xref: /linux/drivers/remoteproc/ti_k3_common.c (revision 68a052239fc4b351e961f698b824f7654a346091)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI K3 Remote Processor(s) driver common code
4  *
5  * Refactored out of ti_k3_r5_remoteproc.c, ti_k3_dsp_remoteproc.c and
6  * ti_k3_m4_remoteproc.c.
7  *
8  * ti_k3_r5_remoteproc.c:
9  * Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
10  *	Suman Anna <s-anna@ti.com>
11  *
12  * ti_k3_dsp_remoteproc.c:
13  * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
14  *	Suman Anna <s-anna@ti.com>
15  *
16  * ti_k3_m4_remoteproc.c:
17  * Copyright (C) 2021-2024 Texas Instruments Incorporated - https://www.ti.com/
18  *	Hari Nagalla <hnagalla@ti.com>
19  */
20 
21 #include <linux/io.h>
22 #include <linux/mailbox_client.h>
23 #include <linux/module.h>
24 #include <linux/of_address.h>
25 #include <linux/of_device.h>
26 #include <linux/of_reserved_mem.h>
27 #include <linux/omap-mailbox.h>
28 #include <linux/platform_device.h>
29 #include <linux/remoteproc.h>
30 #include <linux/reset.h>
31 #include <linux/slab.h>
32 
33 #include "omap_remoteproc.h"
34 #include "remoteproc_internal.h"
35 #include "ti_sci_proc.h"
36 #include "ti_k3_common.h"
37 
38 /**
39  * k3_rproc_mbox_callback() - inbound mailbox message handler
40  * @client: mailbox client pointer used for requesting the mailbox channel
41  * @data: mailbox payload
42  *
43  * This handler is invoked by the K3 mailbox driver whenever a mailbox
44  * message is received. Usually, the mailbox payload simply contains
45  * the index of the virtqueue that is kicked by the remote processor,
46  * and we let remoteproc core handle it.
47  *
48  * In addition to virtqueue indices, we also have some out-of-band values
49  * that indicate different events. Those values are deliberately very
50  * large so they don't coincide with virtqueue indices.
51  */
52 void k3_rproc_mbox_callback(struct mbox_client *client, void *data)
53 {
54 	struct k3_rproc *kproc = container_of(client, struct k3_rproc, client);
55 	struct device *dev = kproc->rproc->dev.parent;
56 	struct rproc *rproc = kproc->rproc;
57 	u32 msg = (u32)(uintptr_t)(data);
58 
59 	dev_dbg(dev, "mbox msg: 0x%x\n", msg);
60 
61 	switch (msg) {
62 	case RP_MBOX_CRASH:
63 		/*
64 		 * remoteproc detected an exception, but error recovery is not
65 		 * supported. So, just log this for now
66 		 */
67 		dev_err(dev, "K3 rproc %s crashed\n", rproc->name);
68 		break;
69 	case RP_MBOX_ECHO_REPLY:
70 		dev_info(dev, "received echo reply from %s\n", rproc->name);
71 		break;
72 	default:
73 		/* silently handle all other valid messages */
74 		if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
75 			return;
76 		if (msg > rproc->max_notifyid) {
77 			dev_dbg(dev, "dropping unknown message 0x%x", msg);
78 			return;
79 		}
80 		/* msg contains the index of the triggered vring */
81 		if (rproc_vq_interrupt(rproc, msg) == IRQ_NONE)
82 			dev_dbg(dev, "no message was found in vqid %d\n", msg);
83 	}
84 }
85 EXPORT_SYMBOL_GPL(k3_rproc_mbox_callback);
86 
87 /*
88  * Kick the remote processor to notify about pending unprocessed messages.
89  * The vqid usage is not used and is inconsequential, as the kick is performed
90  * through a simulated GPIO (a bit in an IPC interrupt-triggering register),
91  * the remote processor is expected to process both its Tx and Rx virtqueues.
92  */
93 void k3_rproc_kick(struct rproc *rproc, int vqid)
94 {
95 	struct k3_rproc *kproc = rproc->priv;
96 	struct device *dev = kproc->dev;
97 	u32 msg = (u32)vqid;
98 	int ret;
99 
100 	/*
101 	 * Send the index of the triggered virtqueue in the mailbox payload.
102 	 * NOTE: msg is cast to uintptr_t to prevent compiler warnings when
103 	 * void* is 64bit. It is safely cast back to u32 in the mailbox driver.
104 	 */
105 	ret = mbox_send_message(kproc->mbox, (void *)(uintptr_t)msg);
106 	if (ret < 0)
107 		dev_err(dev, "failed to send mailbox message, status = %d\n",
108 			ret);
109 }
110 EXPORT_SYMBOL_GPL(k3_rproc_kick);
111 
112 /* Put the remote processor into reset */
113 int k3_rproc_reset(struct k3_rproc *kproc)
114 {
115 	struct device *dev = kproc->dev;
116 	int ret;
117 
118 	if (kproc->data->uses_lreset) {
119 		ret = reset_control_assert(kproc->reset);
120 		if (ret)
121 			dev_err(dev, "local-reset assert failed (%pe)\n", ERR_PTR(ret));
122 	} else {
123 		ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
124 							    kproc->ti_sci_id);
125 		if (ret)
126 			dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret));
127 	}
128 
129 	return ret;
130 }
131 EXPORT_SYMBOL_GPL(k3_rproc_reset);
132 
133 /* Release the remote processor from reset */
134 int k3_rproc_release(struct k3_rproc *kproc)
135 {
136 	struct device *dev = kproc->dev;
137 	int ret;
138 
139 	if (kproc->data->uses_lreset) {
140 		ret = reset_control_deassert(kproc->reset);
141 		if (ret) {
142 			dev_err(dev, "local-reset deassert failed, (%pe)\n", ERR_PTR(ret));
143 			if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
144 								  kproc->ti_sci_id))
145 				dev_warn(dev, "module-reset assert back failed\n");
146 		}
147 	} else {
148 		ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
149 							    kproc->ti_sci_id);
150 		if (ret)
151 			dev_err(dev, "module-reset deassert failed (%pe)\n", ERR_PTR(ret));
152 	}
153 
154 	return ret;
155 }
156 EXPORT_SYMBOL_GPL(k3_rproc_release);
157 
158 static void k3_rproc_free_channel(void *data)
159 {
160 	struct k3_rproc *kproc = data;
161 
162 	mbox_free_channel(kproc->mbox);
163 }
164 
165 int k3_rproc_request_mbox(struct rproc *rproc)
166 {
167 	struct k3_rproc *kproc = rproc->priv;
168 	struct mbox_client *client = &kproc->client;
169 	struct device *dev = kproc->dev;
170 	int ret;
171 
172 	client->dev = dev;
173 	client->tx_done = NULL;
174 	client->rx_callback = k3_rproc_mbox_callback;
175 	client->tx_block = false;
176 	client->knows_txdone = false;
177 
178 	kproc->mbox = mbox_request_channel(client, 0);
179 	if (IS_ERR(kproc->mbox))
180 		return dev_err_probe(dev, PTR_ERR(kproc->mbox),
181 				     "mbox_request_channel failed\n");
182 
183 	ret = devm_add_action_or_reset(dev, k3_rproc_free_channel, kproc);
184 	if (ret)
185 		return ret;
186 
187 	return 0;
188 }
189 EXPORT_SYMBOL_GPL(k3_rproc_request_mbox);
190 
191 /*
192  * The K3 DSP and M4 cores have a local reset that affects only the CPU, and a
193  * generic module reset that powers on the device and allows the internal
194  * memories to be accessed while the local reset is asserted. This function is
195  * used to release the global reset on remote cores to allow loading into the
196  * internal RAMs. The .prepare() ops is invoked by remoteproc core before any
197  * firmware loading, and is followed by the .start() ops after loading to
198  * actually let the remote cores to run.
199  */
200 int k3_rproc_prepare(struct rproc *rproc)
201 {
202 	struct k3_rproc *kproc = rproc->priv;
203 	struct device *dev = kproc->dev;
204 	int ret;
205 
206 	/* If the core is running already no need to deassert the module reset */
207 	if (rproc->state == RPROC_DETACHED)
208 		return 0;
209 
210 	/*
211 	 * Ensure the local reset is asserted so the core doesn't
212 	 * execute bogus code when the module reset is released.
213 	 */
214 	if (kproc->data->uses_lreset) {
215 		ret = k3_rproc_reset(kproc);
216 		if (ret)
217 			return ret;
218 
219 		ret = reset_control_status(kproc->reset);
220 		if (ret <= 0) {
221 			dev_err(dev, "local reset still not asserted\n");
222 			return ret;
223 		}
224 	}
225 
226 	ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
227 						    kproc->ti_sci_id);
228 	if (ret) {
229 		dev_err(dev, "could not deassert module-reset for internal RAM loading\n");
230 		return ret;
231 	}
232 
233 	return 0;
234 }
235 EXPORT_SYMBOL_GPL(k3_rproc_prepare);
236 
237 /*
238  * This function implements the .unprepare() ops and performs the complimentary
239  * operations to that of the .prepare() ops. The function is used to assert the
240  * global reset on applicable K3 DSP and M4 cores. This completes the second
241  * portion of powering down the remote core. The cores themselves are only
242  * halted in the .stop() callback through the local reset, and the .unprepare()
243  * ops is invoked by the remoteproc core after the remoteproc is stopped to
244  * balance the global reset.
245  */
246 int k3_rproc_unprepare(struct rproc *rproc)
247 {
248 	struct k3_rproc *kproc = rproc->priv;
249 	struct device *dev = kproc->dev;
250 	int ret;
251 
252 	/* If the core is going to be detached do not assert the module reset */
253 	if (rproc->state == RPROC_DETACHED)
254 		return 0;
255 
256 	ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
257 						    kproc->ti_sci_id);
258 	if (ret) {
259 		dev_err(dev, "module-reset assert failed\n");
260 		return ret;
261 	}
262 
263 	return 0;
264 }
265 EXPORT_SYMBOL_GPL(k3_rproc_unprepare);
266 
267 /*
268  * Power up the remote processor.
269  *
270  * This function will be invoked only after the firmware for this rproc
271  * was loaded, parsed successfully, and all of its resource requirements
272  * were met. This callback is invoked only in remoteproc mode.
273  */
274 int k3_rproc_start(struct rproc *rproc)
275 {
276 	struct k3_rproc *kproc = rproc->priv;
277 
278 	return k3_rproc_release(kproc);
279 }
280 EXPORT_SYMBOL_GPL(k3_rproc_start);
281 
282 /*
283  * Stop the remote processor.
284  *
285  * This function puts the remote processor into reset, and finishes processing
286  * of any pending messages. This callback is invoked only in remoteproc mode.
287  */
288 int k3_rproc_stop(struct rproc *rproc)
289 {
290 	struct k3_rproc *kproc = rproc->priv;
291 
292 	return k3_rproc_reset(kproc);
293 }
294 EXPORT_SYMBOL_GPL(k3_rproc_stop);
295 
296 /*
297  * Attach to a running remote processor (IPC-only mode)
298  *
299  * The rproc attach callback is a NOP. The remote processor is already booted,
300  * and all required resources have been acquired during probe routine, so there
301  * is no need to issue any TI-SCI commands to boot the remote cores in IPC-only
302  * mode. This callback is invoked only in IPC-only mode and exists because
303  * rproc_validate() checks for its existence.
304  */
305 int k3_rproc_attach(struct rproc *rproc) { return 0; }
306 EXPORT_SYMBOL_GPL(k3_rproc_attach);
307 
308 /*
309  * Detach from a running remote processor (IPC-only mode)
310  *
311  * The rproc detach callback is a NOP. The remote processor is not stopped and
312  * will be left in booted state in IPC-only mode. This callback is invoked only
313  * in IPC-only mode and exists for sanity sake
314  */
315 int k3_rproc_detach(struct rproc *rproc) { return 0; }
316 EXPORT_SYMBOL_GPL(k3_rproc_detach);
317 
318 /*
319  * This function implements the .get_loaded_rsc_table() callback and is used
320  * to provide the resource table for a booted remote processor in IPC-only
321  * mode. The remote processor firmwares follow a design-by-contract approach
322  * and are expected to have the resource table at the base of the DDR region
323  * reserved for firmware usage. This provides flexibility for the remote
324  * processor to be booted by different bootloaders that may or may not have the
325  * ability to publish the resource table address and size through a DT
326  * property.
327  */
328 struct resource_table *k3_get_loaded_rsc_table(struct rproc *rproc,
329 					       size_t *rsc_table_sz)
330 {
331 	struct k3_rproc *kproc = rproc->priv;
332 	struct device *dev = kproc->dev;
333 
334 	if (!kproc->rmem[0].cpu_addr) {
335 		dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
336 		return ERR_PTR(-ENOMEM);
337 	}
338 
339 	/*
340 	 * NOTE: The resource table size is currently hard-coded to a maximum
341 	 * of 256 bytes. The most common resource table usage for K3 firmwares
342 	 * is to only have the vdev resource entry and an optional trace entry.
343 	 * The exact size could be computed based on resource table address, but
344 	 * the hard-coded value suffices to support the IPC-only mode.
345 	 */
346 	*rsc_table_sz = 256;
347 	return (__force struct resource_table *)kproc->rmem[0].cpu_addr;
348 }
349 EXPORT_SYMBOL_GPL(k3_get_loaded_rsc_table);
350 
351 /*
352  * Custom function to translate a remote processor device address (internal
353  * RAMs only) to a kernel virtual address.  The remote processors can access
354  * their RAMs at either an internal address visible only from a remote
355  * processor, or at the SoC-level bus address. Both these addresses need to be
356  * looked through for translation. The translated addresses can be used either
357  * by the remoteproc core for loading (when using kernel remoteproc loader), or
358  * by any rpmsg bus drivers.
359  */
360 void *k3_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
361 {
362 	struct k3_rproc *kproc = rproc->priv;
363 	void __iomem *va = NULL;
364 	phys_addr_t bus_addr;
365 	u32 dev_addr, offset;
366 	size_t size;
367 	int i;
368 
369 	if (len == 0)
370 		return NULL;
371 
372 	for (i = 0; i < kproc->num_mems; i++) {
373 		bus_addr = kproc->mem[i].bus_addr;
374 		dev_addr = kproc->mem[i].dev_addr;
375 		size = kproc->mem[i].size;
376 
377 		/* handle rproc-view addresses */
378 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
379 			offset = da - dev_addr;
380 			va = kproc->mem[i].cpu_addr + offset;
381 			return (__force void *)va;
382 		}
383 
384 		/* handle SoC-view addresses */
385 		if (da >= bus_addr && (da + len) <= (bus_addr + size)) {
386 			offset = da - bus_addr;
387 			va = kproc->mem[i].cpu_addr + offset;
388 			return (__force void *)va;
389 		}
390 	}
391 
392 	/* handle static DDR reserved memory regions */
393 	for (i = 0; i < kproc->num_rmems; i++) {
394 		dev_addr = kproc->rmem[i].dev_addr;
395 		size = kproc->rmem[i].size;
396 
397 		if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
398 			offset = da - dev_addr;
399 			va = kproc->rmem[i].cpu_addr + offset;
400 			return (__force void *)va;
401 		}
402 	}
403 
404 	return NULL;
405 }
406 EXPORT_SYMBOL_GPL(k3_rproc_da_to_va);
407 
408 int k3_rproc_of_get_memories(struct platform_device *pdev,
409 			     struct k3_rproc *kproc)
410 {
411 	const struct k3_rproc_dev_data *data = kproc->data;
412 	struct device *dev = &pdev->dev;
413 	struct resource *res;
414 	int num_mems = 0;
415 	int i;
416 
417 	num_mems = data->num_mems;
418 	kproc->mem = devm_kcalloc(kproc->dev, num_mems,
419 				  sizeof(*kproc->mem), GFP_KERNEL);
420 	if (!kproc->mem)
421 		return -ENOMEM;
422 
423 	for (i = 0; i < num_mems; i++) {
424 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
425 						   data->mems[i].name);
426 		if (!res) {
427 			dev_err(dev, "found no memory resource for %s\n",
428 				data->mems[i].name);
429 			return -EINVAL;
430 		}
431 		if (!devm_request_mem_region(dev, res->start,
432 					     resource_size(res),
433 					     dev_name(dev))) {
434 			dev_err(dev, "could not request %s region for resource\n",
435 				data->mems[i].name);
436 			return -EBUSY;
437 		}
438 
439 		kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
440 							 resource_size(res));
441 		if (!kproc->mem[i].cpu_addr) {
442 			dev_err(dev, "failed to map %s memory\n",
443 				data->mems[i].name);
444 			return -ENOMEM;
445 		}
446 		kproc->mem[i].bus_addr = res->start;
447 		kproc->mem[i].dev_addr = data->mems[i].dev_addr;
448 		kproc->mem[i].size = resource_size(res);
449 
450 		dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %p da 0x%x\n",
451 			data->mems[i].name, &kproc->mem[i].bus_addr,
452 			kproc->mem[i].size, kproc->mem[i].cpu_addr,
453 			kproc->mem[i].dev_addr);
454 	}
455 	kproc->num_mems = num_mems;
456 
457 	return 0;
458 }
459 EXPORT_SYMBOL_GPL(k3_rproc_of_get_memories);
460 
461 void k3_mem_release(void *data)
462 {
463 	struct device *dev = data;
464 
465 	of_reserved_mem_device_release(dev);
466 }
467 EXPORT_SYMBOL_GPL(k3_mem_release);
468 
469 int k3_reserved_mem_init(struct k3_rproc *kproc)
470 {
471 	struct device *dev = kproc->dev;
472 	struct device_node *np = dev->of_node;
473 	struct device_node *rmem_np;
474 	struct reserved_mem *rmem;
475 	int num_rmems;
476 	int ret, i;
477 
478 	num_rmems = of_property_count_elems_of_size(np, "memory-region",
479 						    sizeof(phandle));
480 	if (num_rmems < 0) {
481 		dev_err(dev, "device does not reserved memory regions (%d)\n",
482 			num_rmems);
483 		return -EINVAL;
484 	}
485 	if (num_rmems < 2) {
486 		dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
487 			num_rmems);
488 		return -EINVAL;
489 	}
490 
491 	/* use reserved memory region 0 for vring DMA allocations */
492 	ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
493 	if (ret) {
494 		dev_err(dev, "device cannot initialize DMA pool (%d)\n", ret);
495 		return ret;
496 	}
497 	ret = devm_add_action_or_reset(dev, k3_mem_release, dev);
498 	if (ret)
499 		return ret;
500 
501 	num_rmems--;
502 	kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
503 	if (!kproc->rmem)
504 		return -ENOMEM;
505 
506 	/* use remaining reserved memory regions for static carveouts */
507 	for (i = 0; i < num_rmems; i++) {
508 		rmem_np = of_parse_phandle(np, "memory-region", i + 1);
509 		if (!rmem_np)
510 			return -EINVAL;
511 
512 		rmem = of_reserved_mem_lookup(rmem_np);
513 		of_node_put(rmem_np);
514 		if (!rmem)
515 			return -EINVAL;
516 
517 		kproc->rmem[i].bus_addr = rmem->base;
518 		/* 64-bit address regions currently not supported */
519 		kproc->rmem[i].dev_addr = (u32)rmem->base;
520 		kproc->rmem[i].size = rmem->size;
521 		kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size);
522 		if (!kproc->rmem[i].cpu_addr) {
523 			dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
524 				i + 1, &rmem->base, &rmem->size);
525 			return -ENOMEM;
526 		}
527 
528 		dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %p da 0x%x\n",
529 			i + 1, &kproc->rmem[i].bus_addr,
530 			kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
531 			kproc->rmem[i].dev_addr);
532 	}
533 	kproc->num_rmems = num_rmems;
534 
535 	return 0;
536 }
537 EXPORT_SYMBOL_GPL(k3_reserved_mem_init);
538 
539 void k3_release_tsp(void *data)
540 {
541 	struct ti_sci_proc *tsp = data;
542 
543 	ti_sci_proc_release(tsp);
544 }
545 EXPORT_SYMBOL_GPL(k3_release_tsp);
546 
547 MODULE_LICENSE("GPL");
548 MODULE_DESCRIPTION("TI K3 common Remoteproc code");
549