xref: /linux/drivers/remoteproc/ti_k3_dsp_remoteproc.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI K3 DSP Remote Processor(s) driver
4  *
5  * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *	Suman Anna <s-anna@ti.com>
7  */
8 
9 #include <linux/io.h>
10 #include <linux/mailbox_client.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/of_reserved_mem.h>
14 #include <linux/omap-mailbox.h>
15 #include <linux/platform_device.h>
16 #include <linux/remoteproc.h>
17 #include <linux/reset.h>
18 #include <linux/slab.h>
19 
20 #include "omap_remoteproc.h"
21 #include "remoteproc_internal.h"
22 #include "ti_sci_proc.h"
23 
24 #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK	(SZ_16M - 1)
25 
26 /**
27  * struct k3_dsp_mem - internal memory structure
28  * @cpu_addr: MPU virtual address of the memory region
29  * @bus_addr: Bus address used to access the memory region
30  * @dev_addr: Device address of the memory region from DSP view
31  * @size: Size of the memory region
32  */
33 struct k3_dsp_mem {
34 	void __iomem *cpu_addr;
35 	phys_addr_t bus_addr;
36 	u32 dev_addr;
37 	size_t size;
38 };
39 
40 /**
41  * struct k3_dsp_mem_data - memory definitions for a DSP
42  * @name: name for this memory entry
43  * @dev_addr: device address for the memory entry
44  */
45 struct k3_dsp_mem_data {
46 	const char *name;
47 	const u32 dev_addr;
48 };
49 
50 /**
51  * struct k3_dsp_dev_data - device data structure for a DSP
52  * @mems: pointer to memory definitions for a DSP
53  * @num_mems: number of memory regions in @mems
54  * @boot_align_addr: boot vector address alignment granularity
55  * @uses_lreset: flag to denote the need for local reset management
56  */
57 struct k3_dsp_dev_data {
58 	const struct k3_dsp_mem_data *mems;
59 	u32 num_mems;
60 	u32 boot_align_addr;
61 	bool uses_lreset;
62 };
63 
64 /**
65  * struct k3_dsp_rproc - k3 DSP remote processor driver structure
66  * @dev: cached device pointer
67  * @rproc: remoteproc device handle
68  * @mem: internal memory regions data
69  * @num_mems: number of internal memory regions
70  * @rmem: reserved memory regions data
71  * @num_rmems: number of reserved memory regions
72  * @reset: reset control handle
73  * @data: pointer to DSP-specific device data
74  * @tsp: TI-SCI processor control handle
75  * @ti_sci: TI-SCI handle
76  * @ti_sci_id: TI-SCI device identifier
77  * @mbox: mailbox channel handle
78  * @client: mailbox client to request the mailbox channel
79  */
80 struct k3_dsp_rproc {
81 	struct device *dev;
82 	struct rproc *rproc;
83 	struct k3_dsp_mem *mem;
84 	int num_mems;
85 	struct k3_dsp_mem *rmem;
86 	int num_rmems;
87 	struct reset_control *reset;
88 	const struct k3_dsp_dev_data *data;
89 	struct ti_sci_proc *tsp;
90 	const struct ti_sci_handle *ti_sci;
91 	u32 ti_sci_id;
92 	struct mbox_chan *mbox;
93 	struct mbox_client client;
94 };
95 
96 /**
97  * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler
98  * @client: mailbox client pointer used for requesting the mailbox channel
99  * @data: mailbox payload
100  *
101  * This handler is invoked by the OMAP mailbox driver whenever a mailbox
102  * message is received. Usually, the mailbox payload simply contains
103  * the index of the virtqueue that is kicked by the remote processor,
104  * and we let remoteproc core handle it.
105  *
106  * In addition to virtqueue indices, we also have some out-of-band values
107  * that indicate different events. Those values are deliberately very
108  * large so they don't coincide with virtqueue indices.
109  */
110 static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data)
111 {
112 	struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc,
113 						  client);
114 	struct device *dev = kproc->rproc->dev.parent;
115 	const char *name = kproc->rproc->name;
116 	u32 msg = omap_mbox_message(data);
117 
118 	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
119 
120 	switch (msg) {
121 	case RP_MBOX_CRASH:
122 		/*
123 		 * remoteproc detected an exception, but error recovery is not
124 		 * supported. So, just log this for now
125 		 */
126 		dev_err(dev, "K3 DSP rproc %s crashed\n", name);
127 		break;
128 	case RP_MBOX_ECHO_REPLY:
129 		dev_info(dev, "received echo reply from %s\n", name);
130 		break;
131 	default:
132 		/* silently handle all other valid messages */
133 		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
134 			return;
135 		if (msg > kproc->rproc->max_notifyid) {
136 			dev_dbg(dev, "dropping unknown message 0x%x", msg);
137 			return;
138 		}
139 		/* msg contains the index of the triggered vring */
140 		if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
141 			dev_dbg(dev, "no message was found in vqid %d\n", msg);
142 	}
143 }
144 
145 /*
146  * Kick the remote processor to notify about pending unprocessed messages.
147  * The vqid usage is not used and is inconsequential, as the kick is performed
148  * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
149  * the remote processor is expected to process both its Tx and Rx virtqueues.
150  */
151 static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid)
152 {
153 	struct k3_dsp_rproc *kproc = rproc->priv;
154 	struct device *dev = rproc->dev.parent;
155 	mbox_msg_t msg = (mbox_msg_t)vqid;
156 	int ret;
157 
158 	/* send the index of the triggered virtqueue in the mailbox payload */
159 	ret = mbox_send_message(kproc->mbox, (void *)msg);
160 	if (ret < 0)
161 		dev_err(dev, "failed to send mailbox message, status = %d\n",
162 			ret);
163 }
164 
165 /* Put the DSP processor into reset */
166 static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc)
167 {
168 	struct device *dev = kproc->dev;
169 	int ret;
170 
171 	ret = reset_control_assert(kproc->reset);
172 	if (ret) {
173 		dev_err(dev, "local-reset assert failed, ret = %d\n", ret);
174 		return ret;
175 	}
176 
177 	if (kproc->data->uses_lreset)
178 		return ret;
179 
180 	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
181 						    kproc->ti_sci_id);
182 	if (ret) {
183 		dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
184 		if (reset_control_deassert(kproc->reset))
185 			dev_warn(dev, "local-reset deassert back failed\n");
186 	}
187 
188 	return ret;
189 }
190 
191 /* Release the DSP processor from reset */
192 static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc)
193 {
194 	struct device *dev = kproc->dev;
195 	int ret;
196 
197 	if (kproc->data->uses_lreset)
198 		goto lreset;
199 
200 	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
201 						    kproc->ti_sci_id);
202 	if (ret) {
203 		dev_err(dev, "module-reset deassert failed, ret = %d\n", ret);
204 		return ret;
205 	}
206 
207 lreset:
208 	ret = reset_control_deassert(kproc->reset);
209 	if (ret) {
210 		dev_err(dev, "local-reset deassert failed, ret = %d\n", ret);
211 		if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
212 							  kproc->ti_sci_id))
213 			dev_warn(dev, "module-reset assert back failed\n");
214 	}
215 
216 	return ret;
217 }
218 
219 static int k3_dsp_rproc_request_mbox(struct rproc *rproc)
220 {
221 	struct k3_dsp_rproc *kproc = rproc->priv;
222 	struct mbox_client *client = &kproc->client;
223 	struct device *dev = kproc->dev;
224 	int ret;
225 
226 	client->dev = dev;
227 	client->tx_done = NULL;
228 	client->rx_callback = k3_dsp_rproc_mbox_callback;
229 	client->tx_block = false;
230 	client->knows_txdone = false;
231 
232 	kproc->mbox = mbox_request_channel(client, 0);
233 	if (IS_ERR(kproc->mbox)) {
234 		ret = -EBUSY;
235 		dev_err(dev, "mbox_request_channel failed: %ld\n",
236 			PTR_ERR(kproc->mbox));
237 		return ret;
238 	}
239 
240 	/*
241 	 * Ping the remote processor, this is only for sanity-sake for now;
242 	 * there is no functional effect whatsoever.
243 	 *
244 	 * Note that the reply will _not_ arrive immediately: this message
245 	 * will wait in the mailbox fifo until the remote processor is booted.
246 	 */
247 	ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
248 	if (ret < 0) {
249 		dev_err(dev, "mbox_send_message failed: %d\n", ret);
250 		mbox_free_channel(kproc->mbox);
251 		return ret;
252 	}
253 
254 	return 0;
255 }
256 /*
257  * The C66x DSP cores have a local reset that affects only the CPU, and a
258  * generic module reset that powers on the device and allows the DSP internal
259  * memories to be accessed while the local reset is asserted. This function is
260  * used to release the global reset on C66x DSPs to allow loading into the DSP
261  * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
262  * firmware loading, and is followed by the .start() ops after loading to
263  * actually let the C66x DSP cores run. This callback is invoked only in
264  * remoteproc mode.
265  */
266 static int k3_dsp_rproc_prepare(struct rproc *rproc)
267 {
268 	struct k3_dsp_rproc *kproc = rproc->priv;
269 	struct device *dev = kproc->dev;
270 	int ret;
271 
272 	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
273 						    kproc->ti_sci_id);
274 	if (ret)
275 		dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n",
276 			ret);
277 
278 	return ret;
279 }
280 
281 /*
282  * This function implements the .unprepare() ops and performs the complimentary
283  * operations to that of the .prepare() ops. The function is used to assert the
284  * global reset on applicable C66x cores. This completes the second portion of
285  * powering down the C66x DSP cores. The cores themselves are only halted in the
286  * .stop() callback through the local reset, and the .unprepare() ops is invoked
287  * by the remoteproc core after the remoteproc is stopped to balance the global
288  * reset. This callback is invoked only in remoteproc mode.
289  */
290 static int k3_dsp_rproc_unprepare(struct rproc *rproc)
291 {
292 	struct k3_dsp_rproc *kproc = rproc->priv;
293 	struct device *dev = kproc->dev;
294 	int ret;
295 
296 	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
297 						    kproc->ti_sci_id);
298 	if (ret)
299 		dev_err(dev, "module-reset assert failed, ret = %d\n", ret);
300 
301 	return ret;
302 }
303 
304 /*
305  * Power up the DSP remote processor.
306  *
307  * This function will be invoked only after the firmware for this rproc
308  * was loaded, parsed successfully, and all of its resource requirements
309  * were met. This callback is invoked only in remoteproc mode.
310  */
311 static int k3_dsp_rproc_start(struct rproc *rproc)
312 {
313 	struct k3_dsp_rproc *kproc = rproc->priv;
314 	struct device *dev = kproc->dev;
315 	u32 boot_addr;
316 	int ret;
317 
318 	ret = k3_dsp_rproc_request_mbox(rproc);
319 	if (ret)
320 		return ret;
321 
322 	boot_addr = rproc->bootaddr;
323 	if (boot_addr & (kproc->data->boot_align_addr - 1)) {
324 		dev_err(dev, "invalid boot address 0x%x, must be aligned on a 0x%x boundary\n",
325 			boot_addr, kproc->data->boot_align_addr);
326 		ret = -EINVAL;
327 		goto put_mbox;
328 	}
329 
330 	dev_err(dev, "booting DSP core using boot addr = 0x%x\n", boot_addr);
331 	ret = ti_sci_proc_set_config(kproc->tsp, boot_addr, 0, 0);
332 	if (ret)
333 		goto put_mbox;
334 
335 	ret = k3_dsp_rproc_release(kproc);
336 	if (ret)
337 		goto put_mbox;
338 
339 	return 0;
340 
341 put_mbox:
342 	mbox_free_channel(kproc->mbox);
343 	return ret;
344 }
345 
346 /*
347  * Stop the DSP remote processor.
348  *
349  * This function puts the DSP processor into reset, and finishes processing
350  * of any pending messages. This callback is invoked only in remoteproc mode.
351  */
352 static int k3_dsp_rproc_stop(struct rproc *rproc)
353 {
354 	struct k3_dsp_rproc *kproc = rproc->priv;
355 
356 	mbox_free_channel(kproc->mbox);
357 
358 	k3_dsp_rproc_reset(kproc);
359 
360 	return 0;
361 }
362 
363 /*
364  * Attach to a running DSP remote processor (IPC-only mode)
365  *
366  * This rproc attach callback only needs to request the mailbox, the remote
367  * processor is already booted, so there is no need to issue any TI-SCI
368  * commands to boot the DSP core. This callback is invoked only in IPC-only
369  * mode.
370  */
371 static int k3_dsp_rproc_attach(struct rproc *rproc)
372 {
373 	struct k3_dsp_rproc *kproc = rproc->priv;
374 	struct device *dev = kproc->dev;
375 	int ret;
376 
377 	ret = k3_dsp_rproc_request_mbox(rproc);
378 	if (ret)
379 		return ret;
380 
381 	dev_info(dev, "DSP initialized in IPC-only mode\n");
382 	return 0;
383 }
384 
385 /*
386  * Detach from a running DSP remote processor (IPC-only mode)
387  *
388  * This rproc detach callback performs the opposite operation to attach callback
389  * and only needs to release the mailbox, the DSP core is not stopped and will
390  * be left to continue to run its booted firmware. This callback is invoked only
391  * in IPC-only mode.
392  */
393 static int k3_dsp_rproc_detach(struct rproc *rproc)
394 {
395 	struct k3_dsp_rproc *kproc = rproc->priv;
396 	struct device *dev = kproc->dev;
397 
398 	mbox_free_channel(kproc->mbox);
399 	dev_info(dev, "DSP deinitialized in IPC-only mode\n");
400 	return 0;
401 }
402 
403 /*
404  * This function implements the .get_loaded_rsc_table() callback and is used
405  * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP
406  * firmwares follow a design-by-contract approach and are expected to have the
407  * resource table at the base of the DDR region reserved for firmware usage.
408  * This provides flexibility for the remote processor to be booted by different
409  * bootloaders that may or may not have the ability to publish the resource table
410  * address and size through a DT property. This callback is invoked only in
411  * IPC-only mode.
412  */
413 static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc,
414 							  size_t *rsc_table_sz)
415 {
416 	struct k3_dsp_rproc *kproc = rproc->priv;
417 	struct device *dev = kproc->dev;
418 
419 	if (!kproc->rmem[0].cpu_addr) {
420 		dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
421 		return ERR_PTR(-ENOMEM);
422 	}
423 
424 	/*
425 	 * NOTE: The resource table size is currently hard-coded to a maximum
426 	 * of 256 bytes. The most common resource table usage for K3 firmwares
427 	 * is to only have the vdev resource entry and an optional trace entry.
428 	 * The exact size could be computed based on resource table address, but
429 	 * the hard-coded value suffices to support the IPC-only mode.
430 	 */
431 	*rsc_table_sz = 256;
432 	return (struct resource_table *)kproc->rmem[0].cpu_addr;
433 }
434 
435 /*
436  * Custom function to translate a DSP device address (internal RAMs only) to a
437  * kernel virtual address.  The DSPs can access their RAMs at either an internal
438  * address visible only from a DSP, or at the SoC-level bus address. Both these
439  * addresses need to be looked through for translation. The translated addresses
440  * can be used either by the remoteproc core for loading (when using kernel
441  * remoteproc loader), or by any rpmsg bus drivers.
442  */
443 static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
444 {
445 	struct k3_dsp_rproc *kproc = rproc->priv;
446 	void __iomem *va = NULL;
447 	phys_addr_t bus_addr;
448 	u32 dev_addr, offset;
449 	size_t size;
450 	int i;
451 
452 	if (len == 0)
453 		return NULL;
454 
455 	for (i = 0; i < kproc->num_mems; i++) {
456 		bus_addr = kproc->mem[i].bus_addr;
457 		dev_addr = kproc->mem[i].dev_addr;
458 		size = kproc->mem[i].size;
459 
460 		if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) {
461 			/* handle DSP-view addresses */
462 			if (da >= dev_addr &&
463 			    ((da + len) <= (dev_addr + size))) {
464 				offset = da - dev_addr;
465 				va = kproc->mem[i].cpu_addr + offset;
466 				return (__force void *)va;
467 			}
468 		} else {
469 			/* handle SoC-view addresses */
470 			if (da >= bus_addr &&
471 			    (da + len) <= (bus_addr + size)) {
472 				offset = da - bus_addr;
473 				va = kproc->mem[i].cpu_addr + offset;
474 				return (__force void *)va;
475 			}
476 		}
477 	}
478 
479 	/* handle static DDR reserved memory regions */
480 	for (i = 0; i < kproc->num_rmems; i++) {
481 		dev_addr = kproc->rmem[i].dev_addr;
482 		size = kproc->rmem[i].size;
483 
484 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
485 			offset = da - dev_addr;
486 			va = kproc->rmem[i].cpu_addr + offset;
487 			return (__force void *)va;
488 		}
489 	}
490 
491 	return NULL;
492 }
493 
494 static const struct rproc_ops k3_dsp_rproc_ops = {
495 	.start		= k3_dsp_rproc_start,
496 	.stop		= k3_dsp_rproc_stop,
497 	.kick		= k3_dsp_rproc_kick,
498 	.da_to_va	= k3_dsp_rproc_da_to_va,
499 };
500 
501 static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev,
502 					struct k3_dsp_rproc *kproc)
503 {
504 	const struct k3_dsp_dev_data *data = kproc->data;
505 	struct device *dev = &pdev->dev;
506 	struct resource *res;
507 	int num_mems = 0;
508 	int i;
509 
510 	num_mems = kproc->data->num_mems;
511 	kproc->mem = devm_kcalloc(kproc->dev, num_mems,
512 				  sizeof(*kproc->mem), GFP_KERNEL);
513 	if (!kproc->mem)
514 		return -ENOMEM;
515 
516 	for (i = 0; i < num_mems; i++) {
517 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
518 						   data->mems[i].name);
519 		if (!res) {
520 			dev_err(dev, "found no memory resource for %s\n",
521 				data->mems[i].name);
522 			return -EINVAL;
523 		}
524 		if (!devm_request_mem_region(dev, res->start,
525 					     resource_size(res),
526 					     dev_name(dev))) {
527 			dev_err(dev, "could not request %s region for resource\n",
528 				data->mems[i].name);
529 			return -EBUSY;
530 		}
531 
532 		kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
533 							 resource_size(res));
534 		if (!kproc->mem[i].cpu_addr) {
535 			dev_err(dev, "failed to map %s memory\n",
536 				data->mems[i].name);
537 			return -ENOMEM;
538 		}
539 		kproc->mem[i].bus_addr = res->start;
540 		kproc->mem[i].dev_addr = data->mems[i].dev_addr;
541 		kproc->mem[i].size = resource_size(res);
542 
543 		dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
544 			data->mems[i].name, &kproc->mem[i].bus_addr,
545 			kproc->mem[i].size, kproc->mem[i].cpu_addr,
546 			kproc->mem[i].dev_addr);
547 	}
548 	kproc->num_mems = num_mems;
549 
550 	return 0;
551 }
552 
553 static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc)
554 {
555 	struct device *dev = kproc->dev;
556 	struct device_node *np = dev->of_node;
557 	struct device_node *rmem_np;
558 	struct reserved_mem *rmem;
559 	int num_rmems;
560 	int ret, i;
561 
562 	num_rmems = of_property_count_elems_of_size(np, "memory-region",
563 						    sizeof(phandle));
564 	if (num_rmems <= 0) {
565 		dev_err(dev, "device does not reserved memory regions, ret = %d\n",
566 			num_rmems);
567 		return -EINVAL;
568 	}
569 	if (num_rmems < 2) {
570 		dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
571 			num_rmems);
572 		return -EINVAL;
573 	}
574 
575 	/* use reserved memory region 0 for vring DMA allocations */
576 	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
577 	if (ret) {
578 		dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
579 			ret);
580 		return ret;
581 	}
582 
583 	num_rmems--;
584 	kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
585 	if (!kproc->rmem) {
586 		ret = -ENOMEM;
587 		goto release_rmem;
588 	}
589 
590 	/* use remaining reserved memory regions for static carveouts */
591 	for (i = 0; i < num_rmems; i++) {
592 		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
593 		if (!rmem_np) {
594 			ret = -EINVAL;
595 			goto unmap_rmem;
596 		}
597 
598 		rmem = of_reserved_mem_lookup(rmem_np);
599 		if (!rmem) {
600 			of_node_put(rmem_np);
601 			ret = -EINVAL;
602 			goto unmap_rmem;
603 		}
604 		of_node_put(rmem_np);
605 
606 		kproc->rmem[i].bus_addr = rmem->base;
607 		/* 64-bit address regions currently not supported */
608 		kproc->rmem[i].dev_addr = (u32)rmem->base;
609 		kproc->rmem[i].size = rmem->size;
610 		kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
611 		if (!kproc->rmem[i].cpu_addr) {
612 			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
613 				i + 1, &rmem->base, &rmem->size);
614 			ret = -ENOMEM;
615 			goto unmap_rmem;
616 		}
617 
618 		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
619 			i + 1, &kproc->rmem[i].bus_addr,
620 			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
621 			kproc->rmem[i].dev_addr);
622 	}
623 	kproc->num_rmems = num_rmems;
624 
625 	return 0;
626 
627 unmap_rmem:
628 	for (i--; i >= 0; i--)
629 		iounmap(kproc->rmem[i].cpu_addr);
630 	kfree(kproc->rmem);
631 release_rmem:
632 	of_reserved_mem_device_release(kproc->dev);
633 	return ret;
634 }
635 
636 static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc)
637 {
638 	int i;
639 
640 	for (i = 0; i < kproc->num_rmems; i++)
641 		iounmap(kproc->rmem[i].cpu_addr);
642 	kfree(kproc->rmem);
643 
644 	of_reserved_mem_device_release(kproc->dev);
645 }
646 
647 static
648 struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev,
649 					    const struct ti_sci_handle *sci)
650 {
651 	struct ti_sci_proc *tsp;
652 	u32 temp[2];
653 	int ret;
654 
655 	ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids",
656 					 temp, 2);
657 	if (ret < 0)
658 		return ERR_PTR(ret);
659 
660 	tsp = kzalloc(sizeof(*tsp), GFP_KERNEL);
661 	if (!tsp)
662 		return ERR_PTR(-ENOMEM);
663 
664 	tsp->dev = dev;
665 	tsp->sci = sci;
666 	tsp->ops = &sci->ops.proc_ops;
667 	tsp->proc_id = temp[0];
668 	tsp->host_id = temp[1];
669 
670 	return tsp;
671 }
672 
673 static int k3_dsp_rproc_probe(struct platform_device *pdev)
674 {
675 	struct device *dev = &pdev->dev;
676 	struct device_node *np = dev->of_node;
677 	const struct k3_dsp_dev_data *data;
678 	struct k3_dsp_rproc *kproc;
679 	struct rproc *rproc;
680 	const char *fw_name;
681 	bool p_state = false;
682 	int ret = 0;
683 	int ret1;
684 
685 	data = of_device_get_match_data(dev);
686 	if (!data)
687 		return -ENODEV;
688 
689 	ret = rproc_of_parse_firmware(dev, 0, &fw_name);
690 	if (ret) {
691 		dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
692 			ret);
693 		return ret;
694 	}
695 
696 	rproc = rproc_alloc(dev, dev_name(dev), &k3_dsp_rproc_ops, fw_name,
697 			    sizeof(*kproc));
698 	if (!rproc)
699 		return -ENOMEM;
700 
701 	rproc->has_iommu = false;
702 	rproc->recovery_disabled = true;
703 	if (data->uses_lreset) {
704 		rproc->ops->prepare = k3_dsp_rproc_prepare;
705 		rproc->ops->unprepare = k3_dsp_rproc_unprepare;
706 	}
707 	kproc = rproc->priv;
708 	kproc->rproc = rproc;
709 	kproc->dev = dev;
710 	kproc->data = data;
711 
712 	kproc->ti_sci = ti_sci_get_by_phandle(np, "ti,sci");
713 	if (IS_ERR(kproc->ti_sci)) {
714 		ret = PTR_ERR(kproc->ti_sci);
715 		if (ret != -EPROBE_DEFER) {
716 			dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
717 				ret);
718 		}
719 		kproc->ti_sci = NULL;
720 		goto free_rproc;
721 	}
722 
723 	ret = of_property_read_u32(np, "ti,sci-dev-id", &kproc->ti_sci_id);
724 	if (ret) {
725 		dev_err(dev, "missing 'ti,sci-dev-id' property\n");
726 		goto put_sci;
727 	}
728 
729 	kproc->reset = devm_reset_control_get_exclusive(dev, NULL);
730 	if (IS_ERR(kproc->reset)) {
731 		ret = PTR_ERR(kproc->reset);
732 		dev_err(dev, "failed to get reset, status = %d\n", ret);
733 		goto put_sci;
734 	}
735 
736 	kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci);
737 	if (IS_ERR(kproc->tsp)) {
738 		dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
739 			ret);
740 		ret = PTR_ERR(kproc->tsp);
741 		goto put_sci;
742 	}
743 
744 	ret = ti_sci_proc_request(kproc->tsp);
745 	if (ret < 0) {
746 		dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
747 		goto free_tsp;
748 	}
749 
750 	ret = k3_dsp_rproc_of_get_memories(pdev, kproc);
751 	if (ret)
752 		goto release_tsp;
753 
754 	ret = k3_dsp_reserved_mem_init(kproc);
755 	if (ret) {
756 		dev_err(dev, "reserved memory init failed, ret = %d\n", ret);
757 		goto release_tsp;
758 	}
759 
760 	ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id,
761 					       NULL, &p_state);
762 	if (ret) {
763 		dev_err(dev, "failed to get initial state, mode cannot be determined, ret = %d\n",
764 			ret);
765 		goto release_mem;
766 	}
767 
768 	/* configure J721E devices for either remoteproc or IPC-only mode */
769 	if (p_state) {
770 		dev_info(dev, "configured DSP for IPC-only mode\n");
771 		rproc->state = RPROC_DETACHED;
772 		/* override rproc ops with only required IPC-only mode ops */
773 		rproc->ops->prepare = NULL;
774 		rproc->ops->unprepare = NULL;
775 		rproc->ops->start = NULL;
776 		rproc->ops->stop = NULL;
777 		rproc->ops->attach = k3_dsp_rproc_attach;
778 		rproc->ops->detach = k3_dsp_rproc_detach;
779 		rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table;
780 	} else {
781 		dev_info(dev, "configured DSP for remoteproc mode\n");
782 		/*
783 		 * ensure the DSP local reset is asserted to ensure the DSP
784 		 * doesn't execute bogus code in .prepare() when the module
785 		 * reset is released.
786 		 */
787 		if (data->uses_lreset) {
788 			ret = reset_control_status(kproc->reset);
789 			if (ret < 0) {
790 				dev_err(dev, "failed to get reset status, status = %d\n",
791 					ret);
792 				goto release_mem;
793 			} else if (ret == 0) {
794 				dev_warn(dev, "local reset is deasserted for device\n");
795 				k3_dsp_rproc_reset(kproc);
796 			}
797 		}
798 	}
799 
800 	ret = rproc_add(rproc);
801 	if (ret) {
802 		dev_err(dev, "failed to add register device with remoteproc core, status = %d\n",
803 			ret);
804 		goto release_mem;
805 	}
806 
807 	platform_set_drvdata(pdev, kproc);
808 
809 	return 0;
810 
811 release_mem:
812 	k3_dsp_reserved_mem_exit(kproc);
813 release_tsp:
814 	ret1 = ti_sci_proc_release(kproc->tsp);
815 	if (ret1)
816 		dev_err(dev, "failed to release proc, ret = %d\n", ret1);
817 free_tsp:
818 	kfree(kproc->tsp);
819 put_sci:
820 	ret1 = ti_sci_put_handle(kproc->ti_sci);
821 	if (ret1)
822 		dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret1);
823 free_rproc:
824 	rproc_free(rproc);
825 	return ret;
826 }
827 
828 static int k3_dsp_rproc_remove(struct platform_device *pdev)
829 {
830 	struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev);
831 	struct rproc *rproc = kproc->rproc;
832 	struct device *dev = &pdev->dev;
833 	int ret;
834 
835 	if (rproc->state == RPROC_ATTACHED) {
836 		ret = rproc_detach(rproc);
837 		if (ret) {
838 			dev_err(dev, "failed to detach proc, ret = %d\n", ret);
839 			return ret;
840 		}
841 	}
842 
843 	rproc_del(kproc->rproc);
844 
845 	ret = ti_sci_proc_release(kproc->tsp);
846 	if (ret)
847 		dev_err(dev, "failed to release proc, ret = %d\n", ret);
848 
849 	kfree(kproc->tsp);
850 
851 	ret = ti_sci_put_handle(kproc->ti_sci);
852 	if (ret)
853 		dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret);
854 
855 	k3_dsp_reserved_mem_exit(kproc);
856 	rproc_free(kproc->rproc);
857 
858 	return 0;
859 }
860 
861 static const struct k3_dsp_mem_data c66_mems[] = {
862 	{ .name = "l2sram", .dev_addr = 0x800000 },
863 	{ .name = "l1pram", .dev_addr = 0xe00000 },
864 	{ .name = "l1dram", .dev_addr = 0xf00000 },
865 };
866 
867 /* C71x cores only have a L1P Cache, there are no L1P SRAMs */
868 static const struct k3_dsp_mem_data c71_mems[] = {
869 	{ .name = "l2sram", .dev_addr = 0x800000 },
870 	{ .name = "l1dram", .dev_addr = 0xe00000 },
871 };
872 
873 static const struct k3_dsp_dev_data c66_data = {
874 	.mems = c66_mems,
875 	.num_mems = ARRAY_SIZE(c66_mems),
876 	.boot_align_addr = SZ_1K,
877 	.uses_lreset = true,
878 };
879 
880 static const struct k3_dsp_dev_data c71_data = {
881 	.mems = c71_mems,
882 	.num_mems = ARRAY_SIZE(c71_mems),
883 	.boot_align_addr = SZ_2M,
884 	.uses_lreset = false,
885 };
886 
887 static const struct of_device_id k3_dsp_of_match[] = {
888 	{ .compatible = "ti,j721e-c66-dsp", .data = &c66_data, },
889 	{ .compatible = "ti,j721e-c71-dsp", .data = &c71_data, },
890 	{ .compatible = "ti,j721s2-c71-dsp", .data = &c71_data, },
891 	{ /* sentinel */ },
892 };
893 MODULE_DEVICE_TABLE(of, k3_dsp_of_match);
894 
895 static struct platform_driver k3_dsp_rproc_driver = {
896 	.probe	= k3_dsp_rproc_probe,
897 	.remove	= k3_dsp_rproc_remove,
898 	.driver	= {
899 		.name = "k3-dsp-rproc",
900 		.of_match_table = k3_dsp_of_match,
901 	},
902 };
903 
904 module_platform_driver(k3_dsp_rproc_driver);
905 
906 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
907 MODULE_LICENSE("GPL v2");
908 MODULE_DESCRIPTION("TI K3 DSP Remoteproc driver");
909