1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/delay.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/panic_notifier.h> 24 #include <linux/slab.h> 25 #include <linux/mutex.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/firmware.h> 28 #include <linux/string.h> 29 #include <linux/debugfs.h> 30 #include <linux/rculist.h> 31 #include <linux/remoteproc.h> 32 #include <linux/iommu.h> 33 #include <linux/idr.h> 34 #include <linux/elf.h> 35 #include <linux/crc32.h> 36 #include <linux/of_platform.h> 37 #include <linux/of_reserved_mem.h> 38 #include <linux/virtio_ids.h> 39 #include <linux/virtio_ring.h> 40 #include <asm/byteorder.h> 41 #include <linux/platform_device.h> 42 43 #include "remoteproc_internal.h" 44 45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 46 47 static DEFINE_MUTEX(rproc_list_mutex); 48 static LIST_HEAD(rproc_list); 49 static struct notifier_block rproc_panic_nb; 50 51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 52 void *, int offset, int avail); 53 54 static int rproc_alloc_carveout(struct rproc *rproc, 55 struct rproc_mem_entry *mem); 56 static int rproc_release_carveout(struct rproc *rproc, 57 struct rproc_mem_entry *mem); 58 59 /* Unique indices for remoteproc devices */ 60 static DEFINE_IDA(rproc_dev_index); 61 static struct workqueue_struct *rproc_recovery_wq; 62 63 static const char * const rproc_crash_names[] = { 64 [RPROC_MMUFAULT] = "mmufault", 65 [RPROC_WATCHDOG] = "watchdog", 66 [RPROC_FATAL_ERROR] = "fatal error", 67 }; 68 69 /* translate rproc_crash_type to string */ 70 static const char *rproc_crash_to_string(enum rproc_crash_type type) 71 { 72 if (type < ARRAY_SIZE(rproc_crash_names)) 73 return rproc_crash_names[type]; 74 return "unknown"; 75 } 76 77 /* 78 * This is the IOMMU fault handler we register with the IOMMU API 79 * (when relevant; not all remote processors access memory through 80 * an IOMMU). 81 * 82 * IOMMU core will invoke this handler whenever the remote processor 83 * will try to access an unmapped device address. 84 */ 85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 86 unsigned long iova, int flags, void *token) 87 { 88 struct rproc *rproc = token; 89 90 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 91 92 rproc_report_crash(rproc, RPROC_MMUFAULT); 93 94 /* 95 * Let the iommu core know we're not really handling this fault; 96 * we just used it as a recovery trigger. 97 */ 98 return -ENOSYS; 99 } 100 101 static int rproc_enable_iommu(struct rproc *rproc) 102 { 103 struct iommu_domain *domain; 104 struct device *dev = rproc->dev.parent; 105 int ret; 106 107 if (!rproc->has_iommu) { 108 dev_dbg(dev, "iommu not present\n"); 109 return 0; 110 } 111 112 domain = iommu_domain_alloc(dev->bus); 113 if (!domain) { 114 dev_err(dev, "can't alloc iommu domain\n"); 115 return -ENOMEM; 116 } 117 118 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 119 120 ret = iommu_attach_device(domain, dev); 121 if (ret) { 122 dev_err(dev, "can't attach iommu device: %d\n", ret); 123 goto free_domain; 124 } 125 126 rproc->domain = domain; 127 128 return 0; 129 130 free_domain: 131 iommu_domain_free(domain); 132 return ret; 133 } 134 135 static void rproc_disable_iommu(struct rproc *rproc) 136 { 137 struct iommu_domain *domain = rproc->domain; 138 struct device *dev = rproc->dev.parent; 139 140 if (!domain) 141 return; 142 143 iommu_detach_device(domain, dev); 144 iommu_domain_free(domain); 145 } 146 147 phys_addr_t rproc_va_to_pa(void *cpu_addr) 148 { 149 /* 150 * Return physical address according to virtual address location 151 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 152 * - in kernel: if region allocated in generic dma memory pool 153 */ 154 if (is_vmalloc_addr(cpu_addr)) { 155 return page_to_phys(vmalloc_to_page(cpu_addr)) + 156 offset_in_page(cpu_addr); 157 } 158 159 WARN_ON(!virt_addr_valid(cpu_addr)); 160 return virt_to_phys(cpu_addr); 161 } 162 EXPORT_SYMBOL(rproc_va_to_pa); 163 164 /** 165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 166 * @rproc: handle of a remote processor 167 * @da: remoteproc device address to translate 168 * @len: length of the memory region @da is pointing to 169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory 170 * 171 * Some remote processors will ask us to allocate them physically contiguous 172 * memory regions (which we call "carveouts"), and map them to specific 173 * device addresses (which are hardcoded in the firmware). They may also have 174 * dedicated memory regions internal to the processors, and use them either 175 * exclusively or alongside carveouts. 176 * 177 * They may then ask us to copy objects into specific device addresses (e.g. 178 * code/data sections) or expose us certain symbols in other device address 179 * (e.g. their trace buffer). 180 * 181 * This function is a helper function with which we can go over the allocated 182 * carveouts and translate specific device addresses to kernel virtual addresses 183 * so we can access the referenced memory. This function also allows to perform 184 * translations on the internal remoteproc memory regions through a platform 185 * implementation specific da_to_va ops, if present. 186 * 187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 188 * but only on kernel direct mapped RAM memory. Instead, we're just using 189 * here the output of the DMA API for the carveouts, which should be more 190 * correct. 191 * 192 * Return: a valid kernel address on success or NULL on failure 193 */ 194 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 195 { 196 struct rproc_mem_entry *carveout; 197 void *ptr = NULL; 198 199 if (rproc->ops->da_to_va) { 200 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem); 201 if (ptr) 202 goto out; 203 } 204 205 list_for_each_entry(carveout, &rproc->carveouts, node) { 206 int offset = da - carveout->da; 207 208 /* Verify that carveout is allocated */ 209 if (!carveout->va) 210 continue; 211 212 /* try next carveout if da is too small */ 213 if (offset < 0) 214 continue; 215 216 /* try next carveout if da is too large */ 217 if (offset + len > carveout->len) 218 continue; 219 220 ptr = carveout->va + offset; 221 222 if (is_iomem) 223 *is_iomem = carveout->is_iomem; 224 225 break; 226 } 227 228 out: 229 return ptr; 230 } 231 EXPORT_SYMBOL(rproc_da_to_va); 232 233 /** 234 * rproc_find_carveout_by_name() - lookup the carveout region by a name 235 * @rproc: handle of a remote processor 236 * @name: carveout name to find (format string) 237 * @...: optional parameters matching @name string 238 * 239 * Platform driver has the capability to register some pre-allacoted carveout 240 * (physically contiguous memory regions) before rproc firmware loading and 241 * associated resource table analysis. These regions may be dedicated memory 242 * regions internal to the coprocessor or specified DDR region with specific 243 * attributes 244 * 245 * This function is a helper function with which we can go over the 246 * allocated carveouts and return associated region characteristics like 247 * coprocessor address, length or processor virtual address. 248 * 249 * Return: a valid pointer on carveout entry on success or NULL on failure. 250 */ 251 __printf(2, 3) 252 struct rproc_mem_entry * 253 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 254 { 255 va_list args; 256 char _name[32]; 257 struct rproc_mem_entry *carveout, *mem = NULL; 258 259 if (!name) 260 return NULL; 261 262 va_start(args, name); 263 vsnprintf(_name, sizeof(_name), name, args); 264 va_end(args); 265 266 list_for_each_entry(carveout, &rproc->carveouts, node) { 267 /* Compare carveout and requested names */ 268 if (!strcmp(carveout->name, _name)) { 269 mem = carveout; 270 break; 271 } 272 } 273 274 return mem; 275 } 276 277 /** 278 * rproc_check_carveout_da() - Check specified carveout da configuration 279 * @rproc: handle of a remote processor 280 * @mem: pointer on carveout to check 281 * @da: area device address 282 * @len: associated area size 283 * 284 * This function is a helper function to verify requested device area (couple 285 * da, len) is part of specified carveout. 286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 287 * checked. 288 * 289 * Return: 0 if carveout matches request else error 290 */ 291 static int rproc_check_carveout_da(struct rproc *rproc, 292 struct rproc_mem_entry *mem, u32 da, u32 len) 293 { 294 struct device *dev = &rproc->dev; 295 int delta; 296 297 /* Check requested resource length */ 298 if (len > mem->len) { 299 dev_err(dev, "Registered carveout doesn't fit len request\n"); 300 return -EINVAL; 301 } 302 303 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 304 /* Address doesn't match registered carveout configuration */ 305 return -EINVAL; 306 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 307 delta = da - mem->da; 308 309 /* Check requested resource belongs to registered carveout */ 310 if (delta < 0) { 311 dev_err(dev, 312 "Registered carveout doesn't fit da request\n"); 313 return -EINVAL; 314 } 315 316 if (delta + len > mem->len) { 317 dev_err(dev, 318 "Registered carveout doesn't fit len request\n"); 319 return -EINVAL; 320 } 321 } 322 323 return 0; 324 } 325 326 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 327 { 328 struct rproc *rproc = rvdev->rproc; 329 struct device *dev = &rproc->dev; 330 struct rproc_vring *rvring = &rvdev->vring[i]; 331 struct fw_rsc_vdev *rsc; 332 int ret, notifyid; 333 struct rproc_mem_entry *mem; 334 size_t size; 335 336 /* actual size of vring (in bytes) */ 337 size = PAGE_ALIGN(vring_size(rvring->num, rvring->align)); 338 339 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 340 341 /* Search for pre-registered carveout */ 342 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 343 i); 344 if (mem) { 345 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 346 return -ENOMEM; 347 } else { 348 /* Register carveout in list */ 349 mem = rproc_mem_entry_init(dev, NULL, 0, 350 size, rsc->vring[i].da, 351 rproc_alloc_carveout, 352 rproc_release_carveout, 353 "vdev%dvring%d", 354 rvdev->index, i); 355 if (!mem) { 356 dev_err(dev, "Can't allocate memory entry structure\n"); 357 return -ENOMEM; 358 } 359 360 rproc_add_carveout(rproc, mem); 361 } 362 363 /* 364 * Assign an rproc-wide unique index for this vring 365 * TODO: assign a notifyid for rvdev updates as well 366 * TODO: support predefined notifyids (via resource table) 367 */ 368 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 369 if (ret < 0) { 370 dev_err(dev, "idr_alloc failed: %d\n", ret); 371 return ret; 372 } 373 notifyid = ret; 374 375 /* Potentially bump max_notifyid */ 376 if (notifyid > rproc->max_notifyid) 377 rproc->max_notifyid = notifyid; 378 379 rvring->notifyid = notifyid; 380 381 /* Let the rproc know the notifyid of this vring.*/ 382 rsc->vring[i].notifyid = notifyid; 383 return 0; 384 } 385 386 int 387 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 388 { 389 struct rproc *rproc = rvdev->rproc; 390 struct device *dev = &rproc->dev; 391 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 392 struct rproc_vring *rvring = &rvdev->vring[i]; 393 394 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 395 i, vring->da, vring->num, vring->align); 396 397 /* verify queue size and vring alignment are sane */ 398 if (!vring->num || !vring->align) { 399 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 400 vring->num, vring->align); 401 return -EINVAL; 402 } 403 404 rvring->num = vring->num; 405 rvring->align = vring->align; 406 rvring->rvdev = rvdev; 407 408 return 0; 409 } 410 411 void rproc_free_vring(struct rproc_vring *rvring) 412 { 413 struct rproc *rproc = rvring->rvdev->rproc; 414 int idx = rvring - rvring->rvdev->vring; 415 struct fw_rsc_vdev *rsc; 416 417 idr_remove(&rproc->notifyids, rvring->notifyid); 418 419 /* 420 * At this point rproc_stop() has been called and the installed resource 421 * table in the remote processor memory may no longer be accessible. As 422 * such and as per rproc_stop(), rproc->table_ptr points to the cached 423 * resource table (rproc->cached_table). The cached resource table is 424 * only available when a remote processor has been booted by the 425 * remoteproc core, otherwise it is NULL. 426 * 427 * Based on the above, reset the virtio device section in the cached 428 * resource table only if there is one to work with. 429 */ 430 if (rproc->table_ptr) { 431 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 432 rsc->vring[idx].da = 0; 433 rsc->vring[idx].notifyid = -1; 434 } 435 } 436 437 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev) 438 { 439 if (rvdev && rproc) 440 list_add_tail(&rvdev->node, &rproc->rvdevs); 441 } 442 443 void rproc_remove_rvdev(struct rproc_vdev *rvdev) 444 { 445 if (rvdev) 446 list_del(&rvdev->node); 447 } 448 /** 449 * rproc_handle_vdev() - handle a vdev fw resource 450 * @rproc: the remote processor 451 * @ptr: the vring resource descriptor 452 * @offset: offset of the resource entry 453 * @avail: size of available data (for sanity checking the image) 454 * 455 * This resource entry requests the host to statically register a virtio 456 * device (vdev), and setup everything needed to support it. It contains 457 * everything needed to make it possible: the virtio device id, virtio 458 * device features, vrings information, virtio config space, etc... 459 * 460 * Before registering the vdev, the vrings are allocated from non-cacheable 461 * physically contiguous memory. Currently we only support two vrings per 462 * remote processor (temporary limitation). We might also want to consider 463 * doing the vring allocation only later when ->find_vqs() is invoked, and 464 * then release them upon ->del_vqs(). 465 * 466 * Note: @da is currently not really handled correctly: we dynamically 467 * allocate it using the DMA API, ignoring requested hard coded addresses, 468 * and we don't take care of any required IOMMU programming. This is all 469 * going to be taken care of when the generic iommu-based DMA API will be 470 * merged. Meanwhile, statically-addressed iommu-based firmware images should 471 * use RSC_DEVMEM resource entries to map their required @da to the physical 472 * address of their base CMA region (ouch, hacky!). 473 * 474 * Return: 0 on success, or an appropriate error code otherwise 475 */ 476 static int rproc_handle_vdev(struct rproc *rproc, void *ptr, 477 int offset, int avail) 478 { 479 struct fw_rsc_vdev *rsc = ptr; 480 struct device *dev = &rproc->dev; 481 struct rproc_vdev *rvdev; 482 size_t rsc_size; 483 struct rproc_vdev_data rvdev_data; 484 struct platform_device *pdev; 485 486 /* make sure resource isn't truncated */ 487 rsc_size = struct_size(rsc, vring, rsc->num_of_vrings); 488 if (size_add(rsc_size, rsc->config_len) > avail) { 489 dev_err(dev, "vdev rsc is truncated\n"); 490 return -EINVAL; 491 } 492 493 /* make sure reserved bytes are zeroes */ 494 if (rsc->reserved[0] || rsc->reserved[1]) { 495 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 496 return -EINVAL; 497 } 498 499 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 500 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 501 502 /* we currently support only two vrings per rvdev */ 503 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 504 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 505 return -EINVAL; 506 } 507 508 rvdev_data.id = rsc->id; 509 rvdev_data.index = rproc->nb_vdev++; 510 rvdev_data.rsc_offset = offset; 511 rvdev_data.rsc = rsc; 512 513 /* 514 * When there is more than one remote processor, rproc->nb_vdev number is 515 * same for each separate instances of "rproc". If rvdev_data.index is used 516 * as device id, then we get duplication in sysfs, so need to use 517 * PLATFORM_DEVID_AUTO to auto select device id. 518 */ 519 pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data, 520 sizeof(rvdev_data)); 521 if (IS_ERR(pdev)) { 522 dev_err(dev, "failed to create rproc-virtio device\n"); 523 return PTR_ERR(pdev); 524 } 525 526 return 0; 527 } 528 529 /** 530 * rproc_handle_trace() - handle a shared trace buffer resource 531 * @rproc: the remote processor 532 * @ptr: the trace resource descriptor 533 * @offset: offset of the resource entry 534 * @avail: size of available data (for sanity checking the image) 535 * 536 * In case the remote processor dumps trace logs into memory, 537 * export it via debugfs. 538 * 539 * Currently, the 'da' member of @rsc should contain the device address 540 * where the remote processor is dumping the traces. Later we could also 541 * support dynamically allocating this address using the generic 542 * DMA API (but currently there isn't a use case for that). 543 * 544 * Return: 0 on success, or an appropriate error code otherwise 545 */ 546 static int rproc_handle_trace(struct rproc *rproc, void *ptr, 547 int offset, int avail) 548 { 549 struct fw_rsc_trace *rsc = ptr; 550 struct rproc_debug_trace *trace; 551 struct device *dev = &rproc->dev; 552 char name[15]; 553 554 if (sizeof(*rsc) > avail) { 555 dev_err(dev, "trace rsc is truncated\n"); 556 return -EINVAL; 557 } 558 559 /* make sure reserved bytes are zeroes */ 560 if (rsc->reserved) { 561 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 562 return -EINVAL; 563 } 564 565 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 566 if (!trace) 567 return -ENOMEM; 568 569 /* set the trace buffer dma properties */ 570 trace->trace_mem.len = rsc->len; 571 trace->trace_mem.da = rsc->da; 572 573 /* set pointer on rproc device */ 574 trace->rproc = rproc; 575 576 /* make sure snprintf always null terminates, even if truncating */ 577 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 578 579 /* create the debugfs entry */ 580 trace->tfile = rproc_create_trace_file(name, rproc, trace); 581 582 list_add_tail(&trace->node, &rproc->traces); 583 584 rproc->num_traces++; 585 586 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 587 name, rsc->da, rsc->len); 588 589 return 0; 590 } 591 592 /** 593 * rproc_handle_devmem() - handle devmem resource entry 594 * @rproc: remote processor handle 595 * @ptr: the devmem resource entry 596 * @offset: offset of the resource entry 597 * @avail: size of available data (for sanity checking the image) 598 * 599 * Remote processors commonly need to access certain on-chip peripherals. 600 * 601 * Some of these remote processors access memory via an iommu device, 602 * and might require us to configure their iommu before they can access 603 * the on-chip peripherals they need. 604 * 605 * This resource entry is a request to map such a peripheral device. 606 * 607 * These devmem entries will contain the physical address of the device in 608 * the 'pa' member. If a specific device address is expected, then 'da' will 609 * contain it (currently this is the only use case supported). 'len' will 610 * contain the size of the physical region we need to map. 611 * 612 * Currently we just "trust" those devmem entries to contain valid physical 613 * addresses, but this is going to change: we want the implementations to 614 * tell us ranges of physical addresses the firmware is allowed to request, 615 * and not allow firmwares to request access to physical addresses that 616 * are outside those ranges. 617 * 618 * Return: 0 on success, or an appropriate error code otherwise 619 */ 620 static int rproc_handle_devmem(struct rproc *rproc, void *ptr, 621 int offset, int avail) 622 { 623 struct fw_rsc_devmem *rsc = ptr; 624 struct rproc_mem_entry *mapping; 625 struct device *dev = &rproc->dev; 626 int ret; 627 628 /* no point in handling this resource without a valid iommu domain */ 629 if (!rproc->domain) 630 return -EINVAL; 631 632 if (sizeof(*rsc) > avail) { 633 dev_err(dev, "devmem rsc is truncated\n"); 634 return -EINVAL; 635 } 636 637 /* make sure reserved bytes are zeroes */ 638 if (rsc->reserved) { 639 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 640 return -EINVAL; 641 } 642 643 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 644 if (!mapping) 645 return -ENOMEM; 646 647 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags, 648 GFP_KERNEL); 649 if (ret) { 650 dev_err(dev, "failed to map devmem: %d\n", ret); 651 goto out; 652 } 653 654 /* 655 * We'll need this info later when we'll want to unmap everything 656 * (e.g. on shutdown). 657 * 658 * We can't trust the remote processor not to change the resource 659 * table, so we must maintain this info independently. 660 */ 661 mapping->da = rsc->da; 662 mapping->len = rsc->len; 663 list_add_tail(&mapping->node, &rproc->mappings); 664 665 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 666 rsc->pa, rsc->da, rsc->len); 667 668 return 0; 669 670 out: 671 kfree(mapping); 672 return ret; 673 } 674 675 /** 676 * rproc_alloc_carveout() - allocated specified carveout 677 * @rproc: rproc handle 678 * @mem: the memory entry to allocate 679 * 680 * This function allocate specified memory entry @mem using 681 * dma_alloc_coherent() as default allocator 682 * 683 * Return: 0 on success, or an appropriate error code otherwise 684 */ 685 static int rproc_alloc_carveout(struct rproc *rproc, 686 struct rproc_mem_entry *mem) 687 { 688 struct rproc_mem_entry *mapping = NULL; 689 struct device *dev = &rproc->dev; 690 dma_addr_t dma; 691 void *va; 692 int ret; 693 694 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 695 if (!va) { 696 dev_err(dev->parent, 697 "failed to allocate dma memory: len 0x%zx\n", 698 mem->len); 699 return -ENOMEM; 700 } 701 702 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 703 va, &dma, mem->len); 704 705 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 706 /* 707 * Check requested da is equal to dma address 708 * and print a warn message in case of missalignment. 709 * Don't stop rproc_start sequence as coprocessor may 710 * build pa to da translation on its side. 711 */ 712 if (mem->da != (u32)dma) 713 dev_warn(dev->parent, 714 "Allocated carveout doesn't fit device address request\n"); 715 } 716 717 /* 718 * Ok, this is non-standard. 719 * 720 * Sometimes we can't rely on the generic iommu-based DMA API 721 * to dynamically allocate the device address and then set the IOMMU 722 * tables accordingly, because some remote processors might 723 * _require_ us to use hard coded device addresses that their 724 * firmware was compiled with. 725 * 726 * In this case, we must use the IOMMU API directly and map 727 * the memory to the device address as expected by the remote 728 * processor. 729 * 730 * Obviously such remote processor devices should not be configured 731 * to use the iommu-based DMA API: we expect 'dma' to contain the 732 * physical address in this case. 733 */ 734 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 735 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 736 if (!mapping) { 737 ret = -ENOMEM; 738 goto dma_free; 739 } 740 741 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 742 mem->flags, GFP_KERNEL); 743 if (ret) { 744 dev_err(dev, "iommu_map failed: %d\n", ret); 745 goto free_mapping; 746 } 747 748 /* 749 * We'll need this info later when we'll want to unmap 750 * everything (e.g. on shutdown). 751 * 752 * We can't trust the remote processor not to change the 753 * resource table, so we must maintain this info independently. 754 */ 755 mapping->da = mem->da; 756 mapping->len = mem->len; 757 list_add_tail(&mapping->node, &rproc->mappings); 758 759 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 760 mem->da, &dma); 761 } 762 763 if (mem->da == FW_RSC_ADDR_ANY) { 764 /* Update device address as undefined by requester */ 765 if ((u64)dma & HIGH_BITS_MASK) 766 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 767 768 mem->da = (u32)dma; 769 } 770 771 mem->dma = dma; 772 mem->va = va; 773 774 return 0; 775 776 free_mapping: 777 kfree(mapping); 778 dma_free: 779 dma_free_coherent(dev->parent, mem->len, va, dma); 780 return ret; 781 } 782 783 /** 784 * rproc_release_carveout() - release acquired carveout 785 * @rproc: rproc handle 786 * @mem: the memory entry to release 787 * 788 * This function releases specified memory entry @mem allocated via 789 * rproc_alloc_carveout() function by @rproc. 790 * 791 * Return: 0 on success, or an appropriate error code otherwise 792 */ 793 static int rproc_release_carveout(struct rproc *rproc, 794 struct rproc_mem_entry *mem) 795 { 796 struct device *dev = &rproc->dev; 797 798 /* clean up carveout allocations */ 799 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 800 return 0; 801 } 802 803 /** 804 * rproc_handle_carveout() - handle phys contig memory allocation requests 805 * @rproc: rproc handle 806 * @ptr: the resource entry 807 * @offset: offset of the resource entry 808 * @avail: size of available data (for image validation) 809 * 810 * This function will handle firmware requests for allocation of physically 811 * contiguous memory regions. 812 * 813 * These request entries should come first in the firmware's resource table, 814 * as other firmware entries might request placing other data objects inside 815 * these memory regions (e.g. data/code segments, trace resource entries, ...). 816 * 817 * Allocating memory this way helps utilizing the reserved physical memory 818 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 819 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 820 * pressure is important; it may have a substantial impact on performance. 821 * 822 * Return: 0 on success, or an appropriate error code otherwise 823 */ 824 static int rproc_handle_carveout(struct rproc *rproc, 825 void *ptr, int offset, int avail) 826 { 827 struct fw_rsc_carveout *rsc = ptr; 828 struct rproc_mem_entry *carveout; 829 struct device *dev = &rproc->dev; 830 831 if (sizeof(*rsc) > avail) { 832 dev_err(dev, "carveout rsc is truncated\n"); 833 return -EINVAL; 834 } 835 836 /* make sure reserved bytes are zeroes */ 837 if (rsc->reserved) { 838 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 839 return -EINVAL; 840 } 841 842 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 843 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 844 845 /* 846 * Check carveout rsc already part of a registered carveout, 847 * Search by name, then check the da and length 848 */ 849 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 850 851 if (carveout) { 852 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 853 dev_err(dev, 854 "Carveout already associated to resource table\n"); 855 return -ENOMEM; 856 } 857 858 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 859 return -ENOMEM; 860 861 /* Update memory carveout with resource table info */ 862 carveout->rsc_offset = offset; 863 carveout->flags = rsc->flags; 864 865 return 0; 866 } 867 868 /* Register carveout in list */ 869 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 870 rproc_alloc_carveout, 871 rproc_release_carveout, rsc->name); 872 if (!carveout) { 873 dev_err(dev, "Can't allocate memory entry structure\n"); 874 return -ENOMEM; 875 } 876 877 carveout->flags = rsc->flags; 878 carveout->rsc_offset = offset; 879 rproc_add_carveout(rproc, carveout); 880 881 return 0; 882 } 883 884 /** 885 * rproc_add_carveout() - register an allocated carveout region 886 * @rproc: rproc handle 887 * @mem: memory entry to register 888 * 889 * This function registers specified memory entry in @rproc carveouts list. 890 * Specified carveout should have been allocated before registering. 891 */ 892 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 893 { 894 list_add_tail(&mem->node, &rproc->carveouts); 895 } 896 EXPORT_SYMBOL(rproc_add_carveout); 897 898 /** 899 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 900 * @dev: pointer on device struct 901 * @va: virtual address 902 * @dma: dma address 903 * @len: memory carveout length 904 * @da: device address 905 * @alloc: memory carveout allocation function 906 * @release: memory carveout release function 907 * @name: carveout name 908 * 909 * This function allocates a rproc_mem_entry struct and fill it with parameters 910 * provided by client. 911 * 912 * Return: a valid pointer on success, or NULL on failure 913 */ 914 __printf(8, 9) 915 struct rproc_mem_entry * 916 rproc_mem_entry_init(struct device *dev, 917 void *va, dma_addr_t dma, size_t len, u32 da, 918 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 919 int (*release)(struct rproc *, struct rproc_mem_entry *), 920 const char *name, ...) 921 { 922 struct rproc_mem_entry *mem; 923 va_list args; 924 925 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 926 if (!mem) 927 return mem; 928 929 mem->va = va; 930 mem->dma = dma; 931 mem->da = da; 932 mem->len = len; 933 mem->alloc = alloc; 934 mem->release = release; 935 mem->rsc_offset = FW_RSC_ADDR_ANY; 936 mem->of_resm_idx = -1; 937 938 va_start(args, name); 939 vsnprintf(mem->name, sizeof(mem->name), name, args); 940 va_end(args); 941 942 return mem; 943 } 944 EXPORT_SYMBOL(rproc_mem_entry_init); 945 946 /** 947 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 948 * from a reserved memory phandle 949 * @dev: pointer on device struct 950 * @of_resm_idx: reserved memory phandle index in "memory-region" 951 * @len: memory carveout length 952 * @da: device address 953 * @name: carveout name 954 * 955 * This function allocates a rproc_mem_entry struct and fill it with parameters 956 * provided by client. 957 * 958 * Return: a valid pointer on success, or NULL on failure 959 */ 960 __printf(5, 6) 961 struct rproc_mem_entry * 962 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 963 u32 da, const char *name, ...) 964 { 965 struct rproc_mem_entry *mem; 966 va_list args; 967 968 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 969 if (!mem) 970 return mem; 971 972 mem->da = da; 973 mem->len = len; 974 mem->rsc_offset = FW_RSC_ADDR_ANY; 975 mem->of_resm_idx = of_resm_idx; 976 977 va_start(args, name); 978 vsnprintf(mem->name, sizeof(mem->name), name, args); 979 va_end(args); 980 981 return mem; 982 } 983 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 984 985 /** 986 * rproc_of_parse_firmware() - parse and return the firmware-name 987 * @dev: pointer on device struct representing a rproc 988 * @index: index to use for the firmware-name retrieval 989 * @fw_name: pointer to a character string, in which the firmware 990 * name is returned on success and unmodified otherwise. 991 * 992 * This is an OF helper function that parses a device's DT node for 993 * the "firmware-name" property and returns the firmware name pointer 994 * in @fw_name on success. 995 * 996 * Return: 0 on success, or an appropriate failure. 997 */ 998 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 999 { 1000 int ret; 1001 1002 ret = of_property_read_string_index(dev->of_node, "firmware-name", 1003 index, fw_name); 1004 return ret ? ret : 0; 1005 } 1006 EXPORT_SYMBOL(rproc_of_parse_firmware); 1007 1008 /* 1009 * A lookup table for resource handlers. The indices are defined in 1010 * enum fw_resource_type. 1011 */ 1012 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1013 [RSC_CARVEOUT] = rproc_handle_carveout, 1014 [RSC_DEVMEM] = rproc_handle_devmem, 1015 [RSC_TRACE] = rproc_handle_trace, 1016 [RSC_VDEV] = rproc_handle_vdev, 1017 }; 1018 1019 /* handle firmware resource entries before booting the remote processor */ 1020 static int rproc_handle_resources(struct rproc *rproc, 1021 rproc_handle_resource_t handlers[RSC_LAST]) 1022 { 1023 struct device *dev = &rproc->dev; 1024 rproc_handle_resource_t handler; 1025 int ret = 0, i; 1026 1027 if (!rproc->table_ptr) 1028 return 0; 1029 1030 for (i = 0; i < rproc->table_ptr->num; i++) { 1031 int offset = rproc->table_ptr->offset[i]; 1032 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1033 int avail = rproc->table_sz - offset - sizeof(*hdr); 1034 void *rsc = (void *)hdr + sizeof(*hdr); 1035 1036 /* make sure table isn't truncated */ 1037 if (avail < 0) { 1038 dev_err(dev, "rsc table is truncated\n"); 1039 return -EINVAL; 1040 } 1041 1042 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1043 1044 if (hdr->type >= RSC_VENDOR_START && 1045 hdr->type <= RSC_VENDOR_END) { 1046 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1047 offset + sizeof(*hdr), avail); 1048 if (ret == RSC_HANDLED) 1049 continue; 1050 else if (ret < 0) 1051 break; 1052 1053 dev_warn(dev, "unsupported vendor resource %d\n", 1054 hdr->type); 1055 continue; 1056 } 1057 1058 if (hdr->type >= RSC_LAST) { 1059 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1060 continue; 1061 } 1062 1063 handler = handlers[hdr->type]; 1064 if (!handler) 1065 continue; 1066 1067 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1068 if (ret) 1069 break; 1070 } 1071 1072 return ret; 1073 } 1074 1075 static int rproc_prepare_subdevices(struct rproc *rproc) 1076 { 1077 struct rproc_subdev *subdev; 1078 int ret; 1079 1080 list_for_each_entry(subdev, &rproc->subdevs, node) { 1081 if (subdev->prepare) { 1082 ret = subdev->prepare(subdev); 1083 if (ret) 1084 goto unroll_preparation; 1085 } 1086 } 1087 1088 return 0; 1089 1090 unroll_preparation: 1091 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1092 if (subdev->unprepare) 1093 subdev->unprepare(subdev); 1094 } 1095 1096 return ret; 1097 } 1098 1099 static int rproc_start_subdevices(struct rproc *rproc) 1100 { 1101 struct rproc_subdev *subdev; 1102 int ret; 1103 1104 list_for_each_entry(subdev, &rproc->subdevs, node) { 1105 if (subdev->start) { 1106 ret = subdev->start(subdev); 1107 if (ret) 1108 goto unroll_registration; 1109 } 1110 } 1111 1112 return 0; 1113 1114 unroll_registration: 1115 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1116 if (subdev->stop) 1117 subdev->stop(subdev, true); 1118 } 1119 1120 return ret; 1121 } 1122 1123 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1124 { 1125 struct rproc_subdev *subdev; 1126 1127 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1128 if (subdev->stop) 1129 subdev->stop(subdev, crashed); 1130 } 1131 } 1132 1133 static void rproc_unprepare_subdevices(struct rproc *rproc) 1134 { 1135 struct rproc_subdev *subdev; 1136 1137 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1138 if (subdev->unprepare) 1139 subdev->unprepare(subdev); 1140 } 1141 } 1142 1143 /** 1144 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1145 * in the list 1146 * @rproc: the remote processor handle 1147 * 1148 * This function parses registered carveout list, performs allocation 1149 * if alloc() ops registered and updates resource table information 1150 * if rsc_offset set. 1151 * 1152 * Return: 0 on success 1153 */ 1154 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1155 { 1156 struct rproc_mem_entry *entry, *tmp; 1157 struct fw_rsc_carveout *rsc; 1158 struct device *dev = &rproc->dev; 1159 u64 pa; 1160 int ret; 1161 1162 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1163 if (entry->alloc) { 1164 ret = entry->alloc(rproc, entry); 1165 if (ret) { 1166 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1167 entry->name, ret); 1168 return -ENOMEM; 1169 } 1170 } 1171 1172 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1173 /* update resource table */ 1174 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1175 1176 /* 1177 * Some remote processors might need to know the pa 1178 * even though they are behind an IOMMU. E.g., OMAP4's 1179 * remote M3 processor needs this so it can control 1180 * on-chip hardware accelerators that are not behind 1181 * the IOMMU, and therefor must know the pa. 1182 * 1183 * Generally we don't want to expose physical addresses 1184 * if we don't have to (remote processors are generally 1185 * _not_ trusted), so we might want to do this only for 1186 * remote processor that _must_ have this (e.g. OMAP4's 1187 * dual M3 subsystem). 1188 * 1189 * Non-IOMMU processors might also want to have this info. 1190 * In this case, the device address and the physical address 1191 * are the same. 1192 */ 1193 1194 /* Use va if defined else dma to generate pa */ 1195 if (entry->va) 1196 pa = (u64)rproc_va_to_pa(entry->va); 1197 else 1198 pa = (u64)entry->dma; 1199 1200 if (((u64)pa) & HIGH_BITS_MASK) 1201 dev_warn(dev, 1202 "Physical address cast in 32bit to fit resource table format\n"); 1203 1204 rsc->pa = (u32)pa; 1205 rsc->da = entry->da; 1206 rsc->len = entry->len; 1207 } 1208 } 1209 1210 return 0; 1211 } 1212 1213 1214 /** 1215 * rproc_resource_cleanup() - clean up and free all acquired resources 1216 * @rproc: rproc handle 1217 * 1218 * This function will free all resources acquired for @rproc, and it 1219 * is called whenever @rproc either shuts down or fails to boot. 1220 */ 1221 void rproc_resource_cleanup(struct rproc *rproc) 1222 { 1223 struct rproc_mem_entry *entry, *tmp; 1224 struct rproc_debug_trace *trace, *ttmp; 1225 struct rproc_vdev *rvdev, *rvtmp; 1226 struct device *dev = &rproc->dev; 1227 1228 /* clean up debugfs trace entries */ 1229 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1230 rproc_remove_trace_file(trace->tfile); 1231 rproc->num_traces--; 1232 list_del(&trace->node); 1233 kfree(trace); 1234 } 1235 1236 /* clean up iommu mapping entries */ 1237 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1238 size_t unmapped; 1239 1240 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1241 if (unmapped != entry->len) { 1242 /* nothing much to do besides complaining */ 1243 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1244 unmapped); 1245 } 1246 1247 list_del(&entry->node); 1248 kfree(entry); 1249 } 1250 1251 /* clean up carveout allocations */ 1252 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1253 if (entry->release) 1254 entry->release(rproc, entry); 1255 list_del(&entry->node); 1256 kfree(entry); 1257 } 1258 1259 /* clean up remote vdev entries */ 1260 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1261 platform_device_unregister(rvdev->pdev); 1262 1263 rproc_coredump_cleanup(rproc); 1264 } 1265 EXPORT_SYMBOL(rproc_resource_cleanup); 1266 1267 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1268 { 1269 struct resource_table *loaded_table; 1270 struct device *dev = &rproc->dev; 1271 int ret; 1272 1273 /* load the ELF segments to memory */ 1274 ret = rproc_load_segments(rproc, fw); 1275 if (ret) { 1276 dev_err(dev, "Failed to load program segments: %d\n", ret); 1277 return ret; 1278 } 1279 1280 /* 1281 * The starting device has been given the rproc->cached_table as the 1282 * resource table. The address of the vring along with the other 1283 * allocated resources (carveouts etc) is stored in cached_table. 1284 * In order to pass this information to the remote device we must copy 1285 * this information to device memory. We also update the table_ptr so 1286 * that any subsequent changes will be applied to the loaded version. 1287 */ 1288 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1289 if (loaded_table) { 1290 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1291 rproc->table_ptr = loaded_table; 1292 } 1293 1294 ret = rproc_prepare_subdevices(rproc); 1295 if (ret) { 1296 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1297 rproc->name, ret); 1298 goto reset_table_ptr; 1299 } 1300 1301 /* power up the remote processor */ 1302 ret = rproc->ops->start(rproc); 1303 if (ret) { 1304 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1305 goto unprepare_subdevices; 1306 } 1307 1308 /* Start any subdevices for the remote processor */ 1309 ret = rproc_start_subdevices(rproc); 1310 if (ret) { 1311 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1312 rproc->name, ret); 1313 goto stop_rproc; 1314 } 1315 1316 rproc->state = RPROC_RUNNING; 1317 1318 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1319 1320 return 0; 1321 1322 stop_rproc: 1323 rproc->ops->stop(rproc); 1324 unprepare_subdevices: 1325 rproc_unprepare_subdevices(rproc); 1326 reset_table_ptr: 1327 rproc->table_ptr = rproc->cached_table; 1328 1329 return ret; 1330 } 1331 1332 static int __rproc_attach(struct rproc *rproc) 1333 { 1334 struct device *dev = &rproc->dev; 1335 int ret; 1336 1337 ret = rproc_prepare_subdevices(rproc); 1338 if (ret) { 1339 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1340 rproc->name, ret); 1341 goto out; 1342 } 1343 1344 /* Attach to the remote processor */ 1345 ret = rproc_attach_device(rproc); 1346 if (ret) { 1347 dev_err(dev, "can't attach to rproc %s: %d\n", 1348 rproc->name, ret); 1349 goto unprepare_subdevices; 1350 } 1351 1352 /* Start any subdevices for the remote processor */ 1353 ret = rproc_start_subdevices(rproc); 1354 if (ret) { 1355 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1356 rproc->name, ret); 1357 goto stop_rproc; 1358 } 1359 1360 rproc->state = RPROC_ATTACHED; 1361 1362 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1363 1364 return 0; 1365 1366 stop_rproc: 1367 rproc->ops->stop(rproc); 1368 unprepare_subdevices: 1369 rproc_unprepare_subdevices(rproc); 1370 out: 1371 return ret; 1372 } 1373 1374 /* 1375 * take a firmware and boot a remote processor with it. 1376 */ 1377 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1378 { 1379 struct device *dev = &rproc->dev; 1380 const char *name = rproc->firmware; 1381 int ret; 1382 1383 ret = rproc_fw_sanity_check(rproc, fw); 1384 if (ret) 1385 return ret; 1386 1387 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1388 1389 /* 1390 * if enabling an IOMMU isn't relevant for this rproc, this is 1391 * just a nop 1392 */ 1393 ret = rproc_enable_iommu(rproc); 1394 if (ret) { 1395 dev_err(dev, "can't enable iommu: %d\n", ret); 1396 return ret; 1397 } 1398 1399 /* Prepare rproc for firmware loading if needed */ 1400 ret = rproc_prepare_device(rproc); 1401 if (ret) { 1402 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1403 goto disable_iommu; 1404 } 1405 1406 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1407 1408 /* Load resource table, core dump segment list etc from the firmware */ 1409 ret = rproc_parse_fw(rproc, fw); 1410 if (ret) 1411 goto unprepare_rproc; 1412 1413 /* reset max_notifyid */ 1414 rproc->max_notifyid = -1; 1415 1416 /* reset handled vdev */ 1417 rproc->nb_vdev = 0; 1418 1419 /* handle fw resources which are required to boot rproc */ 1420 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1421 if (ret) { 1422 dev_err(dev, "Failed to process resources: %d\n", ret); 1423 goto clean_up_resources; 1424 } 1425 1426 /* Allocate carveout resources associated to rproc */ 1427 ret = rproc_alloc_registered_carveouts(rproc); 1428 if (ret) { 1429 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1430 ret); 1431 goto clean_up_resources; 1432 } 1433 1434 ret = rproc_start(rproc, fw); 1435 if (ret) 1436 goto clean_up_resources; 1437 1438 return 0; 1439 1440 clean_up_resources: 1441 rproc_resource_cleanup(rproc); 1442 kfree(rproc->cached_table); 1443 rproc->cached_table = NULL; 1444 rproc->table_ptr = NULL; 1445 unprepare_rproc: 1446 /* release HW resources if needed */ 1447 rproc_unprepare_device(rproc); 1448 disable_iommu: 1449 rproc_disable_iommu(rproc); 1450 return ret; 1451 } 1452 1453 static int rproc_set_rsc_table(struct rproc *rproc) 1454 { 1455 struct resource_table *table_ptr; 1456 struct device *dev = &rproc->dev; 1457 size_t table_sz; 1458 int ret; 1459 1460 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); 1461 if (!table_ptr) { 1462 /* Not having a resource table is acceptable */ 1463 return 0; 1464 } 1465 1466 if (IS_ERR(table_ptr)) { 1467 ret = PTR_ERR(table_ptr); 1468 dev_err(dev, "can't load resource table: %d\n", ret); 1469 return ret; 1470 } 1471 1472 /* 1473 * If it is possible to detach the remote processor, keep an untouched 1474 * copy of the resource table. That way we can start fresh again when 1475 * the remote processor is re-attached, that is: 1476 * 1477 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED 1478 * 1479 * Free'd in rproc_reset_rsc_table_on_detach() and 1480 * rproc_reset_rsc_table_on_stop(). 1481 */ 1482 if (rproc->ops->detach) { 1483 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL); 1484 if (!rproc->clean_table) 1485 return -ENOMEM; 1486 } else { 1487 rproc->clean_table = NULL; 1488 } 1489 1490 rproc->cached_table = NULL; 1491 rproc->table_ptr = table_ptr; 1492 rproc->table_sz = table_sz; 1493 1494 return 0; 1495 } 1496 1497 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc) 1498 { 1499 struct resource_table *table_ptr; 1500 1501 /* A resource table was never retrieved, nothing to do here */ 1502 if (!rproc->table_ptr) 1503 return 0; 1504 1505 /* 1506 * If we made it to this point a clean_table _must_ have been 1507 * allocated in rproc_set_rsc_table(). If one isn't present 1508 * something went really wrong and we must complain. 1509 */ 1510 if (WARN_ON(!rproc->clean_table)) 1511 return -EINVAL; 1512 1513 /* Remember where the external entity installed the resource table */ 1514 table_ptr = rproc->table_ptr; 1515 1516 /* 1517 * If we made it here the remote processor was started by another 1518 * entity and a cache table doesn't exist. As such make a copy of 1519 * the resource table currently used by the remote processor and 1520 * use that for the rest of the shutdown process. The memory 1521 * allocated here is free'd in rproc_detach(). 1522 */ 1523 rproc->cached_table = kmemdup(rproc->table_ptr, 1524 rproc->table_sz, GFP_KERNEL); 1525 if (!rproc->cached_table) 1526 return -ENOMEM; 1527 1528 /* 1529 * Use a copy of the resource table for the remainder of the 1530 * shutdown process. 1531 */ 1532 rproc->table_ptr = rproc->cached_table; 1533 1534 /* 1535 * Reset the memory area where the firmware loaded the resource table 1536 * to its original value. That way when we re-attach the remote 1537 * processor the resource table is clean and ready to be used again. 1538 */ 1539 memcpy(table_ptr, rproc->clean_table, rproc->table_sz); 1540 1541 /* 1542 * The clean resource table is no longer needed. Allocated in 1543 * rproc_set_rsc_table(). 1544 */ 1545 kfree(rproc->clean_table); 1546 1547 return 0; 1548 } 1549 1550 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc) 1551 { 1552 /* A resource table was never retrieved, nothing to do here */ 1553 if (!rproc->table_ptr) 1554 return 0; 1555 1556 /* 1557 * If a cache table exists the remote processor was started by 1558 * the remoteproc core. That cache table should be used for 1559 * the rest of the shutdown process. 1560 */ 1561 if (rproc->cached_table) 1562 goto out; 1563 1564 /* 1565 * If we made it here the remote processor was started by another 1566 * entity and a cache table doesn't exist. As such make a copy of 1567 * the resource table currently used by the remote processor and 1568 * use that for the rest of the shutdown process. The memory 1569 * allocated here is free'd in rproc_shutdown(). 1570 */ 1571 rproc->cached_table = kmemdup(rproc->table_ptr, 1572 rproc->table_sz, GFP_KERNEL); 1573 if (!rproc->cached_table) 1574 return -ENOMEM; 1575 1576 /* 1577 * Since the remote processor is being switched off the clean table 1578 * won't be needed. Allocated in rproc_set_rsc_table(). 1579 */ 1580 kfree(rproc->clean_table); 1581 1582 out: 1583 /* 1584 * Use a copy of the resource table for the remainder of the 1585 * shutdown process. 1586 */ 1587 rproc->table_ptr = rproc->cached_table; 1588 return 0; 1589 } 1590 1591 /* 1592 * Attach to remote processor - similar to rproc_fw_boot() but without 1593 * the steps that deal with the firmware image. 1594 */ 1595 static int rproc_attach(struct rproc *rproc) 1596 { 1597 struct device *dev = &rproc->dev; 1598 int ret; 1599 1600 /* 1601 * if enabling an IOMMU isn't relevant for this rproc, this is 1602 * just a nop 1603 */ 1604 ret = rproc_enable_iommu(rproc); 1605 if (ret) { 1606 dev_err(dev, "can't enable iommu: %d\n", ret); 1607 return ret; 1608 } 1609 1610 /* Do anything that is needed to boot the remote processor */ 1611 ret = rproc_prepare_device(rproc); 1612 if (ret) { 1613 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1614 goto disable_iommu; 1615 } 1616 1617 ret = rproc_set_rsc_table(rproc); 1618 if (ret) { 1619 dev_err(dev, "can't load resource table: %d\n", ret); 1620 goto unprepare_device; 1621 } 1622 1623 /* reset max_notifyid */ 1624 rproc->max_notifyid = -1; 1625 1626 /* reset handled vdev */ 1627 rproc->nb_vdev = 0; 1628 1629 /* 1630 * Handle firmware resources required to attach to a remote processor. 1631 * Because we are attaching rather than booting the remote processor, 1632 * we expect the platform driver to properly set rproc->table_ptr. 1633 */ 1634 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1635 if (ret) { 1636 dev_err(dev, "Failed to process resources: %d\n", ret); 1637 goto unprepare_device; 1638 } 1639 1640 /* Allocate carveout resources associated to rproc */ 1641 ret = rproc_alloc_registered_carveouts(rproc); 1642 if (ret) { 1643 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1644 ret); 1645 goto clean_up_resources; 1646 } 1647 1648 ret = __rproc_attach(rproc); 1649 if (ret) 1650 goto clean_up_resources; 1651 1652 return 0; 1653 1654 clean_up_resources: 1655 rproc_resource_cleanup(rproc); 1656 unprepare_device: 1657 /* release HW resources if needed */ 1658 rproc_unprepare_device(rproc); 1659 disable_iommu: 1660 rproc_disable_iommu(rproc); 1661 return ret; 1662 } 1663 1664 /* 1665 * take a firmware and boot it up. 1666 * 1667 * Note: this function is called asynchronously upon registration of the 1668 * remote processor (so we must wait until it completes before we try 1669 * to unregister the device. one other option is just to use kref here, 1670 * that might be cleaner). 1671 */ 1672 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1673 { 1674 struct rproc *rproc = context; 1675 1676 rproc_boot(rproc); 1677 1678 release_firmware(fw); 1679 } 1680 1681 static int rproc_trigger_auto_boot(struct rproc *rproc) 1682 { 1683 int ret; 1684 1685 /* 1686 * Since the remote processor is in a detached state, it has already 1687 * been booted by another entity. As such there is no point in waiting 1688 * for a firmware image to be loaded, we can simply initiate the process 1689 * of attaching to it immediately. 1690 */ 1691 if (rproc->state == RPROC_DETACHED) 1692 return rproc_boot(rproc); 1693 1694 /* 1695 * We're initiating an asynchronous firmware loading, so we can 1696 * be built-in kernel code, without hanging the boot process. 1697 */ 1698 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 1699 rproc->firmware, &rproc->dev, GFP_KERNEL, 1700 rproc, rproc_auto_boot_callback); 1701 if (ret < 0) 1702 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1703 1704 return ret; 1705 } 1706 1707 static int rproc_stop(struct rproc *rproc, bool crashed) 1708 { 1709 struct device *dev = &rproc->dev; 1710 int ret; 1711 1712 /* No need to continue if a stop() operation has not been provided */ 1713 if (!rproc->ops->stop) 1714 return -EINVAL; 1715 1716 /* Stop any subdevices for the remote processor */ 1717 rproc_stop_subdevices(rproc, crashed); 1718 1719 /* the installed resource table is no longer accessible */ 1720 ret = rproc_reset_rsc_table_on_stop(rproc); 1721 if (ret) { 1722 dev_err(dev, "can't reset resource table: %d\n", ret); 1723 return ret; 1724 } 1725 1726 1727 /* power off the remote processor */ 1728 ret = rproc->ops->stop(rproc); 1729 if (ret) { 1730 dev_err(dev, "can't stop rproc: %d\n", ret); 1731 return ret; 1732 } 1733 1734 rproc_unprepare_subdevices(rproc); 1735 1736 rproc->state = RPROC_OFFLINE; 1737 1738 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1739 1740 return 0; 1741 } 1742 1743 /* 1744 * __rproc_detach(): Does the opposite of __rproc_attach() 1745 */ 1746 static int __rproc_detach(struct rproc *rproc) 1747 { 1748 struct device *dev = &rproc->dev; 1749 int ret; 1750 1751 /* No need to continue if a detach() operation has not been provided */ 1752 if (!rproc->ops->detach) 1753 return -EINVAL; 1754 1755 /* Stop any subdevices for the remote processor */ 1756 rproc_stop_subdevices(rproc, false); 1757 1758 /* the installed resource table is no longer accessible */ 1759 ret = rproc_reset_rsc_table_on_detach(rproc); 1760 if (ret) { 1761 dev_err(dev, "can't reset resource table: %d\n", ret); 1762 return ret; 1763 } 1764 1765 /* Tell the remote processor the core isn't available anymore */ 1766 ret = rproc->ops->detach(rproc); 1767 if (ret) { 1768 dev_err(dev, "can't detach from rproc: %d\n", ret); 1769 return ret; 1770 } 1771 1772 rproc_unprepare_subdevices(rproc); 1773 1774 rproc->state = RPROC_DETACHED; 1775 1776 dev_info(dev, "detached remote processor %s\n", rproc->name); 1777 1778 return 0; 1779 } 1780 1781 static int rproc_attach_recovery(struct rproc *rproc) 1782 { 1783 int ret; 1784 1785 ret = __rproc_detach(rproc); 1786 if (ret) 1787 return ret; 1788 1789 return __rproc_attach(rproc); 1790 } 1791 1792 static int rproc_boot_recovery(struct rproc *rproc) 1793 { 1794 const struct firmware *firmware_p; 1795 struct device *dev = &rproc->dev; 1796 int ret; 1797 1798 ret = rproc_stop(rproc, true); 1799 if (ret) 1800 return ret; 1801 1802 /* generate coredump */ 1803 rproc->ops->coredump(rproc); 1804 1805 /* load firmware */ 1806 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1807 if (ret < 0) { 1808 dev_err(dev, "request_firmware failed: %d\n", ret); 1809 return ret; 1810 } 1811 1812 /* boot the remote processor up again */ 1813 ret = rproc_start(rproc, firmware_p); 1814 1815 release_firmware(firmware_p); 1816 1817 return ret; 1818 } 1819 1820 /** 1821 * rproc_trigger_recovery() - recover a remoteproc 1822 * @rproc: the remote processor 1823 * 1824 * The recovery is done by resetting all the virtio devices, that way all the 1825 * rpmsg drivers will be reseted along with the remote processor making the 1826 * remoteproc functional again. 1827 * 1828 * This function can sleep, so it cannot be called from atomic context. 1829 * 1830 * Return: 0 on success or a negative value upon failure 1831 */ 1832 int rproc_trigger_recovery(struct rproc *rproc) 1833 { 1834 struct device *dev = &rproc->dev; 1835 int ret; 1836 1837 ret = mutex_lock_interruptible(&rproc->lock); 1838 if (ret) 1839 return ret; 1840 1841 /* State could have changed before we got the mutex */ 1842 if (rproc->state != RPROC_CRASHED) 1843 goto unlock_mutex; 1844 1845 dev_err(dev, "recovering %s\n", rproc->name); 1846 1847 if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY)) 1848 ret = rproc_attach_recovery(rproc); 1849 else 1850 ret = rproc_boot_recovery(rproc); 1851 1852 unlock_mutex: 1853 mutex_unlock(&rproc->lock); 1854 return ret; 1855 } 1856 1857 /** 1858 * rproc_crash_handler_work() - handle a crash 1859 * @work: work treating the crash 1860 * 1861 * This function needs to handle everything related to a crash, like cpu 1862 * registers and stack dump, information to help to debug the fatal error, etc. 1863 */ 1864 static void rproc_crash_handler_work(struct work_struct *work) 1865 { 1866 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1867 struct device *dev = &rproc->dev; 1868 1869 dev_dbg(dev, "enter %s\n", __func__); 1870 1871 mutex_lock(&rproc->lock); 1872 1873 if (rproc->state == RPROC_CRASHED) { 1874 /* handle only the first crash detected */ 1875 mutex_unlock(&rproc->lock); 1876 return; 1877 } 1878 1879 if (rproc->state == RPROC_OFFLINE) { 1880 /* Don't recover if the remote processor was stopped */ 1881 mutex_unlock(&rproc->lock); 1882 goto out; 1883 } 1884 1885 rproc->state = RPROC_CRASHED; 1886 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1887 rproc->name); 1888 1889 mutex_unlock(&rproc->lock); 1890 1891 if (!rproc->recovery_disabled) 1892 rproc_trigger_recovery(rproc); 1893 1894 out: 1895 pm_relax(rproc->dev.parent); 1896 } 1897 1898 /** 1899 * rproc_boot() - boot a remote processor 1900 * @rproc: handle of a remote processor 1901 * 1902 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1903 * 1904 * If the remote processor is already powered on, this function immediately 1905 * returns (successfully). 1906 * 1907 * Return: 0 on success, and an appropriate error value otherwise 1908 */ 1909 int rproc_boot(struct rproc *rproc) 1910 { 1911 const struct firmware *firmware_p; 1912 struct device *dev; 1913 int ret; 1914 1915 if (!rproc) { 1916 pr_err("invalid rproc handle\n"); 1917 return -EINVAL; 1918 } 1919 1920 dev = &rproc->dev; 1921 1922 ret = mutex_lock_interruptible(&rproc->lock); 1923 if (ret) { 1924 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1925 return ret; 1926 } 1927 1928 if (rproc->state == RPROC_DELETED) { 1929 ret = -ENODEV; 1930 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1931 goto unlock_mutex; 1932 } 1933 1934 /* skip the boot or attach process if rproc is already powered up */ 1935 if (atomic_inc_return(&rproc->power) > 1) { 1936 ret = 0; 1937 goto unlock_mutex; 1938 } 1939 1940 if (rproc->state == RPROC_DETACHED) { 1941 dev_info(dev, "attaching to %s\n", rproc->name); 1942 1943 ret = rproc_attach(rproc); 1944 } else { 1945 dev_info(dev, "powering up %s\n", rproc->name); 1946 1947 /* load firmware */ 1948 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1949 if (ret < 0) { 1950 dev_err(dev, "request_firmware failed: %d\n", ret); 1951 goto downref_rproc; 1952 } 1953 1954 ret = rproc_fw_boot(rproc, firmware_p); 1955 1956 release_firmware(firmware_p); 1957 } 1958 1959 downref_rproc: 1960 if (ret) 1961 atomic_dec(&rproc->power); 1962 unlock_mutex: 1963 mutex_unlock(&rproc->lock); 1964 return ret; 1965 } 1966 EXPORT_SYMBOL(rproc_boot); 1967 1968 /** 1969 * rproc_shutdown() - power off the remote processor 1970 * @rproc: the remote processor 1971 * 1972 * Power off a remote processor (previously booted with rproc_boot()). 1973 * 1974 * In case @rproc is still being used by an additional user(s), then 1975 * this function will just decrement the power refcount and exit, 1976 * without really powering off the device. 1977 * 1978 * Every call to rproc_boot() must (eventually) be accompanied by a call 1979 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1980 * 1981 * Notes: 1982 * - we're not decrementing the rproc's refcount, only the power refcount. 1983 * which means that the @rproc handle stays valid even after rproc_shutdown() 1984 * returns, and users can still use it with a subsequent rproc_boot(), if 1985 * needed. 1986 * 1987 * Return: 0 on success, and an appropriate error value otherwise 1988 */ 1989 int rproc_shutdown(struct rproc *rproc) 1990 { 1991 struct device *dev = &rproc->dev; 1992 int ret = 0; 1993 1994 ret = mutex_lock_interruptible(&rproc->lock); 1995 if (ret) { 1996 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1997 return ret; 1998 } 1999 2000 if (rproc->state != RPROC_RUNNING && 2001 rproc->state != RPROC_ATTACHED) { 2002 ret = -EINVAL; 2003 goto out; 2004 } 2005 2006 /* if the remote proc is still needed, bail out */ 2007 if (!atomic_dec_and_test(&rproc->power)) 2008 goto out; 2009 2010 ret = rproc_stop(rproc, false); 2011 if (ret) { 2012 atomic_inc(&rproc->power); 2013 goto out; 2014 } 2015 2016 /* clean up all acquired resources */ 2017 rproc_resource_cleanup(rproc); 2018 2019 /* release HW resources if needed */ 2020 rproc_unprepare_device(rproc); 2021 2022 rproc_disable_iommu(rproc); 2023 2024 /* Free the copy of the resource table */ 2025 kfree(rproc->cached_table); 2026 rproc->cached_table = NULL; 2027 rproc->table_ptr = NULL; 2028 out: 2029 mutex_unlock(&rproc->lock); 2030 return ret; 2031 } 2032 EXPORT_SYMBOL(rproc_shutdown); 2033 2034 /** 2035 * rproc_detach() - Detach the remote processor from the 2036 * remoteproc core 2037 * 2038 * @rproc: the remote processor 2039 * 2040 * Detach a remote processor (previously attached to with rproc_attach()). 2041 * 2042 * In case @rproc is still being used by an additional user(s), then 2043 * this function will just decrement the power refcount and exit, 2044 * without disconnecting the device. 2045 * 2046 * Function rproc_detach() calls __rproc_detach() in order to let a remote 2047 * processor know that services provided by the application processor are 2048 * no longer available. From there it should be possible to remove the 2049 * platform driver and even power cycle the application processor (if the HW 2050 * supports it) without needing to switch off the remote processor. 2051 * 2052 * Return: 0 on success, and an appropriate error value otherwise 2053 */ 2054 int rproc_detach(struct rproc *rproc) 2055 { 2056 struct device *dev = &rproc->dev; 2057 int ret; 2058 2059 ret = mutex_lock_interruptible(&rproc->lock); 2060 if (ret) { 2061 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2062 return ret; 2063 } 2064 2065 if (rproc->state != RPROC_ATTACHED) { 2066 ret = -EINVAL; 2067 goto out; 2068 } 2069 2070 /* if the remote proc is still needed, bail out */ 2071 if (!atomic_dec_and_test(&rproc->power)) { 2072 ret = 0; 2073 goto out; 2074 } 2075 2076 ret = __rproc_detach(rproc); 2077 if (ret) { 2078 atomic_inc(&rproc->power); 2079 goto out; 2080 } 2081 2082 /* clean up all acquired resources */ 2083 rproc_resource_cleanup(rproc); 2084 2085 /* release HW resources if needed */ 2086 rproc_unprepare_device(rproc); 2087 2088 rproc_disable_iommu(rproc); 2089 2090 /* Free the copy of the resource table */ 2091 kfree(rproc->cached_table); 2092 rproc->cached_table = NULL; 2093 rproc->table_ptr = NULL; 2094 out: 2095 mutex_unlock(&rproc->lock); 2096 return ret; 2097 } 2098 EXPORT_SYMBOL(rproc_detach); 2099 2100 /** 2101 * rproc_get_by_phandle() - find a remote processor by phandle 2102 * @phandle: phandle to the rproc 2103 * 2104 * Finds an rproc handle using the remote processor's phandle, and then 2105 * return a handle to the rproc. 2106 * 2107 * This function increments the remote processor's refcount, so always 2108 * use rproc_put() to decrement it back once rproc isn't needed anymore. 2109 * 2110 * Return: rproc handle on success, and NULL on failure 2111 */ 2112 #ifdef CONFIG_OF 2113 struct rproc *rproc_get_by_phandle(phandle phandle) 2114 { 2115 struct rproc *rproc = NULL, *r; 2116 struct device_driver *driver; 2117 struct device_node *np; 2118 2119 np = of_find_node_by_phandle(phandle); 2120 if (!np) 2121 return NULL; 2122 2123 rcu_read_lock(); 2124 list_for_each_entry_rcu(r, &rproc_list, node) { 2125 if (r->dev.parent && device_match_of_node(r->dev.parent, np)) { 2126 /* prevent underlying implementation from being removed */ 2127 2128 /* 2129 * If the remoteproc's parent has a driver, the 2130 * remoteproc is not part of a cluster and we can use 2131 * that driver. 2132 */ 2133 driver = r->dev.parent->driver; 2134 2135 /* 2136 * If the remoteproc's parent does not have a driver, 2137 * look for the driver associated with the cluster. 2138 */ 2139 if (!driver) { 2140 if (r->dev.parent->parent) 2141 driver = r->dev.parent->parent->driver; 2142 if (!driver) 2143 break; 2144 } 2145 2146 if (!try_module_get(driver->owner)) { 2147 dev_err(&r->dev, "can't get owner\n"); 2148 break; 2149 } 2150 2151 rproc = r; 2152 get_device(&rproc->dev); 2153 break; 2154 } 2155 } 2156 rcu_read_unlock(); 2157 2158 of_node_put(np); 2159 2160 return rproc; 2161 } 2162 #else 2163 struct rproc *rproc_get_by_phandle(phandle phandle) 2164 { 2165 return NULL; 2166 } 2167 #endif 2168 EXPORT_SYMBOL(rproc_get_by_phandle); 2169 2170 /** 2171 * rproc_set_firmware() - assign a new firmware 2172 * @rproc: rproc handle to which the new firmware is being assigned 2173 * @fw_name: new firmware name to be assigned 2174 * 2175 * This function allows remoteproc drivers or clients to configure a custom 2176 * firmware name that is different from the default name used during remoteproc 2177 * registration. The function does not trigger a remote processor boot, 2178 * only sets the firmware name used for a subsequent boot. This function 2179 * should also be called only when the remote processor is offline. 2180 * 2181 * This allows either the userspace to configure a different name through 2182 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set 2183 * a specific firmware when it is controlling the boot and shutdown of the 2184 * remote processor. 2185 * 2186 * Return: 0 on success or a negative value upon failure 2187 */ 2188 int rproc_set_firmware(struct rproc *rproc, const char *fw_name) 2189 { 2190 struct device *dev; 2191 int ret, len; 2192 char *p; 2193 2194 if (!rproc || !fw_name) 2195 return -EINVAL; 2196 2197 dev = rproc->dev.parent; 2198 2199 ret = mutex_lock_interruptible(&rproc->lock); 2200 if (ret) { 2201 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2202 return -EINVAL; 2203 } 2204 2205 if (rproc->state != RPROC_OFFLINE) { 2206 dev_err(dev, "can't change firmware while running\n"); 2207 ret = -EBUSY; 2208 goto out; 2209 } 2210 2211 len = strcspn(fw_name, "\n"); 2212 if (!len) { 2213 dev_err(dev, "can't provide empty string for firmware name\n"); 2214 ret = -EINVAL; 2215 goto out; 2216 } 2217 2218 p = kstrndup(fw_name, len, GFP_KERNEL); 2219 if (!p) { 2220 ret = -ENOMEM; 2221 goto out; 2222 } 2223 2224 kfree_const(rproc->firmware); 2225 rproc->firmware = p; 2226 2227 out: 2228 mutex_unlock(&rproc->lock); 2229 return ret; 2230 } 2231 EXPORT_SYMBOL(rproc_set_firmware); 2232 2233 static int rproc_validate(struct rproc *rproc) 2234 { 2235 switch (rproc->state) { 2236 case RPROC_OFFLINE: 2237 /* 2238 * An offline processor without a start() 2239 * function makes no sense. 2240 */ 2241 if (!rproc->ops->start) 2242 return -EINVAL; 2243 break; 2244 case RPROC_DETACHED: 2245 /* 2246 * A remote processor in a detached state without an 2247 * attach() function makes not sense. 2248 */ 2249 if (!rproc->ops->attach) 2250 return -EINVAL; 2251 /* 2252 * When attaching to a remote processor the device memory 2253 * is already available and as such there is no need to have a 2254 * cached table. 2255 */ 2256 if (rproc->cached_table) 2257 return -EINVAL; 2258 break; 2259 default: 2260 /* 2261 * When adding a remote processor, the state of the device 2262 * can be offline or detached, nothing else. 2263 */ 2264 return -EINVAL; 2265 } 2266 2267 return 0; 2268 } 2269 2270 /** 2271 * rproc_add() - register a remote processor 2272 * @rproc: the remote processor handle to register 2273 * 2274 * Registers @rproc with the remoteproc framework, after it has been 2275 * allocated with rproc_alloc(). 2276 * 2277 * This is called by the platform-specific rproc implementation, whenever 2278 * a new remote processor device is probed. 2279 * 2280 * Note: this function initiates an asynchronous firmware loading 2281 * context, which will look for virtio devices supported by the rproc's 2282 * firmware. 2283 * 2284 * If found, those virtio devices will be created and added, so as a result 2285 * of registering this remote processor, additional virtio drivers might be 2286 * probed. 2287 * 2288 * Return: 0 on success and an appropriate error code otherwise 2289 */ 2290 int rproc_add(struct rproc *rproc) 2291 { 2292 struct device *dev = &rproc->dev; 2293 int ret; 2294 2295 ret = rproc_validate(rproc); 2296 if (ret < 0) 2297 return ret; 2298 2299 /* add char device for this remoteproc */ 2300 ret = rproc_char_device_add(rproc); 2301 if (ret < 0) 2302 return ret; 2303 2304 ret = device_add(dev); 2305 if (ret < 0) { 2306 put_device(dev); 2307 goto rproc_remove_cdev; 2308 } 2309 2310 dev_info(dev, "%s is available\n", rproc->name); 2311 2312 /* create debugfs entries */ 2313 rproc_create_debug_dir(rproc); 2314 2315 /* if rproc is marked always-on, request it to boot */ 2316 if (rproc->auto_boot) { 2317 ret = rproc_trigger_auto_boot(rproc); 2318 if (ret < 0) 2319 goto rproc_remove_dev; 2320 } 2321 2322 /* expose to rproc_get_by_phandle users */ 2323 mutex_lock(&rproc_list_mutex); 2324 list_add_rcu(&rproc->node, &rproc_list); 2325 mutex_unlock(&rproc_list_mutex); 2326 2327 return 0; 2328 2329 rproc_remove_dev: 2330 rproc_delete_debug_dir(rproc); 2331 device_del(dev); 2332 rproc_remove_cdev: 2333 rproc_char_device_remove(rproc); 2334 return ret; 2335 } 2336 EXPORT_SYMBOL(rproc_add); 2337 2338 static void devm_rproc_remove(void *rproc) 2339 { 2340 rproc_del(rproc); 2341 } 2342 2343 /** 2344 * devm_rproc_add() - resource managed rproc_add() 2345 * @dev: the underlying device 2346 * @rproc: the remote processor handle to register 2347 * 2348 * This function performs like rproc_add() but the registered rproc device will 2349 * automatically be removed on driver detach. 2350 * 2351 * Return: 0 on success, negative errno on failure 2352 */ 2353 int devm_rproc_add(struct device *dev, struct rproc *rproc) 2354 { 2355 int err; 2356 2357 err = rproc_add(rproc); 2358 if (err) 2359 return err; 2360 2361 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2362 } 2363 EXPORT_SYMBOL(devm_rproc_add); 2364 2365 /** 2366 * rproc_type_release() - release a remote processor instance 2367 * @dev: the rproc's device 2368 * 2369 * This function should _never_ be called directly. 2370 * 2371 * It will be called by the driver core when no one holds a valid pointer 2372 * to @dev anymore. 2373 */ 2374 static void rproc_type_release(struct device *dev) 2375 { 2376 struct rproc *rproc = container_of(dev, struct rproc, dev); 2377 2378 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2379 2380 idr_destroy(&rproc->notifyids); 2381 2382 if (rproc->index >= 0) 2383 ida_free(&rproc_dev_index, rproc->index); 2384 2385 kfree_const(rproc->firmware); 2386 kfree_const(rproc->name); 2387 kfree(rproc->ops); 2388 kfree(rproc); 2389 } 2390 2391 static const struct device_type rproc_type = { 2392 .name = "remoteproc", 2393 .release = rproc_type_release, 2394 }; 2395 2396 static int rproc_alloc_firmware(struct rproc *rproc, 2397 const char *name, const char *firmware) 2398 { 2399 const char *p; 2400 2401 /* 2402 * Allocate a firmware name if the caller gave us one to work 2403 * with. Otherwise construct a new one using a default pattern. 2404 */ 2405 if (firmware) 2406 p = kstrdup_const(firmware, GFP_KERNEL); 2407 else 2408 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2409 2410 if (!p) 2411 return -ENOMEM; 2412 2413 rproc->firmware = p; 2414 2415 return 0; 2416 } 2417 2418 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2419 { 2420 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2421 if (!rproc->ops) 2422 return -ENOMEM; 2423 2424 /* Default to rproc_coredump if no coredump function is specified */ 2425 if (!rproc->ops->coredump) 2426 rproc->ops->coredump = rproc_coredump; 2427 2428 if (rproc->ops->load) 2429 return 0; 2430 2431 /* Default to ELF loader if no load function is specified */ 2432 rproc->ops->load = rproc_elf_load_segments; 2433 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2434 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2435 rproc->ops->sanity_check = rproc_elf_sanity_check; 2436 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2437 2438 return 0; 2439 } 2440 2441 /** 2442 * rproc_alloc() - allocate a remote processor handle 2443 * @dev: the underlying device 2444 * @name: name of this remote processor 2445 * @ops: platform-specific handlers (mainly start/stop) 2446 * @firmware: name of firmware file to load, can be NULL 2447 * @len: length of private data needed by the rproc driver (in bytes) 2448 * 2449 * Allocates a new remote processor handle, but does not register 2450 * it yet. if @firmware is NULL, a default name is used. 2451 * 2452 * This function should be used by rproc implementations during initialization 2453 * of the remote processor. 2454 * 2455 * After creating an rproc handle using this function, and when ready, 2456 * implementations should then call rproc_add() to complete 2457 * the registration of the remote processor. 2458 * 2459 * Note: _never_ directly deallocate @rproc, even if it was not registered 2460 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2461 * 2462 * Return: new rproc pointer on success, and NULL on failure 2463 */ 2464 struct rproc *rproc_alloc(struct device *dev, const char *name, 2465 const struct rproc_ops *ops, 2466 const char *firmware, int len) 2467 { 2468 struct rproc *rproc; 2469 2470 if (!dev || !name || !ops) 2471 return NULL; 2472 2473 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2474 if (!rproc) 2475 return NULL; 2476 2477 rproc->priv = &rproc[1]; 2478 rproc->auto_boot = true; 2479 rproc->elf_class = ELFCLASSNONE; 2480 rproc->elf_machine = EM_NONE; 2481 2482 device_initialize(&rproc->dev); 2483 rproc->dev.parent = dev; 2484 rproc->dev.type = &rproc_type; 2485 rproc->dev.class = &rproc_class; 2486 rproc->dev.driver_data = rproc; 2487 idr_init(&rproc->notifyids); 2488 2489 rproc->name = kstrdup_const(name, GFP_KERNEL); 2490 if (!rproc->name) 2491 goto put_device; 2492 2493 if (rproc_alloc_firmware(rproc, name, firmware)) 2494 goto put_device; 2495 2496 if (rproc_alloc_ops(rproc, ops)) 2497 goto put_device; 2498 2499 /* Assign a unique device index and name */ 2500 rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL); 2501 if (rproc->index < 0) { 2502 dev_err(dev, "ida_alloc failed: %d\n", rproc->index); 2503 goto put_device; 2504 } 2505 2506 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2507 2508 atomic_set(&rproc->power, 0); 2509 2510 mutex_init(&rproc->lock); 2511 2512 INIT_LIST_HEAD(&rproc->carveouts); 2513 INIT_LIST_HEAD(&rproc->mappings); 2514 INIT_LIST_HEAD(&rproc->traces); 2515 INIT_LIST_HEAD(&rproc->rvdevs); 2516 INIT_LIST_HEAD(&rproc->subdevs); 2517 INIT_LIST_HEAD(&rproc->dump_segments); 2518 2519 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2520 2521 rproc->state = RPROC_OFFLINE; 2522 2523 return rproc; 2524 2525 put_device: 2526 put_device(&rproc->dev); 2527 return NULL; 2528 } 2529 EXPORT_SYMBOL(rproc_alloc); 2530 2531 /** 2532 * rproc_free() - unroll rproc_alloc() 2533 * @rproc: the remote processor handle 2534 * 2535 * This function decrements the rproc dev refcount. 2536 * 2537 * If no one holds any reference to rproc anymore, then its refcount would 2538 * now drop to zero, and it would be freed. 2539 */ 2540 void rproc_free(struct rproc *rproc) 2541 { 2542 put_device(&rproc->dev); 2543 } 2544 EXPORT_SYMBOL(rproc_free); 2545 2546 /** 2547 * rproc_put() - release rproc reference 2548 * @rproc: the remote processor handle 2549 * 2550 * This function decrements the rproc dev refcount. 2551 * 2552 * If no one holds any reference to rproc anymore, then its refcount would 2553 * now drop to zero, and it would be freed. 2554 */ 2555 void rproc_put(struct rproc *rproc) 2556 { 2557 if (rproc->dev.parent->driver) 2558 module_put(rproc->dev.parent->driver->owner); 2559 else 2560 module_put(rproc->dev.parent->parent->driver->owner); 2561 2562 put_device(&rproc->dev); 2563 } 2564 EXPORT_SYMBOL(rproc_put); 2565 2566 /** 2567 * rproc_del() - unregister a remote processor 2568 * @rproc: rproc handle to unregister 2569 * 2570 * This function should be called when the platform specific rproc 2571 * implementation decides to remove the rproc device. it should 2572 * _only_ be called if a previous invocation of rproc_add() 2573 * has completed successfully. 2574 * 2575 * After rproc_del() returns, @rproc isn't freed yet, because 2576 * of the outstanding reference created by rproc_alloc. To decrement that 2577 * one last refcount, one still needs to call rproc_free(). 2578 * 2579 * Return: 0 on success and -EINVAL if @rproc isn't valid 2580 */ 2581 int rproc_del(struct rproc *rproc) 2582 { 2583 if (!rproc) 2584 return -EINVAL; 2585 2586 /* TODO: make sure this works with rproc->power > 1 */ 2587 rproc_shutdown(rproc); 2588 2589 mutex_lock(&rproc->lock); 2590 rproc->state = RPROC_DELETED; 2591 mutex_unlock(&rproc->lock); 2592 2593 rproc_delete_debug_dir(rproc); 2594 2595 /* the rproc is downref'ed as soon as it's removed from the klist */ 2596 mutex_lock(&rproc_list_mutex); 2597 list_del_rcu(&rproc->node); 2598 mutex_unlock(&rproc_list_mutex); 2599 2600 /* Ensure that no readers of rproc_list are still active */ 2601 synchronize_rcu(); 2602 2603 device_del(&rproc->dev); 2604 rproc_char_device_remove(rproc); 2605 2606 return 0; 2607 } 2608 EXPORT_SYMBOL(rproc_del); 2609 2610 static void devm_rproc_free(struct device *dev, void *res) 2611 { 2612 rproc_free(*(struct rproc **)res); 2613 } 2614 2615 /** 2616 * devm_rproc_alloc() - resource managed rproc_alloc() 2617 * @dev: the underlying device 2618 * @name: name of this remote processor 2619 * @ops: platform-specific handlers (mainly start/stop) 2620 * @firmware: name of firmware file to load, can be NULL 2621 * @len: length of private data needed by the rproc driver (in bytes) 2622 * 2623 * This function performs like rproc_alloc() but the acquired rproc device will 2624 * automatically be released on driver detach. 2625 * 2626 * Return: new rproc instance, or NULL on failure 2627 */ 2628 struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2629 const struct rproc_ops *ops, 2630 const char *firmware, int len) 2631 { 2632 struct rproc **ptr, *rproc; 2633 2634 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2635 if (!ptr) 2636 return NULL; 2637 2638 rproc = rproc_alloc(dev, name, ops, firmware, len); 2639 if (rproc) { 2640 *ptr = rproc; 2641 devres_add(dev, ptr); 2642 } else { 2643 devres_free(ptr); 2644 } 2645 2646 return rproc; 2647 } 2648 EXPORT_SYMBOL(devm_rproc_alloc); 2649 2650 /** 2651 * rproc_add_subdev() - add a subdevice to a remoteproc 2652 * @rproc: rproc handle to add the subdevice to 2653 * @subdev: subdev handle to register 2654 * 2655 * Caller is responsible for populating optional subdevice function pointers. 2656 */ 2657 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2658 { 2659 list_add_tail(&subdev->node, &rproc->subdevs); 2660 } 2661 EXPORT_SYMBOL(rproc_add_subdev); 2662 2663 /** 2664 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2665 * @rproc: rproc handle to remove the subdevice from 2666 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2667 */ 2668 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2669 { 2670 list_del(&subdev->node); 2671 } 2672 EXPORT_SYMBOL(rproc_remove_subdev); 2673 2674 /** 2675 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2676 * @dev: child device to find ancestor of 2677 * 2678 * Return: the ancestor rproc instance, or NULL if not found 2679 */ 2680 struct rproc *rproc_get_by_child(struct device *dev) 2681 { 2682 for (dev = dev->parent; dev; dev = dev->parent) { 2683 if (dev->type == &rproc_type) 2684 return dev->driver_data; 2685 } 2686 2687 return NULL; 2688 } 2689 EXPORT_SYMBOL(rproc_get_by_child); 2690 2691 /** 2692 * rproc_report_crash() - rproc crash reporter function 2693 * @rproc: remote processor 2694 * @type: crash type 2695 * 2696 * This function must be called every time a crash is detected by the low-level 2697 * drivers implementing a specific remoteproc. This should not be called from a 2698 * non-remoteproc driver. 2699 * 2700 * This function can be called from atomic/interrupt context. 2701 */ 2702 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2703 { 2704 if (!rproc) { 2705 pr_err("NULL rproc pointer\n"); 2706 return; 2707 } 2708 2709 /* Prevent suspend while the remoteproc is being recovered */ 2710 pm_stay_awake(rproc->dev.parent); 2711 2712 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2713 rproc->name, rproc_crash_to_string(type)); 2714 2715 queue_work(rproc_recovery_wq, &rproc->crash_handler); 2716 } 2717 EXPORT_SYMBOL(rproc_report_crash); 2718 2719 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2720 void *ptr) 2721 { 2722 unsigned int longest = 0; 2723 struct rproc *rproc; 2724 unsigned int d; 2725 2726 rcu_read_lock(); 2727 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2728 if (!rproc->ops->panic) 2729 continue; 2730 2731 if (rproc->state != RPROC_RUNNING && 2732 rproc->state != RPROC_ATTACHED) 2733 continue; 2734 2735 d = rproc->ops->panic(rproc); 2736 longest = max(longest, d); 2737 } 2738 rcu_read_unlock(); 2739 2740 /* 2741 * Delay for the longest requested duration before returning. This can 2742 * be used by the remoteproc drivers to give the remote processor time 2743 * to perform any requested operations (such as flush caches), when 2744 * it's not possible to signal the Linux side due to the panic. 2745 */ 2746 mdelay(longest); 2747 2748 return NOTIFY_DONE; 2749 } 2750 2751 static void __init rproc_init_panic(void) 2752 { 2753 rproc_panic_nb.notifier_call = rproc_panic_handler; 2754 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2755 } 2756 2757 static void __exit rproc_exit_panic(void) 2758 { 2759 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2760 } 2761 2762 static int __init remoteproc_init(void) 2763 { 2764 rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq", 2765 WQ_UNBOUND | WQ_FREEZABLE, 0); 2766 if (!rproc_recovery_wq) { 2767 pr_err("remoteproc: creation of rproc_recovery_wq failed\n"); 2768 return -ENOMEM; 2769 } 2770 2771 rproc_init_sysfs(); 2772 rproc_init_debugfs(); 2773 rproc_init_cdev(); 2774 rproc_init_panic(); 2775 2776 return 0; 2777 } 2778 subsys_initcall(remoteproc_init); 2779 2780 static void __exit remoteproc_exit(void) 2781 { 2782 ida_destroy(&rproc_dev_index); 2783 2784 if (!rproc_recovery_wq) 2785 return; 2786 2787 rproc_exit_panic(); 2788 rproc_exit_debugfs(); 2789 rproc_exit_sysfs(); 2790 destroy_workqueue(rproc_recovery_wq); 2791 } 2792 module_exit(remoteproc_exit); 2793 2794 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2795