xref: /linux/drivers/remoteproc/ti_k3_r5_remoteproc.c (revision 42d37fc0c819b81f6f6afd108b55d04ba9d32d0f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI K3 R5F (MCU) Remote Processor driver
4  *
5  * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *	Suman Anna <s-anna@ti.com>
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/mailbox_client.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/of_platform.h>
19 #include <linux/omap-mailbox.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/remoteproc.h>
23 #include <linux/reset.h>
24 #include <linux/slab.h>
25 
26 #include "omap_remoteproc.h"
27 #include "remoteproc_internal.h"
28 #include "ti_sci_proc.h"
29 
30 /* This address can either be for ATCM or BTCM with the other at address 0x0 */
31 #define K3_R5_TCM_DEV_ADDR	0x41010000
32 
33 /* R5 TI-SCI Processor Configuration Flags */
34 #define PROC_BOOT_CFG_FLAG_R5_DBG_EN			0x00000001
35 #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN			0x00000002
36 #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP			0x00000100
37 #define PROC_BOOT_CFG_FLAG_R5_TEINIT			0x00000200
38 #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN			0x00000400
39 #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE		0x00000800
40 #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN			0x00001000
41 #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN			0x00002000
42 /* Available from J7200 SoCs onwards */
43 #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS		0x00004000
44 /* Applicable to only AM64x SoCs */
45 #define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE		0x00008000
46 
47 /* R5 TI-SCI Processor Control Flags */
48 #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT		0x00000001
49 
50 /* R5 TI-SCI Processor Status Flags */
51 #define PROC_BOOT_STATUS_FLAG_R5_WFE			0x00000001
52 #define PROC_BOOT_STATUS_FLAG_R5_WFI			0x00000002
53 #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED		0x00000004
54 #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED	0x00000100
55 /* Applicable to only AM64x SoCs */
56 #define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY	0x00000200
57 
58 /**
59  * struct k3_r5_mem - internal memory structure
60  * @cpu_addr: MPU virtual address of the memory region
61  * @bus_addr: Bus address used to access the memory region
62  * @dev_addr: Device address from remoteproc view
63  * @size: Size of the memory region
64  */
65 struct k3_r5_mem {
66 	void __iomem *cpu_addr;
67 	phys_addr_t bus_addr;
68 	u32 dev_addr;
69 	size_t size;
70 };
71 
72 /*
73  * All cluster mode values are not applicable on all SoCs. The following
74  * are the modes supported on various SoCs:
75  *   Split mode       : AM65x, J721E, J7200 and AM64x SoCs
76  *   LockStep mode    : AM65x, J721E and J7200 SoCs
77  *   Single-CPU mode  : AM64x SoCs only
78  *   Single-Core mode : AM62x, AM62A SoCs
79  */
80 enum cluster_mode {
81 	CLUSTER_MODE_SPLIT = 0,
82 	CLUSTER_MODE_LOCKSTEP,
83 	CLUSTER_MODE_SINGLECPU,
84 	CLUSTER_MODE_SINGLECORE
85 };
86 
87 /**
88  * struct k3_r5_soc_data - match data to handle SoC variations
89  * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
90  * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
91  * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
92  * @is_single_core: flag to denote if SoC/IP has only single core R5
93  */
94 struct k3_r5_soc_data {
95 	bool tcm_is_double;
96 	bool tcm_ecc_autoinit;
97 	bool single_cpu_mode;
98 	bool is_single_core;
99 };
100 
101 /**
102  * struct k3_r5_cluster - K3 R5F Cluster structure
103  * @dev: cached device pointer
104  * @mode: Mode to configure the Cluster - Split or LockStep
105  * @cores: list of R5 cores within the cluster
106  * @core_transition: wait queue to sync core state changes
107  * @soc_data: SoC-specific feature data for a R5FSS
108  */
109 struct k3_r5_cluster {
110 	struct device *dev;
111 	enum cluster_mode mode;
112 	struct list_head cores;
113 	wait_queue_head_t core_transition;
114 	const struct k3_r5_soc_data *soc_data;
115 };
116 
117 /**
118  * struct k3_r5_core - K3 R5 core structure
119  * @elem: linked list item
120  * @dev: cached device pointer
121  * @rproc: rproc handle representing this core
122  * @mem: internal memory regions data
123  * @sram: on-chip SRAM memory regions data
124  * @num_mems: number of internal memory regions
125  * @num_sram: number of on-chip SRAM memory regions
126  * @reset: reset control handle
127  * @tsp: TI-SCI processor control handle
128  * @ti_sci: TI-SCI handle
129  * @ti_sci_id: TI-SCI device identifier
130  * @atcm_enable: flag to control ATCM enablement
131  * @btcm_enable: flag to control BTCM enablement
132  * @loczrama: flag to dictate which TCM is at device address 0x0
133  * @released_from_reset: flag to signal when core is out of reset
134  */
135 struct k3_r5_core {
136 	struct list_head elem;
137 	struct device *dev;
138 	struct rproc *rproc;
139 	struct k3_r5_mem *mem;
140 	struct k3_r5_mem *sram;
141 	int num_mems;
142 	int num_sram;
143 	struct reset_control *reset;
144 	struct ti_sci_proc *tsp;
145 	const struct ti_sci_handle *ti_sci;
146 	u32 ti_sci_id;
147 	u32 atcm_enable;
148 	u32 btcm_enable;
149 	u32 loczrama;
150 	bool released_from_reset;
151 };
152 
153 /**
154  * struct k3_r5_rproc - K3 remote processor state
155  * @dev: cached device pointer
156  * @cluster: cached pointer to parent cluster structure
157  * @mbox: mailbox channel handle
158  * @client: mailbox client to request the mailbox channel
159  * @rproc: rproc handle
160  * @core: cached pointer to r5 core structure being used
161  * @rmem: reserved memory regions data
162  * @num_rmems: number of reserved memory regions
163  */
164 struct k3_r5_rproc {
165 	struct device *dev;
166 	struct k3_r5_cluster *cluster;
167 	struct mbox_chan *mbox;
168 	struct mbox_client client;
169 	struct rproc *rproc;
170 	struct k3_r5_core *core;
171 	struct k3_r5_mem *rmem;
172 	int num_rmems;
173 };
174 
175 /**
176  * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
177  * @client: mailbox client pointer used for requesting the mailbox channel
178  * @data: mailbox payload
179  *
180  * This handler is invoked by the OMAP mailbox driver whenever a mailbox
181  * message is received. Usually, the mailbox payload simply contains
182  * the index of the virtqueue that is kicked by the remote processor,
183  * and we let remoteproc core handle it.
184  *
185  * In addition to virtqueue indices, we also have some out-of-band values
186  * that indicate different events. Those values are deliberately very
187  * large so they don't coincide with virtqueue indices.
188  */
189 static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
190 {
191 	struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
192 						client);
193 	struct device *dev = kproc->rproc->dev.parent;
194 	const char *name = kproc->rproc->name;
195 	u32 msg = omap_mbox_message(data);
196 
197 	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
198 
199 	switch (msg) {
200 	case RP_MBOX_CRASH:
201 		/*
202 		 * remoteproc detected an exception, but error recovery is not
203 		 * supported. So, just log this for now
204 		 */
205 		dev_err(dev, "K3 R5F rproc %s crashed\n", name);
206 		break;
207 	case RP_MBOX_ECHO_REPLY:
208 		dev_info(dev, "received echo reply from %s\n", name);
209 		break;
210 	default:
211 		/* silently handle all other valid messages */
212 		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
213 			return;
214 		if (msg > kproc->rproc->max_notifyid) {
215 			dev_dbg(dev, "dropping unknown message 0x%x", msg);
216 			return;
217 		}
218 		/* msg contains the index of the triggered vring */
219 		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
220 			dev_dbg(dev, "no message was found in vqid %d\n", msg);
221 	}
222 }
223 
224 /* kick a virtqueue */
225 static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
226 {
227 	struct k3_r5_rproc *kproc = rproc->priv;
228 	struct device *dev = rproc->dev.parent;
229 	mbox_msg_t msg = (mbox_msg_t)vqid;
230 	int ret;
231 
232 	/* send the index of the triggered virtqueue in the mailbox payload */
233 	ret = mbox_send_message(kproc->mbox, (void *)msg);
234 	if (ret < 0)
235 		dev_err(dev, "failed to send mailbox message, status = %d\n",
236 			ret);
237 }
238 
239 static int k3_r5_split_reset(struct k3_r5_core *core)
240 {
241 	int ret;
242 
243 	ret = reset_control_assert(core->reset);
244 	if (ret) {
245 		dev_err(core->dev, "local-reset assert failed, ret = %d\n",
246 			ret);
247 		return ret;
248 	}
249 
250 	ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
251 						   core->ti_sci_id);
252 	if (ret) {
253 		dev_err(core->dev, "module-reset assert failed, ret = %d\n",
254 			ret);
255 		if (reset_control_deassert(core->reset))
256 			dev_warn(core->dev, "local-reset deassert back failed\n");
257 	}
258 
259 	return ret;
260 }
261 
262 static int k3_r5_split_release(struct k3_r5_core *core)
263 {
264 	int ret;
265 
266 	ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
267 						   core->ti_sci_id);
268 	if (ret) {
269 		dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
270 			ret);
271 		return ret;
272 	}
273 
274 	ret = reset_control_deassert(core->reset);
275 	if (ret) {
276 		dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
277 			ret);
278 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
279 							 core->ti_sci_id))
280 			dev_warn(core->dev, "module-reset assert back failed\n");
281 	}
282 
283 	return ret;
284 }
285 
286 static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
287 {
288 	struct k3_r5_core *core;
289 	int ret;
290 
291 	/* assert local reset on all applicable cores */
292 	list_for_each_entry(core, &cluster->cores, elem) {
293 		ret = reset_control_assert(core->reset);
294 		if (ret) {
295 			dev_err(core->dev, "local-reset assert failed, ret = %d\n",
296 				ret);
297 			core = list_prev_entry(core, elem);
298 			goto unroll_local_reset;
299 		}
300 	}
301 
302 	/* disable PSC modules on all applicable cores */
303 	list_for_each_entry(core, &cluster->cores, elem) {
304 		ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
305 							   core->ti_sci_id);
306 		if (ret) {
307 			dev_err(core->dev, "module-reset assert failed, ret = %d\n",
308 				ret);
309 			goto unroll_module_reset;
310 		}
311 	}
312 
313 	return 0;
314 
315 unroll_module_reset:
316 	list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
317 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
318 							 core->ti_sci_id))
319 			dev_warn(core->dev, "module-reset assert back failed\n");
320 	}
321 	core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
322 unroll_local_reset:
323 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
324 		if (reset_control_deassert(core->reset))
325 			dev_warn(core->dev, "local-reset deassert back failed\n");
326 	}
327 
328 	return ret;
329 }
330 
331 static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
332 {
333 	struct k3_r5_core *core;
334 	int ret;
335 
336 	/* enable PSC modules on all applicable cores */
337 	list_for_each_entry_reverse(core, &cluster->cores, elem) {
338 		ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
339 							   core->ti_sci_id);
340 		if (ret) {
341 			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
342 				ret);
343 			core = list_next_entry(core, elem);
344 			goto unroll_module_reset;
345 		}
346 	}
347 
348 	/* deassert local reset on all applicable cores */
349 	list_for_each_entry_reverse(core, &cluster->cores, elem) {
350 		ret = reset_control_deassert(core->reset);
351 		if (ret) {
352 			dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
353 				ret);
354 			goto unroll_local_reset;
355 		}
356 	}
357 
358 	return 0;
359 
360 unroll_local_reset:
361 	list_for_each_entry_continue(core, &cluster->cores, elem) {
362 		if (reset_control_assert(core->reset))
363 			dev_warn(core->dev, "local-reset assert back failed\n");
364 	}
365 	core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
366 unroll_module_reset:
367 	list_for_each_entry_from(core, &cluster->cores, elem) {
368 		if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
369 							 core->ti_sci_id))
370 			dev_warn(core->dev, "module-reset assert back failed\n");
371 	}
372 
373 	return ret;
374 }
375 
376 static inline int k3_r5_core_halt(struct k3_r5_core *core)
377 {
378 	return ti_sci_proc_set_control(core->tsp,
379 				       PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
380 }
381 
382 static inline int k3_r5_core_run(struct k3_r5_core *core)
383 {
384 	return ti_sci_proc_set_control(core->tsp,
385 				       0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
386 }
387 
388 static int k3_r5_rproc_request_mbox(struct rproc *rproc)
389 {
390 	struct k3_r5_rproc *kproc = rproc->priv;
391 	struct mbox_client *client = &kproc->client;
392 	struct device *dev = kproc->dev;
393 	int ret;
394 
395 	client->dev = dev;
396 	client->tx_done = NULL;
397 	client->rx_callback = k3_r5_rproc_mbox_callback;
398 	client->tx_block = false;
399 	client->knows_txdone = false;
400 
401 	kproc->mbox = mbox_request_channel(client, 0);
402 	if (IS_ERR(kproc->mbox)) {
403 		ret = -EBUSY;
404 		dev_err(dev, "mbox_request_channel failed: %ld\n",
405 			PTR_ERR(kproc->mbox));
406 		return ret;
407 	}
408 
409 	/*
410 	 * Ping the remote processor, this is only for sanity-sake for now;
411 	 * there is no functional effect whatsoever.
412 	 *
413 	 * Note that the reply will _not_ arrive immediately: this message
414 	 * will wait in the mailbox fifo until the remote processor is booted.
415 	 */
416 	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
417 	if (ret < 0) {
418 		dev_err(dev, "mbox_send_message failed: %d\n", ret);
419 		mbox_free_channel(kproc->mbox);
420 		return ret;
421 	}
422 
423 	return 0;
424 }
425 
426 /*
427  * The R5F cores have controls for both a reset and a halt/run. The code
428  * execution from DDR requires the initial boot-strapping code to be run
429  * from the internal TCMs. This function is used to release the resets on
430  * applicable cores to allow loading into the TCMs. The .prepare() ops is
431  * invoked by remoteproc core before any firmware loading, and is followed
432  * by the .start() ops after loading to actually let the R5 cores run.
433  *
434  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
435  * execute code, but combines the TCMs from both cores. The resets for both
436  * cores need to be released to make this possible, as the TCMs are in general
437  * private to each core. Only Core0 needs to be unhalted for running the
438  * cluster in this mode. The function uses the same reset logic as LockStep
439  * mode for this (though the behavior is agnostic of the reset release order).
440  * This callback is invoked only in remoteproc mode.
441  */
442 static int k3_r5_rproc_prepare(struct rproc *rproc)
443 {
444 	struct k3_r5_rproc *kproc = rproc->priv;
445 	struct k3_r5_cluster *cluster = kproc->cluster;
446 	struct k3_r5_core *core = kproc->core;
447 	struct device *dev = kproc->dev;
448 	u32 ctrl = 0, cfg = 0, stat = 0;
449 	u64 boot_vec = 0;
450 	bool mem_init_dis;
451 	int ret;
452 
453 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
454 	if (ret < 0)
455 		return ret;
456 	mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
457 
458 	/* Re-use LockStep-mode reset logic for Single-CPU mode */
459 	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
460 	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
461 		k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
462 	if (ret) {
463 		dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
464 			ret);
465 		return ret;
466 	}
467 	core->released_from_reset = true;
468 	wake_up_interruptible(&cluster->core_transition);
469 
470 	/*
471 	 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
472 	 * of TCMs, so there is no need to perform the s/w memzero. This bit is
473 	 * configurable through System Firmware, the default value does perform
474 	 * auto-init, but account for it in case it is disabled
475 	 */
476 	if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
477 		dev_dbg(dev, "leveraging h/w init for TCM memories\n");
478 		return 0;
479 	}
480 
481 	/*
482 	 * Zero out both TCMs unconditionally (access from v8 Arm core is not
483 	 * affected by ATCM & BTCM enable configuration values) so that ECC
484 	 * can be effective on all TCM addresses.
485 	 */
486 	dev_dbg(dev, "zeroing out ATCM memory\n");
487 	memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
488 
489 	dev_dbg(dev, "zeroing out BTCM memory\n");
490 	memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
491 
492 	return 0;
493 }
494 
495 /*
496  * This function implements the .unprepare() ops and performs the complimentary
497  * operations to that of the .prepare() ops. The function is used to assert the
498  * resets on all applicable cores for the rproc device (depending on LockStep
499  * or Split mode). This completes the second portion of powering down the R5F
500  * cores. The cores themselves are only halted in the .stop() ops, and the
501  * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
502  * stopped.
503  *
504  * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
505  * both cores. The access is made possible only with releasing the resets for
506  * both cores, but with only Core0 unhalted. This function re-uses the same
507  * reset assert logic as LockStep mode for this mode (though the behavior is
508  * agnostic of the reset assert order). This callback is invoked only in
509  * remoteproc mode.
510  */
511 static int k3_r5_rproc_unprepare(struct rproc *rproc)
512 {
513 	struct k3_r5_rproc *kproc = rproc->priv;
514 	struct k3_r5_cluster *cluster = kproc->cluster;
515 	struct k3_r5_core *core = kproc->core;
516 	struct device *dev = kproc->dev;
517 	int ret;
518 
519 	/* Re-use LockStep-mode reset logic for Single-CPU mode */
520 	ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
521 	       cluster->mode == CLUSTER_MODE_SINGLECPU) ?
522 		k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
523 	if (ret)
524 		dev_err(dev, "unable to disable cores, ret = %d\n", ret);
525 
526 	return ret;
527 }
528 
529 /*
530  * The R5F start sequence includes two different operations
531  * 1. Configure the boot vector for R5F core(s)
532  * 2. Unhalt/Run the R5F core(s)
533  *
534  * The sequence is different between LockStep and Split modes. The LockStep
535  * mode requires the boot vector to be configured only for Core0, and then
536  * unhalt both the cores to start the execution - Core1 needs to be unhalted
537  * first followed by Core0. The Split-mode requires that Core0 to be maintained
538  * always in a higher power state that Core1 (implying Core1 needs to be started
539  * always only after Core0 is started).
540  *
541  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
542  * code, so only Core0 needs to be unhalted. The function uses the same logic
543  * flow as Split-mode for this. This callback is invoked only in remoteproc
544  * mode.
545  */
546 static int k3_r5_rproc_start(struct rproc *rproc)
547 {
548 	struct k3_r5_rproc *kproc = rproc->priv;
549 	struct k3_r5_cluster *cluster = kproc->cluster;
550 	struct device *dev = kproc->dev;
551 	struct k3_r5_core *core0, *core;
552 	u32 boot_addr;
553 	int ret;
554 
555 	ret = k3_r5_rproc_request_mbox(rproc);
556 	if (ret)
557 		return ret;
558 
559 	boot_addr = rproc->bootaddr;
560 	/* TODO: add boot_addr sanity checking */
561 	dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
562 
563 	/* boot vector need not be programmed for Core1 in LockStep mode */
564 	core = kproc->core;
565 	ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
566 	if (ret)
567 		goto put_mbox;
568 
569 	/* unhalt/run all applicable cores */
570 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
571 		list_for_each_entry_reverse(core, &cluster->cores, elem) {
572 			ret = k3_r5_core_run(core);
573 			if (ret)
574 				goto unroll_core_run;
575 		}
576 	} else {
577 		/* do not allow core 1 to start before core 0 */
578 		core0 = list_first_entry(&cluster->cores, struct k3_r5_core,
579 					 elem);
580 		if (core != core0 && core0->rproc->state == RPROC_OFFLINE) {
581 			dev_err(dev, "%s: can not start core 1 before core 0\n",
582 				__func__);
583 			ret = -EPERM;
584 			goto put_mbox;
585 		}
586 
587 		ret = k3_r5_core_run(core);
588 		if (ret)
589 			goto put_mbox;
590 	}
591 
592 	return 0;
593 
594 unroll_core_run:
595 	list_for_each_entry_continue(core, &cluster->cores, elem) {
596 		if (k3_r5_core_halt(core))
597 			dev_warn(core->dev, "core halt back failed\n");
598 	}
599 put_mbox:
600 	mbox_free_channel(kproc->mbox);
601 	return ret;
602 }
603 
604 /*
605  * The R5F stop function includes the following operations
606  * 1. Halt R5F core(s)
607  *
608  * The sequence is different between LockStep and Split modes, and the order
609  * of cores the operations are performed are also in general reverse to that
610  * of the start function. The LockStep mode requires each operation to be
611  * performed first on Core0 followed by Core1. The Split-mode requires that
612  * Core0 to be maintained always in a higher power state that Core1 (implying
613  * Core1 needs to be stopped first before Core0).
614  *
615  * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
616  * code, so only Core0 needs to be halted. The function uses the same logic
617  * flow as Split-mode for this.
618  *
619  * Note that the R5F halt operation in general is not effective when the R5F
620  * core is running, but is needed to make sure the core won't run after
621  * deasserting the reset the subsequent time. The asserting of reset can
622  * be done here, but is preferred to be done in the .unprepare() ops - this
623  * maintains the symmetric behavior between the .start(), .stop(), .prepare()
624  * and .unprepare() ops, and also balances them well between sysfs 'state'
625  * flow and device bind/unbind or module removal. This callback is invoked
626  * only in remoteproc mode.
627  */
628 static int k3_r5_rproc_stop(struct rproc *rproc)
629 {
630 	struct k3_r5_rproc *kproc = rproc->priv;
631 	struct k3_r5_cluster *cluster = kproc->cluster;
632 	struct device *dev = kproc->dev;
633 	struct k3_r5_core *core1, *core = kproc->core;
634 	int ret;
635 
636 	/* halt all applicable cores */
637 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
638 		list_for_each_entry(core, &cluster->cores, elem) {
639 			ret = k3_r5_core_halt(core);
640 			if (ret) {
641 				core = list_prev_entry(core, elem);
642 				goto unroll_core_halt;
643 			}
644 		}
645 	} else {
646 		/* do not allow core 0 to stop before core 1 */
647 		core1 = list_last_entry(&cluster->cores, struct k3_r5_core,
648 					elem);
649 		if (core != core1 && core1->rproc->state != RPROC_OFFLINE) {
650 			dev_err(dev, "%s: can not stop core 0 before core 1\n",
651 				__func__);
652 			ret = -EPERM;
653 			goto out;
654 		}
655 
656 		ret = k3_r5_core_halt(core);
657 		if (ret)
658 			goto out;
659 	}
660 
661 	mbox_free_channel(kproc->mbox);
662 
663 	return 0;
664 
665 unroll_core_halt:
666 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
667 		if (k3_r5_core_run(core))
668 			dev_warn(core->dev, "core run back failed\n");
669 	}
670 out:
671 	return ret;
672 }
673 
674 /*
675  * Attach to a running R5F remote processor (IPC-only mode)
676  *
677  * The R5F attach callback only needs to request the mailbox, the remote
678  * processor is already booted, so there is no need to issue any TI-SCI
679  * commands to boot the R5F cores in IPC-only mode. This callback is invoked
680  * only in IPC-only mode.
681  */
682 static int k3_r5_rproc_attach(struct rproc *rproc)
683 {
684 	struct k3_r5_rproc *kproc = rproc->priv;
685 	struct device *dev = kproc->dev;
686 	int ret;
687 
688 	ret = k3_r5_rproc_request_mbox(rproc);
689 	if (ret)
690 		return ret;
691 
692 	dev_info(dev, "R5F core initialized in IPC-only mode\n");
693 	return 0;
694 }
695 
696 /*
697  * Detach from a running R5F remote processor (IPC-only mode)
698  *
699  * The R5F detach callback performs the opposite operation to attach callback
700  * and only needs to release the mailbox, the R5F cores are not stopped and
701  * will be left in booted state in IPC-only mode. This callback is invoked
702  * only in IPC-only mode.
703  */
704 static int k3_r5_rproc_detach(struct rproc *rproc)
705 {
706 	struct k3_r5_rproc *kproc = rproc->priv;
707 	struct device *dev = kproc->dev;
708 
709 	mbox_free_channel(kproc->mbox);
710 	dev_info(dev, "R5F core deinitialized in IPC-only mode\n");
711 	return 0;
712 }
713 
714 /*
715  * This function implements the .get_loaded_rsc_table() callback and is used
716  * to provide the resource table for the booted R5F in IPC-only mode. The K3 R5F
717  * firmwares follow a design-by-contract approach and are expected to have the
718  * resource table at the base of the DDR region reserved for firmware usage.
719  * This provides flexibility for the remote processor to be booted by different
720  * bootloaders that may or may not have the ability to publish the resource table
721  * address and size through a DT property. This callback is invoked only in
722  * IPC-only mode.
723  */
724 static struct resource_table *k3_r5_get_loaded_rsc_table(struct rproc *rproc,
725 							 size_t *rsc_table_sz)
726 {
727 	struct k3_r5_rproc *kproc = rproc->priv;
728 	struct device *dev = kproc->dev;
729 
730 	if (!kproc->rmem[0].cpu_addr) {
731 		dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
732 		return ERR_PTR(-ENOMEM);
733 	}
734 
735 	/*
736 	 * NOTE: The resource table size is currently hard-coded to a maximum
737 	 * of 256 bytes. The most common resource table usage for K3 firmwares
738 	 * is to only have the vdev resource entry and an optional trace entry.
739 	 * The exact size could be computed based on resource table address, but
740 	 * the hard-coded value suffices to support the IPC-only mode.
741 	 */
742 	*rsc_table_sz = 256;
743 	return (struct resource_table *)kproc->rmem[0].cpu_addr;
744 }
745 
746 /*
747  * Internal Memory translation helper
748  *
749  * Custom function implementing the rproc .da_to_va ops to provide address
750  * translation (device address to kernel virtual address) for internal RAMs
751  * present in a DSP or IPU device). The translated addresses can be used
752  * either by the remoteproc core for loading, or by any rpmsg bus drivers.
753  */
754 static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
755 {
756 	struct k3_r5_rproc *kproc = rproc->priv;
757 	struct k3_r5_core *core = kproc->core;
758 	void __iomem *va = NULL;
759 	phys_addr_t bus_addr;
760 	u32 dev_addr, offset;
761 	size_t size;
762 	int i;
763 
764 	if (len == 0)
765 		return NULL;
766 
767 	/* handle both R5 and SoC views of ATCM and BTCM */
768 	for (i = 0; i < core->num_mems; i++) {
769 		bus_addr = core->mem[i].bus_addr;
770 		dev_addr = core->mem[i].dev_addr;
771 		size = core->mem[i].size;
772 
773 		/* handle R5-view addresses of TCMs */
774 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
775 			offset = da - dev_addr;
776 			va = core->mem[i].cpu_addr + offset;
777 			return (__force void *)va;
778 		}
779 
780 		/* handle SoC-view addresses of TCMs */
781 		if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
782 			offset = da - bus_addr;
783 			va = core->mem[i].cpu_addr + offset;
784 			return (__force void *)va;
785 		}
786 	}
787 
788 	/* handle any SRAM regions using SoC-view addresses */
789 	for (i = 0; i < core->num_sram; i++) {
790 		dev_addr = core->sram[i].dev_addr;
791 		size = core->sram[i].size;
792 
793 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
794 			offset = da - dev_addr;
795 			va = core->sram[i].cpu_addr + offset;
796 			return (__force void *)va;
797 		}
798 	}
799 
800 	/* handle static DDR reserved memory regions */
801 	for (i = 0; i < kproc->num_rmems; i++) {
802 		dev_addr = kproc->rmem[i].dev_addr;
803 		size = kproc->rmem[i].size;
804 
805 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
806 			offset = da - dev_addr;
807 			va = kproc->rmem[i].cpu_addr + offset;
808 			return (__force void *)va;
809 		}
810 	}
811 
812 	return NULL;
813 }
814 
815 static const struct rproc_ops k3_r5_rproc_ops = {
816 	.prepare	= k3_r5_rproc_prepare,
817 	.unprepare	= k3_r5_rproc_unprepare,
818 	.start		= k3_r5_rproc_start,
819 	.stop		= k3_r5_rproc_stop,
820 	.kick		= k3_r5_rproc_kick,
821 	.da_to_va	= k3_r5_rproc_da_to_va,
822 };
823 
824 /*
825  * Internal R5F Core configuration
826  *
827  * Each R5FSS has a cluster-level setting for configuring the processor
828  * subsystem either in a safety/fault-tolerant LockStep mode or a performance
829  * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
830  * as an alternate for LockStep mode that exercises only a single R5F core
831  * called Single-CPU mode. Each R5F core has a number of settings to either
832  * enable/disable each of the TCMs, control which TCM appears at the R5F core's
833  * address 0x0. These settings need to be configured before the resets for the
834  * corresponding core are released. These settings are all protected and managed
835  * by the System Processor.
836  *
837  * This function is used to pre-configure these settings for each R5F core, and
838  * the configuration is all done through various ti_sci_proc functions that
839  * communicate with the System Processor. The function also ensures that both
840  * the cores are halted before the .prepare() step.
841  *
842  * The function is called from k3_r5_cluster_rproc_init() and is invoked either
843  * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
844  * for LockStep-mode is dictated by an eFUSE register bit, and the config
845  * settings retrieved from DT are adjusted accordingly as per the permitted
846  * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
847  * supports a Single-CPU mode. All cluster level settings like Cluster mode and
848  * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
849  * and retrieved using Core0.
850  *
851  * The function behavior is different based on the cluster mode. The R5F cores
852  * are configured independently as per their individual settings in Split mode.
853  * They are identically configured in LockStep mode using the primary Core0
854  * settings. However, some individual settings cannot be set in LockStep mode.
855  * This is overcome by switching to Split-mode initially and then programming
856  * both the cores with the same settings, before reconfiguing again for
857  * LockStep mode.
858  */
859 static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
860 {
861 	struct k3_r5_cluster *cluster = kproc->cluster;
862 	struct device *dev = kproc->dev;
863 	struct k3_r5_core *core0, *core, *temp;
864 	u32 ctrl = 0, cfg = 0, stat = 0;
865 	u32 set_cfg = 0, clr_cfg = 0;
866 	u64 boot_vec = 0;
867 	bool lockstep_en;
868 	bool single_cpu;
869 	int ret;
870 
871 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
872 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
873 	    cluster->mode == CLUSTER_MODE_SINGLECPU ||
874 	    cluster->mode == CLUSTER_MODE_SINGLECORE) {
875 		core = core0;
876 	} else {
877 		core = kproc->core;
878 	}
879 
880 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
881 				     &stat);
882 	if (ret < 0)
883 		return ret;
884 
885 	dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
886 		boot_vec, cfg, ctrl, stat);
887 
888 	single_cpu = !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
889 	lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
890 
891 	/* Override to single CPU mode if set in status flag */
892 	if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
893 		dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
894 		cluster->mode = CLUSTER_MODE_SINGLECPU;
895 	}
896 
897 	/* Override to split mode if lockstep enable bit is not set in status flag */
898 	if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
899 		dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
900 		cluster->mode = CLUSTER_MODE_SPLIT;
901 	}
902 
903 	/* always enable ARM mode and set boot vector to 0 */
904 	boot_vec = 0x0;
905 	if (core == core0) {
906 		clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
907 		/*
908 		 * Single-CPU configuration bit can only be configured
909 		 * on Core0 and system firmware will NACK any requests
910 		 * with the bit configured, so program it only on
911 		 * permitted cores
912 		 */
913 		if (cluster->mode == CLUSTER_MODE_SINGLECPU ||
914 		    cluster->mode == CLUSTER_MODE_SINGLECORE) {
915 			set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
916 		} else {
917 			/*
918 			 * LockStep configuration bit is Read-only on Split-mode
919 			 * _only_ devices and system firmware will NACK any
920 			 * requests with the bit configured, so program it only
921 			 * on permitted devices
922 			 */
923 			if (lockstep_en)
924 				clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
925 		}
926 	}
927 
928 	if (core->atcm_enable)
929 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
930 	else
931 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
932 
933 	if (core->btcm_enable)
934 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
935 	else
936 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
937 
938 	if (core->loczrama)
939 		set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
940 	else
941 		clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
942 
943 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
944 		/*
945 		 * work around system firmware limitations to make sure both
946 		 * cores are programmed symmetrically in LockStep. LockStep
947 		 * and TEINIT config is only allowed with Core0.
948 		 */
949 		list_for_each_entry(temp, &cluster->cores, elem) {
950 			ret = k3_r5_core_halt(temp);
951 			if (ret)
952 				goto out;
953 
954 			if (temp != core) {
955 				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
956 				clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
957 			}
958 			ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
959 						     set_cfg, clr_cfg);
960 			if (ret)
961 				goto out;
962 		}
963 
964 		set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
965 		clr_cfg = 0;
966 		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
967 					     set_cfg, clr_cfg);
968 	} else {
969 		ret = k3_r5_core_halt(core);
970 		if (ret)
971 			goto out;
972 
973 		ret = ti_sci_proc_set_config(core->tsp, boot_vec,
974 					     set_cfg, clr_cfg);
975 	}
976 
977 out:
978 	return ret;
979 }
980 
981 static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
982 {
983 	struct device *dev = kproc->dev;
984 	struct device_node *np = dev_of_node(dev);
985 	struct device_node *rmem_np;
986 	struct reserved_mem *rmem;
987 	int num_rmems;
988 	int ret, i;
989 
990 	num_rmems = of_property_count_elems_of_size(np, "memory-region",
991 						    sizeof(phandle));
992 	if (num_rmems <= 0) {
993 		dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
994 			num_rmems);
995 		return -EINVAL;
996 	}
997 	if (num_rmems < 2) {
998 		dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
999 			num_rmems);
1000 		return -EINVAL;
1001 	}
1002 
1003 	/* use reserved memory region 0 for vring DMA allocations */
1004 	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
1005 	if (ret) {
1006 		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
1007 			ret);
1008 		return ret;
1009 	}
1010 
1011 	num_rmems--;
1012 	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
1013 	if (!kproc->rmem) {
1014 		ret = -ENOMEM;
1015 		goto release_rmem;
1016 	}
1017 
1018 	/* use remaining reserved memory regions for static carveouts */
1019 	for (i = 0; i < num_rmems; i++) {
1020 		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
1021 		if (!rmem_np) {
1022 			ret = -EINVAL;
1023 			goto unmap_rmem;
1024 		}
1025 
1026 		rmem = of_reserved_mem_lookup(rmem_np);
1027 		if (!rmem) {
1028 			of_node_put(rmem_np);
1029 			ret = -EINVAL;
1030 			goto unmap_rmem;
1031 		}
1032 		of_node_put(rmem_np);
1033 
1034 		kproc->rmem[i].bus_addr = rmem->base;
1035 		/*
1036 		 * R5Fs do not have an MMU, but have a Region Address Translator
1037 		 * (RAT) module that provides a fixed entry translation between
1038 		 * the 32-bit processor addresses to 64-bit bus addresses. The
1039 		 * RAT is programmable only by the R5F cores. Support for RAT
1040 		 * is currently not supported, so 64-bit address regions are not
1041 		 * supported. The absence of MMUs implies that the R5F device
1042 		 * addresses/supported memory regions are restricted to 32-bit
1043 		 * bus addresses, and are identical
1044 		 */
1045 		kproc->rmem[i].dev_addr = (u32)rmem->base;
1046 		kproc->rmem[i].size = rmem->size;
1047 		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
1048 		if (!kproc->rmem[i].cpu_addr) {
1049 			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
1050 				i + 1, &rmem->base, &rmem->size);
1051 			ret = -ENOMEM;
1052 			goto unmap_rmem;
1053 		}
1054 
1055 		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1056 			i + 1, &kproc->rmem[i].bus_addr,
1057 			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
1058 			kproc->rmem[i].dev_addr);
1059 	}
1060 	kproc->num_rmems = num_rmems;
1061 
1062 	return 0;
1063 
1064 unmap_rmem:
1065 	for (i--; i >= 0; i--)
1066 		iounmap(kproc->rmem[i].cpu_addr);
1067 	kfree(kproc->rmem);
1068 release_rmem:
1069 	of_reserved_mem_device_release(dev);
1070 	return ret;
1071 }
1072 
1073 static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
1074 {
1075 	int i;
1076 
1077 	for (i = 0; i < kproc->num_rmems; i++)
1078 		iounmap(kproc->rmem[i].cpu_addr);
1079 	kfree(kproc->rmem);
1080 
1081 	of_reserved_mem_device_release(kproc->dev);
1082 }
1083 
1084 /*
1085  * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
1086  * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
1087  * cores are usable in Split-mode, but only the Core0 TCMs can be used in
1088  * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
1089  * leveraging the Core1 TCMs as well in certain modes where they would have
1090  * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
1091  * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
1092  * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
1093  * the Core0 TCMs, and the dts representation reflects this increased size on
1094  * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
1095  * half the original size in Split mode.
1096  */
1097 static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
1098 {
1099 	struct k3_r5_cluster *cluster = kproc->cluster;
1100 	struct k3_r5_core *core = kproc->core;
1101 	struct device *cdev = core->dev;
1102 	struct k3_r5_core *core0;
1103 
1104 	if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1105 	    cluster->mode == CLUSTER_MODE_SINGLECPU ||
1106 	    cluster->mode == CLUSTER_MODE_SINGLECORE ||
1107 	    !cluster->soc_data->tcm_is_double)
1108 		return;
1109 
1110 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1111 	if (core == core0) {
1112 		WARN_ON(core->mem[0].size != SZ_64K);
1113 		WARN_ON(core->mem[1].size != SZ_64K);
1114 
1115 		core->mem[0].size /= 2;
1116 		core->mem[1].size /= 2;
1117 
1118 		dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
1119 			core->mem[0].size, core->mem[1].size);
1120 	}
1121 }
1122 
1123 /*
1124  * This function checks and configures a R5F core for IPC-only or remoteproc
1125  * mode. The driver is configured to be in IPC-only mode for a R5F core when
1126  * the core has been loaded and started by a bootloader. The IPC-only mode is
1127  * detected by querying the System Firmware for reset, power on and halt status
1128  * and ensuring that the core is running. Any incomplete steps at bootloader
1129  * are validated and errored out.
1130  *
1131  * In IPC-only mode, the driver state flags for ATCM, BTCM and LOCZRAMA settings
1132  * and cluster mode parsed originally from kernel DT are updated to reflect the
1133  * actual values configured by bootloader. The driver internal device memory
1134  * addresses for TCMs are also updated.
1135  */
1136 static int k3_r5_rproc_configure_mode(struct k3_r5_rproc *kproc)
1137 {
1138 	struct k3_r5_cluster *cluster = kproc->cluster;
1139 	struct k3_r5_core *core = kproc->core;
1140 	struct device *cdev = core->dev;
1141 	bool r_state = false, c_state = false, lockstep_en = false, single_cpu = false;
1142 	u32 ctrl = 0, cfg = 0, stat = 0, halted = 0;
1143 	u64 boot_vec = 0;
1144 	u32 atcm_enable, btcm_enable, loczrama;
1145 	struct k3_r5_core *core0;
1146 	enum cluster_mode mode = cluster->mode;
1147 	int reset_ctrl_status;
1148 	int ret;
1149 
1150 	core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
1151 
1152 	ret = core->ti_sci->ops.dev_ops.is_on(core->ti_sci, core->ti_sci_id,
1153 					      &r_state, &c_state);
1154 	if (ret) {
1155 		dev_err(cdev, "failed to get initial state, mode cannot be determined, ret = %d\n",
1156 			ret);
1157 		return ret;
1158 	}
1159 	if (r_state != c_state) {
1160 		dev_warn(cdev, "R5F core may have been powered on by a different host, programmed state (%d) != actual state (%d)\n",
1161 			 r_state, c_state);
1162 	}
1163 
1164 	reset_ctrl_status = reset_control_status(core->reset);
1165 	if (reset_ctrl_status < 0) {
1166 		dev_err(cdev, "failed to get initial local reset status, ret = %d\n",
1167 			reset_ctrl_status);
1168 		return reset_ctrl_status;
1169 	}
1170 
1171 	/*
1172 	 * Skip the waiting mechanism for sequential power-on of cores if the
1173 	 * core has already been booted by another entity.
1174 	 */
1175 	core->released_from_reset = c_state;
1176 
1177 	ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
1178 				     &stat);
1179 	if (ret < 0) {
1180 		dev_err(cdev, "failed to get initial processor status, ret = %d\n",
1181 			ret);
1182 		return ret;
1183 	}
1184 	atcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_ATCM_EN ?  1 : 0;
1185 	btcm_enable = cfg & PROC_BOOT_CFG_FLAG_R5_BTCM_EN ?  1 : 0;
1186 	loczrama = cfg & PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE ?  1 : 0;
1187 	single_cpu = cfg & PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE ? 1 : 0;
1188 	lockstep_en = cfg & PROC_BOOT_CFG_FLAG_R5_LOCKSTEP ? 1 : 0;
1189 
1190 	if (single_cpu && mode != CLUSTER_MODE_SINGLECORE)
1191 		mode = CLUSTER_MODE_SINGLECPU;
1192 	if (lockstep_en)
1193 		mode = CLUSTER_MODE_LOCKSTEP;
1194 
1195 	halted = ctrl & PROC_BOOT_CTRL_FLAG_R5_CORE_HALT;
1196 
1197 	/*
1198 	 * IPC-only mode detection requires both local and module resets to
1199 	 * be deasserted and R5F core to be unhalted. Local reset status is
1200 	 * irrelevant if module reset is asserted (POR value has local reset
1201 	 * deasserted), and is deemed as remoteproc mode
1202 	 */
1203 	if (c_state && !reset_ctrl_status && !halted) {
1204 		dev_info(cdev, "configured R5F for IPC-only mode\n");
1205 		kproc->rproc->state = RPROC_DETACHED;
1206 		ret = 1;
1207 		/* override rproc ops with only required IPC-only mode ops */
1208 		kproc->rproc->ops->prepare = NULL;
1209 		kproc->rproc->ops->unprepare = NULL;
1210 		kproc->rproc->ops->start = NULL;
1211 		kproc->rproc->ops->stop = NULL;
1212 		kproc->rproc->ops->attach = k3_r5_rproc_attach;
1213 		kproc->rproc->ops->detach = k3_r5_rproc_detach;
1214 		kproc->rproc->ops->get_loaded_rsc_table =
1215 						k3_r5_get_loaded_rsc_table;
1216 	} else if (!c_state) {
1217 		dev_info(cdev, "configured R5F for remoteproc mode\n");
1218 		ret = 0;
1219 	} else {
1220 		dev_err(cdev, "mismatched mode: local_reset = %s, module_reset = %s, core_state = %s\n",
1221 			!reset_ctrl_status ? "deasserted" : "asserted",
1222 			c_state ? "deasserted" : "asserted",
1223 			halted ? "halted" : "unhalted");
1224 		ret = -EINVAL;
1225 	}
1226 
1227 	/* fixup TCMs, cluster & core flags to actual values in IPC-only mode */
1228 	if (ret > 0) {
1229 		if (core == core0)
1230 			cluster->mode = mode;
1231 		core->atcm_enable = atcm_enable;
1232 		core->btcm_enable = btcm_enable;
1233 		core->loczrama = loczrama;
1234 		core->mem[0].dev_addr = loczrama ? 0 : K3_R5_TCM_DEV_ADDR;
1235 		core->mem[1].dev_addr = loczrama ? K3_R5_TCM_DEV_ADDR : 0;
1236 	}
1237 
1238 	return ret;
1239 }
1240 
1241 static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
1242 {
1243 	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1244 	struct device *dev = &pdev->dev;
1245 	struct k3_r5_rproc *kproc;
1246 	struct k3_r5_core *core, *core1;
1247 	struct device *cdev;
1248 	const char *fw_name;
1249 	struct rproc *rproc;
1250 	int ret, ret1;
1251 
1252 	core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1253 	list_for_each_entry(core, &cluster->cores, elem) {
1254 		cdev = core->dev;
1255 		ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
1256 		if (ret) {
1257 			dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
1258 				ret);
1259 			goto out;
1260 		}
1261 
1262 		rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
1263 				    fw_name, sizeof(*kproc));
1264 		if (!rproc) {
1265 			ret = -ENOMEM;
1266 			goto out;
1267 		}
1268 
1269 		/* K3 R5s have a Region Address Translator (RAT) but no MMU */
1270 		rproc->has_iommu = false;
1271 		/* error recovery is not supported at present */
1272 		rproc->recovery_disabled = true;
1273 
1274 		kproc = rproc->priv;
1275 		kproc->cluster = cluster;
1276 		kproc->core = core;
1277 		kproc->dev = cdev;
1278 		kproc->rproc = rproc;
1279 		core->rproc = rproc;
1280 
1281 		ret = k3_r5_rproc_configure_mode(kproc);
1282 		if (ret < 0)
1283 			goto err_config;
1284 		if (ret)
1285 			goto init_rmem;
1286 
1287 		ret = k3_r5_rproc_configure(kproc);
1288 		if (ret) {
1289 			dev_err(dev, "initial configure failed, ret = %d\n",
1290 				ret);
1291 			goto err_config;
1292 		}
1293 
1294 init_rmem:
1295 		k3_r5_adjust_tcm_sizes(kproc);
1296 
1297 		ret = k3_r5_reserved_mem_init(kproc);
1298 		if (ret) {
1299 			dev_err(dev, "reserved memory init failed, ret = %d\n",
1300 				ret);
1301 			goto err_config;
1302 		}
1303 
1304 		ret = rproc_add(rproc);
1305 		if (ret) {
1306 			dev_err(dev, "rproc_add failed, ret = %d\n", ret);
1307 			goto err_add;
1308 		}
1309 
1310 		/* create only one rproc in lockstep, single-cpu or
1311 		 * single core mode
1312 		 */
1313 		if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1314 		    cluster->mode == CLUSTER_MODE_SINGLECPU ||
1315 		    cluster->mode == CLUSTER_MODE_SINGLECORE)
1316 			break;
1317 
1318 		/*
1319 		 * R5 cores require to be powered on sequentially, core0
1320 		 * should be in higher power state than core1 in a cluster
1321 		 * So, wait for current core to power up before proceeding
1322 		 * to next core and put timeout of 2sec for each core.
1323 		 *
1324 		 * This waiting mechanism is necessary because
1325 		 * rproc_auto_boot_callback() for core1 can be called before
1326 		 * core0 due to thread execution order.
1327 		 */
1328 		ret = wait_event_interruptible_timeout(cluster->core_transition,
1329 						       core->released_from_reset,
1330 						       msecs_to_jiffies(2000));
1331 		if (ret <= 0) {
1332 			dev_err(dev,
1333 				"Timed out waiting for %s core to power up!\n",
1334 				rproc->name);
1335 			return ret;
1336 		}
1337 	}
1338 
1339 	return 0;
1340 
1341 err_split:
1342 	if (rproc->state == RPROC_ATTACHED) {
1343 		ret1 = rproc_detach(rproc);
1344 		if (ret1) {
1345 			dev_err(kproc->dev, "failed to detach rproc, ret = %d\n",
1346 				ret1);
1347 			return ret1;
1348 		}
1349 	}
1350 
1351 	rproc_del(rproc);
1352 err_add:
1353 	k3_r5_reserved_mem_exit(kproc);
1354 err_config:
1355 	rproc_free(rproc);
1356 	core->rproc = NULL;
1357 out:
1358 	/* undo core0 upon any failures on core1 in split-mode */
1359 	if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
1360 		core = list_prev_entry(core, elem);
1361 		rproc = core->rproc;
1362 		kproc = rproc->priv;
1363 		goto err_split;
1364 	}
1365 	return ret;
1366 }
1367 
1368 static void k3_r5_cluster_rproc_exit(void *data)
1369 {
1370 	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1371 	struct k3_r5_rproc *kproc;
1372 	struct k3_r5_core *core;
1373 	struct rproc *rproc;
1374 	int ret;
1375 
1376 	/*
1377 	 * lockstep mode and single-cpu modes have only one rproc associated
1378 	 * with first core, whereas split-mode has two rprocs associated with
1379 	 * each core, and requires that core1 be powered down first
1380 	 */
1381 	core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1382 		cluster->mode == CLUSTER_MODE_SINGLECPU) ?
1383 		list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
1384 		list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1385 
1386 	list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
1387 		rproc = core->rproc;
1388 		kproc = rproc->priv;
1389 
1390 		if (rproc->state == RPROC_ATTACHED) {
1391 			ret = rproc_detach(rproc);
1392 			if (ret) {
1393 				dev_err(kproc->dev, "failed to detach rproc, ret = %d\n", ret);
1394 				return;
1395 			}
1396 		}
1397 
1398 		rproc_del(rproc);
1399 
1400 		k3_r5_reserved_mem_exit(kproc);
1401 
1402 		rproc_free(rproc);
1403 		core->rproc = NULL;
1404 	}
1405 }
1406 
1407 static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
1408 					       struct k3_r5_core *core)
1409 {
1410 	static const char * const mem_names[] = {"atcm", "btcm"};
1411 	struct device *dev = &pdev->dev;
1412 	struct resource *res;
1413 	int num_mems;
1414 	int i;
1415 
1416 	num_mems = ARRAY_SIZE(mem_names);
1417 	core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
1418 	if (!core->mem)
1419 		return -ENOMEM;
1420 
1421 	for (i = 0; i < num_mems; i++) {
1422 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1423 						   mem_names[i]);
1424 		if (!res) {
1425 			dev_err(dev, "found no memory resource for %s\n",
1426 				mem_names[i]);
1427 			return -EINVAL;
1428 		}
1429 		if (!devm_request_mem_region(dev, res->start,
1430 					     resource_size(res),
1431 					     dev_name(dev))) {
1432 			dev_err(dev, "could not request %s region for resource\n",
1433 				mem_names[i]);
1434 			return -EBUSY;
1435 		}
1436 
1437 		/*
1438 		 * TCMs are designed in general to support RAM-like backing
1439 		 * memories. So, map these as Normal Non-Cached memories. This
1440 		 * also avoids/fixes any potential alignment faults due to
1441 		 * unaligned data accesses when using memcpy() or memset()
1442 		 * functions (normally seen with device type memory).
1443 		 */
1444 		core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1445 							resource_size(res));
1446 		if (!core->mem[i].cpu_addr) {
1447 			dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1448 			return -ENOMEM;
1449 		}
1450 		core->mem[i].bus_addr = res->start;
1451 
1452 		/*
1453 		 * TODO:
1454 		 * The R5F cores can place ATCM & BTCM anywhere in its address
1455 		 * based on the corresponding Region Registers in the System
1456 		 * Control coprocessor. For now, place ATCM and BTCM at
1457 		 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1458 		 * SoCs) based on loczrama setting
1459 		 */
1460 		if (!strcmp(mem_names[i], "atcm")) {
1461 			core->mem[i].dev_addr = core->loczrama ?
1462 							0 : K3_R5_TCM_DEV_ADDR;
1463 		} else {
1464 			core->mem[i].dev_addr = core->loczrama ?
1465 							K3_R5_TCM_DEV_ADDR : 0;
1466 		}
1467 		core->mem[i].size = resource_size(res);
1468 
1469 		dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1470 			mem_names[i], &core->mem[i].bus_addr,
1471 			core->mem[i].size, core->mem[i].cpu_addr,
1472 			core->mem[i].dev_addr);
1473 	}
1474 	core->num_mems = num_mems;
1475 
1476 	return 0;
1477 }
1478 
1479 static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1480 					   struct k3_r5_core *core)
1481 {
1482 	struct device_node *np = pdev->dev.of_node;
1483 	struct device *dev = &pdev->dev;
1484 	struct device_node *sram_np;
1485 	struct resource res;
1486 	int num_sram;
1487 	int i, ret;
1488 
1489 	num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1490 	if (num_sram <= 0) {
1491 		dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1492 			num_sram);
1493 		return 0;
1494 	}
1495 
1496 	core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1497 	if (!core->sram)
1498 		return -ENOMEM;
1499 
1500 	for (i = 0; i < num_sram; i++) {
1501 		sram_np = of_parse_phandle(np, "sram", i);
1502 		if (!sram_np)
1503 			return -EINVAL;
1504 
1505 		if (!of_device_is_available(sram_np)) {
1506 			of_node_put(sram_np);
1507 			return -EINVAL;
1508 		}
1509 
1510 		ret = of_address_to_resource(sram_np, 0, &res);
1511 		of_node_put(sram_np);
1512 		if (ret)
1513 			return -EINVAL;
1514 
1515 		core->sram[i].bus_addr = res.start;
1516 		core->sram[i].dev_addr = res.start;
1517 		core->sram[i].size = resource_size(&res);
1518 		core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1519 							 resource_size(&res));
1520 		if (!core->sram[i].cpu_addr) {
1521 			dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1522 				i, &res.start);
1523 			return -ENOMEM;
1524 		}
1525 
1526 		dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1527 			i, &core->sram[i].bus_addr,
1528 			core->sram[i].size, core->sram[i].cpu_addr,
1529 			core->sram[i].dev_addr);
1530 	}
1531 	core->num_sram = num_sram;
1532 
1533 	return 0;
1534 }
1535 
1536 static
1537 struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
1538 					  const struct ti_sci_handle *sci)
1539 {
1540 	struct ti_sci_proc *tsp;
1541 	u32 temp[2];
1542 	int ret;
1543 
1544 	ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
1545 					 temp, 2);
1546 	if (ret < 0)
1547 		return ERR_PTR(ret);
1548 
1549 	tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
1550 	if (!tsp)
1551 		return ERR_PTR(-ENOMEM);
1552 
1553 	tsp->dev = dev;
1554 	tsp->sci = sci;
1555 	tsp->ops = &sci->ops.proc_ops;
1556 	tsp->proc_id = temp[0];
1557 	tsp->host_id = temp[1];
1558 
1559 	return tsp;
1560 }
1561 
1562 static int k3_r5_core_of_init(struct platform_device *pdev)
1563 {
1564 	struct device *dev = &pdev->dev;
1565 	struct device_node *np = dev_of_node(dev);
1566 	struct k3_r5_core *core;
1567 	int ret;
1568 
1569 	if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1570 		return -ENOMEM;
1571 
1572 	core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1573 	if (!core) {
1574 		ret = -ENOMEM;
1575 		goto err;
1576 	}
1577 
1578 	core->dev = dev;
1579 	/*
1580 	 * Use SoC Power-on-Reset values as default if no DT properties are
1581 	 * used to dictate the TCM configurations
1582 	 */
1583 	core->atcm_enable = 0;
1584 	core->btcm_enable = 1;
1585 	core->loczrama = 1;
1586 
1587 	ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1588 	if (ret < 0 && ret != -EINVAL) {
1589 		dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1590 			ret);
1591 		goto err;
1592 	}
1593 
1594 	ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1595 	if (ret < 0 && ret != -EINVAL) {
1596 		dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1597 			ret);
1598 		goto err;
1599 	}
1600 
1601 	ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1602 	if (ret < 0 && ret != -EINVAL) {
1603 		dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1604 		goto err;
1605 	}
1606 
1607 	core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1608 	if (IS_ERR(core->ti_sci)) {
1609 		ret = PTR_ERR(core->ti_sci);
1610 		if (ret != -EPROBE_DEFER) {
1611 			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1612 				ret);
1613 		}
1614 		core->ti_sci = NULL;
1615 		goto err;
1616 	}
1617 
1618 	ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1619 	if (ret) {
1620 		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1621 		goto err;
1622 	}
1623 
1624 	core->reset = devm_reset_control_get_exclusive(dev, NULL);
1625 	if (IS_ERR_OR_NULL(core->reset)) {
1626 		ret = PTR_ERR_OR_ZERO(core->reset);
1627 		if (!ret)
1628 			ret = -ENODEV;
1629 		if (ret != -EPROBE_DEFER) {
1630 			dev_err(dev, "failed to get reset handle, ret = %d\n",
1631 				ret);
1632 		}
1633 		goto err;
1634 	}
1635 
1636 	core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
1637 	if (IS_ERR(core->tsp)) {
1638 		ret = PTR_ERR(core->tsp);
1639 		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1640 			ret);
1641 		goto err;
1642 	}
1643 
1644 	ret = k3_r5_core_of_get_internal_memories(pdev, core);
1645 	if (ret) {
1646 		dev_err(dev, "failed to get internal memories, ret = %d\n",
1647 			ret);
1648 		goto err;
1649 	}
1650 
1651 	ret = k3_r5_core_of_get_sram_memories(pdev, core);
1652 	if (ret) {
1653 		dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1654 		goto err;
1655 	}
1656 
1657 	ret = ti_sci_proc_request(core->tsp);
1658 	if (ret < 0) {
1659 		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1660 		goto err;
1661 	}
1662 
1663 	platform_set_drvdata(pdev, core);
1664 	devres_close_group(dev, k3_r5_core_of_init);
1665 
1666 	return 0;
1667 
1668 err:
1669 	devres_release_group(dev, k3_r5_core_of_init);
1670 	return ret;
1671 }
1672 
1673 /*
1674  * free the resources explicitly since driver model is not being used
1675  * for the child R5F devices
1676  */
1677 static void k3_r5_core_of_exit(struct platform_device *pdev)
1678 {
1679 	struct k3_r5_core *core = platform_get_drvdata(pdev);
1680 	struct device *dev = &pdev->dev;
1681 	int ret;
1682 
1683 	ret = ti_sci_proc_release(core->tsp);
1684 	if (ret)
1685 		dev_err(dev, "failed to release proc, ret = %d\n", ret);
1686 
1687 	platform_set_drvdata(pdev, NULL);
1688 	devres_release_group(dev, k3_r5_core_of_init);
1689 }
1690 
1691 static void k3_r5_cluster_of_exit(void *data)
1692 {
1693 	struct k3_r5_cluster *cluster = platform_get_drvdata(data);
1694 	struct platform_device *cpdev;
1695 	struct k3_r5_core *core, *temp;
1696 
1697 	list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1698 		list_del(&core->elem);
1699 		cpdev = to_platform_device(core->dev);
1700 		k3_r5_core_of_exit(cpdev);
1701 	}
1702 }
1703 
1704 static int k3_r5_cluster_of_init(struct platform_device *pdev)
1705 {
1706 	struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1707 	struct device *dev = &pdev->dev;
1708 	struct device_node *np = dev_of_node(dev);
1709 	struct platform_device *cpdev;
1710 	struct device_node *child;
1711 	struct k3_r5_core *core;
1712 	int ret;
1713 
1714 	for_each_available_child_of_node(np, child) {
1715 		cpdev = of_find_device_by_node(child);
1716 		if (!cpdev) {
1717 			ret = -ENODEV;
1718 			dev_err(dev, "could not get R5 core platform device\n");
1719 			of_node_put(child);
1720 			goto fail;
1721 		}
1722 
1723 		ret = k3_r5_core_of_init(cpdev);
1724 		if (ret) {
1725 			dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1726 				ret);
1727 			put_device(&cpdev->dev);
1728 			of_node_put(child);
1729 			goto fail;
1730 		}
1731 
1732 		core = platform_get_drvdata(cpdev);
1733 		put_device(&cpdev->dev);
1734 		list_add_tail(&core->elem, &cluster->cores);
1735 	}
1736 
1737 	return 0;
1738 
1739 fail:
1740 	k3_r5_cluster_of_exit(pdev);
1741 	return ret;
1742 }
1743 
1744 static int k3_r5_probe(struct platform_device *pdev)
1745 {
1746 	struct device *dev = &pdev->dev;
1747 	struct device_node *np = dev_of_node(dev);
1748 	struct k3_r5_cluster *cluster;
1749 	const struct k3_r5_soc_data *data;
1750 	int ret;
1751 	int num_cores;
1752 
1753 	data = of_device_get_match_data(&pdev->dev);
1754 	if (!data) {
1755 		dev_err(dev, "SoC-specific data is not defined\n");
1756 		return -ENODEV;
1757 	}
1758 
1759 	cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1760 	if (!cluster)
1761 		return -ENOMEM;
1762 
1763 	cluster->dev = dev;
1764 	cluster->soc_data = data;
1765 	INIT_LIST_HEAD(&cluster->cores);
1766 	init_waitqueue_head(&cluster->core_transition);
1767 
1768 	ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1769 	if (ret < 0 && ret != -EINVAL) {
1770 		dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
1771 			ret);
1772 		return ret;
1773 	}
1774 
1775 	if (ret == -EINVAL) {
1776 		/*
1777 		 * default to most common efuse configurations - Split-mode on AM64x
1778 		 * and LockStep-mode on all others
1779 		 * default to most common efuse configurations -
1780 		 * Split-mode on AM64x
1781 		 * Single core on AM62x
1782 		 * LockStep-mode on all others
1783 		 */
1784 		if (!data->is_single_core)
1785 			cluster->mode = data->single_cpu_mode ?
1786 					CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
1787 		else
1788 			cluster->mode = CLUSTER_MODE_SINGLECORE;
1789 	}
1790 
1791 	if  ((cluster->mode == CLUSTER_MODE_SINGLECPU && !data->single_cpu_mode) ||
1792 	     (cluster->mode == CLUSTER_MODE_SINGLECORE && !data->is_single_core)) {
1793 		dev_err(dev, "Cluster mode = %d is not supported on this SoC\n", cluster->mode);
1794 		return -EINVAL;
1795 	}
1796 
1797 	num_cores = of_get_available_child_count(np);
1798 	if (num_cores != 2 && !data->is_single_core) {
1799 		dev_err(dev, "MCU cluster requires both R5F cores to be enabled but num_cores is set to = %d\n",
1800 			num_cores);
1801 		return -ENODEV;
1802 	}
1803 
1804 	if (num_cores != 1 && data->is_single_core) {
1805 		dev_err(dev, "SoC supports only single core R5 but num_cores is set to %d\n",
1806 			num_cores);
1807 		return -ENODEV;
1808 	}
1809 
1810 	platform_set_drvdata(pdev, cluster);
1811 
1812 	ret = devm_of_platform_populate(dev);
1813 	if (ret) {
1814 		dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
1815 			ret);
1816 		return ret;
1817 	}
1818 
1819 	ret = k3_r5_cluster_of_init(pdev);
1820 	if (ret) {
1821 		dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1822 		return ret;
1823 	}
1824 
1825 	ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
1826 	if (ret)
1827 		return ret;
1828 
1829 	ret = k3_r5_cluster_rproc_init(pdev);
1830 	if (ret) {
1831 		dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1832 			ret);
1833 		return ret;
1834 	}
1835 
1836 	ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
1837 	if (ret)
1838 		return ret;
1839 
1840 	return 0;
1841 }
1842 
1843 static const struct k3_r5_soc_data am65_j721e_soc_data = {
1844 	.tcm_is_double = false,
1845 	.tcm_ecc_autoinit = false,
1846 	.single_cpu_mode = false,
1847 	.is_single_core = false,
1848 };
1849 
1850 static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
1851 	.tcm_is_double = true,
1852 	.tcm_ecc_autoinit = true,
1853 	.single_cpu_mode = false,
1854 	.is_single_core = false,
1855 };
1856 
1857 static const struct k3_r5_soc_data am64_soc_data = {
1858 	.tcm_is_double = true,
1859 	.tcm_ecc_autoinit = true,
1860 	.single_cpu_mode = true,
1861 	.is_single_core = false,
1862 };
1863 
1864 static const struct k3_r5_soc_data am62_soc_data = {
1865 	.tcm_is_double = false,
1866 	.tcm_ecc_autoinit = true,
1867 	.single_cpu_mode = false,
1868 	.is_single_core = true,
1869 };
1870 
1871 static const struct of_device_id k3_r5_of_match[] = {
1872 	{ .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1873 	{ .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
1874 	{ .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
1875 	{ .compatible = "ti,am64-r5fss",  .data = &am64_soc_data, },
1876 	{ .compatible = "ti,am62-r5fss",  .data = &am62_soc_data, },
1877 	{ .compatible = "ti,j721s2-r5fss",  .data = &j7200_j721s2_soc_data, },
1878 	{ /* sentinel */ },
1879 };
1880 MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1881 
1882 static struct platform_driver k3_r5_rproc_driver = {
1883 	.probe = k3_r5_probe,
1884 	.driver = {
1885 		.name = "k3_r5_rproc",
1886 		.of_match_table = k3_r5_of_match,
1887 	},
1888 };
1889 
1890 module_platform_driver(k3_r5_rproc_driver);
1891 
1892 MODULE_LICENSE("GPL v2");
1893 MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1894 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1895