1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI K3 R5F (MCU) Remote Processor driver 4 * 5 * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/ 6 * Suman Anna <s-anna@ti.com> 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/kernel.h> 13 #include <linux/mailbox_client.h> 14 #include <linux/module.h> 15 #include <linux/of.h> 16 #include <linux/of_address.h> 17 #include <linux/of_reserved_mem.h> 18 #include <linux/of_platform.h> 19 #include <linux/omap-mailbox.h> 20 #include <linux/platform_device.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/remoteproc.h> 23 #include <linux/reset.h> 24 #include <linux/slab.h> 25 26 #include "omap_remoteproc.h" 27 #include "remoteproc_internal.h" 28 #include "ti_sci_proc.h" 29 30 /* This address can either be for ATCM or BTCM with the other at address 0x0 */ 31 #define K3_R5_TCM_DEV_ADDR 0x41010000 32 33 /* R5 TI-SCI Processor Configuration Flags */ 34 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 35 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 36 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 37 #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 38 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 39 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 40 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 41 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 42 /* Available from J7200 SoCs onwards */ 43 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000 44 /* Applicable to only AM64x SoCs */ 45 #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000 46 47 /* R5 TI-SCI Processor Control Flags */ 48 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 49 50 /* R5 TI-SCI Processor Status Flags */ 51 #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 52 #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 53 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 54 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 55 /* Applicable to only AM64x SoCs */ 56 #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200 57 58 /** 59 * struct k3_r5_mem - internal memory structure 60 * @cpu_addr: MPU virtual address of the memory region 61 * @bus_addr: Bus address used to access the memory region 62 * @dev_addr: Device address from remoteproc view 63 * @size: Size of the memory region 64 */ 65 struct k3_r5_mem { 66 void __iomem *cpu_addr; 67 phys_addr_t bus_addr; 68 u32 dev_addr; 69 size_t size; 70 }; 71 72 /* 73 * All cluster mode values are not applicable on all SoCs. The following 74 * are the modes supported on various SoCs: 75 * Split mode : AM65x, J721E, J7200 and AM64x SoCs 76 * LockStep mode : AM65x, J721E and J7200 SoCs 77 * Single-CPU mode : AM64x SoCs only 78 * Single-Core mode : AM62x, AM62A SoCs 79 */ 80 enum cluster_mode { 81 CLUSTER_MODE_SPLIT = 0, 82 CLUSTER_MODE_LOCKSTEP, 83 CLUSTER_MODE_SINGLECPU, 84 CLUSTER_MODE_SINGLECORE 85 }; 86 87 /** 88 * struct k3_r5_soc_data - match data to handle SoC variations 89 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes 90 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC 91 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode 92 * @is_single_core: flag to denote if SoC/IP has only single core R5 93 */ 94 struct k3_r5_soc_data { 95 bool tcm_is_double; 96 bool tcm_ecc_autoinit; 97 bool single_cpu_mode; 98 bool is_single_core; 99 }; 100 101 /** 102 * struct k3_r5_cluster - K3 R5F Cluster structure 103 * @dev: cached device pointer 104 * @mode: Mode to configure the Cluster - Split or LockStep 105 * @cores: list of R5 cores within the cluster 106 * @core_transition: wait queue to sync core state changes 107 * @soc_data: SoC-specific feature data for a R5FSS 108 */ 109 struct k3_r5_cluster { 110 struct device *dev; 111 enum cluster_mode mode; 112 struct list_head cores; 113 wait_queue_head_t core_transition; 114 const struct k3_r5_soc_data *soc_data; 115 }; 116 117 /** 118 * struct k3_r5_core - K3 R5 core structure 119 * @elem: linked list item 120 * @dev: cached device pointer 121 * @rproc: rproc handle representing this core 122 * @mem: internal memory regions data 123 * @sram: on-chip SRAM memory regions data 124 * @num_mems: number of internal memory regions 125 * @num_sram: number of on-chip SRAM memory regions 126 * @reset: reset control handle 127 * @tsp: TI-SCI processor control handle 128 * @ti_sci: TI-SCI handle 129 * @ti_sci_id: TI-SCI device identifier 130 * @atcm_enable: flag to control ATCM enablement 131 * @btcm_enable: flag to control BTCM enablement 132 * @loczrama: flag to dictate which TCM is at device address 0x0 133 * @released_from_reset: flag to signal when core is out of reset 134 */ 135 struct k3_r5_core { 136 struct list_head elem; 137 struct device *dev; 138 struct rproc *rproc; 139 struct k3_r5_mem *mem; 140 struct k3_r5_mem *sram; 141 int num_mems; 142 int num_sram; 143 struct reset_control *reset; 144 struct ti_sci_proc *tsp; 145 const struct ti_sci_handle *ti_sci; 146 u32 ti_sci_id; 147 u32 atcm_enable; 148 u32 btcm_enable; 149 u32 loczrama; 150 bool released_from_reset; 151 }; 152 153 /** 154 * struct k3_r5_rproc - K3 remote processor state 155 * @dev: cached device pointer 156 * @cluster: cached pointer to parent cluster structure 157 * @mbox: mailbox channel handle 158 * @client: mailbox client to request the mailbox channel 159 * @rproc: rproc handle 160 * @core: cached pointer to r5 core structure being used 161 * @rmem: reserved memory regions data 162 * @num_rmems: number of reserved memory regions 163 */ 164 struct k3_r5_rproc { 165 struct device *dev; 166 struct k3_r5_cluster *cluster; 167 struct mbox_chan *mbox; 168 struct mbox_client client; 169 struct rproc *rproc; 170 struct k3_r5_core *core; 171 struct k3_r5_mem *rmem; 172 int num_rmems; 173 }; 174 175 /** 176 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler 177 * @client: mailbox client pointer used for requesting the mailbox channel 178 * @data: mailbox payload 179 * 180 * This handler is invoked by the OMAP mailbox driver whenever a mailbox 181 * message is received. Usually, the mailbox payload simply contains 182 * the index of the virtqueue that is kicked by the remote processor, 183 * and we let remoteproc core handle it. 184 * 185 * In addition to virtqueue indices, we also have some out-of-band values 186 * that indicate different events. Those values are deliberately very 187 * large so they don't coincide with virtqueue indices. 188 */ 189 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data) 190 { 191 struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc, 192 client); 193 struct device *dev = kproc->rproc->dev.parent; 194 const char *name = kproc->rproc->name; 195 u32 msg = omap_mbox_message(data); 196 197 dev_dbg(dev, "mbox msg: 0x%x\n", msg); 198 199 switch (msg) { 200 case RP_MBOX_CRASH: 201 /* 202 * remoteproc detected an exception, but error recovery is not 203 * supported. So, just log this for now 204 */ 205 dev_err(dev, "K3 R5F rproc %s crashed\n", name); 206 break; 207 case RP_MBOX_ECHO_REPLY: 208 dev_info(dev, "received echo reply from %s\n", name); 209 break; 210 default: 211 /* silently handle all other valid messages */ 212 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) 213 return; 214 if (msg > kproc->rproc->max_notifyid) { 215 dev_dbg(dev, "dropping unknown message 0x%x", msg); 216 return; 217 } 218 /* msg contains the index of the triggered vring */ 219 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) 220 dev_dbg(dev, "no message was found in vqid %d\n", msg); 221 } 222 } 223 224 /* kick a virtqueue */ 225 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid) 226 { 227 struct k3_r5_rproc *kproc = rproc->priv; 228 struct device *dev = rproc->dev.parent; 229 mbox_msg_t msg = (mbox_msg_t)vqid; 230 int ret; 231 232 /* send the index of the triggered virtqueue in the mailbox payload */ 233 ret = mbox_send_message(kproc->mbox, (void *)msg); 234 if (ret < 0) 235 dev_err(dev, "failed to send mailbox message, status = %d\n", 236 ret); 237 } 238 239 static int k3_r5_split_reset(struct k3_r5_core *core) 240 { 241 int ret; 242 243 ret = reset_control_assert(core->reset); 244 if (ret) { 245 dev_err(core->dev, "local-reset assert failed, ret = %d\n", 246 ret); 247 return ret; 248 } 249 250 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 251 core->ti_sci_id); 252 if (ret) { 253 dev_err(core->dev, "module-reset assert failed, ret = %d\n", 254 ret); 255 if (reset_control_deassert(core->reset)) 256 dev_warn(core->dev, "local-reset deassert back failed\n"); 257 } 258 259 return ret; 260 } 261 262 static int k3_r5_split_release(struct k3_r5_core *core) 263 { 264 int ret; 265 266 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, 267 core->ti_sci_id); 268 if (ret) { 269 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 270 ret); 271 return ret; 272 } 273 274 ret = reset_control_deassert(core->reset); 275 if (ret) { 276 dev_err(core->dev, "local-reset deassert failed, ret = %d\n", 277 ret); 278 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 279 core->ti_sci_id)) 280 dev_warn(core->dev, "module-reset assert back failed\n"); 281 } 282 283 return ret; 284 } 285 286 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) 287 { 288 struct k3_r5_core *core; 289 int ret; 290 291 /* assert local reset on all applicable cores */ 292 list_for_each_entry(core, &cluster->cores, elem) { 293 ret = reset_control_assert(core->reset); 294 if (ret) { 295 dev_err(core->dev, "local-reset assert failed, ret = %d\n", 296 ret); 297 core = list_prev_entry(core, elem); 298 goto unroll_local_reset; 299 } 300 } 301 302 /* disable PSC modules on all applicable cores */ 303 list_for_each_entry(core, &cluster->cores, elem) { 304 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 305 core->ti_sci_id); 306 if (ret) { 307 dev_err(core->dev, "module-reset assert failed, ret = %d\n", 308 ret); 309 goto unroll_module_reset; 310 } 311 } 312 313 return 0; 314 315 unroll_module_reset: 316 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { 317 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 318 core->ti_sci_id)) 319 dev_warn(core->dev, "module-reset assert back failed\n"); 320 } 321 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 322 unroll_local_reset: 323 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 324 if (reset_control_deassert(core->reset)) 325 dev_warn(core->dev, "local-reset deassert back failed\n"); 326 } 327 328 return ret; 329 } 330 331 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) 332 { 333 struct k3_r5_core *core; 334 int ret; 335 336 /* enable PSC modules on all applicable cores */ 337 list_for_each_entry_reverse(core, &cluster->cores, elem) { 338 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, 339 core->ti_sci_id); 340 if (ret) { 341 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 342 ret); 343 core = list_next_entry(core, elem); 344 goto unroll_module_reset; 345 } 346 } 347 348 /* deassert local reset on all applicable cores */ 349 list_for_each_entry_reverse(core, &cluster->cores, elem) { 350 ret = reset_control_deassert(core->reset); 351 if (ret) { 352 dev_err(core->dev, "module-reset deassert failed, ret = %d\n", 353 ret); 354 goto unroll_local_reset; 355 } 356 } 357 358 return 0; 359 360 unroll_local_reset: 361 list_for_each_entry_continue(core, &cluster->cores, elem) { 362 if (reset_control_assert(core->reset)) 363 dev_warn(core->dev, "local-reset assert back failed\n"); 364 } 365 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 366 unroll_module_reset: 367 list_for_each_entry_from(core, &cluster->cores, elem) { 368 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, 369 core->ti_sci_id)) 370 dev_warn(core->dev, "module-reset assert back failed\n"); 371 } 372 373 return ret; 374 } 375 376 static inline int k3_r5_core_halt(struct k3_r5_core *core) 377 { 378 return ti_sci_proc_set_control(core->tsp, 379 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); 380 } 381 382 static inline int k3_r5_core_run(struct k3_r5_core *core) 383 { 384 return ti_sci_proc_set_control(core->tsp, 385 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); 386 } 387 388 static int k3_r5_rproc_request_mbox(struct rproc *rproc) 389 { 390 struct k3_r5_rproc *kproc = rproc->priv; 391 struct mbox_client *client = &kproc->client; 392 struct device *dev = kproc->dev; 393 int ret; 394 395 client->dev = dev; 396 client->tx_done = NULL; 397 client->rx_callback = k3_r5_rproc_mbox_callback; 398 client->tx_block = false; 399 client->knows_txdone = false; 400 401 kproc->mbox = mbox_request_channel(client, 0); 402 if (IS_ERR(kproc->mbox)) { 403 ret = -EBUSY; 404 dev_err(dev, "mbox_request_channel failed: %ld\n", 405 PTR_ERR(kproc->mbox)); 406 return ret; 407 } 408 409 /* 410 * Ping the remote processor, this is only for sanity-sake for now; 411 * there is no functional effect whatsoever. 412 * 413 * Note that the reply will _not_ arrive immediately: this message 414 * will wait in the mailbox fifo until the remote processor is booted. 415 */ 416 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); 417 if (ret < 0) { 418 dev_err(dev, "mbox_send_message failed: %d\n", ret); 419 mbox_free_channel(kproc->mbox); 420 return ret; 421 } 422 423 return 0; 424 } 425 426 /* 427 * The R5F cores have controls for both a reset and a halt/run. The code 428 * execution from DDR requires the initial boot-strapping code to be run 429 * from the internal TCMs. This function is used to release the resets on 430 * applicable cores to allow loading into the TCMs. The .prepare() ops is 431 * invoked by remoteproc core before any firmware loading, and is followed 432 * by the .start() ops after loading to actually let the R5 cores run. 433 * 434 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to 435 * execute code, but combines the TCMs from both cores. The resets for both 436 * cores need to be released to make this possible, as the TCMs are in general 437 * private to each core. Only Core0 needs to be unhalted for running the 438 * cluster in this mode. The function uses the same reset logic as LockStep 439 * mode for this (though the behavior is agnostic of the reset release order). 440 * This callback is invoked only in remoteproc mode. 441 */ 442 static int k3_r5_rproc_prepare(struct rproc *rproc) 443 { 444 struct k3_r5_rproc *kproc = rproc->priv; 445 struct k3_r5_cluster *cluster = kproc->cluster; 446 struct k3_r5_core *core = kproc->core; 447 struct device *dev = kproc->dev; 448 u32 ctrl = 0, cfg = 0, stat = 0; 449 u64 boot_vec = 0; 450 bool mem_init_dis; 451 int ret; 452 453 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); 454 if (ret < 0) 455 return ret; 456 mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS); 457 458 /* Re-use LockStep-mode reset logic for Single-CPU mode */ 459 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || 460 cluster->mode == CLUSTER_MODE_SINGLECPU) ? 461 k3_r5_lockstep_release(cluster) : k3_r5_split_release(core); 462 if (ret) { 463 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", 464 ret); 465 return ret; 466 } 467 core->released_from_reset = true; 468 wake_up_interruptible(&cluster->core_transition); 469 470 /* 471 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization 472 * of TCMs, so there is no need to perform the s/w memzero. This bit is 473 * configurable through System Firmware, the default value does perform 474 * auto-init, but account for it in case it is disabled 475 */ 476 if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) { 477 dev_dbg(dev, "leveraging h/w init for TCM memories\n"); 478 return 0; 479 } 480 481 /* 482 * Zero out both TCMs unconditionally (access from v8 Arm core is not 483 * affected by ATCM & BTCM enable configuration values) so that ECC 484 * can be effective on all TCM addresses. 485 */ 486 dev_dbg(dev, "zeroing out ATCM memory\n"); 487 memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size); 488 489 dev_dbg(dev, "zeroing out BTCM memory\n"); 490 memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size); 491 492 return 0; 493 } 494 495 /* 496 * This function implements the .unprepare() ops and performs the complimentary 497 * operations to that of the .prepare() ops. The function is used to assert the 498 * resets on all applicable cores for the rproc device (depending on LockStep 499 * or Split mode). This completes the second portion of powering down the R5F 500 * cores. The cores themselves are only halted in the .stop() ops, and the 501 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is 502 * stopped. 503 * 504 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from 505 * both cores. The access is made possible only with releasing the resets for 506 * both cores, but with only Core0 unhalted. This function re-uses the same 507 * reset assert logic as LockStep mode for this mode (though the behavior is 508 * agnostic of the reset assert order). This callback is invoked only in 509 * remoteproc mode. 510 */ 511 static int k3_r5_rproc_unprepare(struct rproc *rproc) 512 { 513 struct k3_r5_rproc *kproc = rproc->priv; 514 struct k3_r5_cluster *cluster = kproc->cluster; 515 struct k3_r5_core *core = kproc->core; 516 struct device *dev = kproc->dev; 517 int ret; 518 519 /* Re-use LockStep-mode reset logic for Single-CPU mode */ 520 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP || 521 cluster->mode == CLUSTER_MODE_SINGLECPU) ? 522 k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core); 523 if (ret) 524 dev_err(dev, "unable to disable cores, ret = %d\n", ret); 525 526 return ret; 527 } 528 529 /* 530 * The R5F start sequence includes two different operations 531 * 1. Configure the boot vector for R5F core(s) 532 * 2. Unhalt/Run the R5F core(s) 533 * 534 * The sequence is different between LockStep and Split modes. The LockStep 535 * mode requires the boot vector to be configured only for Core0, and then 536 * unhalt both the cores to start the execution - Core1 needs to be unhalted 537 * first followed by Core0. The Split-mode requires that Core0 to be maintained 538 * always in a higher power state that Core1 (implying Core1 needs to be started 539 * always only after Core0 is started). 540 * 541 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute 542 * code, so only Core0 needs to be unhalted. The function uses the same logic 543 * flow as Split-mode for this. This callback is invoked only in remoteproc 544 * mode. 545 */ 546 static int k3_r5_rproc_start(struct rproc *rproc) 547 { 548 struct k3_r5_rproc *kproc = rproc->priv; 549 struct k3_r5_cluster *cluster = kproc->cluster; 550 struct device *dev = kproc->dev; 551 struct k3_r5_core *core0, *core; 552 u32 boot_addr; 553 int ret; 554 555 ret = k3_r5_rproc_request_mbox(rproc); 556 if (ret) 557 return ret; 558 559 boot_addr = rproc->bootaddr; 560 /* TODO: add boot_addr sanity checking */ 561 dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); 562 563 /* boot vector need not be programmed for Core1 in LockStep mode */ 564 core = kproc->core; 565 ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); 566 if (ret) 567 goto put_mbox; 568 569 /* unhalt/run all applicable cores */ 570 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 571 list_for_each_entry_reverse(core, &cluster->cores, elem) { 572 ret = k3_r5_core_run(core); 573 if (ret) 574 goto unroll_core_run; 575 } 576 } else { 577 /* do not allow core 1 to start before core 0 */ 578 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, 579 elem); 580 if (core != core0 && core0->rproc->state == RPROC_OFFLINE) { 581 dev_err(dev, "%s: can not start core 1 before core 0\n", 582 __func__); 583 ret = -EPERM; 584 goto put_mbox; 585 } 586 587 ret = k3_r5_core_run(core); 588 if (ret) 589 goto put_mbox; 590 } 591 592 return 0; 593 594 unroll_core_run: 595 list_for_each_entry_continue(core, &cluster->cores, elem) { 596 if (k3_r5_core_halt(core)) 597 dev_warn(core->dev, "core halt back failed\n"); 598 } 599 put_mbox: 600 mbox_free_channel(kproc->mbox); 601 return ret; 602 } 603 604 /* 605 * The R5F stop function includes the following operations 606 * 1. Halt R5F core(s) 607 * 608 * The sequence is different between LockStep and Split modes, and the order 609 * of cores the operations are performed are also in general reverse to that 610 * of the start function. The LockStep mode requires each operation to be 611 * performed first on Core0 followed by Core1. The Split-mode requires that 612 * Core0 to be maintained always in a higher power state that Core1 (implying 613 * Core1 needs to be stopped first before Core0). 614 * 615 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute 616 * code, so only Core0 needs to be halted. The function uses the same logic 617 * flow as Split-mode for this. 618 * 619 * Note that the R5F halt operation in general is not effective when the R5F 620 * core is running, but is needed to make sure the core won't run after 621 * deasserting the reset the subsequent time. The asserting of reset can 622 * be done here, but is preferred to be done in the .unprepare() ops - this 623 * maintains the symmetric behavior between the .start(), .stop(), .prepare() 624 * and .unprepare() ops, and also balances them well between sysfs 'state' 625 * flow and device bind/unbind or module removal. This callback is invoked 626 * only in remoteproc mode. 627 */ 628 static int k3_r5_rproc_stop(struct rproc *rproc) 629 { 630 struct k3_r5_rproc *kproc = rproc->priv; 631 struct k3_r5_cluster *cluster = kproc->cluster; 632 struct device *dev = kproc->dev; 633 struct k3_r5_core *core1, *core = kproc->core; 634 int ret; 635 636 /* halt all applicable cores */ 637 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 638 list_for_each_entry(core, &cluster->cores, elem) { 639 ret = k3_r5_core_halt(core); 640 if (ret) { 641 core = list_prev_entry(core, elem); 642 goto unroll_core_halt; 643 } 644 } 645 } else { 646 /* do not allow core 0 to stop before core 1 */ 647 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, 648 elem); 649 if (core != core1 && core1->rproc->state != RPROC_OFFLINE) { 650 dev_err(dev, "%s: can not stop core 0 before core 1\n", 651 __func__); 652 ret = -EPERM; 653 goto out; 654 } 655 656 ret = k3_r5_core_halt(core); 657 if (ret) 658 goto out; 659 } 660 661 mbox_free_channel(kproc->mbox); 662 663 return 0; 664 665 unroll_core_halt: 666 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 667 if (k3_r5_core_run(core)) 668 dev_warn(core->dev, "core run back failed\n"); 669 } 670 out: 671 return ret; 672 } 673 674 /* 675 * Attach to a running R5F remote processor (IPC-only mode) 676 * 677 * The R5F attach callback only needs to request the mailbox, the remote 678 * processor is already booted, so there is no need to issue any TI-SCI 679 * commands to boot the R5F cores in IPC-only mode. This callback is invoked 680 * only in IPC-only mode. 681 */ 682 static int k3_r5_rproc_attach(struct rproc *rproc) 683 { 684 struct k3_r5_rproc *kproc = rproc->priv; 685 struct device *dev = kproc->dev; 686 int ret; 687 688 ret = k3_r5_rproc_request_mbox(rproc); 689 if (ret) 690 return ret; 691 692 dev_info(dev, "R5F core initialized in IPC-only mode\n"); 693 return 0; 694 } 695 696 /* 697 * Detach from a running R5F remote processor (IPC-only mode) 698 * 699 * The R5F detach callback performs the opposite operation to attach callback 700 * and only needs to release the mailbox, the R5F cores are not stopped and 701 * will be left in booted state in IPC-only mode. This callback is invoked 702 * only in IPC-only mode. 703 */ 704 static int k3_r5_rproc_detach(struct rproc *rproc) 705 { 706 struct k3_r5_rproc *kproc = rproc->priv; 707 struct device *dev = kproc->dev; 708 709 mbox_free_channel(kproc->mbox); 710 dev_info(dev, "R5F core deinitialized in IPC-only mode\n"); 711 return 0; 712 } 713 714 /* 715 * This function implements the .get_loaded_rsc_table() callback and is used 716 * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F 717 * firmwares follow a design-by-contract approach and are expected to have the 718 * resource table at the base of the DDR region reserved for firmware usage. 719 * This provides flexibility for the remote processor to be booted by different 720 * bootloaders that may or may not have the ability to publish the resource table 721 * address and size through a DT property. This callback is invoked only in 722 * IPC-only mode. 723 */ 724 static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc, 725 size_t *rsc_table_sz) 726 { 727 struct k3_r5_rproc *kproc = rproc->priv; 728 struct device *dev = kproc->dev; 729 730 if (!kproc->rmem[0].cpu_addr) { 731 dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); 732 return ERR_PTR(-ENOMEM); 733 } 734 735 /* 736 * NOTE: The resource table size is currently hard-coded to a maximum 737 * of 256 bytes. The most common resource table usage for K3 firmwares 738 * is to only have the vdev resource entry and an optional trace entry. 739 * The exact size could be computed based on resource table address, but 740 * the hard-coded value suffices to support the IPC-only mode. 741 */ 742 *rsc_table_sz = 256; 743 return (struct resource_table *)kproc->rmem[0].cpu_addr; 744 } 745 746 /* 747 * Internal Memory translation helper 748 * 749 * Custom function implementing the rproc .da_to_va ops to provide address 750 * translation (device address to kernel virtual address) for internal RAMs 751 * present in a DSP or IPU device). The translated addresses can be used 752 * either by the remoteproc core for loading, or by any rpmsg bus drivers. 753 */ 754 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 755 { 756 struct k3_r5_rproc *kproc = rproc->priv; 757 struct k3_r5_core *core = kproc->core; 758 void __iomem *va = NULL; 759 phys_addr_t bus_addr; 760 u32 dev_addr, offset; 761 size_t size; 762 int i; 763 764 if (len == 0) 765 return NULL; 766 767 /* handle both R5 and SoC views of ATCM and BTCM */ 768 for (i = 0; i < core->num_mems; i++) { 769 bus_addr = core->mem[i].bus_addr; 770 dev_addr = core->mem[i].dev_addr; 771 size = core->mem[i].size; 772 773 /* handle R5-view addresses of TCMs */ 774 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 775 offset = da - dev_addr; 776 va = core->mem[i].cpu_addr + offset; 777 return (__force void *)va; 778 } 779 780 /* handle SoC-view addresses of TCMs */ 781 if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { 782 offset = da - bus_addr; 783 va = core->mem[i].cpu_addr + offset; 784 return (__force void *)va; 785 } 786 } 787 788 /* handle any SRAM regions using SoC-view addresses */ 789 for (i = 0; i < core->num_sram; i++) { 790 dev_addr = core->sram[i].dev_addr; 791 size = core->sram[i].size; 792 793 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 794 offset = da - dev_addr; 795 va = core->sram[i].cpu_addr + offset; 796 return (__force void *)va; 797 } 798 } 799 800 /* handle static DDR reserved memory regions */ 801 for (i = 0; i < kproc->num_rmems; i++) { 802 dev_addr = kproc->rmem[i].dev_addr; 803 size = kproc->rmem[i].size; 804 805 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { 806 offset = da - dev_addr; 807 va = kproc->rmem[i].cpu_addr + offset; 808 return (__force void *)va; 809 } 810 } 811 812 return NULL; 813 } 814 815 static const struct rproc_ops k3_r5_rproc_ops = { 816 .prepare = k3_r5_rproc_prepare, 817 .unprepare = k3_r5_rproc_unprepare, 818 .start = k3_r5_rproc_start, 819 .stop = k3_r5_rproc_stop, 820 .kick = k3_r5_rproc_kick, 821 .da_to_va = k3_r5_rproc_da_to_va, 822 }; 823 824 /* 825 * Internal R5F Core configuration 826 * 827 * Each R5FSS has a cluster-level setting for configuring the processor 828 * subsystem either in a safety/fault-tolerant LockStep mode or a performance 829 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode 830 * as an alternate for LockStep mode that exercises only a single R5F core 831 * called Single-CPU mode. Each R5F core has a number of settings to either 832 * enable/disable each of the TCMs, control which TCM appears at the R5F core's 833 * address 0x0. These settings need to be configured before the resets for the 834 * corresponding core are released. These settings are all protected and managed 835 * by the System Processor. 836 * 837 * This function is used to pre-configure these settings for each R5F core, and 838 * the configuration is all done through various ti_sci_proc functions that 839 * communicate with the System Processor. The function also ensures that both 840 * the cores are halted before the .prepare() step. 841 * 842 * The function is called from k3_r5_cluster_rproc_init() and is invoked either 843 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support 844 * for LockStep-mode is dictated by an eFUSE register bit, and the config 845 * settings retrieved from DT are adjusted accordingly as per the permitted 846 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only 847 * supports a Single-CPU mode. All cluster level settings like Cluster mode and 848 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set 849 * and retrieved using Core0. 850 * 851 * The function behavior is different based on the cluster mode. The R5F cores 852 * are configured independently as per their individual settings in Split mode. 853 * They are identically configured in LockStep mode using the primary Core0 854 * settings. However, some individual settings cannot be set in LockStep mode. 855 * This is overcome by switching to Split-mode initially and then programming 856 * both the cores with the same settings, before reconfiguing again for 857 * LockStep mode. 858 */ 859 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc) 860 { 861 struct k3_r5_cluster *cluster = kproc->cluster; 862 struct device *dev = kproc->dev; 863 struct k3_r5_core *core0, *core, *temp; 864 u32 ctrl = 0, cfg = 0, stat = 0; 865 u32 set_cfg = 0, clr_cfg = 0; 866 u64 boot_vec = 0; 867 bool lockstep_en; 868 bool single_cpu; 869 int ret; 870 871 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 872 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || 873 cluster->mode == CLUSTER_MODE_SINGLECPU || 874 cluster->mode == CLUSTER_MODE_SINGLECORE) { 875 core = core0; 876 } else { 877 core = kproc->core; 878 } 879 880 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, 881 &stat); 882 if (ret < 0) 883 return ret; 884 885 dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", 886 boot_vec, cfg, ctrl, stat); 887 888 single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY); 889 lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); 890 891 /* Override to single CPU mode if set in status flag */ 892 if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) { 893 dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n"); 894 cluster->mode = CLUSTER_MODE_SINGLECPU; 895 } 896 897 /* Override to split mode if lockstep enable bit is not set in status flag */ 898 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { 899 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); 900 cluster->mode = CLUSTER_MODE_SPLIT; 901 } 902 903 /* always enable ARM mode and set boot vector to 0 */ 904 boot_vec = 0x0; 905 if (core == core0) { 906 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; 907 /* 908 * Single-CPU configuration bit can only be configured 909 * on Core0 and system firmware will NACK any requests 910 * with the bit configured, so program it only on 911 * permitted cores 912 */ 913 if (cluster->mode == CLUSTER_MODE_SINGLECPU || 914 cluster->mode == CLUSTER_MODE_SINGLECORE) { 915 set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE; 916 } else { 917 /* 918 * LockStep configuration bit is Read-only on Split-mode 919 * _only_ devices and system firmware will NACK any 920 * requests with the bit configured, so program it only 921 * on permitted devices 922 */ 923 if (lockstep_en) 924 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 925 } 926 } 927 928 if (core->atcm_enable) 929 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; 930 else 931 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; 932 933 if (core->btcm_enable) 934 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; 935 else 936 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; 937 938 if (core->loczrama) 939 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; 940 else 941 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; 942 943 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { 944 /* 945 * work around system firmware limitations to make sure both 946 * cores are programmed symmetrically in LockStep. LockStep 947 * and TEINIT config is only allowed with Core0. 948 */ 949 list_for_each_entry(temp, &cluster->cores, elem) { 950 ret = k3_r5_core_halt(temp); 951 if (ret) 952 goto out; 953 954 if (temp != core) { 955 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 956 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; 957 } 958 ret = ti_sci_proc_set_config(temp->tsp, boot_vec, 959 set_cfg, clr_cfg); 960 if (ret) 961 goto out; 962 } 963 964 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; 965 clr_cfg = 0; 966 ret = ti_sci_proc_set_config(core->tsp, boot_vec, 967 set_cfg, clr_cfg); 968 } else { 969 ret = k3_r5_core_halt(core); 970 if (ret) 971 goto out; 972 973 ret = ti_sci_proc_set_config(core->tsp, boot_vec, 974 set_cfg, clr_cfg); 975 } 976 977 out: 978 return ret; 979 } 980 981 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc) 982 { 983 struct device *dev = kproc->dev; 984 struct device_node *np = dev_of_node(dev); 985 struct device_node *rmem_np; 986 struct reserved_mem *rmem; 987 int num_rmems; 988 int ret, i; 989 990 num_rmems = of_property_count_elems_of_size(np, "memory-region", 991 sizeof(phandle)); 992 if (num_rmems <= 0) { 993 dev_err(dev, "device does not have reserved memory regions, ret = %d\n", 994 num_rmems); 995 return -EINVAL; 996 } 997 if (num_rmems < 2) { 998 dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", 999 num_rmems); 1000 return -EINVAL; 1001 } 1002 1003 /* use reserved memory region 0 for vring DMA allocations */ 1004 ret = of_reserved_mem_device_init_by_idx(dev, np, 0); 1005 if (ret) { 1006 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", 1007 ret); 1008 return ret; 1009 } 1010 1011 num_rmems--; 1012 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); 1013 if (!kproc->rmem) { 1014 ret = -ENOMEM; 1015 goto release_rmem; 1016 } 1017 1018 /* use remaining reserved memory regions for static carveouts */ 1019 for (i = 0; i < num_rmems; i++) { 1020 rmem_np = of_parse_phandle(np, "memory-region", i + 1); 1021 if (!rmem_np) { 1022 ret = -EINVAL; 1023 goto unmap_rmem; 1024 } 1025 1026 rmem = of_reserved_mem_lookup(rmem_np); 1027 if (!rmem) { 1028 of_node_put(rmem_np); 1029 ret = -EINVAL; 1030 goto unmap_rmem; 1031 } 1032 of_node_put(rmem_np); 1033 1034 kproc->rmem[i].bus_addr = rmem->base; 1035 /* 1036 * R5Fs do not have an MMU, but have a Region Address Translator 1037 * (RAT) module that provides a fixed entry translation between 1038 * the 32-bit processor addresses to 64-bit bus addresses. The 1039 * RAT is programmable only by the R5F cores. Support for RAT 1040 * is currently not supported, so 64-bit address regions are not 1041 * supported. The absence of MMUs implies that the R5F device 1042 * addresses/supported memory regions are restricted to 32-bit 1043 * bus addresses, and are identical 1044 */ 1045 kproc->rmem[i].dev_addr = (u32)rmem->base; 1046 kproc->rmem[i].size = rmem->size; 1047 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); 1048 if (!kproc->rmem[i].cpu_addr) { 1049 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", 1050 i + 1, &rmem->base, &rmem->size); 1051 ret = -ENOMEM; 1052 goto unmap_rmem; 1053 } 1054 1055 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 1056 i + 1, &kproc->rmem[i].bus_addr, 1057 kproc->rmem[i].size, kproc->rmem[i].cpu_addr, 1058 kproc->rmem[i].dev_addr); 1059 } 1060 kproc->num_rmems = num_rmems; 1061 1062 return 0; 1063 1064 unmap_rmem: 1065 for (i--; i >= 0; i--) 1066 iounmap(kproc->rmem[i].cpu_addr); 1067 kfree(kproc->rmem); 1068 release_rmem: 1069 of_reserved_mem_device_release(dev); 1070 return ret; 1071 } 1072 1073 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc) 1074 { 1075 int i; 1076 1077 for (i = 0; i < kproc->num_rmems; i++) 1078 iounmap(kproc->rmem[i].cpu_addr); 1079 kfree(kproc->rmem); 1080 1081 of_reserved_mem_device_release(kproc->dev); 1082 } 1083 1084 /* 1085 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs, 1086 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both 1087 * cores are usable in Split-mode, but only the Core0 TCMs can be used in 1088 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by 1089 * leveraging the Core1 TCMs as well in certain modes where they would have 1090 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on 1091 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the 1092 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for 1093 * the Core0 TCMs, and the dts representation reflects this increased size on 1094 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only 1095 * half the original size in Split mode. 1096 */ 1097 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc) 1098 { 1099 struct k3_r5_cluster *cluster = kproc->cluster; 1100 struct k3_r5_core *core = kproc->core; 1101 struct device *cdev = core->dev; 1102 struct k3_r5_core *core0; 1103 1104 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || 1105 cluster->mode == CLUSTER_MODE_SINGLECPU || 1106 cluster->mode == CLUSTER_MODE_SINGLECORE || 1107 !cluster->soc_data->tcm_is_double) 1108 return; 1109 1110 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 1111 if (core == core0) { 1112 WARN_ON(core->mem[0].size != SZ_64K); 1113 WARN_ON(core->mem[1].size != SZ_64K); 1114 1115 core->mem[0].size /= 2; 1116 core->mem[1].size /= 2; 1117 1118 dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n", 1119 core->mem[0].size, core->mem[1].size); 1120 } 1121 } 1122 1123 /* 1124 * This function checks and configures a R5F core for IPC-only or remoteproc 1125 * mode. The driver is configured to be in IPC-only mode for a R5F core when 1126 * the core has been loaded and started by a bootloader. The IPC-only mode is 1127 * detected by querying the System Firmware for reset, power on and halt status 1128 * and ensuring that the core is running. Any incomplete steps at bootloader 1129 * are validated and errored out. 1130 * 1131 * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings 1132 * and cluster mode parsed originally from kernel DT are updated to reflect the 1133 * actual values configured by bootloader. The driver internal device memory 1134 * addresses for TCMs are also updated. 1135 */ 1136 static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc) 1137 { 1138 struct k3_r5_cluster *cluster = kproc->cluster; 1139 struct k3_r5_core *core = kproc->core; 1140 struct device *cdev = core->dev; 1141 bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false; 1142 u32 ctrl = 0, cfg = 0, stat = 0, halted = 0; 1143 u64 boot_vec = 0; 1144 u32 atcm_enable, btcm_enable, loczrama; 1145 struct k3_r5_core *core0; 1146 enum cluster_mode mode = cluster->mode; 1147 int reset_ctrl_status; 1148 int ret; 1149 1150 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); 1151 1152 ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id, 1153 &r_state, &c_state); 1154 if (ret) { 1155 dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n", 1156 ret); 1157 return ret; 1158 } 1159 if (r_state != c_state) { 1160 dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n", 1161 r_state, c_state); 1162 } 1163 1164 reset_ctrl_status = reset_control_status(core->reset); 1165 if (reset_ctrl_status < 0) { 1166 dev_err(cdev, "failed to get initial local reset status, ret = %d\n", 1167 reset_ctrl_status); 1168 return reset_ctrl_status; 1169 } 1170 1171 /* 1172 * Skip the waiting mechanism for sequential power-on of cores if the 1173 * core has already been booted by another entity. 1174 */ 1175 core->released_from_reset = c_state; 1176 1177 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, 1178 &stat); 1179 if (ret < 0) { 1180 dev_err(cdev, "failed to get initial processor status, ret = %d\n", 1181 ret); 1182 return ret; 1183 } 1184 atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ? 1 : 0; 1185 btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ? 1 : 0; 1186 loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ? 1 : 0; 1187 single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0; 1188 lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0; 1189 1190 if (single_cpu && mode != CLUSTER_MODE_SINGLECORE) 1191 mode = CLUSTER_MODE_SINGLECPU; 1192 if (lockstep_en) 1193 mode = CLUSTER_MODE_LOCKSTEP; 1194 1195 halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT; 1196 1197 /* 1198 * IPC-only mode detection requires both local and module resets to 1199 * be deasserted and R5F core to be unhalted. Local reset status is 1200 * irrelevant if module reset is asserted (POR value has local reset 1201 * deasserted), and is deemed as remoteproc mode 1202 */ 1203 if (c_state && !reset_ctrl_status && !halted) { 1204 dev_info(cdev, "configured R5F for IPC-only mode\n"); 1205 kproc->rproc->state = RPROC_DETACHED; 1206 ret = 1; 1207 /* override rproc ops with only required IPC-only mode ops */ 1208 kproc->rproc->ops->prepare = NULL; 1209 kproc->rproc->ops->unprepare = NULL; 1210 kproc->rproc->ops->start = NULL; 1211 kproc->rproc->ops->stop = NULL; 1212 kproc->rproc->ops->attach = k3_r5_rproc_attach; 1213 kproc->rproc->ops->detach = k3_r5_rproc_detach; 1214 kproc->rproc->ops->get_loaded_rsc_table = 1215 k3_r5_get_loaded_rsc_table; 1216 } else if (!c_state) { 1217 dev_info(cdev, "configured R5F for remoteproc mode\n"); 1218 ret = 0; 1219 } else { 1220 dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n", 1221 !reset_ctrl_status ? "deasserted" : "asserted", 1222 c_state ? "deasserted" : "asserted", 1223 halted ? "halted" : "unhalted"); 1224 ret = -EINVAL; 1225 } 1226 1227 /* fixup TCMs, cluster & core flags to actual values in IPC-only mode */ 1228 if (ret > 0) { 1229 if (core == core0) 1230 cluster->mode = mode; 1231 core->atcm_enable = atcm_enable; 1232 core->btcm_enable = btcm_enable; 1233 core->loczrama = loczrama; 1234 core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR; 1235 core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0; 1236 } 1237 1238 return ret; 1239 } 1240 1241 static int k3_r5_cluster_rproc_init(struct platform_device *pdev) 1242 { 1243 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 1244 struct device *dev = &pdev->dev; 1245 struct k3_r5_rproc *kproc; 1246 struct k3_r5_core *core, *core1; 1247 struct device *cdev; 1248 const char *fw_name; 1249 struct rproc *rproc; 1250 int ret, ret1; 1251 1252 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); 1253 list_for_each_entry(core, &cluster->cores, elem) { 1254 cdev = core->dev; 1255 ret = rproc_of_parse_firmware(cdev, 0, &fw_name); 1256 if (ret) { 1257 dev_err(dev, "failed to parse firmware-name property, ret = %d\n", 1258 ret); 1259 goto out; 1260 } 1261 1262 rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, 1263 fw_name, sizeof(*kproc)); 1264 if (!rproc) { 1265 ret = -ENOMEM; 1266 goto out; 1267 } 1268 1269 /* K3 R5s have a Region Address Translator (RAT) but no MMU */ 1270 rproc->has_iommu = false; 1271 /* error recovery is not supported at present */ 1272 rproc->recovery_disabled = true; 1273 1274 kproc = rproc->priv; 1275 kproc->cluster = cluster; 1276 kproc->core = core; 1277 kproc->dev = cdev; 1278 kproc->rproc = rproc; 1279 core->rproc = rproc; 1280 1281 ret = k3_r5_rproc_configure_mode(kproc); 1282 if (ret < 0) 1283 goto err_config; 1284 if (ret) 1285 goto init_rmem; 1286 1287 ret = k3_r5_rproc_configure(kproc); 1288 if (ret) { 1289 dev_err(dev, "initial configure failed, ret = %d\n", 1290 ret); 1291 goto err_config; 1292 } 1293 1294 init_rmem: 1295 k3_r5_adjust_tcm_sizes(kproc); 1296 1297 ret = k3_r5_reserved_mem_init(kproc); 1298 if (ret) { 1299 dev_err(dev, "reserved memory init failed, ret = %d\n", 1300 ret); 1301 goto err_config; 1302 } 1303 1304 ret = rproc_add(rproc); 1305 if (ret) { 1306 dev_err(dev, "rproc_add failed, ret = %d\n", ret); 1307 goto err_add; 1308 } 1309 1310 /* create only one rproc in lockstep, single-cpu or 1311 * single core mode 1312 */ 1313 if (cluster->mode == CLUSTER_MODE_LOCKSTEP || 1314 cluster->mode == CLUSTER_MODE_SINGLECPU || 1315 cluster->mode == CLUSTER_MODE_SINGLECORE) 1316 break; 1317 1318 /* 1319 * R5 cores require to be powered on sequentially, core0 1320 * should be in higher power state than core1 in a cluster 1321 * So, wait for current core to power up before proceeding 1322 * to next core and put timeout of 2sec for each core. 1323 * 1324 * This waiting mechanism is necessary because 1325 * rproc_auto_boot_callback() for core1 can be called before 1326 * core0 due to thread execution order. 1327 */ 1328 ret = wait_event_interruptible_timeout(cluster->core_transition, 1329 core->released_from_reset, 1330 msecs_to_jiffies(2000)); 1331 if (ret <= 0) { 1332 dev_err(dev, 1333 "Timed out waiting for %s core to power up!\n", 1334 rproc->name); 1335 return ret; 1336 } 1337 } 1338 1339 return 0; 1340 1341 err_split: 1342 if (rproc->state == RPROC_ATTACHED) { 1343 ret1 = rproc_detach(rproc); 1344 if (ret1) { 1345 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", 1346 ret1); 1347 return ret1; 1348 } 1349 } 1350 1351 rproc_del(rproc); 1352 err_add: 1353 k3_r5_reserved_mem_exit(kproc); 1354 err_config: 1355 rproc_free(rproc); 1356 core->rproc = NULL; 1357 out: 1358 /* undo core0 upon any failures on core1 in split-mode */ 1359 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { 1360 core = list_prev_entry(core, elem); 1361 rproc = core->rproc; 1362 kproc = rproc->priv; 1363 goto err_split; 1364 } 1365 return ret; 1366 } 1367 1368 static void k3_r5_cluster_rproc_exit(void *data) 1369 { 1370 struct k3_r5_cluster *cluster = platform_get_drvdata(data); 1371 struct k3_r5_rproc *kproc; 1372 struct k3_r5_core *core; 1373 struct rproc *rproc; 1374 int ret; 1375 1376 /* 1377 * lockstep mode and single-cpu modes have only one rproc associated 1378 * with first core, whereas split-mode has two rprocs associated with 1379 * each core, and requires that core1 be powered down first 1380 */ 1381 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP || 1382 cluster->mode == CLUSTER_MODE_SINGLECPU) ? 1383 list_first_entry(&cluster->cores, struct k3_r5_core, elem) : 1384 list_last_entry(&cluster->cores, struct k3_r5_core, elem); 1385 1386 list_for_each_entry_from_reverse(core, &cluster->cores, elem) { 1387 rproc = core->rproc; 1388 kproc = rproc->priv; 1389 1390 if (rproc->state == RPROC_ATTACHED) { 1391 ret = rproc_detach(rproc); 1392 if (ret) { 1393 dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret); 1394 return; 1395 } 1396 } 1397 1398 rproc_del(rproc); 1399 1400 k3_r5_reserved_mem_exit(kproc); 1401 1402 rproc_free(rproc); 1403 core->rproc = NULL; 1404 } 1405 } 1406 1407 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, 1408 struct k3_r5_core *core) 1409 { 1410 static const char * const mem_names[] = {"atcm", "btcm"}; 1411 struct device *dev = &pdev->dev; 1412 struct resource *res; 1413 int num_mems; 1414 int i; 1415 1416 num_mems = ARRAY_SIZE(mem_names); 1417 core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); 1418 if (!core->mem) 1419 return -ENOMEM; 1420 1421 for (i = 0; i < num_mems; i++) { 1422 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1423 mem_names[i]); 1424 if (!res) { 1425 dev_err(dev, "found no memory resource for %s\n", 1426 mem_names[i]); 1427 return -EINVAL; 1428 } 1429 if (!devm_request_mem_region(dev, res->start, 1430 resource_size(res), 1431 dev_name(dev))) { 1432 dev_err(dev, "could not request %s region for resource\n", 1433 mem_names[i]); 1434 return -EBUSY; 1435 } 1436 1437 /* 1438 * TCMs are designed in general to support RAM-like backing 1439 * memories. So, map these as Normal Non-Cached memories. This 1440 * also avoids/fixes any potential alignment faults due to 1441 * unaligned data accesses when using memcpy() or memset() 1442 * functions (normally seen with device type memory). 1443 */ 1444 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, 1445 resource_size(res)); 1446 if (!core->mem[i].cpu_addr) { 1447 dev_err(dev, "failed to map %s memory\n", mem_names[i]); 1448 return -ENOMEM; 1449 } 1450 core->mem[i].bus_addr = res->start; 1451 1452 /* 1453 * TODO: 1454 * The R5F cores can place ATCM & BTCM anywhere in its address 1455 * based on the corresponding Region Registers in the System 1456 * Control coprocessor. For now, place ATCM and BTCM at 1457 * addresses 0 and 0x41010000 (same as the bus address on AM65x 1458 * SoCs) based on loczrama setting 1459 */ 1460 if (!strcmp(mem_names[i], "atcm")) { 1461 core->mem[i].dev_addr = core->loczrama ? 1462 0 : K3_R5_TCM_DEV_ADDR; 1463 } else { 1464 core->mem[i].dev_addr = core->loczrama ? 1465 K3_R5_TCM_DEV_ADDR : 0; 1466 } 1467 core->mem[i].size = resource_size(res); 1468 1469 dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n", 1470 mem_names[i], &core->mem[i].bus_addr, 1471 core->mem[i].size, core->mem[i].cpu_addr, 1472 core->mem[i].dev_addr); 1473 } 1474 core->num_mems = num_mems; 1475 1476 return 0; 1477 } 1478 1479 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev, 1480 struct k3_r5_core *core) 1481 { 1482 struct device_node *np = pdev->dev.of_node; 1483 struct device *dev = &pdev->dev; 1484 struct device_node *sram_np; 1485 struct resource res; 1486 int num_sram; 1487 int i, ret; 1488 1489 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); 1490 if (num_sram <= 0) { 1491 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", 1492 num_sram); 1493 return 0; 1494 } 1495 1496 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); 1497 if (!core->sram) 1498 return -ENOMEM; 1499 1500 for (i = 0; i < num_sram; i++) { 1501 sram_np = of_parse_phandle(np, "sram", i); 1502 if (!sram_np) 1503 return -EINVAL; 1504 1505 if (!of_device_is_available(sram_np)) { 1506 of_node_put(sram_np); 1507 return -EINVAL; 1508 } 1509 1510 ret = of_address_to_resource(sram_np, 0, &res); 1511 of_node_put(sram_np); 1512 if (ret) 1513 return -EINVAL; 1514 1515 core->sram[i].bus_addr = res.start; 1516 core->sram[i].dev_addr = res.start; 1517 core->sram[i].size = resource_size(&res); 1518 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, 1519 resource_size(&res)); 1520 if (!core->sram[i].cpu_addr) { 1521 dev_err(dev, "failed to parse and map sram%d memory at %pad\n", 1522 i, &res.start); 1523 return -ENOMEM; 1524 } 1525 1526 dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", 1527 i, &core->sram[i].bus_addr, 1528 core->sram[i].size, core->sram[i].cpu_addr, 1529 core->sram[i].dev_addr); 1530 } 1531 core->num_sram = num_sram; 1532 1533 return 0; 1534 } 1535 1536 static 1537 struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev, 1538 const struct ti_sci_handle *sci) 1539 { 1540 struct ti_sci_proc *tsp; 1541 u32 temp[2]; 1542 int ret; 1543 1544 ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids", 1545 temp, 2); 1546 if (ret < 0) 1547 return ERR_PTR(ret); 1548 1549 tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL); 1550 if (!tsp) 1551 return ERR_PTR(-ENOMEM); 1552 1553 tsp->dev = dev; 1554 tsp->sci = sci; 1555 tsp->ops = &sci->ops.proc_ops; 1556 tsp->proc_id = temp[0]; 1557 tsp->host_id = temp[1]; 1558 1559 return tsp; 1560 } 1561 1562 static int k3_r5_core_of_init(struct platform_device *pdev) 1563 { 1564 struct device *dev = &pdev->dev; 1565 struct device_node *np = dev_of_node(dev); 1566 struct k3_r5_core *core; 1567 int ret; 1568 1569 if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL)) 1570 return -ENOMEM; 1571 1572 core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); 1573 if (!core) { 1574 ret = -ENOMEM; 1575 goto err; 1576 } 1577 1578 core->dev = dev; 1579 /* 1580 * Use SoC Power-on-Reset values as default if no DT properties are 1581 * used to dictate the TCM configurations 1582 */ 1583 core->atcm_enable = 0; 1584 core->btcm_enable = 1; 1585 core->loczrama = 1; 1586 1587 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); 1588 if (ret < 0 && ret != -EINVAL) { 1589 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", 1590 ret); 1591 goto err; 1592 } 1593 1594 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); 1595 if (ret < 0 && ret != -EINVAL) { 1596 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", 1597 ret); 1598 goto err; 1599 } 1600 1601 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); 1602 if (ret < 0 && ret != -EINVAL) { 1603 dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret); 1604 goto err; 1605 } 1606 1607 core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); 1608 if (IS_ERR(core->ti_sci)) { 1609 ret = PTR_ERR(core->ti_sci); 1610 if (ret != -EPROBE_DEFER) { 1611 dev_err(dev, "failed to get ti-sci handle, ret = %d\n", 1612 ret); 1613 } 1614 core->ti_sci = NULL; 1615 goto err; 1616 } 1617 1618 ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); 1619 if (ret) { 1620 dev_err(dev, "missing 'ti,sci-dev-id' property\n"); 1621 goto err; 1622 } 1623 1624 core->reset = devm_reset_control_get_exclusive(dev, NULL); 1625 if (IS_ERR_OR_NULL(core->reset)) { 1626 ret = PTR_ERR_OR_ZERO(core->reset); 1627 if (!ret) 1628 ret = -ENODEV; 1629 if (ret != -EPROBE_DEFER) { 1630 dev_err(dev, "failed to get reset handle, ret = %d\n", 1631 ret); 1632 } 1633 goto err; 1634 } 1635 1636 core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); 1637 if (IS_ERR(core->tsp)) { 1638 ret = PTR_ERR(core->tsp); 1639 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", 1640 ret); 1641 goto err; 1642 } 1643 1644 ret = k3_r5_core_of_get_internal_memories(pdev, core); 1645 if (ret) { 1646 dev_err(dev, "failed to get internal memories, ret = %d\n", 1647 ret); 1648 goto err; 1649 } 1650 1651 ret = k3_r5_core_of_get_sram_memories(pdev, core); 1652 if (ret) { 1653 dev_err(dev, "failed to get sram memories, ret = %d\n", ret); 1654 goto err; 1655 } 1656 1657 ret = ti_sci_proc_request(core->tsp); 1658 if (ret < 0) { 1659 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); 1660 goto err; 1661 } 1662 1663 platform_set_drvdata(pdev, core); 1664 devres_close_group(dev, k3_r5_core_of_init); 1665 1666 return 0; 1667 1668 err: 1669 devres_release_group(dev, k3_r5_core_of_init); 1670 return ret; 1671 } 1672 1673 /* 1674 * free the resources explicitly since driver model is not being used 1675 * for the child R5F devices 1676 */ 1677 static void k3_r5_core_of_exit(struct platform_device *pdev) 1678 { 1679 struct k3_r5_core *core = platform_get_drvdata(pdev); 1680 struct device *dev = &pdev->dev; 1681 int ret; 1682 1683 ret = ti_sci_proc_release(core->tsp); 1684 if (ret) 1685 dev_err(dev, "failed to release proc, ret = %d\n", ret); 1686 1687 platform_set_drvdata(pdev, NULL); 1688 devres_release_group(dev, k3_r5_core_of_init); 1689 } 1690 1691 static void k3_r5_cluster_of_exit(void *data) 1692 { 1693 struct k3_r5_cluster *cluster = platform_get_drvdata(data); 1694 struct platform_device *cpdev; 1695 struct k3_r5_core *core, *temp; 1696 1697 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { 1698 list_del(&core->elem); 1699 cpdev = to_platform_device(core->dev); 1700 k3_r5_core_of_exit(cpdev); 1701 } 1702 } 1703 1704 static int k3_r5_cluster_of_init(struct platform_device *pdev) 1705 { 1706 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); 1707 struct device *dev = &pdev->dev; 1708 struct device_node *np = dev_of_node(dev); 1709 struct platform_device *cpdev; 1710 struct device_node *child; 1711 struct k3_r5_core *core; 1712 int ret; 1713 1714 for_each_available_child_of_node(np, child) { 1715 cpdev = of_find_device_by_node(child); 1716 if (!cpdev) { 1717 ret = -ENODEV; 1718 dev_err(dev, "could not get R5 core platform device\n"); 1719 of_node_put(child); 1720 goto fail; 1721 } 1722 1723 ret = k3_r5_core_of_init(cpdev); 1724 if (ret) { 1725 dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", 1726 ret); 1727 put_device(&cpdev->dev); 1728 of_node_put(child); 1729 goto fail; 1730 } 1731 1732 core = platform_get_drvdata(cpdev); 1733 put_device(&cpdev->dev); 1734 list_add_tail(&core->elem, &cluster->cores); 1735 } 1736 1737 return 0; 1738 1739 fail: 1740 k3_r5_cluster_of_exit(pdev); 1741 return ret; 1742 } 1743 1744 static int k3_r5_probe(struct platform_device *pdev) 1745 { 1746 struct device *dev = &pdev->dev; 1747 struct device_node *np = dev_of_node(dev); 1748 struct k3_r5_cluster *cluster; 1749 const struct k3_r5_soc_data *data; 1750 int ret; 1751 int num_cores; 1752 1753 data = of_device_get_match_data(&pdev->dev); 1754 if (!data) { 1755 dev_err(dev, "SoC-specific data is not defined\n"); 1756 return -ENODEV; 1757 } 1758 1759 cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); 1760 if (!cluster) 1761 return -ENOMEM; 1762 1763 cluster->dev = dev; 1764 cluster->soc_data = data; 1765 INIT_LIST_HEAD(&cluster->cores); 1766 init_waitqueue_head(&cluster->core_transition); 1767 1768 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); 1769 if (ret < 0 && ret != -EINVAL) { 1770 dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n", 1771 ret); 1772 return ret; 1773 } 1774 1775 if (ret == -EINVAL) { 1776 /* 1777 * default to most common efuse configurations - Split-mode on AM64x 1778 * and LockStep-mode on all others 1779 * default to most common efuse configurations - 1780 * Split-mode on AM64x 1781 * Single core on AM62x 1782 * LockStep-mode on all others 1783 */ 1784 if (!data->is_single_core) 1785 cluster->mode = data->single_cpu_mode ? 1786 CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP; 1787 else 1788 cluster->mode = CLUSTER_MODE_SINGLECORE; 1789 } 1790 1791 if ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) || 1792 (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) { 1793 dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode); 1794 return -EINVAL; 1795 } 1796 1797 num_cores = of_get_available_child_count(np); 1798 if (num_cores != 2 && !data->is_single_core) { 1799 dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n", 1800 num_cores); 1801 return -ENODEV; 1802 } 1803 1804 if (num_cores != 1 && data->is_single_core) { 1805 dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n", 1806 num_cores); 1807 return -ENODEV; 1808 } 1809 1810 platform_set_drvdata(pdev, cluster); 1811 1812 ret = devm_of_platform_populate(dev); 1813 if (ret) { 1814 dev_err(dev, "devm_of_platform_populate failed, ret = %d\n", 1815 ret); 1816 return ret; 1817 } 1818 1819 ret = k3_r5_cluster_of_init(pdev); 1820 if (ret) { 1821 dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret); 1822 return ret; 1823 } 1824 1825 ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev); 1826 if (ret) 1827 return ret; 1828 1829 ret = k3_r5_cluster_rproc_init(pdev); 1830 if (ret) { 1831 dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n", 1832 ret); 1833 return ret; 1834 } 1835 1836 ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev); 1837 if (ret) 1838 return ret; 1839 1840 return 0; 1841 } 1842 1843 static const struct k3_r5_soc_data am65_j721e_soc_data = { 1844 .tcm_is_double = false, 1845 .tcm_ecc_autoinit = false, 1846 .single_cpu_mode = false, 1847 .is_single_core = false, 1848 }; 1849 1850 static const struct k3_r5_soc_data j7200_j721s2_soc_data = { 1851 .tcm_is_double = true, 1852 .tcm_ecc_autoinit = true, 1853 .single_cpu_mode = false, 1854 .is_single_core = false, 1855 }; 1856 1857 static const struct k3_r5_soc_data am64_soc_data = { 1858 .tcm_is_double = true, 1859 .tcm_ecc_autoinit = true, 1860 .single_cpu_mode = true, 1861 .is_single_core = false, 1862 }; 1863 1864 static const struct k3_r5_soc_data am62_soc_data = { 1865 .tcm_is_double = false, 1866 .tcm_ecc_autoinit = true, 1867 .single_cpu_mode = false, 1868 .is_single_core = true, 1869 }; 1870 1871 static const struct of_device_id k3_r5_of_match[] = { 1872 { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, }, 1873 { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, }, 1874 { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, }, 1875 { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, }, 1876 { .compatible = "ti,am62-r5fss", .data = &am62_soc_data, }, 1877 { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, }, 1878 { /* sentinel */ }, 1879 }; 1880 MODULE_DEVICE_TABLE(of, k3_r5_of_match); 1881 1882 static struct platform_driver k3_r5_rproc_driver = { 1883 .probe = k3_r5_probe, 1884 .driver = { 1885 .name = "k3_r5_rproc", 1886 .of_match_table = k3_r5_of_match, 1887 }, 1888 }; 1889 1890 module_platform_driver(k3_r5_rproc_driver); 1891 1892 MODULE_LICENSE("GPL v2"); 1893 MODULE_DESCRIPTION("TI K3 R5F remote processor driver"); 1894 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 1895