0 to be maintained always in a higher power state that Core1 (implying
575  * Core1 needs to be stopped first before Core0).
576  *
577  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
578  * code, so only Core0 needs to be halted. The function uses the same logic
579  * flow as Split-mode for this.
580  *
581  * Note that the R5F halt operation in general is not effective when the R5F
582  * core is running, but is needed to make sure the core won't run after
583  * deasserting the reset the subsequent time. The asserting of reset can
584  * be done here, but is preferred to be done in the .unprepare() ops - this
585  * maintains the symmetric behavior between the .start(), .stop(), .prepare()
586  * and .unprepare() ops, and also balances them well between sysfs 'state'
587  * flow and device bind/unbind or module removal.
588  */
589 static int k3_r5_rproc_stop(struct rproc *rproc)
590 {
591 	struct k3_r5_rproc *kproc = rproc->priv;
592 	struct k3_r5_cluster *cluster = kproc->cluster;
593 	struct k3_r5_core *core = kproc->core;
594 	int ret;
595 
596 	/* halt all applicable cores */
597 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
598 		list_for_each_entry(core, &cluster->cores, elem) {
599 			ret = k3_r5_core_halt(core);
600 			if (ret) {
601 				core = list_prev_entry(core, elem);
602 				goto unroll_core_halt;
603 			}
604 		}
605 	} else {
606 		ret = k3_r5_core_halt(core);
607 		if (ret)
608 			goto out;
609 	}
610 
611 	mbox_free_channel(kproc->mbox);
612 
613 	return 0;
614 
615 unroll_core_halt:
616 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
617 		if (k3_r5_core_run(core))
618 			dev_warn(core->dev, "core run back failed\n");
619 	}
620 out:
621 	return ret;
622 }
623 
624 /*
625  * Internal Memory translation helper
626  *
627  * Custom function implementing the rproc .da_to_va ops to provide address
628  * translation (device address to kernel virtual address) for internal RAMs
629  * present in a DSP or IPU device). The translated addresses can be used
630  * either by the remoteproc core for loading, or by any rpmsg bus drivers.
631  */
632 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
633 {
634 	struct k3_r5_rproc *kproc = rproc->priv;
635 	struct k3_r5_core *core = kproc->core;
636 	void __iomem *va = NULL;
637 	phys_addr_t bus_addr;
638 	u32 dev_addr, offset;
639 	size_t size;
640 	int i;
641 
642 	if (len == 0)
643 		return NULL;
644 
645 	/* handle both R5 and SoC views of ATCM and BTCM */
646 	for (i = 0; i < core->num_mems; i++) {
647 		bus_addr = core->mem[i].bus_addr;
648 		dev_addr = core->mem[i].dev_addr;
649 		size = core->mem[i].size;
650 
651 		/* handle R5-view addresses of TCMs */
652 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
653 			offset = da - dev_addr;
654 			va = core->mem[i].cpu_addr + offset;
655 			return (__force void *)va;
656 		}
657 
658 		/* handle SoC-view addresses of TCMs */
659 		if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
660 			offset = da - bus_addr;
661 			va = core->mem[i].cpu_addr + offset;
662 			return (__force void *)va;
663 		}
664 	}
665 
666 	/* handle any SRAM regions using SoC-view addresses */
667 	for (i = 0; i < core->num_sram; i++) {
668 		dev_addr = core->sram[i].dev_addr;
669 		size = core->sram[i].size;
670 
671 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
672 			offset = da - dev_addr;
673 			va = core->sram[i].cpu_addr + offset;
674 			return (__force void *)va;
675 		}
676 	}
677 
678 	/* handle static DDR reserved memory regions */
679 	for (i = 0; i < kproc->num_rmems; i++) {
680 		dev_addr = kproc->rmem[i].dev_addr;
681 		size = kproc->rmem[i].size;
682 
683 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
684 			offset = da - dev_addr;
685 			va = kproc->rmem[i].cpu_addr + offset;
686 			return (__force void *)va;
687 		}
688 	}
689 
690 	return NULL;
691 }
692 
693 static const struct rproc_ops k3_r5_rproc_ops = {
694 	.prepare	= k3_r5_rproc_prepare,
695 	.unprepare	= k3_r5_rproc_unprepare,
696 	.start		= k3_r5_rproc_start,
697 	.stop		= k3_r5_rproc_stop,
698 	.kick		= k3_r5_rproc_kick,
699 	.da_to_va	= k3_r5_rproc_da_to_va,
700 };
701 
702 /*
703  * Internal R5F Core configuration
704  *
705  * Each R5FSS has a cluster-level setting for configuring the processor
706  * subsystem either in a safety/fault-tolerant LockStep mode or a performance
707  * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
708  * as an alternate for LockStep mode that exercises only a single R5F core
709  * called Single-CPU mode. Each R5F core has a number of settings to either
710  * enable/disable each of the TCMs, control which TCM appears at the R5F core's
711  * address 0x0. These settings need to be configured before the resets for the
712  * corresponding core are released. These settings are all protected and managed
713  * by the System Processor.
714  *
715  * This function is used to pre-configure these settings for each R5F core, and
716  * the configuration is all done through various ti_sci_proc functions that
717  * communicate with the System Processor. The function also ensures that both
718  * the cores are halted before the .prepare() step.
719  *
720  * The function is called from k3_r5_cluster_rproc_init() and is invoked either
721  * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
722  * for LockStep-mode is dictated by an eFUSE register bit, and the config
723  * settings retrieved from DT are adjusted accordingly as per the permitted
724  * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
725  * supports a Single-CPU mode. All cluster level settings like Cluster mode and
726  * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
727  * and retrieved using Core0.
728  *
729  * The function behavior is different based on the cluster mode. The R5F cores
730  * are configured independently as per their individual settings in Split mode.
731  * They are identically configured in LockStep mode using the primary Core0
732  * settings. However, some individual settings cannot be set in LockStep mode.
733  * This is overcome by switching to Split-mode initially and then programming
734  * both the cores with the same settings, before reconfiguing again for
735  * LockStep mode.
736  */
737 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
738 {
739 	struct k3_r5_cluster *cluster = kproc->cluster;
740 	struct device *dev = kproc->dev;
741 	struct k3_r5_core *core0, *core, *temp;
742 	u32 ctrl = 0, cfg = 0, stat = 0;
743 	u32 set_cfg = 0, clr_cfg = 0;
744 	u64 boot_vec = 0;
745 	bool lockstep_en;
746 	bool single_cpu;
747 	int ret;
748 
749 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
750 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
751 	    cluster->mode == CLUSTER_MODE_SINGLECPU) {
752 		core = core0;
753 	} else {
754 		core = kproc->core;
755 	}
756 
757 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
758 				     &stat);
759 	if (ret < 0)
760 		return ret;
761 
762 	dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
763 		boot_vec, cfg, ctrl, stat);
764 
765 	/* check if only Single-CPU mode is supported on applicable SoCs */
766 	if (cluster->soc_data->single_cpu_mode) {
767 		single_cpu =
768 			!!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
769 		if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
770 			dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
771 			cluster->mode = CLUSTER_MODE_SINGLECPU;
772 		}
773 		goto config;
774 	}
775 
776 	/* check conventional LockStep vs Split mode configuration */
777 	lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
778 	if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
779 		dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
780 		cluster->mode = CLUSTER_MODE_SPLIT;
781 	}
782 
783 config:
784 	/* always enable ARM mode and set boot vector to 0 */
785 	boot_vec = 0x0;
786 	if (core == core0) {
787 		clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
788 		if (cluster->soc_data->single_cpu_mode) {
789 			/*
790 			 * Single-CPU configuration bit can only be configured
791 			 * on Core0 and system firmware will NACK any requests
792 			 * with the bit configured, so program it only on
793 			 * permitted cores
794 			 */
795 			if (cluster->mode == CLUSTER_MODE_SINGLECPU)
796 				set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
797 		} else {
798 			/*
799 			 * LockStep configuration bit is Read-only on Split-mode
800 			 * _only_ devices and system firmware will NACK any
801 			 * requests with the bit configured, so program it only
802 			 * on permitted devices
803 			 */
804 			if (lockstep_en)
805 				clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
806 		}
807 	}
808 
809 	if (core->atcm_enable)
810 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
811 	else
812 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
813 
814 	if (core->btcm_enable)
815 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
816 	else
817 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
818 
819 	if (core->loczrama)
820 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
821 	else
822 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
823 
824 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
825 		/*
826 		 * work around system firmware limitations to make sure both
827 		 * cores are programmed symmetrically in LockStep. LockStep
828 		 * and TEINIT config is only allowed with Core0.
829 		 */
830 		list_for_each_entry(temp, &cluster->cores, elem) {
831 			ret = k3_r5_core_halt(temp);
832 			if (ret)
833 				goto out;
834 
835 			if (temp != core) {
836 				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
837 				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
838 			}
839 			ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
840 						     set_cfg, clr_cfg);
841 			if (ret)
842 				goto out;
843 		}
844 
845 		set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
846 		clr_cfg = 0;
847 		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
848 					     set_cfg, clr_cfg);
849 	} else {
850 		ret = k3_r5_core_halt(core);
851 		if (ret)
852 			goto out;
853 
854 		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
855 					     set_cfg, clr_cfg);
856 	}
857 
858 out:
859 	return ret;
860 }
861 
862 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
863 {
864 	struct device *dev = kproc->dev;
865 	struct device_node *np = dev_of_node(dev);
866 	struct device_node *rmem_np;
867 	struct reserved_mem *rmem;
868 	int num_rmems;
869 	int ret, i;
870 
871 	num_rmems = of_property_count_elems_of_size(np, "memory-region",
872 						    sizeof(phandle));
873 	if (num_rmems <= 0) {
874 		dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
875 			num_rmems);
876 		return -EINVAL;
877 	}
878 	if (num_rmems < 2) {
879 		dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n",
880 			num_rmems);
881 		return -EINVAL;
882 	}
883 
884 	/* use reserved memory region 0 for vring DMA allocations */
885 	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
886 	if (ret) {
887 		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
888 			ret);
889 		return ret;
890 	}
891 
892 	num_rmems--;
893 	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
894 	if (!kproc->rmem) {
895 		ret = -ENOMEM;
896 		goto release_rmem;
897 	}
898 
899 	/* use remaining reserved memory regions for static carveouts */
900 	for (i = 0; i < num_rmems; i++) {
901 		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
902 		if (!rmem_np) {
903 			ret = -EINVAL;
904 			goto unmap_rmem;
905 		}
906 
907 		rmem = of_reserved_mem_lookup(rmem_np);
908 		if (!rmem) {
909 			of_node_put(rmem_np);
910 			ret = -EINVAL;
911 			goto unmap_rmem;
912 		}
913 		of_node_put(rmem_np);
914 
915 		kproc->rmem[i].bus_addr = rmem->base;
916 		/*
917 		 * R5Fs do not have an MMU, but have a Region Address Translator
918 		 * (RAT) module that provides a fixed entry translation between
919 		 * the 32-bit processor addresses to 64-bit bus addresses. The
920 		 * RAT is programmable only by the R5F cores. Support for RAT
921 		 * is currently not supported, so 64-bit address regions are not
922 		 * supported. The absence of MMUs implies that the R5F device
923 		 * addresses/supported memory regions are restricted to 32-bit
924 		 * bus addresses, and are identical
925 		 */
926 		kproc->rmem[i].dev_addr = (u32)rmem->base;
927 		kproc->rmem[i].size = rmem->size;
928 		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
929 		if (!kproc->rmem[i].cpu_addr) {
930 			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
931 				i + 1, &rmem->base, &rmem->size);
932 			ret = -ENOMEM;
933 			goto unmap_rmem;
934 		}
935 
936 		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
937 			i + 1, &kproc->rmem[i].bus_addr,
938 			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
939 			kproc->rmem[i].dev_addr);
940 	}
941 	kproc->num_rmems = num_rmems;
942 
943 	return 0;
944 
945 unmap_rmem:
946 	for (i--; i >= 0; i--)
947 		iounmap(kproc->rmem[i].cpu_addr);
948 	kfree(kproc->rmem);
949 release_rmem:
950 	of_reserved_mem_device_release(dev);
951 	return ret;
952 }
953 
954 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
955 {
956 	int i;
957 
958 	for (i = 0; i < kproc->num_rmems; i++)
959 		iounmap(kproc->rmem[i].cpu_addr);
960 	kfree(kproc->rmem);
961 
962 	of_reserved_mem_device_release(kproc->dev);
963 }
964 
965 /*
966  * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
967  * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
968  * cores are usable in Split-mode, but only the Core0 TCMs can be used in
969  * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
970  * leveraging the Core1 TCMs as well in certain modes where they would have
971  * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
972  * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
973  * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
974  * the Core0 TCMs, and the dts representation reflects this increased size on
975  * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
976  * half the original size in Split mode.
977  */
978 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
979 {
980 	struct k3_r5_cluster *cluster = kproc->cluster;
981 	struct k3_r5_core *core = kproc->core;
982 	struct device *cdev = core->dev;
983 	struct k3_r5_core *core0;
984 
985 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
986 	    cluster->mode == CLUSTER_MODE_SINGLECPU ||
987 	    !cluster->soc_data->tcm_is_double)
988 		return;
989 
990 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
991 	if (core == core0) {
992 		WARN_ON(core->mem[0].size != SZ_64K);
993 		WARN_ON(core->mem[1].size != SZ_64K);
994 
995 		core->mem[0].size /= 2;
996 		core->mem[1].size /= 2;
997 
998 		dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
999 			core->mem[0].size, core->mem[1].size);
1000 	}
1001 }
1002 
1003 static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
1004 {
1005 	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1006 	struct device *dev = &pdev->dev;
1007 	struct k3_r5_rproc *kproc;
1008 	struct k3_r5_core *core, *core1;
1009 	struct device *cdev;
1010 	const char *fw_name;
1011 	struct rproc *rproc;
1012 	int ret;
1013 
1014 	core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1015 	list_for_each_entry(core, &cluster->cores, elem) {
1016 		cdev = core->dev;
1017 		ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
1018 		if (ret) {
1019 			dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
1020 				ret);
1021 			goto out;
1022 		}
1023 
1024 		rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
1025 				    fw_name, sizeof(*kproc));
1026 		if (!rproc) {
1027 			ret = -ENOMEM;
1028 			goto out;
1029 		}
1030 
1031 		/* K3 R5s have a Region Address Translator (RAT) but no MMU */
1032 		rproc->has_iommu = false;
1033 		/* error recovery is not supported at present */
1034 		rproc->recovery_disabled = true;
1035 
1036 		kproc = rproc->priv;
1037 		kproc->cluster = cluster;
1038 		kproc->core = core;
1039 		kproc->dev = cdev;
1040 		kproc->rproc = rproc;
1041 		core->rproc = rproc;
1042 
1043 		ret = k3_r5_rproc_configure(kproc);
1044 		if (ret) {
1045 			dev_err(dev, "initial configure failed, ret = %d\n",
1046 				ret);
1047 			goto err_config;
1048 		}
1049 
1050 		k3_r5_adjust_tcm_sizes(kproc);
1051 
1052 		ret = k3_r5_reserved_mem_init(kproc);
1053 		if (ret) {
1054 			dev_err(dev, "reserved memory init failed, ret = %d\n",
1055 				ret);
1056 			goto err_config;
1057 		}
1058 
1059 		ret = rproc_add(rproc);
1060 		if (ret) {
1061 			dev_err(dev, "rproc_add failed, ret = %d\n", ret);
1062 			goto err_add;
1063 		}
1064 
1065 		/* create only one rproc in lockstep mode or single-cpu mode */
1066 		if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1067 		    cluster->mode == CLUSTER_MODE_SINGLECPU)
1068 			break;
1069 	}
1070 
1071 	return 0;
1072 
1073 err_split:
1074 	rproc_del(rproc);
1075 err_add:
1076 	k3_r5_reserved_mem_exit(kproc);
1077 err_config:
1078 	rproc_free(rproc);
1079 	core->rproc = NULL;
1080 out:
1081 	/* undo core0 upon any failures on core1 in split-mode */
1082 	if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
1083 		core = list_prev_entry(core, elem);
1084 		rproc = core->rproc;
1085 		kproc = rproc->priv;
1086 		goto err_split;
1087 	}
1088 	return ret;
1089 }
1090 
1091 static void k3_r5_cluster_rproc_exit(void *data)
1092 {
1093 	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1094 	struct k3_r5_rproc *kproc;
1095 	struct k3_r5_core *core;
1096 	struct rproc *rproc;
1097 
1098 	/*
1099 	 * lockstep mode and single-cpu modes have only one rproc associated
1100 	 * with first core, whereas split-mode has two rprocs associated with
1101 	 * each core, and requires that core1 be powered down first
1102 	 */
1103 	core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1104 		cluster->mode == CLUSTER_MODE_SINGLECPU) ?
1105 		list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
1106 		list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1107 
1108 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
1109 		rproc = core->rproc;
1110 		kproc = rproc->priv;
1111 
1112 		rproc_del(rproc);
1113 
1114 		k3_r5_reserved_mem_exit(kproc);
1115 
1116 		rproc_free(rproc);
1117 		core->rproc = NULL;
1118 	}
1119 }
1120 
1121 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
1122 					       struct k3_r5_core *core)
1123 {
1124 	static const char * const mem_names[] = {"atcm", "btcm"};
1125 	struct device *dev = &pdev->dev;
1126 	struct resource *res;
1127 	int num_mems;
1128 	int i;
1129 
1130 	num_mems = ARRAY_SIZE(mem_names);
1131 	core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
1132 	if (!core->mem)
1133 		return -ENOMEM;
1134 
1135 	for (i = 0; i < num_mems; i++) {
1136 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1137 						   mem_names[i]);
1138 		if (!res) {
1139 			dev_err(dev, "found no memory resource for %s\n",
1140 				mem_names[i]);
1141 			return -EINVAL;
1142 		}
1143 		if (!devm_request_mem_region(dev, res->start,
1144 					     resource_size(res),
1145 					     dev_name(dev))) {
1146 			dev_err(dev, "could not request %s region for resource\n",
1147 				mem_names[i]);
1148 			return -EBUSY;
1149 		}
1150 
1151 		/*
1152 		 * TCMs are designed in general to support RAM-like backing
1153 		 * memories. So, map these as Normal Non-Cached memories. This
1154 		 * also avoids/fixes any potential alignment faults due to
1155 		 * unaligned data accesses when using memcpy() or memset()
1156 		 * functions (normally seen with device type memory).
1157 		 */
1158 		core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1159 							resource_size(res));
1160 		if (!core->mem[i].cpu_addr) {
1161 			dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1162 			return -ENOMEM;
1163 		}
1164 		core->mem[i].bus_addr = res->start;
1165 
1166 		/*
1167 		 * TODO:
1168 		 * The R5F cores can place ATCM & BTCM anywhere in its address
1169 		 * based on the corresponding Region Registers in the System
1170 		 * Control coprocessor. For now, place ATCM and BTCM at
1171 		 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1172 		 * SoCs) based on loczrama setting
1173 		 */
1174 		if (!strcmp(mem_names[i], "atcm")) {
1175 			core->mem[i].dev_addr = core->loczrama ?
1176 							0 : K3_R5_TCM_DEV_ADDR;
1177 		} else {
1178 			core->mem[i].dev_addr = core->loczrama ?
1179 							K3_R5_TCM_DEV_ADDR : 0;
1180 		}
1181 		core->mem[i].size = resource_size(res);
1182 
1183 		dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1184 			mem_names[i], &core->mem[i].bus_addr,
1185 			core->mem[i].size, core->mem[i].cpu_addr,
1186 			core->mem[i].dev_addr);
1187 	}
1188 	core->num_mems = num_mems;
1189 
1190 	return 0;
1191 }
1192 
1193 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1194 					   struct k3_r5_core *core)
1195 {
1196 	struct device_node *np = pdev->dev.of_node;
1197 	struct device *dev = &pdev->dev;
1198 	struct device_node *sram_np;
1199 	struct resource res;
1200 	int num_sram;
1201 	int i, ret;
1202 
1203 	num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1204 	if (num_sram <= 0) {
1205 		dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1206 			num_sram);
1207 		return 0;
1208 	}
1209 
1210 	core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1211 	if (!core->sram)
1212 		return -ENOMEM;
1213 
1214 	for (i = 0; i < num_sram; i++) {
1215 		sram_np = of_parse_phandle(np, "sram", i);
1216 		if (!sram_np)
1217 			return -EINVAL;
1218 
1219 		if (!of_device_is_available(sram_np)) {
1220 			of_node_put(sram_np);
1221 			return -EINVAL;
1222 		}
1223 
1224 		ret = of_address_to_resource(sram_np, 0, &res);
1225 		of_node_put(sram_np);
1226 		if (ret)
1227 			return -EINVAL;
1228 
1229 		core->sram[i].bus_addr = res.start;
1230 		core->sram[i].dev_addr = res.start;
1231 		core->sram[i].size = resource_size(&res);
1232 		core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1233 							 resource_size(&res));
1234 		if (!core->sram[i].cpu_addr) {
1235 			dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1236 				i, &res.start);
1237 			return -ENOMEM;
1238 		}
1239 
1240 		dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1241 			i, &core->sram[i].bus_addr,
1242 			core->sram[i].size, core->sram[i].cpu_addr,
1243 			core->sram[i].dev_addr);
1244 	}
1245 	core->num_sram = num_sram;
1246 
1247 	return 0;
1248 }
1249 
1250 static
1251 struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
1252 					  const struct ti_sci_handle *sci)
1253 {
1254 	struct ti_sci_proc *tsp;
1255 	u32 temp[2];
1256 	int ret;
1257 
1258 	ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
1259 					 temp, 2);
1260 	if (ret < 0)
1261 		return ERR_PTR(ret);
1262 
1263 	tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
1264 	if (!tsp)
1265 		return ERR_PTR(-ENOMEM);
1266 
1267 	tsp->dev = dev;
1268 	tsp->sci = sci;
1269 	tsp->ops = &sci->ops.proc_ops;
1270 	tsp->proc_id = temp[0];
1271 	tsp->host_id = temp[1];
1272 
1273 	return tsp;
1274 }
1275 
1276 static int k3_r5_core_of_init(struct platform_device *pdev)
1277 {
1278 	struct device *dev = &pdev->dev;
1279 	struct device_node *np = dev_of_node(dev);
1280 	struct k3_r5_core *core;
1281 	int ret;
1282 
1283 	if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1284 		return -ENOMEM;
1285 
1286 	core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1287 	if (!core) {
1288 		ret = -ENOMEM;
1289 		goto err;
1290 	}
1291 
1292 	core->dev = dev;
1293 	/*
1294 	 * Use SoC Power-on-Reset values as default if no DT properties are
1295 	 * used to dictate the TCM configurations
1296 	 */
1297 	core->atcm_enable = 0;
1298 	core->btcm_enable = 1;
1299 	core->loczrama = 1;
1300 
1301 	ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1302 	if (ret < 0 && ret != -EINVAL) {
1303 		dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1304 			ret);
1305 		goto err;
1306 	}
1307 
1308 	ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1309 	if (ret < 0 && ret != -EINVAL) {
1310 		dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1311 			ret);
1312 		goto err;
1313 	}
1314 
1315 	ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1316 	if (ret < 0 && ret != -EINVAL) {
1317 		dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1318 		goto err;
1319 	}
1320 
1321 	core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1322 	if (IS_ERR(core->ti_sci)) {
1323 		ret = PTR_ERR(core->ti_sci);
1324 		if (ret != -EPROBE_DEFER) {
1325 			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1326 				ret);
1327 		}
1328 		core->ti_sci = NULL;
1329 		goto err;
1330 	}
1331 
1332 	ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1333 	if (ret) {
1334 		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1335 		goto err;
1336 	}
1337 
1338 	core->reset = devm_reset_control_get_exclusive(dev, NULL);
1339 	if (IS_ERR_OR_NULL(core->reset)) {
1340 		ret = PTR_ERR_OR_ZERO(core->reset);
1341 		if (!ret)
1342 			ret = -ENODEV;
1343 		if (ret != -EPROBE_DEFER) {
1344 			dev_err(dev, "failed to get reset handle, ret = %d\n",
1345 				ret);
1346 		}
1347 		goto err;
1348 	}
1349 
1350 	core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
1351 	if (IS_ERR(core->tsp)) {
1352 		ret = PTR_ERR(core->tsp);
1353 		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1354 			ret);
1355 		goto err;
1356 	}
1357 
1358 	ret = k3_r5_core_of_get_internal_memories(pdev, core);
1359 	if (ret) {
1360 		dev_err(dev, "failed to get internal memories, ret = %d\n",
1361 			ret);
1362 		goto err;
1363 	}
1364 
1365 	ret = k3_r5_core_of_get_sram_memories(pdev, core);
1366 	if (ret) {
1367 		dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1368 		goto err;
1369 	}
1370 
1371 	ret = ti_sci_proc_request(core->tsp);
1372 	if (ret < 0) {
1373 		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1374 		goto err;
1375 	}
1376 
1377 	platform_set_drvdata(pdev, core);
1378 	devres_close_group(dev, k3_r5_core_of_init);
1379 
1380 	return 0;
1381 
1382 err:
1383 	devres_release_group(dev, k3_r5_core_of_init);
1384 	return ret;
1385 }
1386 
1387 /*
1388  * free the resources explicitly since driver model is not being used
1389  * for the child R5F devices
1390  */
1391 static void k3_r5_core_of_exit(struct platform_device *pdev)
1392 {
1393 	struct k3_r5_core *core = platform_get_drvdata(pdev);
1394 	struct device *dev = &pdev->dev;
1395 	int ret;
1396 
1397 	ret = ti_sci_proc_release(core->tsp);
1398 	if (ret)
1399 		dev_err(dev, "failed to release proc, ret = %d\n", ret);
1400 
1401 	platform_set_drvdata(pdev, NULL);
1402 	devres_release_group(dev, k3_r5_core_of_init);
1403 }
1404 
1405 static void k3_r5_cluster_of_exit(void *data)
1406 {
1407 	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1408 	struct platform_device *cpdev;
1409 	struct k3_r5_core *core, *temp;
1410 
1411 	list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1412 		list_del(&core->elem);
1413 		cpdev = to_platform_device(core->dev);
1414 		k3_r5_core_of_exit(cpdev);
1415 	}
1416 }
1417 
1418 static int k3_r5_cluster_of_init(struct platform_device *pdev)
1419 {
1420 	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1421 	struct device *dev = &pdev->dev;
1422 	struct device_node *np = dev_of_node(dev);
1423 	struct platform_device *cpdev;
1424 	struct device_node *child;
1425 	struct k3_r5_core *core;
1426 	int ret;
1427 
1428 	for_each_available_child_of_node(np, child) {
1429 		cpdev = of_find_device_by_node(child);
1430 		if (!cpdev) {
1431 			ret = -ENODEV;
1432 			dev_err(dev, "could not get R5 core platform device\n");
1433 			goto fail;
1434 		}
1435 
1436 		ret = k3_r5_core_of_init(cpdev);
1437 		if (ret) {
1438 			dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1439 				ret);
1440 			put_device(&cpdev->dev);
1441 			goto fail;
1442 		}
1443 
1444 		core = platform_get_drvdata(cpdev);
1445 		put_device(&cpdev->dev);
1446 		list_add_tail(&core->elem, &cluster->cores);
1447 	}
1448 
1449 	return 0;
1450 
1451 fail:
1452 	k3_r5_cluster_of_exit(pdev);
1453 	return ret;
1454 }
1455 
1456 static int k3_r5_probe(struct platform_device *pdev)
1457 {
1458 	struct device *dev = &pdev->dev;
1459 	struct device_node *np = dev_of_node(dev);
1460 	struct k3_r5_cluster *cluster;
1461 	const struct k3_r5_soc_data *data;
1462 	int ret;
1463 	int num_cores;
1464 
1465 	data = of_device_get_match_data(&pdev->dev);
1466 	if (!data) {
1467 		dev_err(dev, "SoC-specific data is not defined\n");
1468 		return -ENODEV;
1469 	}
1470 
1471 	cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1472 	if (!cluster)
1473 		return -ENOMEM;
1474 
1475 	cluster->dev = dev;
1476 	/*
1477 	 * default to most common efuse configurations - Split-mode on AM64x
1478 	 * and LockStep-mode on all others
1479 	 */
1480 	cluster->mode = data->single_cpu_mode ?
1481 				CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
1482 	cluster->soc_data = data;
1483 	INIT_LIST_HEAD(&cluster->cores);
1484 
1485 	ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1486 	if (ret < 0 && ret != -EINVAL) {
1487 		dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
1488 			ret);
1489 		return ret;
1490 	}
1491 
1492 	num_cores = of_get_available_child_count(np);
1493 	if (num_cores != 2) {
1494 		dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n",
1495 			num_cores);
1496 		return -ENODEV;
1497 	}
1498 
1499 	platform_set_drvdata(pdev, cluster);
1500 
1501 	ret = devm_of_platform_populate(dev);
1502 	if (ret) {
1503 		dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
1504 			ret);
1505 		return ret;
1506 	}
1507 
1508 	ret = k3_r5_cluster_of_init(pdev);
1509 	if (ret) {
1510 		dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1511 		return ret;
1512 	}
1513 
1514 	ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
1515 	if (ret)
1516 		return ret;
1517 
1518 	ret = k3_r5_cluster_rproc_init(pdev);
1519 	if (ret) {
1520 		dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1521 			ret);
1522 		return ret;
1523 	}
1524 
1525 	ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
1526 	if (ret)
1527 		return ret;
1528 
1529 	return 0;
1530 }
1531 
1532 static const struct k3_r5_soc_data am65_j721e_soc_data = {
1533 	.tcm_is_double = false,
1534 	.tcm_ecc_autoinit = false,
1535 	.single_cpu_mode = false,
1536 };
1537 
1538 static const struct k3_r5_soc_data j7200_soc_data = {
1539 	.tcm_is_double = true,
1540 	.tcm_ecc_autoinit = true,
1541 	.single_cpu_mode = false,
1542 };
1543 
1544 static const struct k3_r5_soc_data am64_soc_data = {
1545 	.tcm_is_double = true,
1546 	.tcm_ecc_autoinit = true,
1547 	.single_cpu_mode = true,
1548 };
1549 
1550 static const struct of_device_id k3_r5_of_match[] = {
1551 	{ .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1552 	{ .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
1553 	{ .compatible = "ti,j7200-r5fss", .data = &j7200_soc_data, },
1554 	{ .compatible = "ti,am64-r5fss",  .data = &am64_soc_data, },
1555 	{ /* sentinel */ },
1556 };
1557 MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1558 
1559 static struct platform_driver k3_r5_rproc_driver = {
1560 	.probe = k3_r5_probe,
1561 	.driver = {
1562 		.name = "k3_r5_rproc",
1563 		.of_match_table = k3_r5_of_match,
1564 	},
1565 };
1566 
1567 module_platform_driver(k3_r5_rproc_driver);
1568 
1569 MODULE_LICENSE("GPL v2");
1570 MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1571 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1572