xref: /linux/drivers/remoteproc/remoteproc_core.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-map-ops.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
29 #include <linux/firmware.h>
30 #include <linux/string.h>
31 #include <linux/debugfs.h>
32 #include <linux/rculist.h>
33 #include <linux/remoteproc.h>
34 #include <linux/iommu.h>
35 #include <linux/idr.h>
36 #include <linux/elf.h>
37 #include <linux/crc32.h>
38 #include <linux/of_reserved_mem.h>
39 #include <linux/virtio_ids.h>
40 #include <linux/virtio_ring.h>
41 #include <asm/byteorder.h>
42 #include <linux/platform_device.h>
43 
44 #include "remoteproc_internal.h"
45 
46 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
47 
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
50 static struct notifier_block rproc_panic_nb;
51 
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 				 void *, int offset, int avail);
54 
55 static int rproc_alloc_carveout(struct rproc *rproc,
56 				struct rproc_mem_entry *mem);
57 static int rproc_release_carveout(struct rproc *rproc,
58 				  struct rproc_mem_entry *mem);
59 
60 /* Unique indices for remoteproc devices */
61 static DEFINE_IDA(rproc_dev_index);
62 
63 static const char * const rproc_crash_names[] = {
64 	[RPROC_MMUFAULT]	= "mmufault",
65 	[RPROC_WATCHDOG]	= "watchdog",
66 	[RPROC_FATAL_ERROR]	= "fatal error",
67 };
68 
69 /* translate rproc_crash_type to string */
70 static const char *rproc_crash_to_string(enum rproc_crash_type type)
71 {
72 	if (type < ARRAY_SIZE(rproc_crash_names))
73 		return rproc_crash_names[type];
74 	return "unknown";
75 }
76 
77 /*
78  * This is the IOMMU fault handler we register with the IOMMU API
79  * (when relevant; not all remote processors access memory through
80  * an IOMMU).
81  *
82  * IOMMU core will invoke this handler whenever the remote processor
83  * will try to access an unmapped device address.
84  */
85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
86 			     unsigned long iova, int flags, void *token)
87 {
88 	struct rproc *rproc = token;
89 
90 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91 
92 	rproc_report_crash(rproc, RPROC_MMUFAULT);
93 
94 	/*
95 	 * Let the iommu core know we're not really handling this fault;
96 	 * we just used it as a recovery trigger.
97 	 */
98 	return -ENOSYS;
99 }
100 
101 static int rproc_enable_iommu(struct rproc *rproc)
102 {
103 	struct iommu_domain *domain;
104 	struct device *dev = rproc->dev.parent;
105 	int ret;
106 
107 	if (!rproc->has_iommu) {
108 		dev_dbg(dev, "iommu not present\n");
109 		return 0;
110 	}
111 
112 	domain = iommu_domain_alloc(dev->bus);
113 	if (!domain) {
114 		dev_err(dev, "can't alloc iommu domain\n");
115 		return -ENOMEM;
116 	}
117 
118 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119 
120 	ret = iommu_attach_device(domain, dev);
121 	if (ret) {
122 		dev_err(dev, "can't attach iommu device: %d\n", ret);
123 		goto free_domain;
124 	}
125 
126 	rproc->domain = domain;
127 
128 	return 0;
129 
130 free_domain:
131 	iommu_domain_free(domain);
132 	return ret;
133 }
134 
135 static void rproc_disable_iommu(struct rproc *rproc)
136 {
137 	struct iommu_domain *domain = rproc->domain;
138 	struct device *dev = rproc->dev.parent;
139 
140 	if (!domain)
141 		return;
142 
143 	iommu_detach_device(domain, dev);
144 	iommu_domain_free(domain);
145 }
146 
147 phys_addr_t rproc_va_to_pa(void *cpu_addr)
148 {
149 	/*
150 	 * Return physical address according to virtual address location
151 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152 	 * - in kernel: if region allocated in generic dma memory pool
153 	 */
154 	if (is_vmalloc_addr(cpu_addr)) {
155 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
156 				    offset_in_page(cpu_addr);
157 	}
158 
159 	WARN_ON(!virt_addr_valid(cpu_addr));
160 	return virt_to_phys(cpu_addr);
161 }
162 EXPORT_SYMBOL(rproc_va_to_pa);
163 
164 /**
165  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166  * @rproc: handle of a remote processor
167  * @da: remoteproc device address to translate
168  * @len: length of the memory region @da is pointing to
169  * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
170  *
171  * Some remote processors will ask us to allocate them physically contiguous
172  * memory regions (which we call "carveouts"), and map them to specific
173  * device addresses (which are hardcoded in the firmware). They may also have
174  * dedicated memory regions internal to the processors, and use them either
175  * exclusively or alongside carveouts.
176  *
177  * They may then ask us to copy objects into specific device addresses (e.g.
178  * code/data sections) or expose us certain symbols in other device address
179  * (e.g. their trace buffer).
180  *
181  * This function is a helper function with which we can go over the allocated
182  * carveouts and translate specific device addresses to kernel virtual addresses
183  * so we can access the referenced memory. This function also allows to perform
184  * translations on the internal remoteproc memory regions through a platform
185  * implementation specific da_to_va ops, if present.
186  *
187  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188  * but only on kernel direct mapped RAM memory. Instead, we're just using
189  * here the output of the DMA API for the carveouts, which should be more
190  * correct.
191  *
192  * Return: a valid kernel address on success or NULL on failure
193  */
194 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
195 {
196 	struct rproc_mem_entry *carveout;
197 	void *ptr = NULL;
198 
199 	if (rproc->ops->da_to_va) {
200 		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
201 		if (ptr)
202 			goto out;
203 	}
204 
205 	list_for_each_entry(carveout, &rproc->carveouts, node) {
206 		int offset = da - carveout->da;
207 
208 		/*  Verify that carveout is allocated */
209 		if (!carveout->va)
210 			continue;
211 
212 		/* try next carveout if da is too small */
213 		if (offset < 0)
214 			continue;
215 
216 		/* try next carveout if da is too large */
217 		if (offset + len > carveout->len)
218 			continue;
219 
220 		ptr = carveout->va + offset;
221 
222 		if (is_iomem)
223 			*is_iomem = carveout->is_iomem;
224 
225 		break;
226 	}
227 
228 out:
229 	return ptr;
230 }
231 EXPORT_SYMBOL(rproc_da_to_va);
232 
233 /**
234  * rproc_find_carveout_by_name() - lookup the carveout region by a name
235  * @rproc: handle of a remote processor
236  * @name: carveout name to find (format string)
237  * @...: optional parameters matching @name string
238  *
239  * Platform driver has the capability to register some pre-allacoted carveout
240  * (physically contiguous memory regions) before rproc firmware loading and
241  * associated resource table analysis. These regions may be dedicated memory
242  * regions internal to the coprocessor or specified DDR region with specific
243  * attributes
244  *
245  * This function is a helper function with which we can go over the
246  * allocated carveouts and return associated region characteristics like
247  * coprocessor address, length or processor virtual address.
248  *
249  * Return: a valid pointer on carveout entry on success or NULL on failure.
250  */
251 __printf(2, 3)
252 struct rproc_mem_entry *
253 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
254 {
255 	va_list args;
256 	char _name[32];
257 	struct rproc_mem_entry *carveout, *mem = NULL;
258 
259 	if (!name)
260 		return NULL;
261 
262 	va_start(args, name);
263 	vsnprintf(_name, sizeof(_name), name, args);
264 	va_end(args);
265 
266 	list_for_each_entry(carveout, &rproc->carveouts, node) {
267 		/* Compare carveout and requested names */
268 		if (!strcmp(carveout->name, _name)) {
269 			mem = carveout;
270 			break;
271 		}
272 	}
273 
274 	return mem;
275 }
276 
277 /**
278  * rproc_check_carveout_da() - Check specified carveout da configuration
279  * @rproc: handle of a remote processor
280  * @mem: pointer on carveout to check
281  * @da: area device address
282  * @len: associated area size
283  *
284  * This function is a helper function to verify requested device area (couple
285  * da, len) is part of specified carveout.
286  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
287  * checked.
288  *
289  * Return: 0 if carveout matches request else error
290  */
291 static int rproc_check_carveout_da(struct rproc *rproc,
292 				   struct rproc_mem_entry *mem, u32 da, u32 len)
293 {
294 	struct device *dev = &rproc->dev;
295 	int delta;
296 
297 	/* Check requested resource length */
298 	if (len > mem->len) {
299 		dev_err(dev, "Registered carveout doesn't fit len request\n");
300 		return -EINVAL;
301 	}
302 
303 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
304 		/* Address doesn't match registered carveout configuration */
305 		return -EINVAL;
306 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
307 		delta = da - mem->da;
308 
309 		/* Check requested resource belongs to registered carveout */
310 		if (delta < 0) {
311 			dev_err(dev,
312 				"Registered carveout doesn't fit da request\n");
313 			return -EINVAL;
314 		}
315 
316 		if (delta + len > mem->len) {
317 			dev_err(dev,
318 				"Registered carveout doesn't fit len request\n");
319 			return -EINVAL;
320 		}
321 	}
322 
323 	return 0;
324 }
325 
326 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
327 {
328 	struct rproc *rproc = rvdev->rproc;
329 	struct device *dev = &rproc->dev;
330 	struct rproc_vring *rvring = &rvdev->vring[i];
331 	struct fw_rsc_vdev *rsc;
332 	int ret, notifyid;
333 	struct rproc_mem_entry *mem;
334 	size_t size;
335 
336 	/* actual size of vring (in bytes) */
337 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
338 
339 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
340 
341 	/* Search for pre-registered carveout */
342 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
343 					  i);
344 	if (mem) {
345 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
346 			return -ENOMEM;
347 	} else {
348 		/* Register carveout in in list */
349 		mem = rproc_mem_entry_init(dev, NULL, 0,
350 					   size, rsc->vring[i].da,
351 					   rproc_alloc_carveout,
352 					   rproc_release_carveout,
353 					   "vdev%dvring%d",
354 					   rvdev->index, i);
355 		if (!mem) {
356 			dev_err(dev, "Can't allocate memory entry structure\n");
357 			return -ENOMEM;
358 		}
359 
360 		rproc_add_carveout(rproc, mem);
361 	}
362 
363 	/*
364 	 * Assign an rproc-wide unique index for this vring
365 	 * TODO: assign a notifyid for rvdev updates as well
366 	 * TODO: support predefined notifyids (via resource table)
367 	 */
368 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
369 	if (ret < 0) {
370 		dev_err(dev, "idr_alloc failed: %d\n", ret);
371 		return ret;
372 	}
373 	notifyid = ret;
374 
375 	/* Potentially bump max_notifyid */
376 	if (notifyid > rproc->max_notifyid)
377 		rproc->max_notifyid = notifyid;
378 
379 	rvring->notifyid = notifyid;
380 
381 	/* Let the rproc know the notifyid of this vring.*/
382 	rsc->vring[i].notifyid = notifyid;
383 	return 0;
384 }
385 
386 static int
387 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
388 {
389 	struct rproc *rproc = rvdev->rproc;
390 	struct device *dev = &rproc->dev;
391 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
392 	struct rproc_vring *rvring = &rvdev->vring[i];
393 
394 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
395 		i, vring->da, vring->num, vring->align);
396 
397 	/* verify queue size and vring alignment are sane */
398 	if (!vring->num || !vring->align) {
399 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
400 			vring->num, vring->align);
401 		return -EINVAL;
402 	}
403 
404 	rvring->len = vring->num;
405 	rvring->align = vring->align;
406 	rvring->rvdev = rvdev;
407 
408 	return 0;
409 }
410 
411 void rproc_free_vring(struct rproc_vring *rvring)
412 {
413 	struct rproc *rproc = rvring->rvdev->rproc;
414 	int idx = rvring - rvring->rvdev->vring;
415 	struct fw_rsc_vdev *rsc;
416 
417 	idr_remove(&rproc->notifyids, rvring->notifyid);
418 
419 	/*
420 	 * At this point rproc_stop() has been called and the installed resource
421 	 * table in the remote processor memory may no longer be accessible. As
422 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
423 	 * resource table (rproc->cached_table).  The cached resource table is
424 	 * only available when a remote processor has been booted by the
425 	 * remoteproc core, otherwise it is NULL.
426 	 *
427 	 * Based on the above, reset the virtio device section in the cached
428 	 * resource table only if there is one to work with.
429 	 */
430 	if (rproc->table_ptr) {
431 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
432 		rsc->vring[idx].da = 0;
433 		rsc->vring[idx].notifyid = -1;
434 	}
435 }
436 
437 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
438 {
439 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
440 
441 	return rproc_add_virtio_dev(rvdev, rvdev->id);
442 }
443 
444 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
445 {
446 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
447 	int ret;
448 
449 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
450 	if (ret)
451 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
452 }
453 
454 /**
455  * rproc_rvdev_release() - release the existence of a rvdev
456  *
457  * @dev: the subdevice's dev
458  */
459 static void rproc_rvdev_release(struct device *dev)
460 {
461 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
462 
463 	of_reserved_mem_device_release(dev);
464 
465 	kfree(rvdev);
466 }
467 
468 static int copy_dma_range_map(struct device *to, struct device *from)
469 {
470 	const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
471 	int num_ranges = 0;
472 
473 	if (!map)
474 		return 0;
475 
476 	for (r = map; r->size; r++)
477 		num_ranges++;
478 
479 	new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
480 			  GFP_KERNEL);
481 	if (!new_map)
482 		return -ENOMEM;
483 	to->dma_range_map = new_map;
484 	return 0;
485 }
486 
487 /**
488  * rproc_handle_vdev() - handle a vdev fw resource
489  * @rproc: the remote processor
490  * @ptr: the vring resource descriptor
491  * @offset: offset of the resource entry
492  * @avail: size of available data (for sanity checking the image)
493  *
494  * This resource entry requests the host to statically register a virtio
495  * device (vdev), and setup everything needed to support it. It contains
496  * everything needed to make it possible: the virtio device id, virtio
497  * device features, vrings information, virtio config space, etc...
498  *
499  * Before registering the vdev, the vrings are allocated from non-cacheable
500  * physically contiguous memory. Currently we only support two vrings per
501  * remote processor (temporary limitation). We might also want to consider
502  * doing the vring allocation only later when ->find_vqs() is invoked, and
503  * then release them upon ->del_vqs().
504  *
505  * Note: @da is currently not really handled correctly: we dynamically
506  * allocate it using the DMA API, ignoring requested hard coded addresses,
507  * and we don't take care of any required IOMMU programming. This is all
508  * going to be taken care of when the generic iommu-based DMA API will be
509  * merged. Meanwhile, statically-addressed iommu-based firmware images should
510  * use RSC_DEVMEM resource entries to map their required @da to the physical
511  * address of their base CMA region (ouch, hacky!).
512  *
513  * Return: 0 on success, or an appropriate error code otherwise
514  */
515 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
516 			     int offset, int avail)
517 {
518 	struct fw_rsc_vdev *rsc = ptr;
519 	struct device *dev = &rproc->dev;
520 	struct rproc_vdev *rvdev;
521 	int i, ret;
522 	char name[16];
523 
524 	/* make sure resource isn't truncated */
525 	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
526 			avail) {
527 		dev_err(dev, "vdev rsc is truncated\n");
528 		return -EINVAL;
529 	}
530 
531 	/* make sure reserved bytes are zeroes */
532 	if (rsc->reserved[0] || rsc->reserved[1]) {
533 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
534 		return -EINVAL;
535 	}
536 
537 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
538 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
539 
540 	/* we currently support only two vrings per rvdev */
541 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
542 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
543 		return -EINVAL;
544 	}
545 
546 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
547 	if (!rvdev)
548 		return -ENOMEM;
549 
550 	kref_init(&rvdev->refcount);
551 
552 	rvdev->id = rsc->id;
553 	rvdev->rproc = rproc;
554 	rvdev->index = rproc->nb_vdev++;
555 
556 	/* Initialise vdev subdevice */
557 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
558 	rvdev->dev.parent = &rproc->dev;
559 	ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
560 	if (ret)
561 		return ret;
562 	rvdev->dev.release = rproc_rvdev_release;
563 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
564 	dev_set_drvdata(&rvdev->dev, rvdev);
565 
566 	ret = device_register(&rvdev->dev);
567 	if (ret) {
568 		put_device(&rvdev->dev);
569 		return ret;
570 	}
571 	/* Make device dma capable by inheriting from parent's capabilities */
572 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
573 
574 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
575 					   dma_get_mask(rproc->dev.parent));
576 	if (ret) {
577 		dev_warn(dev,
578 			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
579 			 dma_get_mask(rproc->dev.parent), ret);
580 	}
581 
582 	/* parse the vrings */
583 	for (i = 0; i < rsc->num_of_vrings; i++) {
584 		ret = rproc_parse_vring(rvdev, rsc, i);
585 		if (ret)
586 			goto free_rvdev;
587 	}
588 
589 	/* remember the resource offset*/
590 	rvdev->rsc_offset = offset;
591 
592 	/* allocate the vring resources */
593 	for (i = 0; i < rsc->num_of_vrings; i++) {
594 		ret = rproc_alloc_vring(rvdev, i);
595 		if (ret)
596 			goto unwind_vring_allocations;
597 	}
598 
599 	list_add_tail(&rvdev->node, &rproc->rvdevs);
600 
601 	rvdev->subdev.start = rproc_vdev_do_start;
602 	rvdev->subdev.stop = rproc_vdev_do_stop;
603 
604 	rproc_add_subdev(rproc, &rvdev->subdev);
605 
606 	return 0;
607 
608 unwind_vring_allocations:
609 	for (i--; i >= 0; i--)
610 		rproc_free_vring(&rvdev->vring[i]);
611 free_rvdev:
612 	device_unregister(&rvdev->dev);
613 	return ret;
614 }
615 
616 void rproc_vdev_release(struct kref *ref)
617 {
618 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
619 	struct rproc_vring *rvring;
620 	struct rproc *rproc = rvdev->rproc;
621 	int id;
622 
623 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
624 		rvring = &rvdev->vring[id];
625 		rproc_free_vring(rvring);
626 	}
627 
628 	rproc_remove_subdev(rproc, &rvdev->subdev);
629 	list_del(&rvdev->node);
630 	device_unregister(&rvdev->dev);
631 }
632 
633 /**
634  * rproc_handle_trace() - handle a shared trace buffer resource
635  * @rproc: the remote processor
636  * @ptr: the trace resource descriptor
637  * @offset: offset of the resource entry
638  * @avail: size of available data (for sanity checking the image)
639  *
640  * In case the remote processor dumps trace logs into memory,
641  * export it via debugfs.
642  *
643  * Currently, the 'da' member of @rsc should contain the device address
644  * where the remote processor is dumping the traces. Later we could also
645  * support dynamically allocating this address using the generic
646  * DMA API (but currently there isn't a use case for that).
647  *
648  * Return: 0 on success, or an appropriate error code otherwise
649  */
650 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
651 			      int offset, int avail)
652 {
653 	struct fw_rsc_trace *rsc = ptr;
654 	struct rproc_debug_trace *trace;
655 	struct device *dev = &rproc->dev;
656 	char name[15];
657 
658 	if (sizeof(*rsc) > avail) {
659 		dev_err(dev, "trace rsc is truncated\n");
660 		return -EINVAL;
661 	}
662 
663 	/* make sure reserved bytes are zeroes */
664 	if (rsc->reserved) {
665 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
666 		return -EINVAL;
667 	}
668 
669 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
670 	if (!trace)
671 		return -ENOMEM;
672 
673 	/* set the trace buffer dma properties */
674 	trace->trace_mem.len = rsc->len;
675 	trace->trace_mem.da = rsc->da;
676 
677 	/* set pointer on rproc device */
678 	trace->rproc = rproc;
679 
680 	/* make sure snprintf always null terminates, even if truncating */
681 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
682 
683 	/* create the debugfs entry */
684 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
685 	if (!trace->tfile) {
686 		kfree(trace);
687 		return -EINVAL;
688 	}
689 
690 	list_add_tail(&trace->node, &rproc->traces);
691 
692 	rproc->num_traces++;
693 
694 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
695 		name, rsc->da, rsc->len);
696 
697 	return 0;
698 }
699 
700 /**
701  * rproc_handle_devmem() - handle devmem resource entry
702  * @rproc: remote processor handle
703  * @ptr: the devmem resource entry
704  * @offset: offset of the resource entry
705  * @avail: size of available data (for sanity checking the image)
706  *
707  * Remote processors commonly need to access certain on-chip peripherals.
708  *
709  * Some of these remote processors access memory via an iommu device,
710  * and might require us to configure their iommu before they can access
711  * the on-chip peripherals they need.
712  *
713  * This resource entry is a request to map such a peripheral device.
714  *
715  * These devmem entries will contain the physical address of the device in
716  * the 'pa' member. If a specific device address is expected, then 'da' will
717  * contain it (currently this is the only use case supported). 'len' will
718  * contain the size of the physical region we need to map.
719  *
720  * Currently we just "trust" those devmem entries to contain valid physical
721  * addresses, but this is going to change: we want the implementations to
722  * tell us ranges of physical addresses the firmware is allowed to request,
723  * and not allow firmwares to request access to physical addresses that
724  * are outside those ranges.
725  *
726  * Return: 0 on success, or an appropriate error code otherwise
727  */
728 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
729 			       int offset, int avail)
730 {
731 	struct fw_rsc_devmem *rsc = ptr;
732 	struct rproc_mem_entry *mapping;
733 	struct device *dev = &rproc->dev;
734 	int ret;
735 
736 	/* no point in handling this resource without a valid iommu domain */
737 	if (!rproc->domain)
738 		return -EINVAL;
739 
740 	if (sizeof(*rsc) > avail) {
741 		dev_err(dev, "devmem rsc is truncated\n");
742 		return -EINVAL;
743 	}
744 
745 	/* make sure reserved bytes are zeroes */
746 	if (rsc->reserved) {
747 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
748 		return -EINVAL;
749 	}
750 
751 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
752 	if (!mapping)
753 		return -ENOMEM;
754 
755 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
756 	if (ret) {
757 		dev_err(dev, "failed to map devmem: %d\n", ret);
758 		goto out;
759 	}
760 
761 	/*
762 	 * We'll need this info later when we'll want to unmap everything
763 	 * (e.g. on shutdown).
764 	 *
765 	 * We can't trust the remote processor not to change the resource
766 	 * table, so we must maintain this info independently.
767 	 */
768 	mapping->da = rsc->da;
769 	mapping->len = rsc->len;
770 	list_add_tail(&mapping->node, &rproc->mappings);
771 
772 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
773 		rsc->pa, rsc->da, rsc->len);
774 
775 	return 0;
776 
777 out:
778 	kfree(mapping);
779 	return ret;
780 }
781 
782 /**
783  * rproc_alloc_carveout() - allocated specified carveout
784  * @rproc: rproc handle
785  * @mem: the memory entry to allocate
786  *
787  * This function allocate specified memory entry @mem using
788  * dma_alloc_coherent() as default allocator
789  *
790  * Return: 0 on success, or an appropriate error code otherwise
791  */
792 static int rproc_alloc_carveout(struct rproc *rproc,
793 				struct rproc_mem_entry *mem)
794 {
795 	struct rproc_mem_entry *mapping = NULL;
796 	struct device *dev = &rproc->dev;
797 	dma_addr_t dma;
798 	void *va;
799 	int ret;
800 
801 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
802 	if (!va) {
803 		dev_err(dev->parent,
804 			"failed to allocate dma memory: len 0x%zx\n",
805 			mem->len);
806 		return -ENOMEM;
807 	}
808 
809 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
810 		va, &dma, mem->len);
811 
812 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
813 		/*
814 		 * Check requested da is equal to dma address
815 		 * and print a warn message in case of missalignment.
816 		 * Don't stop rproc_start sequence as coprocessor may
817 		 * build pa to da translation on its side.
818 		 */
819 		if (mem->da != (u32)dma)
820 			dev_warn(dev->parent,
821 				 "Allocated carveout doesn't fit device address request\n");
822 	}
823 
824 	/*
825 	 * Ok, this is non-standard.
826 	 *
827 	 * Sometimes we can't rely on the generic iommu-based DMA API
828 	 * to dynamically allocate the device address and then set the IOMMU
829 	 * tables accordingly, because some remote processors might
830 	 * _require_ us to use hard coded device addresses that their
831 	 * firmware was compiled with.
832 	 *
833 	 * In this case, we must use the IOMMU API directly and map
834 	 * the memory to the device address as expected by the remote
835 	 * processor.
836 	 *
837 	 * Obviously such remote processor devices should not be configured
838 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
839 	 * physical address in this case.
840 	 */
841 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
842 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
843 		if (!mapping) {
844 			ret = -ENOMEM;
845 			goto dma_free;
846 		}
847 
848 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
849 				mem->flags);
850 		if (ret) {
851 			dev_err(dev, "iommu_map failed: %d\n", ret);
852 			goto free_mapping;
853 		}
854 
855 		/*
856 		 * We'll need this info later when we'll want to unmap
857 		 * everything (e.g. on shutdown).
858 		 *
859 		 * We can't trust the remote processor not to change the
860 		 * resource table, so we must maintain this info independently.
861 		 */
862 		mapping->da = mem->da;
863 		mapping->len = mem->len;
864 		list_add_tail(&mapping->node, &rproc->mappings);
865 
866 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
867 			mem->da, &dma);
868 	}
869 
870 	if (mem->da == FW_RSC_ADDR_ANY) {
871 		/* Update device address as undefined by requester */
872 		if ((u64)dma & HIGH_BITS_MASK)
873 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
874 
875 		mem->da = (u32)dma;
876 	}
877 
878 	mem->dma = dma;
879 	mem->va = va;
880 
881 	return 0;
882 
883 free_mapping:
884 	kfree(mapping);
885 dma_free:
886 	dma_free_coherent(dev->parent, mem->len, va, dma);
887 	return ret;
888 }
889 
890 /**
891  * rproc_release_carveout() - release acquired carveout
892  * @rproc: rproc handle
893  * @mem: the memory entry to release
894  *
895  * This function releases specified memory entry @mem allocated via
896  * rproc_alloc_carveout() function by @rproc.
897  *
898  * Return: 0 on success, or an appropriate error code otherwise
899  */
900 static int rproc_release_carveout(struct rproc *rproc,
901 				  struct rproc_mem_entry *mem)
902 {
903 	struct device *dev = &rproc->dev;
904 
905 	/* clean up carveout allocations */
906 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
907 	return 0;
908 }
909 
910 /**
911  * rproc_handle_carveout() - handle phys contig memory allocation requests
912  * @rproc: rproc handle
913  * @ptr: the resource entry
914  * @offset: offset of the resource entry
915  * @avail: size of available data (for image validation)
916  *
917  * This function will handle firmware requests for allocation of physically
918  * contiguous memory regions.
919  *
920  * These request entries should come first in the firmware's resource table,
921  * as other firmware entries might request placing other data objects inside
922  * these memory regions (e.g. data/code segments, trace resource entries, ...).
923  *
924  * Allocating memory this way helps utilizing the reserved physical memory
925  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
926  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
927  * pressure is important; it may have a substantial impact on performance.
928  *
929  * Return: 0 on success, or an appropriate error code otherwise
930  */
931 static int rproc_handle_carveout(struct rproc *rproc,
932 				 void *ptr, int offset, int avail)
933 {
934 	struct fw_rsc_carveout *rsc = ptr;
935 	struct rproc_mem_entry *carveout;
936 	struct device *dev = &rproc->dev;
937 
938 	if (sizeof(*rsc) > avail) {
939 		dev_err(dev, "carveout rsc is truncated\n");
940 		return -EINVAL;
941 	}
942 
943 	/* make sure reserved bytes are zeroes */
944 	if (rsc->reserved) {
945 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
946 		return -EINVAL;
947 	}
948 
949 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
950 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
951 
952 	/*
953 	 * Check carveout rsc already part of a registered carveout,
954 	 * Search by name, then check the da and length
955 	 */
956 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
957 
958 	if (carveout) {
959 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
960 			dev_err(dev,
961 				"Carveout already associated to resource table\n");
962 			return -ENOMEM;
963 		}
964 
965 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
966 			return -ENOMEM;
967 
968 		/* Update memory carveout with resource table info */
969 		carveout->rsc_offset = offset;
970 		carveout->flags = rsc->flags;
971 
972 		return 0;
973 	}
974 
975 	/* Register carveout in in list */
976 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
977 					rproc_alloc_carveout,
978 					rproc_release_carveout, rsc->name);
979 	if (!carveout) {
980 		dev_err(dev, "Can't allocate memory entry structure\n");
981 		return -ENOMEM;
982 	}
983 
984 	carveout->flags = rsc->flags;
985 	carveout->rsc_offset = offset;
986 	rproc_add_carveout(rproc, carveout);
987 
988 	return 0;
989 }
990 
991 /**
992  * rproc_add_carveout() - register an allocated carveout region
993  * @rproc: rproc handle
994  * @mem: memory entry to register
995  *
996  * This function registers specified memory entry in @rproc carveouts list.
997  * Specified carveout should have been allocated before registering.
998  */
999 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
1000 {
1001 	list_add_tail(&mem->node, &rproc->carveouts);
1002 }
1003 EXPORT_SYMBOL(rproc_add_carveout);
1004 
1005 /**
1006  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1007  * @dev: pointer on device struct
1008  * @va: virtual address
1009  * @dma: dma address
1010  * @len: memory carveout length
1011  * @da: device address
1012  * @alloc: memory carveout allocation function
1013  * @release: memory carveout release function
1014  * @name: carveout name
1015  *
1016  * This function allocates a rproc_mem_entry struct and fill it with parameters
1017  * provided by client.
1018  *
1019  * Return: a valid pointer on success, or NULL on failure
1020  */
1021 __printf(8, 9)
1022 struct rproc_mem_entry *
1023 rproc_mem_entry_init(struct device *dev,
1024 		     void *va, dma_addr_t dma, size_t len, u32 da,
1025 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1026 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
1027 		     const char *name, ...)
1028 {
1029 	struct rproc_mem_entry *mem;
1030 	va_list args;
1031 
1032 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1033 	if (!mem)
1034 		return mem;
1035 
1036 	mem->va = va;
1037 	mem->dma = dma;
1038 	mem->da = da;
1039 	mem->len = len;
1040 	mem->alloc = alloc;
1041 	mem->release = release;
1042 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1043 	mem->of_resm_idx = -1;
1044 
1045 	va_start(args, name);
1046 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1047 	va_end(args);
1048 
1049 	return mem;
1050 }
1051 EXPORT_SYMBOL(rproc_mem_entry_init);
1052 
1053 /**
1054  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1055  * from a reserved memory phandle
1056  * @dev: pointer on device struct
1057  * @of_resm_idx: reserved memory phandle index in "memory-region"
1058  * @len: memory carveout length
1059  * @da: device address
1060  * @name: carveout name
1061  *
1062  * This function allocates a rproc_mem_entry struct and fill it with parameters
1063  * provided by client.
1064  *
1065  * Return: a valid pointer on success, or NULL on failure
1066  */
1067 __printf(5, 6)
1068 struct rproc_mem_entry *
1069 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1070 			     u32 da, const char *name, ...)
1071 {
1072 	struct rproc_mem_entry *mem;
1073 	va_list args;
1074 
1075 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1076 	if (!mem)
1077 		return mem;
1078 
1079 	mem->da = da;
1080 	mem->len = len;
1081 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1082 	mem->of_resm_idx = of_resm_idx;
1083 
1084 	va_start(args, name);
1085 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1086 	va_end(args);
1087 
1088 	return mem;
1089 }
1090 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1091 
1092 /**
1093  * rproc_of_parse_firmware() - parse and return the firmware-name
1094  * @dev: pointer on device struct representing a rproc
1095  * @index: index to use for the firmware-name retrieval
1096  * @fw_name: pointer to a character string, in which the firmware
1097  *           name is returned on success and unmodified otherwise.
1098  *
1099  * This is an OF helper function that parses a device's DT node for
1100  * the "firmware-name" property and returns the firmware name pointer
1101  * in @fw_name on success.
1102  *
1103  * Return: 0 on success, or an appropriate failure.
1104  */
1105 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1106 {
1107 	int ret;
1108 
1109 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1110 					    index, fw_name);
1111 	return ret ? ret : 0;
1112 }
1113 EXPORT_SYMBOL(rproc_of_parse_firmware);
1114 
1115 /*
1116  * A lookup table for resource handlers. The indices are defined in
1117  * enum fw_resource_type.
1118  */
1119 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1120 	[RSC_CARVEOUT] = rproc_handle_carveout,
1121 	[RSC_DEVMEM] = rproc_handle_devmem,
1122 	[RSC_TRACE] = rproc_handle_trace,
1123 	[RSC_VDEV] = rproc_handle_vdev,
1124 };
1125 
1126 /* handle firmware resource entries before booting the remote processor */
1127 static int rproc_handle_resources(struct rproc *rproc,
1128 				  rproc_handle_resource_t handlers[RSC_LAST])
1129 {
1130 	struct device *dev = &rproc->dev;
1131 	rproc_handle_resource_t handler;
1132 	int ret = 0, i;
1133 
1134 	if (!rproc->table_ptr)
1135 		return 0;
1136 
1137 	for (i = 0; i < rproc->table_ptr->num; i++) {
1138 		int offset = rproc->table_ptr->offset[i];
1139 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1140 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1141 		void *rsc = (void *)hdr + sizeof(*hdr);
1142 
1143 		/* make sure table isn't truncated */
1144 		if (avail < 0) {
1145 			dev_err(dev, "rsc table is truncated\n");
1146 			return -EINVAL;
1147 		}
1148 
1149 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1150 
1151 		if (hdr->type >= RSC_VENDOR_START &&
1152 		    hdr->type <= RSC_VENDOR_END) {
1153 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1154 					       offset + sizeof(*hdr), avail);
1155 			if (ret == RSC_HANDLED)
1156 				continue;
1157 			else if (ret < 0)
1158 				break;
1159 
1160 			dev_warn(dev, "unsupported vendor resource %d\n",
1161 				 hdr->type);
1162 			continue;
1163 		}
1164 
1165 		if (hdr->type >= RSC_LAST) {
1166 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1167 			continue;
1168 		}
1169 
1170 		handler = handlers[hdr->type];
1171 		if (!handler)
1172 			continue;
1173 
1174 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1175 		if (ret)
1176 			break;
1177 	}
1178 
1179 	return ret;
1180 }
1181 
1182 static int rproc_prepare_subdevices(struct rproc *rproc)
1183 {
1184 	struct rproc_subdev *subdev;
1185 	int ret;
1186 
1187 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1188 		if (subdev->prepare) {
1189 			ret = subdev->prepare(subdev);
1190 			if (ret)
1191 				goto unroll_preparation;
1192 		}
1193 	}
1194 
1195 	return 0;
1196 
1197 unroll_preparation:
1198 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1199 		if (subdev->unprepare)
1200 			subdev->unprepare(subdev);
1201 	}
1202 
1203 	return ret;
1204 }
1205 
1206 static int rproc_start_subdevices(struct rproc *rproc)
1207 {
1208 	struct rproc_subdev *subdev;
1209 	int ret;
1210 
1211 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1212 		if (subdev->start) {
1213 			ret = subdev->start(subdev);
1214 			if (ret)
1215 				goto unroll_registration;
1216 		}
1217 	}
1218 
1219 	return 0;
1220 
1221 unroll_registration:
1222 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1223 		if (subdev->stop)
1224 			subdev->stop(subdev, true);
1225 	}
1226 
1227 	return ret;
1228 }
1229 
1230 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1231 {
1232 	struct rproc_subdev *subdev;
1233 
1234 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1235 		if (subdev->stop)
1236 			subdev->stop(subdev, crashed);
1237 	}
1238 }
1239 
1240 static void rproc_unprepare_subdevices(struct rproc *rproc)
1241 {
1242 	struct rproc_subdev *subdev;
1243 
1244 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1245 		if (subdev->unprepare)
1246 			subdev->unprepare(subdev);
1247 	}
1248 }
1249 
1250 /**
1251  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1252  * in the list
1253  * @rproc: the remote processor handle
1254  *
1255  * This function parses registered carveout list, performs allocation
1256  * if alloc() ops registered and updates resource table information
1257  * if rsc_offset set.
1258  *
1259  * Return: 0 on success
1260  */
1261 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1262 {
1263 	struct rproc_mem_entry *entry, *tmp;
1264 	struct fw_rsc_carveout *rsc;
1265 	struct device *dev = &rproc->dev;
1266 	u64 pa;
1267 	int ret;
1268 
1269 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1270 		if (entry->alloc) {
1271 			ret = entry->alloc(rproc, entry);
1272 			if (ret) {
1273 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1274 					entry->name, ret);
1275 				return -ENOMEM;
1276 			}
1277 		}
1278 
1279 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1280 			/* update resource table */
1281 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1282 
1283 			/*
1284 			 * Some remote processors might need to know the pa
1285 			 * even though they are behind an IOMMU. E.g., OMAP4's
1286 			 * remote M3 processor needs this so it can control
1287 			 * on-chip hardware accelerators that are not behind
1288 			 * the IOMMU, and therefor must know the pa.
1289 			 *
1290 			 * Generally we don't want to expose physical addresses
1291 			 * if we don't have to (remote processors are generally
1292 			 * _not_ trusted), so we might want to do this only for
1293 			 * remote processor that _must_ have this (e.g. OMAP4's
1294 			 * dual M3 subsystem).
1295 			 *
1296 			 * Non-IOMMU processors might also want to have this info.
1297 			 * In this case, the device address and the physical address
1298 			 * are the same.
1299 			 */
1300 
1301 			/* Use va if defined else dma to generate pa */
1302 			if (entry->va)
1303 				pa = (u64)rproc_va_to_pa(entry->va);
1304 			else
1305 				pa = (u64)entry->dma;
1306 
1307 			if (((u64)pa) & HIGH_BITS_MASK)
1308 				dev_warn(dev,
1309 					 "Physical address cast in 32bit to fit resource table format\n");
1310 
1311 			rsc->pa = (u32)pa;
1312 			rsc->da = entry->da;
1313 			rsc->len = entry->len;
1314 		}
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 
1321 /**
1322  * rproc_resource_cleanup() - clean up and free all acquired resources
1323  * @rproc: rproc handle
1324  *
1325  * This function will free all resources acquired for @rproc, and it
1326  * is called whenever @rproc either shuts down or fails to boot.
1327  */
1328 void rproc_resource_cleanup(struct rproc *rproc)
1329 {
1330 	struct rproc_mem_entry *entry, *tmp;
1331 	struct rproc_debug_trace *trace, *ttmp;
1332 	struct rproc_vdev *rvdev, *rvtmp;
1333 	struct device *dev = &rproc->dev;
1334 
1335 	/* clean up debugfs trace entries */
1336 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1337 		rproc_remove_trace_file(trace->tfile);
1338 		rproc->num_traces--;
1339 		list_del(&trace->node);
1340 		kfree(trace);
1341 	}
1342 
1343 	/* clean up iommu mapping entries */
1344 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1345 		size_t unmapped;
1346 
1347 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1348 		if (unmapped != entry->len) {
1349 			/* nothing much to do besides complaining */
1350 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1351 				unmapped);
1352 		}
1353 
1354 		list_del(&entry->node);
1355 		kfree(entry);
1356 	}
1357 
1358 	/* clean up carveout allocations */
1359 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1360 		if (entry->release)
1361 			entry->release(rproc, entry);
1362 		list_del(&entry->node);
1363 		kfree(entry);
1364 	}
1365 
1366 	/* clean up remote vdev entries */
1367 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1368 		kref_put(&rvdev->refcount, rproc_vdev_release);
1369 
1370 	rproc_coredump_cleanup(rproc);
1371 }
1372 EXPORT_SYMBOL(rproc_resource_cleanup);
1373 
1374 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1375 {
1376 	struct resource_table *loaded_table;
1377 	struct device *dev = &rproc->dev;
1378 	int ret;
1379 
1380 	/* load the ELF segments to memory */
1381 	ret = rproc_load_segments(rproc, fw);
1382 	if (ret) {
1383 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1384 		return ret;
1385 	}
1386 
1387 	/*
1388 	 * The starting device has been given the rproc->cached_table as the
1389 	 * resource table. The address of the vring along with the other
1390 	 * allocated resources (carveouts etc) is stored in cached_table.
1391 	 * In order to pass this information to the remote device we must copy
1392 	 * this information to device memory. We also update the table_ptr so
1393 	 * that any subsequent changes will be applied to the loaded version.
1394 	 */
1395 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1396 	if (loaded_table) {
1397 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1398 		rproc->table_ptr = loaded_table;
1399 	}
1400 
1401 	ret = rproc_prepare_subdevices(rproc);
1402 	if (ret) {
1403 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1404 			rproc->name, ret);
1405 		goto reset_table_ptr;
1406 	}
1407 
1408 	/* power up the remote processor */
1409 	ret = rproc->ops->start(rproc);
1410 	if (ret) {
1411 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1412 		goto unprepare_subdevices;
1413 	}
1414 
1415 	/* Start any subdevices for the remote processor */
1416 	ret = rproc_start_subdevices(rproc);
1417 	if (ret) {
1418 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1419 			rproc->name, ret);
1420 		goto stop_rproc;
1421 	}
1422 
1423 	rproc->state = RPROC_RUNNING;
1424 
1425 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1426 
1427 	return 0;
1428 
1429 stop_rproc:
1430 	rproc->ops->stop(rproc);
1431 unprepare_subdevices:
1432 	rproc_unprepare_subdevices(rproc);
1433 reset_table_ptr:
1434 	rproc->table_ptr = rproc->cached_table;
1435 
1436 	return ret;
1437 }
1438 
1439 static int __rproc_attach(struct rproc *rproc)
1440 {
1441 	struct device *dev = &rproc->dev;
1442 	int ret;
1443 
1444 	ret = rproc_prepare_subdevices(rproc);
1445 	if (ret) {
1446 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1447 			rproc->name, ret);
1448 		goto out;
1449 	}
1450 
1451 	/* Attach to the remote processor */
1452 	ret = rproc_attach_device(rproc);
1453 	if (ret) {
1454 		dev_err(dev, "can't attach to rproc %s: %d\n",
1455 			rproc->name, ret);
1456 		goto unprepare_subdevices;
1457 	}
1458 
1459 	/* Start any subdevices for the remote processor */
1460 	ret = rproc_start_subdevices(rproc);
1461 	if (ret) {
1462 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1463 			rproc->name, ret);
1464 		goto stop_rproc;
1465 	}
1466 
1467 	rproc->state = RPROC_ATTACHED;
1468 
1469 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1470 
1471 	return 0;
1472 
1473 stop_rproc:
1474 	rproc->ops->stop(rproc);
1475 unprepare_subdevices:
1476 	rproc_unprepare_subdevices(rproc);
1477 out:
1478 	return ret;
1479 }
1480 
1481 /*
1482  * take a firmware and boot a remote processor with it.
1483  */
1484 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1485 {
1486 	struct device *dev = &rproc->dev;
1487 	const char *name = rproc->firmware;
1488 	int ret;
1489 
1490 	ret = rproc_fw_sanity_check(rproc, fw);
1491 	if (ret)
1492 		return ret;
1493 
1494 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1495 
1496 	/*
1497 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1498 	 * just a nop
1499 	 */
1500 	ret = rproc_enable_iommu(rproc);
1501 	if (ret) {
1502 		dev_err(dev, "can't enable iommu: %d\n", ret);
1503 		return ret;
1504 	}
1505 
1506 	/* Prepare rproc for firmware loading if needed */
1507 	ret = rproc_prepare_device(rproc);
1508 	if (ret) {
1509 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1510 		goto disable_iommu;
1511 	}
1512 
1513 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1514 
1515 	/* Load resource table, core dump segment list etc from the firmware */
1516 	ret = rproc_parse_fw(rproc, fw);
1517 	if (ret)
1518 		goto unprepare_rproc;
1519 
1520 	/* reset max_notifyid */
1521 	rproc->max_notifyid = -1;
1522 
1523 	/* reset handled vdev */
1524 	rproc->nb_vdev = 0;
1525 
1526 	/* handle fw resources which are required to boot rproc */
1527 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1528 	if (ret) {
1529 		dev_err(dev, "Failed to process resources: %d\n", ret);
1530 		goto clean_up_resources;
1531 	}
1532 
1533 	/* Allocate carveout resources associated to rproc */
1534 	ret = rproc_alloc_registered_carveouts(rproc);
1535 	if (ret) {
1536 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1537 			ret);
1538 		goto clean_up_resources;
1539 	}
1540 
1541 	ret = rproc_start(rproc, fw);
1542 	if (ret)
1543 		goto clean_up_resources;
1544 
1545 	return 0;
1546 
1547 clean_up_resources:
1548 	rproc_resource_cleanup(rproc);
1549 	kfree(rproc->cached_table);
1550 	rproc->cached_table = NULL;
1551 	rproc->table_ptr = NULL;
1552 unprepare_rproc:
1553 	/* release HW resources if needed */
1554 	rproc_unprepare_device(rproc);
1555 disable_iommu:
1556 	rproc_disable_iommu(rproc);
1557 	return ret;
1558 }
1559 
1560 static int rproc_set_rsc_table(struct rproc *rproc)
1561 {
1562 	struct resource_table *table_ptr;
1563 	struct device *dev = &rproc->dev;
1564 	size_t table_sz;
1565 	int ret;
1566 
1567 	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1568 	if (!table_ptr) {
1569 		/* Not having a resource table is acceptable */
1570 		return 0;
1571 	}
1572 
1573 	if (IS_ERR(table_ptr)) {
1574 		ret = PTR_ERR(table_ptr);
1575 		dev_err(dev, "can't load resource table: %d\n", ret);
1576 		return ret;
1577 	}
1578 
1579 	/*
1580 	 * If it is possible to detach the remote processor, keep an untouched
1581 	 * copy of the resource table.  That way we can start fresh again when
1582 	 * the remote processor is re-attached, that is:
1583 	 *
1584 	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1585 	 *
1586 	 * Free'd in rproc_reset_rsc_table_on_detach() and
1587 	 * rproc_reset_rsc_table_on_stop().
1588 	 */
1589 	if (rproc->ops->detach) {
1590 		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1591 		if (!rproc->clean_table)
1592 			return -ENOMEM;
1593 	} else {
1594 		rproc->clean_table = NULL;
1595 	}
1596 
1597 	rproc->cached_table = NULL;
1598 	rproc->table_ptr = table_ptr;
1599 	rproc->table_sz = table_sz;
1600 
1601 	return 0;
1602 }
1603 
1604 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1605 {
1606 	struct resource_table *table_ptr;
1607 
1608 	/* A resource table was never retrieved, nothing to do here */
1609 	if (!rproc->table_ptr)
1610 		return 0;
1611 
1612 	/*
1613 	 * If we made it to this point a clean_table _must_ have been
1614 	 * allocated in rproc_set_rsc_table().  If one isn't present
1615 	 * something went really wrong and we must complain.
1616 	 */
1617 	if (WARN_ON(!rproc->clean_table))
1618 		return -EINVAL;
1619 
1620 	/* Remember where the external entity installed the resource table */
1621 	table_ptr = rproc->table_ptr;
1622 
1623 	/*
1624 	 * If we made it here the remote processor was started by another
1625 	 * entity and a cache table doesn't exist.  As such make a copy of
1626 	 * the resource table currently used by the remote processor and
1627 	 * use that for the rest of the shutdown process.  The memory
1628 	 * allocated here is free'd in rproc_detach().
1629 	 */
1630 	rproc->cached_table = kmemdup(rproc->table_ptr,
1631 				      rproc->table_sz, GFP_KERNEL);
1632 	if (!rproc->cached_table)
1633 		return -ENOMEM;
1634 
1635 	/*
1636 	 * Use a copy of the resource table for the remainder of the
1637 	 * shutdown process.
1638 	 */
1639 	rproc->table_ptr = rproc->cached_table;
1640 
1641 	/*
1642 	 * Reset the memory area where the firmware loaded the resource table
1643 	 * to its original value.  That way when we re-attach the remote
1644 	 * processor the resource table is clean and ready to be used again.
1645 	 */
1646 	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1647 
1648 	/*
1649 	 * The clean resource table is no longer needed.  Allocated in
1650 	 * rproc_set_rsc_table().
1651 	 */
1652 	kfree(rproc->clean_table);
1653 
1654 	return 0;
1655 }
1656 
1657 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1658 {
1659 	/* A resource table was never retrieved, nothing to do here */
1660 	if (!rproc->table_ptr)
1661 		return 0;
1662 
1663 	/*
1664 	 * If a cache table exists the remote processor was started by
1665 	 * the remoteproc core.  That cache table should be used for
1666 	 * the rest of the shutdown process.
1667 	 */
1668 	if (rproc->cached_table)
1669 		goto out;
1670 
1671 	/*
1672 	 * If we made it here the remote processor was started by another
1673 	 * entity and a cache table doesn't exist.  As such make a copy of
1674 	 * the resource table currently used by the remote processor and
1675 	 * use that for the rest of the shutdown process.  The memory
1676 	 * allocated here is free'd in rproc_shutdown().
1677 	 */
1678 	rproc->cached_table = kmemdup(rproc->table_ptr,
1679 				      rproc->table_sz, GFP_KERNEL);
1680 	if (!rproc->cached_table)
1681 		return -ENOMEM;
1682 
1683 	/*
1684 	 * Since the remote processor is being switched off the clean table
1685 	 * won't be needed.  Allocated in rproc_set_rsc_table().
1686 	 */
1687 	kfree(rproc->clean_table);
1688 
1689 out:
1690 	/*
1691 	 * Use a copy of the resource table for the remainder of the
1692 	 * shutdown process.
1693 	 */
1694 	rproc->table_ptr = rproc->cached_table;
1695 	return 0;
1696 }
1697 
1698 /*
1699  * Attach to remote processor - similar to rproc_fw_boot() but without
1700  * the steps that deal with the firmware image.
1701  */
1702 static int rproc_attach(struct rproc *rproc)
1703 {
1704 	struct device *dev = &rproc->dev;
1705 	int ret;
1706 
1707 	/*
1708 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1709 	 * just a nop
1710 	 */
1711 	ret = rproc_enable_iommu(rproc);
1712 	if (ret) {
1713 		dev_err(dev, "can't enable iommu: %d\n", ret);
1714 		return ret;
1715 	}
1716 
1717 	/* Do anything that is needed to boot the remote processor */
1718 	ret = rproc_prepare_device(rproc);
1719 	if (ret) {
1720 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1721 		goto disable_iommu;
1722 	}
1723 
1724 	ret = rproc_set_rsc_table(rproc);
1725 	if (ret) {
1726 		dev_err(dev, "can't load resource table: %d\n", ret);
1727 		goto unprepare_device;
1728 	}
1729 
1730 	/* reset max_notifyid */
1731 	rproc->max_notifyid = -1;
1732 
1733 	/* reset handled vdev */
1734 	rproc->nb_vdev = 0;
1735 
1736 	/*
1737 	 * Handle firmware resources required to attach to a remote processor.
1738 	 * Because we are attaching rather than booting the remote processor,
1739 	 * we expect the platform driver to properly set rproc->table_ptr.
1740 	 */
1741 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1742 	if (ret) {
1743 		dev_err(dev, "Failed to process resources: %d\n", ret);
1744 		goto unprepare_device;
1745 	}
1746 
1747 	/* Allocate carveout resources associated to rproc */
1748 	ret = rproc_alloc_registered_carveouts(rproc);
1749 	if (ret) {
1750 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1751 			ret);
1752 		goto clean_up_resources;
1753 	}
1754 
1755 	ret = __rproc_attach(rproc);
1756 	if (ret)
1757 		goto clean_up_resources;
1758 
1759 	return 0;
1760 
1761 clean_up_resources:
1762 	rproc_resource_cleanup(rproc);
1763 unprepare_device:
1764 	/* release HW resources if needed */
1765 	rproc_unprepare_device(rproc);
1766 disable_iommu:
1767 	rproc_disable_iommu(rproc);
1768 	return ret;
1769 }
1770 
1771 /*
1772  * take a firmware and boot it up.
1773  *
1774  * Note: this function is called asynchronously upon registration of the
1775  * remote processor (so we must wait until it completes before we try
1776  * to unregister the device. one other option is just to use kref here,
1777  * that might be cleaner).
1778  */
1779 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1780 {
1781 	struct rproc *rproc = context;
1782 
1783 	rproc_boot(rproc);
1784 
1785 	release_firmware(fw);
1786 }
1787 
1788 static int rproc_trigger_auto_boot(struct rproc *rproc)
1789 {
1790 	int ret;
1791 
1792 	/*
1793 	 * Since the remote processor is in a detached state, it has already
1794 	 * been booted by another entity.  As such there is no point in waiting
1795 	 * for a firmware image to be loaded, we can simply initiate the process
1796 	 * of attaching to it immediately.
1797 	 */
1798 	if (rproc->state == RPROC_DETACHED)
1799 		return rproc_boot(rproc);
1800 
1801 	/*
1802 	 * We're initiating an asynchronous firmware loading, so we can
1803 	 * be built-in kernel code, without hanging the boot process.
1804 	 */
1805 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1806 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1807 				      rproc, rproc_auto_boot_callback);
1808 	if (ret < 0)
1809 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1810 
1811 	return ret;
1812 }
1813 
1814 static int rproc_stop(struct rproc *rproc, bool crashed)
1815 {
1816 	struct device *dev = &rproc->dev;
1817 	int ret;
1818 
1819 	/* No need to continue if a stop() operation has not been provided */
1820 	if (!rproc->ops->stop)
1821 		return -EINVAL;
1822 
1823 	/* Stop any subdevices for the remote processor */
1824 	rproc_stop_subdevices(rproc, crashed);
1825 
1826 	/* the installed resource table is no longer accessible */
1827 	ret = rproc_reset_rsc_table_on_stop(rproc);
1828 	if (ret) {
1829 		dev_err(dev, "can't reset resource table: %d\n", ret);
1830 		return ret;
1831 	}
1832 
1833 
1834 	/* power off the remote processor */
1835 	ret = rproc->ops->stop(rproc);
1836 	if (ret) {
1837 		dev_err(dev, "can't stop rproc: %d\n", ret);
1838 		return ret;
1839 	}
1840 
1841 	rproc_unprepare_subdevices(rproc);
1842 
1843 	rproc->state = RPROC_OFFLINE;
1844 
1845 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1846 
1847 	return 0;
1848 }
1849 
1850 /*
1851  * __rproc_detach(): Does the opposite of __rproc_attach()
1852  */
1853 static int __rproc_detach(struct rproc *rproc)
1854 {
1855 	struct device *dev = &rproc->dev;
1856 	int ret;
1857 
1858 	/* No need to continue if a detach() operation has not been provided */
1859 	if (!rproc->ops->detach)
1860 		return -EINVAL;
1861 
1862 	/* Stop any subdevices for the remote processor */
1863 	rproc_stop_subdevices(rproc, false);
1864 
1865 	/* the installed resource table is no longer accessible */
1866 	ret = rproc_reset_rsc_table_on_detach(rproc);
1867 	if (ret) {
1868 		dev_err(dev, "can't reset resource table: %d\n", ret);
1869 		return ret;
1870 	}
1871 
1872 	/* Tell the remote processor the core isn't available anymore */
1873 	ret = rproc->ops->detach(rproc);
1874 	if (ret) {
1875 		dev_err(dev, "can't detach from rproc: %d\n", ret);
1876 		return ret;
1877 	}
1878 
1879 	rproc_unprepare_subdevices(rproc);
1880 
1881 	rproc->state = RPROC_DETACHED;
1882 
1883 	dev_info(dev, "detached remote processor %s\n", rproc->name);
1884 
1885 	return 0;
1886 }
1887 
1888 /**
1889  * rproc_trigger_recovery() - recover a remoteproc
1890  * @rproc: the remote processor
1891  *
1892  * The recovery is done by resetting all the virtio devices, that way all the
1893  * rpmsg drivers will be reseted along with the remote processor making the
1894  * remoteproc functional again.
1895  *
1896  * This function can sleep, so it cannot be called from atomic context.
1897  *
1898  * Return: 0 on success or a negative value upon failure
1899  */
1900 int rproc_trigger_recovery(struct rproc *rproc)
1901 {
1902 	const struct firmware *firmware_p;
1903 	struct device *dev = &rproc->dev;
1904 	int ret;
1905 
1906 	ret = mutex_lock_interruptible(&rproc->lock);
1907 	if (ret)
1908 		return ret;
1909 
1910 	/* State could have changed before we got the mutex */
1911 	if (rproc->state != RPROC_CRASHED)
1912 		goto unlock_mutex;
1913 
1914 	dev_err(dev, "recovering %s\n", rproc->name);
1915 
1916 	ret = rproc_stop(rproc, true);
1917 	if (ret)
1918 		goto unlock_mutex;
1919 
1920 	/* generate coredump */
1921 	rproc->ops->coredump(rproc);
1922 
1923 	/* load firmware */
1924 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1925 	if (ret < 0) {
1926 		dev_err(dev, "request_firmware failed: %d\n", ret);
1927 		goto unlock_mutex;
1928 	}
1929 
1930 	/* boot the remote processor up again */
1931 	ret = rproc_start(rproc, firmware_p);
1932 
1933 	release_firmware(firmware_p);
1934 
1935 unlock_mutex:
1936 	mutex_unlock(&rproc->lock);
1937 	return ret;
1938 }
1939 
1940 /**
1941  * rproc_crash_handler_work() - handle a crash
1942  * @work: work treating the crash
1943  *
1944  * This function needs to handle everything related to a crash, like cpu
1945  * registers and stack dump, information to help to debug the fatal error, etc.
1946  */
1947 static void rproc_crash_handler_work(struct work_struct *work)
1948 {
1949 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1950 	struct device *dev = &rproc->dev;
1951 
1952 	dev_dbg(dev, "enter %s\n", __func__);
1953 
1954 	mutex_lock(&rproc->lock);
1955 
1956 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1957 		/* handle only the first crash detected */
1958 		mutex_unlock(&rproc->lock);
1959 		return;
1960 	}
1961 
1962 	rproc->state = RPROC_CRASHED;
1963 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1964 		rproc->name);
1965 
1966 	mutex_unlock(&rproc->lock);
1967 
1968 	if (!rproc->recovery_disabled)
1969 		rproc_trigger_recovery(rproc);
1970 
1971 	pm_relax(rproc->dev.parent);
1972 }
1973 
1974 /**
1975  * rproc_boot() - boot a remote processor
1976  * @rproc: handle of a remote processor
1977  *
1978  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1979  *
1980  * If the remote processor is already powered on, this function immediately
1981  * returns (successfully).
1982  *
1983  * Return: 0 on success, and an appropriate error value otherwise
1984  */
1985 int rproc_boot(struct rproc *rproc)
1986 {
1987 	const struct firmware *firmware_p;
1988 	struct device *dev;
1989 	int ret;
1990 
1991 	if (!rproc) {
1992 		pr_err("invalid rproc handle\n");
1993 		return -EINVAL;
1994 	}
1995 
1996 	dev = &rproc->dev;
1997 
1998 	ret = mutex_lock_interruptible(&rproc->lock);
1999 	if (ret) {
2000 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2001 		return ret;
2002 	}
2003 
2004 	if (rproc->state == RPROC_DELETED) {
2005 		ret = -ENODEV;
2006 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
2007 		goto unlock_mutex;
2008 	}
2009 
2010 	/* skip the boot or attach process if rproc is already powered up */
2011 	if (atomic_inc_return(&rproc->power) > 1) {
2012 		ret = 0;
2013 		goto unlock_mutex;
2014 	}
2015 
2016 	if (rproc->state == RPROC_DETACHED) {
2017 		dev_info(dev, "attaching to %s\n", rproc->name);
2018 
2019 		ret = rproc_attach(rproc);
2020 	} else {
2021 		dev_info(dev, "powering up %s\n", rproc->name);
2022 
2023 		/* load firmware */
2024 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
2025 		if (ret < 0) {
2026 			dev_err(dev, "request_firmware failed: %d\n", ret);
2027 			goto downref_rproc;
2028 		}
2029 
2030 		ret = rproc_fw_boot(rproc, firmware_p);
2031 
2032 		release_firmware(firmware_p);
2033 	}
2034 
2035 downref_rproc:
2036 	if (ret)
2037 		atomic_dec(&rproc->power);
2038 unlock_mutex:
2039 	mutex_unlock(&rproc->lock);
2040 	return ret;
2041 }
2042 EXPORT_SYMBOL(rproc_boot);
2043 
2044 /**
2045  * rproc_shutdown() - power off the remote processor
2046  * @rproc: the remote processor
2047  *
2048  * Power off a remote processor (previously booted with rproc_boot()).
2049  *
2050  * In case @rproc is still being used by an additional user(s), then
2051  * this function will just decrement the power refcount and exit,
2052  * without really powering off the device.
2053  *
2054  * Every call to rproc_boot() must (eventually) be accompanied by a call
2055  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
2056  *
2057  * Notes:
2058  * - we're not decrementing the rproc's refcount, only the power refcount.
2059  *   which means that the @rproc handle stays valid even after rproc_shutdown()
2060  *   returns, and users can still use it with a subsequent rproc_boot(), if
2061  *   needed.
2062  */
2063 void rproc_shutdown(struct rproc *rproc)
2064 {
2065 	struct device *dev = &rproc->dev;
2066 	int ret;
2067 
2068 	ret = mutex_lock_interruptible(&rproc->lock);
2069 	if (ret) {
2070 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2071 		return;
2072 	}
2073 
2074 	/* if the remote proc is still needed, bail out */
2075 	if (!atomic_dec_and_test(&rproc->power))
2076 		goto out;
2077 
2078 	ret = rproc_stop(rproc, false);
2079 	if (ret) {
2080 		atomic_inc(&rproc->power);
2081 		goto out;
2082 	}
2083 
2084 	/* clean up all acquired resources */
2085 	rproc_resource_cleanup(rproc);
2086 
2087 	/* release HW resources if needed */
2088 	rproc_unprepare_device(rproc);
2089 
2090 	rproc_disable_iommu(rproc);
2091 
2092 	/* Free the copy of the resource table */
2093 	kfree(rproc->cached_table);
2094 	rproc->cached_table = NULL;
2095 	rproc->table_ptr = NULL;
2096 out:
2097 	mutex_unlock(&rproc->lock);
2098 }
2099 EXPORT_SYMBOL(rproc_shutdown);
2100 
2101 /**
2102  * rproc_detach() - Detach the remote processor from the
2103  * remoteproc core
2104  *
2105  * @rproc: the remote processor
2106  *
2107  * Detach a remote processor (previously attached to with rproc_attach()).
2108  *
2109  * In case @rproc is still being used by an additional user(s), then
2110  * this function will just decrement the power refcount and exit,
2111  * without disconnecting the device.
2112  *
2113  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2114  * processor know that services provided by the application processor are
2115  * no longer available.  From there it should be possible to remove the
2116  * platform driver and even power cycle the application processor (if the HW
2117  * supports it) without needing to switch off the remote processor.
2118  *
2119  * Return: 0 on success, and an appropriate error value otherwise
2120  */
2121 int rproc_detach(struct rproc *rproc)
2122 {
2123 	struct device *dev = &rproc->dev;
2124 	int ret;
2125 
2126 	ret = mutex_lock_interruptible(&rproc->lock);
2127 	if (ret) {
2128 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2129 		return ret;
2130 	}
2131 
2132 	/* if the remote proc is still needed, bail out */
2133 	if (!atomic_dec_and_test(&rproc->power)) {
2134 		ret = 0;
2135 		goto out;
2136 	}
2137 
2138 	ret = __rproc_detach(rproc);
2139 	if (ret) {
2140 		atomic_inc(&rproc->power);
2141 		goto out;
2142 	}
2143 
2144 	/* clean up all acquired resources */
2145 	rproc_resource_cleanup(rproc);
2146 
2147 	/* release HW resources if needed */
2148 	rproc_unprepare_device(rproc);
2149 
2150 	rproc_disable_iommu(rproc);
2151 
2152 	/* Free the copy of the resource table */
2153 	kfree(rproc->cached_table);
2154 	rproc->cached_table = NULL;
2155 	rproc->table_ptr = NULL;
2156 out:
2157 	mutex_unlock(&rproc->lock);
2158 	return ret;
2159 }
2160 EXPORT_SYMBOL(rproc_detach);
2161 
2162 /**
2163  * rproc_get_by_phandle() - find a remote processor by phandle
2164  * @phandle: phandle to the rproc
2165  *
2166  * Finds an rproc handle using the remote processor's phandle, and then
2167  * return a handle to the rproc.
2168  *
2169  * This function increments the remote processor's refcount, so always
2170  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2171  *
2172  * Return: rproc handle on success, and NULL on failure
2173  */
2174 #ifdef CONFIG_OF
2175 struct rproc *rproc_get_by_phandle(phandle phandle)
2176 {
2177 	struct rproc *rproc = NULL, *r;
2178 	struct device_node *np;
2179 
2180 	np = of_find_node_by_phandle(phandle);
2181 	if (!np)
2182 		return NULL;
2183 
2184 	rcu_read_lock();
2185 	list_for_each_entry_rcu(r, &rproc_list, node) {
2186 		if (r->dev.parent && r->dev.parent->of_node == np) {
2187 			/* prevent underlying implementation from being removed */
2188 			if (!try_module_get(r->dev.parent->driver->owner)) {
2189 				dev_err(&r->dev, "can't get owner\n");
2190 				break;
2191 			}
2192 
2193 			rproc = r;
2194 			get_device(&rproc->dev);
2195 			break;
2196 		}
2197 	}
2198 	rcu_read_unlock();
2199 
2200 	of_node_put(np);
2201 
2202 	return rproc;
2203 }
2204 #else
2205 struct rproc *rproc_get_by_phandle(phandle phandle)
2206 {
2207 	return NULL;
2208 }
2209 #endif
2210 EXPORT_SYMBOL(rproc_get_by_phandle);
2211 
2212 /**
2213  * rproc_set_firmware() - assign a new firmware
2214  * @rproc: rproc handle to which the new firmware is being assigned
2215  * @fw_name: new firmware name to be assigned
2216  *
2217  * This function allows remoteproc drivers or clients to configure a custom
2218  * firmware name that is different from the default name used during remoteproc
2219  * registration. The function does not trigger a remote processor boot,
2220  * only sets the firmware name used for a subsequent boot. This function
2221  * should also be called only when the remote processor is offline.
2222  *
2223  * This allows either the userspace to configure a different name through
2224  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2225  * a specific firmware when it is controlling the boot and shutdown of the
2226  * remote processor.
2227  *
2228  * Return: 0 on success or a negative value upon failure
2229  */
2230 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2231 {
2232 	struct device *dev;
2233 	int ret, len;
2234 	char *p;
2235 
2236 	if (!rproc || !fw_name)
2237 		return -EINVAL;
2238 
2239 	dev = rproc->dev.parent;
2240 
2241 	ret = mutex_lock_interruptible(&rproc->lock);
2242 	if (ret) {
2243 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2244 		return -EINVAL;
2245 	}
2246 
2247 	if (rproc->state != RPROC_OFFLINE) {
2248 		dev_err(dev, "can't change firmware while running\n");
2249 		ret = -EBUSY;
2250 		goto out;
2251 	}
2252 
2253 	len = strcspn(fw_name, "\n");
2254 	if (!len) {
2255 		dev_err(dev, "can't provide empty string for firmware name\n");
2256 		ret = -EINVAL;
2257 		goto out;
2258 	}
2259 
2260 	p = kstrndup(fw_name, len, GFP_KERNEL);
2261 	if (!p) {
2262 		ret = -ENOMEM;
2263 		goto out;
2264 	}
2265 
2266 	kfree_const(rproc->firmware);
2267 	rproc->firmware = p;
2268 
2269 out:
2270 	mutex_unlock(&rproc->lock);
2271 	return ret;
2272 }
2273 EXPORT_SYMBOL(rproc_set_firmware);
2274 
2275 static int rproc_validate(struct rproc *rproc)
2276 {
2277 	switch (rproc->state) {
2278 	case RPROC_OFFLINE:
2279 		/*
2280 		 * An offline processor without a start()
2281 		 * function makes no sense.
2282 		 */
2283 		if (!rproc->ops->start)
2284 			return -EINVAL;
2285 		break;
2286 	case RPROC_DETACHED:
2287 		/*
2288 		 * A remote processor in a detached state without an
2289 		 * attach() function makes not sense.
2290 		 */
2291 		if (!rproc->ops->attach)
2292 			return -EINVAL;
2293 		/*
2294 		 * When attaching to a remote processor the device memory
2295 		 * is already available and as such there is no need to have a
2296 		 * cached table.
2297 		 */
2298 		if (rproc->cached_table)
2299 			return -EINVAL;
2300 		break;
2301 	default:
2302 		/*
2303 		 * When adding a remote processor, the state of the device
2304 		 * can be offline or detached, nothing else.
2305 		 */
2306 		return -EINVAL;
2307 	}
2308 
2309 	return 0;
2310 }
2311 
2312 /**
2313  * rproc_add() - register a remote processor
2314  * @rproc: the remote processor handle to register
2315  *
2316  * Registers @rproc with the remoteproc framework, after it has been
2317  * allocated with rproc_alloc().
2318  *
2319  * This is called by the platform-specific rproc implementation, whenever
2320  * a new remote processor device is probed.
2321  *
2322  * Note: this function initiates an asynchronous firmware loading
2323  * context, which will look for virtio devices supported by the rproc's
2324  * firmware.
2325  *
2326  * If found, those virtio devices will be created and added, so as a result
2327  * of registering this remote processor, additional virtio drivers might be
2328  * probed.
2329  *
2330  * Return: 0 on success and an appropriate error code otherwise
2331  */
2332 int rproc_add(struct rproc *rproc)
2333 {
2334 	struct device *dev = &rproc->dev;
2335 	int ret;
2336 
2337 	ret = rproc_validate(rproc);
2338 	if (ret < 0)
2339 		return ret;
2340 
2341 	/* add char device for this remoteproc */
2342 	ret = rproc_char_device_add(rproc);
2343 	if (ret < 0)
2344 		return ret;
2345 
2346 	ret = device_add(dev);
2347 	if (ret < 0) {
2348 		put_device(dev);
2349 		goto rproc_remove_cdev;
2350 	}
2351 
2352 	dev_info(dev, "%s is available\n", rproc->name);
2353 
2354 	/* create debugfs entries */
2355 	rproc_create_debug_dir(rproc);
2356 
2357 	/* if rproc is marked always-on, request it to boot */
2358 	if (rproc->auto_boot) {
2359 		ret = rproc_trigger_auto_boot(rproc);
2360 		if (ret < 0)
2361 			goto rproc_remove_dev;
2362 	}
2363 
2364 	/* expose to rproc_get_by_phandle users */
2365 	mutex_lock(&rproc_list_mutex);
2366 	list_add_rcu(&rproc->node, &rproc_list);
2367 	mutex_unlock(&rproc_list_mutex);
2368 
2369 	return 0;
2370 
2371 rproc_remove_dev:
2372 	rproc_delete_debug_dir(rproc);
2373 	device_del(dev);
2374 rproc_remove_cdev:
2375 	rproc_char_device_remove(rproc);
2376 	return ret;
2377 }
2378 EXPORT_SYMBOL(rproc_add);
2379 
2380 static void devm_rproc_remove(void *rproc)
2381 {
2382 	rproc_del(rproc);
2383 }
2384 
2385 /**
2386  * devm_rproc_add() - resource managed rproc_add()
2387  * @dev: the underlying device
2388  * @rproc: the remote processor handle to register
2389  *
2390  * This function performs like rproc_add() but the registered rproc device will
2391  * automatically be removed on driver detach.
2392  *
2393  * Return: 0 on success, negative errno on failure
2394  */
2395 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2396 {
2397 	int err;
2398 
2399 	err = rproc_add(rproc);
2400 	if (err)
2401 		return err;
2402 
2403 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2404 }
2405 EXPORT_SYMBOL(devm_rproc_add);
2406 
2407 /**
2408  * rproc_type_release() - release a remote processor instance
2409  * @dev: the rproc's device
2410  *
2411  * This function should _never_ be called directly.
2412  *
2413  * It will be called by the driver core when no one holds a valid pointer
2414  * to @dev anymore.
2415  */
2416 static void rproc_type_release(struct device *dev)
2417 {
2418 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2419 
2420 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2421 
2422 	idr_destroy(&rproc->notifyids);
2423 
2424 	if (rproc->index >= 0)
2425 		ida_simple_remove(&rproc_dev_index, rproc->index);
2426 
2427 	kfree_const(rproc->firmware);
2428 	kfree_const(rproc->name);
2429 	kfree(rproc->ops);
2430 	kfree(rproc);
2431 }
2432 
2433 static const struct device_type rproc_type = {
2434 	.name		= "remoteproc",
2435 	.release	= rproc_type_release,
2436 };
2437 
2438 static int rproc_alloc_firmware(struct rproc *rproc,
2439 				const char *name, const char *firmware)
2440 {
2441 	const char *p;
2442 
2443 	/*
2444 	 * Allocate a firmware name if the caller gave us one to work
2445 	 * with.  Otherwise construct a new one using a default pattern.
2446 	 */
2447 	if (firmware)
2448 		p = kstrdup_const(firmware, GFP_KERNEL);
2449 	else
2450 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2451 
2452 	if (!p)
2453 		return -ENOMEM;
2454 
2455 	rproc->firmware = p;
2456 
2457 	return 0;
2458 }
2459 
2460 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2461 {
2462 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2463 	if (!rproc->ops)
2464 		return -ENOMEM;
2465 
2466 	/* Default to rproc_coredump if no coredump function is specified */
2467 	if (!rproc->ops->coredump)
2468 		rproc->ops->coredump = rproc_coredump;
2469 
2470 	if (rproc->ops->load)
2471 		return 0;
2472 
2473 	/* Default to ELF loader if no load function is specified */
2474 	rproc->ops->load = rproc_elf_load_segments;
2475 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2476 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2477 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2478 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2479 
2480 	return 0;
2481 }
2482 
2483 /**
2484  * rproc_alloc() - allocate a remote processor handle
2485  * @dev: the underlying device
2486  * @name: name of this remote processor
2487  * @ops: platform-specific handlers (mainly start/stop)
2488  * @firmware: name of firmware file to load, can be NULL
2489  * @len: length of private data needed by the rproc driver (in bytes)
2490  *
2491  * Allocates a new remote processor handle, but does not register
2492  * it yet. if @firmware is NULL, a default name is used.
2493  *
2494  * This function should be used by rproc implementations during initialization
2495  * of the remote processor.
2496  *
2497  * After creating an rproc handle using this function, and when ready,
2498  * implementations should then call rproc_add() to complete
2499  * the registration of the remote processor.
2500  *
2501  * Note: _never_ directly deallocate @rproc, even if it was not registered
2502  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2503  *
2504  * Return: new rproc pointer on success, and NULL on failure
2505  */
2506 struct rproc *rproc_alloc(struct device *dev, const char *name,
2507 			  const struct rproc_ops *ops,
2508 			  const char *firmware, int len)
2509 {
2510 	struct rproc *rproc;
2511 
2512 	if (!dev || !name || !ops)
2513 		return NULL;
2514 
2515 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2516 	if (!rproc)
2517 		return NULL;
2518 
2519 	rproc->priv = &rproc[1];
2520 	rproc->auto_boot = true;
2521 	rproc->elf_class = ELFCLASSNONE;
2522 	rproc->elf_machine = EM_NONE;
2523 
2524 	device_initialize(&rproc->dev);
2525 	rproc->dev.parent = dev;
2526 	rproc->dev.type = &rproc_type;
2527 	rproc->dev.class = &rproc_class;
2528 	rproc->dev.driver_data = rproc;
2529 	idr_init(&rproc->notifyids);
2530 
2531 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2532 	if (!rproc->name)
2533 		goto put_device;
2534 
2535 	if (rproc_alloc_firmware(rproc, name, firmware))
2536 		goto put_device;
2537 
2538 	if (rproc_alloc_ops(rproc, ops))
2539 		goto put_device;
2540 
2541 	/* Assign a unique device index and name */
2542 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2543 	if (rproc->index < 0) {
2544 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2545 		goto put_device;
2546 	}
2547 
2548 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2549 
2550 	atomic_set(&rproc->power, 0);
2551 
2552 	mutex_init(&rproc->lock);
2553 
2554 	INIT_LIST_HEAD(&rproc->carveouts);
2555 	INIT_LIST_HEAD(&rproc->mappings);
2556 	INIT_LIST_HEAD(&rproc->traces);
2557 	INIT_LIST_HEAD(&rproc->rvdevs);
2558 	INIT_LIST_HEAD(&rproc->subdevs);
2559 	INIT_LIST_HEAD(&rproc->dump_segments);
2560 
2561 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2562 
2563 	rproc->state = RPROC_OFFLINE;
2564 
2565 	return rproc;
2566 
2567 put_device:
2568 	put_device(&rproc->dev);
2569 	return NULL;
2570 }
2571 EXPORT_SYMBOL(rproc_alloc);
2572 
2573 /**
2574  * rproc_free() - unroll rproc_alloc()
2575  * @rproc: the remote processor handle
2576  *
2577  * This function decrements the rproc dev refcount.
2578  *
2579  * If no one holds any reference to rproc anymore, then its refcount would
2580  * now drop to zero, and it would be freed.
2581  */
2582 void rproc_free(struct rproc *rproc)
2583 {
2584 	put_device(&rproc->dev);
2585 }
2586 EXPORT_SYMBOL(rproc_free);
2587 
2588 /**
2589  * rproc_put() - release rproc reference
2590  * @rproc: the remote processor handle
2591  *
2592  * This function decrements the rproc dev refcount.
2593  *
2594  * If no one holds any reference to rproc anymore, then its refcount would
2595  * now drop to zero, and it would be freed.
2596  */
2597 void rproc_put(struct rproc *rproc)
2598 {
2599 	module_put(rproc->dev.parent->driver->owner);
2600 	put_device(&rproc->dev);
2601 }
2602 EXPORT_SYMBOL(rproc_put);
2603 
2604 /**
2605  * rproc_del() - unregister a remote processor
2606  * @rproc: rproc handle to unregister
2607  *
2608  * This function should be called when the platform specific rproc
2609  * implementation decides to remove the rproc device. it should
2610  * _only_ be called if a previous invocation of rproc_add()
2611  * has completed successfully.
2612  *
2613  * After rproc_del() returns, @rproc isn't freed yet, because
2614  * of the outstanding reference created by rproc_alloc. To decrement that
2615  * one last refcount, one still needs to call rproc_free().
2616  *
2617  * Return: 0 on success and -EINVAL if @rproc isn't valid
2618  */
2619 int rproc_del(struct rproc *rproc)
2620 {
2621 	if (!rproc)
2622 		return -EINVAL;
2623 
2624 	/* TODO: make sure this works with rproc->power > 1 */
2625 	rproc_shutdown(rproc);
2626 
2627 	mutex_lock(&rproc->lock);
2628 	rproc->state = RPROC_DELETED;
2629 	mutex_unlock(&rproc->lock);
2630 
2631 	rproc_delete_debug_dir(rproc);
2632 
2633 	/* the rproc is downref'ed as soon as it's removed from the klist */
2634 	mutex_lock(&rproc_list_mutex);
2635 	list_del_rcu(&rproc->node);
2636 	mutex_unlock(&rproc_list_mutex);
2637 
2638 	/* Ensure that no readers of rproc_list are still active */
2639 	synchronize_rcu();
2640 
2641 	device_del(&rproc->dev);
2642 	rproc_char_device_remove(rproc);
2643 
2644 	return 0;
2645 }
2646 EXPORT_SYMBOL(rproc_del);
2647 
2648 static void devm_rproc_free(struct device *dev, void *res)
2649 {
2650 	rproc_free(*(struct rproc **)res);
2651 }
2652 
2653 /**
2654  * devm_rproc_alloc() - resource managed rproc_alloc()
2655  * @dev: the underlying device
2656  * @name: name of this remote processor
2657  * @ops: platform-specific handlers (mainly start/stop)
2658  * @firmware: name of firmware file to load, can be NULL
2659  * @len: length of private data needed by the rproc driver (in bytes)
2660  *
2661  * This function performs like rproc_alloc() but the acquired rproc device will
2662  * automatically be released on driver detach.
2663  *
2664  * Return: new rproc instance, or NULL on failure
2665  */
2666 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2667 			       const struct rproc_ops *ops,
2668 			       const char *firmware, int len)
2669 {
2670 	struct rproc **ptr, *rproc;
2671 
2672 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2673 	if (!ptr)
2674 		return NULL;
2675 
2676 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2677 	if (rproc) {
2678 		*ptr = rproc;
2679 		devres_add(dev, ptr);
2680 	} else {
2681 		devres_free(ptr);
2682 	}
2683 
2684 	return rproc;
2685 }
2686 EXPORT_SYMBOL(devm_rproc_alloc);
2687 
2688 /**
2689  * rproc_add_subdev() - add a subdevice to a remoteproc
2690  * @rproc: rproc handle to add the subdevice to
2691  * @subdev: subdev handle to register
2692  *
2693  * Caller is responsible for populating optional subdevice function pointers.
2694  */
2695 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2696 {
2697 	list_add_tail(&subdev->node, &rproc->subdevs);
2698 }
2699 EXPORT_SYMBOL(rproc_add_subdev);
2700 
2701 /**
2702  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2703  * @rproc: rproc handle to remove the subdevice from
2704  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2705  */
2706 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2707 {
2708 	list_del(&subdev->node);
2709 }
2710 EXPORT_SYMBOL(rproc_remove_subdev);
2711 
2712 /**
2713  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2714  * @dev:	child device to find ancestor of
2715  *
2716  * Return: the ancestor rproc instance, or NULL if not found
2717  */
2718 struct rproc *rproc_get_by_child(struct device *dev)
2719 {
2720 	for (dev = dev->parent; dev; dev = dev->parent) {
2721 		if (dev->type == &rproc_type)
2722 			return dev->driver_data;
2723 	}
2724 
2725 	return NULL;
2726 }
2727 EXPORT_SYMBOL(rproc_get_by_child);
2728 
2729 /**
2730  * rproc_report_crash() - rproc crash reporter function
2731  * @rproc: remote processor
2732  * @type: crash type
2733  *
2734  * This function must be called every time a crash is detected by the low-level
2735  * drivers implementing a specific remoteproc. This should not be called from a
2736  * non-remoteproc driver.
2737  *
2738  * This function can be called from atomic/interrupt context.
2739  */
2740 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2741 {
2742 	if (!rproc) {
2743 		pr_err("NULL rproc pointer\n");
2744 		return;
2745 	}
2746 
2747 	/* Prevent suspend while the remoteproc is being recovered */
2748 	pm_stay_awake(rproc->dev.parent);
2749 
2750 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2751 		rproc->name, rproc_crash_to_string(type));
2752 
2753 	/* create a new task to handle the error */
2754 	schedule_work(&rproc->crash_handler);
2755 }
2756 EXPORT_SYMBOL(rproc_report_crash);
2757 
2758 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2759 			       void *ptr)
2760 {
2761 	unsigned int longest = 0;
2762 	struct rproc *rproc;
2763 	unsigned int d;
2764 
2765 	rcu_read_lock();
2766 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2767 		if (!rproc->ops->panic)
2768 			continue;
2769 
2770 		if (rproc->state != RPROC_RUNNING &&
2771 		    rproc->state != RPROC_ATTACHED)
2772 			continue;
2773 
2774 		d = rproc->ops->panic(rproc);
2775 		longest = max(longest, d);
2776 	}
2777 	rcu_read_unlock();
2778 
2779 	/*
2780 	 * Delay for the longest requested duration before returning. This can
2781 	 * be used by the remoteproc drivers to give the remote processor time
2782 	 * to perform any requested operations (such as flush caches), when
2783 	 * it's not possible to signal the Linux side due to the panic.
2784 	 */
2785 	mdelay(longest);
2786 
2787 	return NOTIFY_DONE;
2788 }
2789 
2790 static void __init rproc_init_panic(void)
2791 {
2792 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2793 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2794 }
2795 
2796 static void __exit rproc_exit_panic(void)
2797 {
2798 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2799 }
2800 
2801 static int __init remoteproc_init(void)
2802 {
2803 	rproc_init_sysfs();
2804 	rproc_init_debugfs();
2805 	rproc_init_cdev();
2806 	rproc_init_panic();
2807 
2808 	return 0;
2809 }
2810 subsys_initcall(remoteproc_init);
2811 
2812 static void __exit remoteproc_exit(void)
2813 {
2814 	ida_destroy(&rproc_dev_index);
2815 
2816 	rproc_exit_panic();
2817 	rproc_exit_debugfs();
2818 	rproc_exit_sysfs();
2819 }
2820 module_exit(remoteproc_exit);
2821 
2822 MODULE_LICENSE("GPL v2");
2823 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2824