xref: /linux/drivers/remoteproc/remoteproc_core.c (revision ae64438be1923e3c1102d90fd41db7afcfaf54cc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_reserved_mem.h>
37 #include <linux/virtio_ids.h>
38 #include <linux/virtio_ring.h>
39 #include <asm/byteorder.h>
40 #include <linux/platform_device.h>
41 
42 #include "remoteproc_internal.h"
43 
44 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
45 
46 static DEFINE_MUTEX(rproc_list_mutex);
47 static LIST_HEAD(rproc_list);
48 static struct notifier_block rproc_panic_nb;
49 
50 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
51 				 void *, int offset, int avail);
52 
53 static int rproc_alloc_carveout(struct rproc *rproc,
54 				struct rproc_mem_entry *mem);
55 static int rproc_release_carveout(struct rproc *rproc,
56 				  struct rproc_mem_entry *mem);
57 
58 /* Unique indices for remoteproc devices */
59 static DEFINE_IDA(rproc_dev_index);
60 static struct workqueue_struct *rproc_recovery_wq;
61 
62 static const char * const rproc_crash_names[] = {
63 	[RPROC_MMUFAULT]	= "mmufault",
64 	[RPROC_WATCHDOG]	= "watchdog",
65 	[RPROC_FATAL_ERROR]	= "fatal error",
66 };
67 
68 /* translate rproc_crash_type to string */
69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
70 {
71 	if (type < ARRAY_SIZE(rproc_crash_names))
72 		return rproc_crash_names[type];
73 	return "unknown";
74 }
75 
76 /*
77  * This is the IOMMU fault handler we register with the IOMMU API
78  * (when relevant; not all remote processors access memory through
79  * an IOMMU).
80  *
81  * IOMMU core will invoke this handler whenever the remote processor
82  * will try to access an unmapped device address.
83  */
84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 			     unsigned long iova, int flags, void *token)
86 {
87 	struct rproc *rproc = token;
88 
89 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90 
91 	rproc_report_crash(rproc, RPROC_MMUFAULT);
92 
93 	/*
94 	 * Let the iommu core know we're not really handling this fault;
95 	 * we just used it as a recovery trigger.
96 	 */
97 	return -ENOSYS;
98 }
99 
100 static int rproc_enable_iommu(struct rproc *rproc)
101 {
102 	struct iommu_domain *domain;
103 	struct device *dev = rproc->dev.parent;
104 	int ret;
105 
106 	if (!rproc->has_iommu) {
107 		dev_dbg(dev, "iommu not present\n");
108 		return 0;
109 	}
110 
111 	domain = iommu_domain_alloc(dev->bus);
112 	if (!domain) {
113 		dev_err(dev, "can't alloc iommu domain\n");
114 		return -ENOMEM;
115 	}
116 
117 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118 
119 	ret = iommu_attach_device(domain, dev);
120 	if (ret) {
121 		dev_err(dev, "can't attach iommu device: %d\n", ret);
122 		goto free_domain;
123 	}
124 
125 	rproc->domain = domain;
126 
127 	return 0;
128 
129 free_domain:
130 	iommu_domain_free(domain);
131 	return ret;
132 }
133 
134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 	struct iommu_domain *domain = rproc->domain;
137 	struct device *dev = rproc->dev.parent;
138 
139 	if (!domain)
140 		return;
141 
142 	iommu_detach_device(domain, dev);
143 	iommu_domain_free(domain);
144 }
145 
146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
147 {
148 	/*
149 	 * Return physical address according to virtual address location
150 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 	 * - in kernel: if region allocated in generic dma memory pool
152 	 */
153 	if (is_vmalloc_addr(cpu_addr)) {
154 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 				    offset_in_page(cpu_addr);
156 	}
157 
158 	WARN_ON(!virt_addr_valid(cpu_addr));
159 	return virt_to_phys(cpu_addr);
160 }
161 EXPORT_SYMBOL(rproc_va_to_pa);
162 
163 /**
164  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165  * @rproc: handle of a remote processor
166  * @da: remoteproc device address to translate
167  * @len: length of the memory region @da is pointing to
168  * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
169  *
170  * Some remote processors will ask us to allocate them physically contiguous
171  * memory regions (which we call "carveouts"), and map them to specific
172  * device addresses (which are hardcoded in the firmware). They may also have
173  * dedicated memory regions internal to the processors, and use them either
174  * exclusively or alongside carveouts.
175  *
176  * They may then ask us to copy objects into specific device addresses (e.g.
177  * code/data sections) or expose us certain symbols in other device address
178  * (e.g. their trace buffer).
179  *
180  * This function is a helper function with which we can go over the allocated
181  * carveouts and translate specific device addresses to kernel virtual addresses
182  * so we can access the referenced memory. This function also allows to perform
183  * translations on the internal remoteproc memory regions through a platform
184  * implementation specific da_to_va ops, if present.
185  *
186  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
187  * but only on kernel direct mapped RAM memory. Instead, we're just using
188  * here the output of the DMA API for the carveouts, which should be more
189  * correct.
190  *
191  * Return: a valid kernel address on success or NULL on failure
192  */
193 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
194 {
195 	struct rproc_mem_entry *carveout;
196 	void *ptr = NULL;
197 
198 	if (rproc->ops->da_to_va) {
199 		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
200 		if (ptr)
201 			goto out;
202 	}
203 
204 	list_for_each_entry(carveout, &rproc->carveouts, node) {
205 		int offset = da - carveout->da;
206 
207 		/*  Verify that carveout is allocated */
208 		if (!carveout->va)
209 			continue;
210 
211 		/* try next carveout if da is too small */
212 		if (offset < 0)
213 			continue;
214 
215 		/* try next carveout if da is too large */
216 		if (offset + len > carveout->len)
217 			continue;
218 
219 		ptr = carveout->va + offset;
220 
221 		if (is_iomem)
222 			*is_iomem = carveout->is_iomem;
223 
224 		break;
225 	}
226 
227 out:
228 	return ptr;
229 }
230 EXPORT_SYMBOL(rproc_da_to_va);
231 
232 /**
233  * rproc_find_carveout_by_name() - lookup the carveout region by a name
234  * @rproc: handle of a remote processor
235  * @name: carveout name to find (format string)
236  * @...: optional parameters matching @name string
237  *
238  * Platform driver has the capability to register some pre-allacoted carveout
239  * (physically contiguous memory regions) before rproc firmware loading and
240  * associated resource table analysis. These regions may be dedicated memory
241  * regions internal to the coprocessor or specified DDR region with specific
242  * attributes
243  *
244  * This function is a helper function with which we can go over the
245  * allocated carveouts and return associated region characteristics like
246  * coprocessor address, length or processor virtual address.
247  *
248  * Return: a valid pointer on carveout entry on success or NULL on failure.
249  */
250 __printf(2, 3)
251 struct rproc_mem_entry *
252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
253 {
254 	va_list args;
255 	char _name[32];
256 	struct rproc_mem_entry *carveout, *mem = NULL;
257 
258 	if (!name)
259 		return NULL;
260 
261 	va_start(args, name);
262 	vsnprintf(_name, sizeof(_name), name, args);
263 	va_end(args);
264 
265 	list_for_each_entry(carveout, &rproc->carveouts, node) {
266 		/* Compare carveout and requested names */
267 		if (!strcmp(carveout->name, _name)) {
268 			mem = carveout;
269 			break;
270 		}
271 	}
272 
273 	return mem;
274 }
275 
276 /**
277  * rproc_check_carveout_da() - Check specified carveout da configuration
278  * @rproc: handle of a remote processor
279  * @mem: pointer on carveout to check
280  * @da: area device address
281  * @len: associated area size
282  *
283  * This function is a helper function to verify requested device area (couple
284  * da, len) is part of specified carveout.
285  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
286  * checked.
287  *
288  * Return: 0 if carveout matches request else error
289  */
290 static int rproc_check_carveout_da(struct rproc *rproc,
291 				   struct rproc_mem_entry *mem, u32 da, u32 len)
292 {
293 	struct device *dev = &rproc->dev;
294 	int delta;
295 
296 	/* Check requested resource length */
297 	if (len > mem->len) {
298 		dev_err(dev, "Registered carveout doesn't fit len request\n");
299 		return -EINVAL;
300 	}
301 
302 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
303 		/* Address doesn't match registered carveout configuration */
304 		return -EINVAL;
305 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
306 		delta = da - mem->da;
307 
308 		/* Check requested resource belongs to registered carveout */
309 		if (delta < 0) {
310 			dev_err(dev,
311 				"Registered carveout doesn't fit da request\n");
312 			return -EINVAL;
313 		}
314 
315 		if (delta + len > mem->len) {
316 			dev_err(dev,
317 				"Registered carveout doesn't fit len request\n");
318 			return -EINVAL;
319 		}
320 	}
321 
322 	return 0;
323 }
324 
325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
326 {
327 	struct rproc *rproc = rvdev->rproc;
328 	struct device *dev = &rproc->dev;
329 	struct rproc_vring *rvring = &rvdev->vring[i];
330 	struct fw_rsc_vdev *rsc;
331 	int ret, notifyid;
332 	struct rproc_mem_entry *mem;
333 	size_t size;
334 
335 	/* actual size of vring (in bytes) */
336 	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
337 
338 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
339 
340 	/* Search for pre-registered carveout */
341 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
342 					  i);
343 	if (mem) {
344 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
345 			return -ENOMEM;
346 	} else {
347 		/* Register carveout in list */
348 		mem = rproc_mem_entry_init(dev, NULL, 0,
349 					   size, rsc->vring[i].da,
350 					   rproc_alloc_carveout,
351 					   rproc_release_carveout,
352 					   "vdev%dvring%d",
353 					   rvdev->index, i);
354 		if (!mem) {
355 			dev_err(dev, "Can't allocate memory entry structure\n");
356 			return -ENOMEM;
357 		}
358 
359 		rproc_add_carveout(rproc, mem);
360 	}
361 
362 	/*
363 	 * Assign an rproc-wide unique index for this vring
364 	 * TODO: assign a notifyid for rvdev updates as well
365 	 * TODO: support predefined notifyids (via resource table)
366 	 */
367 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
368 	if (ret < 0) {
369 		dev_err(dev, "idr_alloc failed: %d\n", ret);
370 		return ret;
371 	}
372 	notifyid = ret;
373 
374 	/* Potentially bump max_notifyid */
375 	if (notifyid > rproc->max_notifyid)
376 		rproc->max_notifyid = notifyid;
377 
378 	rvring->notifyid = notifyid;
379 
380 	/* Let the rproc know the notifyid of this vring.*/
381 	rsc->vring[i].notifyid = notifyid;
382 	return 0;
383 }
384 
385 int
386 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
387 {
388 	struct rproc *rproc = rvdev->rproc;
389 	struct device *dev = &rproc->dev;
390 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
391 	struct rproc_vring *rvring = &rvdev->vring[i];
392 
393 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
394 		i, vring->da, vring->num, vring->align);
395 
396 	/* verify queue size and vring alignment are sane */
397 	if (!vring->num || !vring->align) {
398 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
399 			vring->num, vring->align);
400 		return -EINVAL;
401 	}
402 
403 	rvring->num = vring->num;
404 	rvring->align = vring->align;
405 	rvring->rvdev = rvdev;
406 
407 	return 0;
408 }
409 
410 void rproc_free_vring(struct rproc_vring *rvring)
411 {
412 	struct rproc *rproc = rvring->rvdev->rproc;
413 	int idx = rvring - rvring->rvdev->vring;
414 	struct fw_rsc_vdev *rsc;
415 
416 	idr_remove(&rproc->notifyids, rvring->notifyid);
417 
418 	/*
419 	 * At this point rproc_stop() has been called and the installed resource
420 	 * table in the remote processor memory may no longer be accessible. As
421 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
422 	 * resource table (rproc->cached_table).  The cached resource table is
423 	 * only available when a remote processor has been booted by the
424 	 * remoteproc core, otherwise it is NULL.
425 	 *
426 	 * Based on the above, reset the virtio device section in the cached
427 	 * resource table only if there is one to work with.
428 	 */
429 	if (rproc->table_ptr) {
430 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
431 		rsc->vring[idx].da = 0;
432 		rsc->vring[idx].notifyid = -1;
433 	}
434 }
435 
436 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
437 {
438 	if (rvdev && rproc)
439 		list_add_tail(&rvdev->node, &rproc->rvdevs);
440 }
441 
442 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
443 {
444 	if (rvdev)
445 		list_del(&rvdev->node);
446 }
447 /**
448  * rproc_handle_vdev() - handle a vdev fw resource
449  * @rproc: the remote processor
450  * @ptr: the vring resource descriptor
451  * @offset: offset of the resource entry
452  * @avail: size of available data (for sanity checking the image)
453  *
454  * This resource entry requests the host to statically register a virtio
455  * device (vdev), and setup everything needed to support it. It contains
456  * everything needed to make it possible: the virtio device id, virtio
457  * device features, vrings information, virtio config space, etc...
458  *
459  * Before registering the vdev, the vrings are allocated from non-cacheable
460  * physically contiguous memory. Currently we only support two vrings per
461  * remote processor (temporary limitation). We might also want to consider
462  * doing the vring allocation only later when ->find_vqs() is invoked, and
463  * then release them upon ->del_vqs().
464  *
465  * Note: @da is currently not really handled correctly: we dynamically
466  * allocate it using the DMA API, ignoring requested hard coded addresses,
467  * and we don't take care of any required IOMMU programming. This is all
468  * going to be taken care of when the generic iommu-based DMA API will be
469  * merged. Meanwhile, statically-addressed iommu-based firmware images should
470  * use RSC_DEVMEM resource entries to map their required @da to the physical
471  * address of their base CMA region (ouch, hacky!).
472  *
473  * Return: 0 on success, or an appropriate error code otherwise
474  */
475 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
476 			     int offset, int avail)
477 {
478 	struct fw_rsc_vdev *rsc = ptr;
479 	struct device *dev = &rproc->dev;
480 	struct rproc_vdev *rvdev;
481 	size_t rsc_size;
482 	struct rproc_vdev_data rvdev_data;
483 	struct platform_device *pdev;
484 
485 	/* make sure resource isn't truncated */
486 	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
487 	if (size_add(rsc_size, rsc->config_len) > avail) {
488 		dev_err(dev, "vdev rsc is truncated\n");
489 		return -EINVAL;
490 	}
491 
492 	/* make sure reserved bytes are zeroes */
493 	if (rsc->reserved[0] || rsc->reserved[1]) {
494 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
495 		return -EINVAL;
496 	}
497 
498 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
499 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
500 
501 	/* we currently support only two vrings per rvdev */
502 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
503 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
504 		return -EINVAL;
505 	}
506 
507 	rvdev_data.id = rsc->id;
508 	rvdev_data.index = rproc->nb_vdev++;
509 	rvdev_data.rsc_offset = offset;
510 	rvdev_data.rsc = rsc;
511 
512 	pdev = platform_device_register_data(dev, "rproc-virtio", rvdev_data.index, &rvdev_data,
513 					     sizeof(rvdev_data));
514 	if (IS_ERR(pdev)) {
515 		dev_err(dev, "failed to create rproc-virtio device\n");
516 		return PTR_ERR(pdev);
517 	}
518 
519 	return 0;
520 }
521 
522 /**
523  * rproc_handle_trace() - handle a shared trace buffer resource
524  * @rproc: the remote processor
525  * @ptr: the trace resource descriptor
526  * @offset: offset of the resource entry
527  * @avail: size of available data (for sanity checking the image)
528  *
529  * In case the remote processor dumps trace logs into memory,
530  * export it via debugfs.
531  *
532  * Currently, the 'da' member of @rsc should contain the device address
533  * where the remote processor is dumping the traces. Later we could also
534  * support dynamically allocating this address using the generic
535  * DMA API (but currently there isn't a use case for that).
536  *
537  * Return: 0 on success, or an appropriate error code otherwise
538  */
539 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
540 			      int offset, int avail)
541 {
542 	struct fw_rsc_trace *rsc = ptr;
543 	struct rproc_debug_trace *trace;
544 	struct device *dev = &rproc->dev;
545 	char name[15];
546 
547 	if (sizeof(*rsc) > avail) {
548 		dev_err(dev, "trace rsc is truncated\n");
549 		return -EINVAL;
550 	}
551 
552 	/* make sure reserved bytes are zeroes */
553 	if (rsc->reserved) {
554 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
555 		return -EINVAL;
556 	}
557 
558 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
559 	if (!trace)
560 		return -ENOMEM;
561 
562 	/* set the trace buffer dma properties */
563 	trace->trace_mem.len = rsc->len;
564 	trace->trace_mem.da = rsc->da;
565 
566 	/* set pointer on rproc device */
567 	trace->rproc = rproc;
568 
569 	/* make sure snprintf always null terminates, even if truncating */
570 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
571 
572 	/* create the debugfs entry */
573 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
574 
575 	list_add_tail(&trace->node, &rproc->traces);
576 
577 	rproc->num_traces++;
578 
579 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
580 		name, rsc->da, rsc->len);
581 
582 	return 0;
583 }
584 
585 /**
586  * rproc_handle_devmem() - handle devmem resource entry
587  * @rproc: remote processor handle
588  * @ptr: the devmem resource entry
589  * @offset: offset of the resource entry
590  * @avail: size of available data (for sanity checking the image)
591  *
592  * Remote processors commonly need to access certain on-chip peripherals.
593  *
594  * Some of these remote processors access memory via an iommu device,
595  * and might require us to configure their iommu before they can access
596  * the on-chip peripherals they need.
597  *
598  * This resource entry is a request to map such a peripheral device.
599  *
600  * These devmem entries will contain the physical address of the device in
601  * the 'pa' member. If a specific device address is expected, then 'da' will
602  * contain it (currently this is the only use case supported). 'len' will
603  * contain the size of the physical region we need to map.
604  *
605  * Currently we just "trust" those devmem entries to contain valid physical
606  * addresses, but this is going to change: we want the implementations to
607  * tell us ranges of physical addresses the firmware is allowed to request,
608  * and not allow firmwares to request access to physical addresses that
609  * are outside those ranges.
610  *
611  * Return: 0 on success, or an appropriate error code otherwise
612  */
613 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
614 			       int offset, int avail)
615 {
616 	struct fw_rsc_devmem *rsc = ptr;
617 	struct rproc_mem_entry *mapping;
618 	struct device *dev = &rproc->dev;
619 	int ret;
620 
621 	/* no point in handling this resource without a valid iommu domain */
622 	if (!rproc->domain)
623 		return -EINVAL;
624 
625 	if (sizeof(*rsc) > avail) {
626 		dev_err(dev, "devmem rsc is truncated\n");
627 		return -EINVAL;
628 	}
629 
630 	/* make sure reserved bytes are zeroes */
631 	if (rsc->reserved) {
632 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
633 		return -EINVAL;
634 	}
635 
636 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
637 	if (!mapping)
638 		return -ENOMEM;
639 
640 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
641 	if (ret) {
642 		dev_err(dev, "failed to map devmem: %d\n", ret);
643 		goto out;
644 	}
645 
646 	/*
647 	 * We'll need this info later when we'll want to unmap everything
648 	 * (e.g. on shutdown).
649 	 *
650 	 * We can't trust the remote processor not to change the resource
651 	 * table, so we must maintain this info independently.
652 	 */
653 	mapping->da = rsc->da;
654 	mapping->len = rsc->len;
655 	list_add_tail(&mapping->node, &rproc->mappings);
656 
657 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
658 		rsc->pa, rsc->da, rsc->len);
659 
660 	return 0;
661 
662 out:
663 	kfree(mapping);
664 	return ret;
665 }
666 
667 /**
668  * rproc_alloc_carveout() - allocated specified carveout
669  * @rproc: rproc handle
670  * @mem: the memory entry to allocate
671  *
672  * This function allocate specified memory entry @mem using
673  * dma_alloc_coherent() as default allocator
674  *
675  * Return: 0 on success, or an appropriate error code otherwise
676  */
677 static int rproc_alloc_carveout(struct rproc *rproc,
678 				struct rproc_mem_entry *mem)
679 {
680 	struct rproc_mem_entry *mapping = NULL;
681 	struct device *dev = &rproc->dev;
682 	dma_addr_t dma;
683 	void *va;
684 	int ret;
685 
686 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
687 	if (!va) {
688 		dev_err(dev->parent,
689 			"failed to allocate dma memory: len 0x%zx\n",
690 			mem->len);
691 		return -ENOMEM;
692 	}
693 
694 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
695 		va, &dma, mem->len);
696 
697 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
698 		/*
699 		 * Check requested da is equal to dma address
700 		 * and print a warn message in case of missalignment.
701 		 * Don't stop rproc_start sequence as coprocessor may
702 		 * build pa to da translation on its side.
703 		 */
704 		if (mem->da != (u32)dma)
705 			dev_warn(dev->parent,
706 				 "Allocated carveout doesn't fit device address request\n");
707 	}
708 
709 	/*
710 	 * Ok, this is non-standard.
711 	 *
712 	 * Sometimes we can't rely on the generic iommu-based DMA API
713 	 * to dynamically allocate the device address and then set the IOMMU
714 	 * tables accordingly, because some remote processors might
715 	 * _require_ us to use hard coded device addresses that their
716 	 * firmware was compiled with.
717 	 *
718 	 * In this case, we must use the IOMMU API directly and map
719 	 * the memory to the device address as expected by the remote
720 	 * processor.
721 	 *
722 	 * Obviously such remote processor devices should not be configured
723 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
724 	 * physical address in this case.
725 	 */
726 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
727 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
728 		if (!mapping) {
729 			ret = -ENOMEM;
730 			goto dma_free;
731 		}
732 
733 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
734 				mem->flags);
735 		if (ret) {
736 			dev_err(dev, "iommu_map failed: %d\n", ret);
737 			goto free_mapping;
738 		}
739 
740 		/*
741 		 * We'll need this info later when we'll want to unmap
742 		 * everything (e.g. on shutdown).
743 		 *
744 		 * We can't trust the remote processor not to change the
745 		 * resource table, so we must maintain this info independently.
746 		 */
747 		mapping->da = mem->da;
748 		mapping->len = mem->len;
749 		list_add_tail(&mapping->node, &rproc->mappings);
750 
751 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
752 			mem->da, &dma);
753 	}
754 
755 	if (mem->da == FW_RSC_ADDR_ANY) {
756 		/* Update device address as undefined by requester */
757 		if ((u64)dma & HIGH_BITS_MASK)
758 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
759 
760 		mem->da = (u32)dma;
761 	}
762 
763 	mem->dma = dma;
764 	mem->va = va;
765 
766 	return 0;
767 
768 free_mapping:
769 	kfree(mapping);
770 dma_free:
771 	dma_free_coherent(dev->parent, mem->len, va, dma);
772 	return ret;
773 }
774 
775 /**
776  * rproc_release_carveout() - release acquired carveout
777  * @rproc: rproc handle
778  * @mem: the memory entry to release
779  *
780  * This function releases specified memory entry @mem allocated via
781  * rproc_alloc_carveout() function by @rproc.
782  *
783  * Return: 0 on success, or an appropriate error code otherwise
784  */
785 static int rproc_release_carveout(struct rproc *rproc,
786 				  struct rproc_mem_entry *mem)
787 {
788 	struct device *dev = &rproc->dev;
789 
790 	/* clean up carveout allocations */
791 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
792 	return 0;
793 }
794 
795 /**
796  * rproc_handle_carveout() - handle phys contig memory allocation requests
797  * @rproc: rproc handle
798  * @ptr: the resource entry
799  * @offset: offset of the resource entry
800  * @avail: size of available data (for image validation)
801  *
802  * This function will handle firmware requests for allocation of physically
803  * contiguous memory regions.
804  *
805  * These request entries should come first in the firmware's resource table,
806  * as other firmware entries might request placing other data objects inside
807  * these memory regions (e.g. data/code segments, trace resource entries, ...).
808  *
809  * Allocating memory this way helps utilizing the reserved physical memory
810  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
811  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
812  * pressure is important; it may have a substantial impact on performance.
813  *
814  * Return: 0 on success, or an appropriate error code otherwise
815  */
816 static int rproc_handle_carveout(struct rproc *rproc,
817 				 void *ptr, int offset, int avail)
818 {
819 	struct fw_rsc_carveout *rsc = ptr;
820 	struct rproc_mem_entry *carveout;
821 	struct device *dev = &rproc->dev;
822 
823 	if (sizeof(*rsc) > avail) {
824 		dev_err(dev, "carveout rsc is truncated\n");
825 		return -EINVAL;
826 	}
827 
828 	/* make sure reserved bytes are zeroes */
829 	if (rsc->reserved) {
830 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
831 		return -EINVAL;
832 	}
833 
834 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
835 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
836 
837 	/*
838 	 * Check carveout rsc already part of a registered carveout,
839 	 * Search by name, then check the da and length
840 	 */
841 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
842 
843 	if (carveout) {
844 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
845 			dev_err(dev,
846 				"Carveout already associated to resource table\n");
847 			return -ENOMEM;
848 		}
849 
850 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
851 			return -ENOMEM;
852 
853 		/* Update memory carveout with resource table info */
854 		carveout->rsc_offset = offset;
855 		carveout->flags = rsc->flags;
856 
857 		return 0;
858 	}
859 
860 	/* Register carveout in list */
861 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
862 					rproc_alloc_carveout,
863 					rproc_release_carveout, rsc->name);
864 	if (!carveout) {
865 		dev_err(dev, "Can't allocate memory entry structure\n");
866 		return -ENOMEM;
867 	}
868 
869 	carveout->flags = rsc->flags;
870 	carveout->rsc_offset = offset;
871 	rproc_add_carveout(rproc, carveout);
872 
873 	return 0;
874 }
875 
876 /**
877  * rproc_add_carveout() - register an allocated carveout region
878  * @rproc: rproc handle
879  * @mem: memory entry to register
880  *
881  * This function registers specified memory entry in @rproc carveouts list.
882  * Specified carveout should have been allocated before registering.
883  */
884 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
885 {
886 	list_add_tail(&mem->node, &rproc->carveouts);
887 }
888 EXPORT_SYMBOL(rproc_add_carveout);
889 
890 /**
891  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
892  * @dev: pointer on device struct
893  * @va: virtual address
894  * @dma: dma address
895  * @len: memory carveout length
896  * @da: device address
897  * @alloc: memory carveout allocation function
898  * @release: memory carveout release function
899  * @name: carveout name
900  *
901  * This function allocates a rproc_mem_entry struct and fill it with parameters
902  * provided by client.
903  *
904  * Return: a valid pointer on success, or NULL on failure
905  */
906 __printf(8, 9)
907 struct rproc_mem_entry *
908 rproc_mem_entry_init(struct device *dev,
909 		     void *va, dma_addr_t dma, size_t len, u32 da,
910 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
911 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
912 		     const char *name, ...)
913 {
914 	struct rproc_mem_entry *mem;
915 	va_list args;
916 
917 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
918 	if (!mem)
919 		return mem;
920 
921 	mem->va = va;
922 	mem->dma = dma;
923 	mem->da = da;
924 	mem->len = len;
925 	mem->alloc = alloc;
926 	mem->release = release;
927 	mem->rsc_offset = FW_RSC_ADDR_ANY;
928 	mem->of_resm_idx = -1;
929 
930 	va_start(args, name);
931 	vsnprintf(mem->name, sizeof(mem->name), name, args);
932 	va_end(args);
933 
934 	return mem;
935 }
936 EXPORT_SYMBOL(rproc_mem_entry_init);
937 
938 /**
939  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
940  * from a reserved memory phandle
941  * @dev: pointer on device struct
942  * @of_resm_idx: reserved memory phandle index in "memory-region"
943  * @len: memory carveout length
944  * @da: device address
945  * @name: carveout name
946  *
947  * This function allocates a rproc_mem_entry struct and fill it with parameters
948  * provided by client.
949  *
950  * Return: a valid pointer on success, or NULL on failure
951  */
952 __printf(5, 6)
953 struct rproc_mem_entry *
954 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
955 			     u32 da, const char *name, ...)
956 {
957 	struct rproc_mem_entry *mem;
958 	va_list args;
959 
960 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
961 	if (!mem)
962 		return mem;
963 
964 	mem->da = da;
965 	mem->len = len;
966 	mem->rsc_offset = FW_RSC_ADDR_ANY;
967 	mem->of_resm_idx = of_resm_idx;
968 
969 	va_start(args, name);
970 	vsnprintf(mem->name, sizeof(mem->name), name, args);
971 	va_end(args);
972 
973 	return mem;
974 }
975 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
976 
977 /**
978  * rproc_of_parse_firmware() - parse and return the firmware-name
979  * @dev: pointer on device struct representing a rproc
980  * @index: index to use for the firmware-name retrieval
981  * @fw_name: pointer to a character string, in which the firmware
982  *           name is returned on success and unmodified otherwise.
983  *
984  * This is an OF helper function that parses a device's DT node for
985  * the "firmware-name" property and returns the firmware name pointer
986  * in @fw_name on success.
987  *
988  * Return: 0 on success, or an appropriate failure.
989  */
990 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
991 {
992 	int ret;
993 
994 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
995 					    index, fw_name);
996 	return ret ? ret : 0;
997 }
998 EXPORT_SYMBOL(rproc_of_parse_firmware);
999 
1000 /*
1001  * A lookup table for resource handlers. The indices are defined in
1002  * enum fw_resource_type.
1003  */
1004 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1005 	[RSC_CARVEOUT] = rproc_handle_carveout,
1006 	[RSC_DEVMEM] = rproc_handle_devmem,
1007 	[RSC_TRACE] = rproc_handle_trace,
1008 	[RSC_VDEV] = rproc_handle_vdev,
1009 };
1010 
1011 /* handle firmware resource entries before booting the remote processor */
1012 static int rproc_handle_resources(struct rproc *rproc,
1013 				  rproc_handle_resource_t handlers[RSC_LAST])
1014 {
1015 	struct device *dev = &rproc->dev;
1016 	rproc_handle_resource_t handler;
1017 	int ret = 0, i;
1018 
1019 	if (!rproc->table_ptr)
1020 		return 0;
1021 
1022 	for (i = 0; i < rproc->table_ptr->num; i++) {
1023 		int offset = rproc->table_ptr->offset[i];
1024 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1025 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1026 		void *rsc = (void *)hdr + sizeof(*hdr);
1027 
1028 		/* make sure table isn't truncated */
1029 		if (avail < 0) {
1030 			dev_err(dev, "rsc table is truncated\n");
1031 			return -EINVAL;
1032 		}
1033 
1034 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1035 
1036 		if (hdr->type >= RSC_VENDOR_START &&
1037 		    hdr->type <= RSC_VENDOR_END) {
1038 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1039 					       offset + sizeof(*hdr), avail);
1040 			if (ret == RSC_HANDLED)
1041 				continue;
1042 			else if (ret < 0)
1043 				break;
1044 
1045 			dev_warn(dev, "unsupported vendor resource %d\n",
1046 				 hdr->type);
1047 			continue;
1048 		}
1049 
1050 		if (hdr->type >= RSC_LAST) {
1051 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1052 			continue;
1053 		}
1054 
1055 		handler = handlers[hdr->type];
1056 		if (!handler)
1057 			continue;
1058 
1059 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1060 		if (ret)
1061 			break;
1062 	}
1063 
1064 	return ret;
1065 }
1066 
1067 static int rproc_prepare_subdevices(struct rproc *rproc)
1068 {
1069 	struct rproc_subdev *subdev;
1070 	int ret;
1071 
1072 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1073 		if (subdev->prepare) {
1074 			ret = subdev->prepare(subdev);
1075 			if (ret)
1076 				goto unroll_preparation;
1077 		}
1078 	}
1079 
1080 	return 0;
1081 
1082 unroll_preparation:
1083 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1084 		if (subdev->unprepare)
1085 			subdev->unprepare(subdev);
1086 	}
1087 
1088 	return ret;
1089 }
1090 
1091 static int rproc_start_subdevices(struct rproc *rproc)
1092 {
1093 	struct rproc_subdev *subdev;
1094 	int ret;
1095 
1096 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1097 		if (subdev->start) {
1098 			ret = subdev->start(subdev);
1099 			if (ret)
1100 				goto unroll_registration;
1101 		}
1102 	}
1103 
1104 	return 0;
1105 
1106 unroll_registration:
1107 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1108 		if (subdev->stop)
1109 			subdev->stop(subdev, true);
1110 	}
1111 
1112 	return ret;
1113 }
1114 
1115 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1116 {
1117 	struct rproc_subdev *subdev;
1118 
1119 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1120 		if (subdev->stop)
1121 			subdev->stop(subdev, crashed);
1122 	}
1123 }
1124 
1125 static void rproc_unprepare_subdevices(struct rproc *rproc)
1126 {
1127 	struct rproc_subdev *subdev;
1128 
1129 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1130 		if (subdev->unprepare)
1131 			subdev->unprepare(subdev);
1132 	}
1133 }
1134 
1135 /**
1136  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1137  * in the list
1138  * @rproc: the remote processor handle
1139  *
1140  * This function parses registered carveout list, performs allocation
1141  * if alloc() ops registered and updates resource table information
1142  * if rsc_offset set.
1143  *
1144  * Return: 0 on success
1145  */
1146 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1147 {
1148 	struct rproc_mem_entry *entry, *tmp;
1149 	struct fw_rsc_carveout *rsc;
1150 	struct device *dev = &rproc->dev;
1151 	u64 pa;
1152 	int ret;
1153 
1154 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1155 		if (entry->alloc) {
1156 			ret = entry->alloc(rproc, entry);
1157 			if (ret) {
1158 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1159 					entry->name, ret);
1160 				return -ENOMEM;
1161 			}
1162 		}
1163 
1164 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1165 			/* update resource table */
1166 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1167 
1168 			/*
1169 			 * Some remote processors might need to know the pa
1170 			 * even though they are behind an IOMMU. E.g., OMAP4's
1171 			 * remote M3 processor needs this so it can control
1172 			 * on-chip hardware accelerators that are not behind
1173 			 * the IOMMU, and therefor must know the pa.
1174 			 *
1175 			 * Generally we don't want to expose physical addresses
1176 			 * if we don't have to (remote processors are generally
1177 			 * _not_ trusted), so we might want to do this only for
1178 			 * remote processor that _must_ have this (e.g. OMAP4's
1179 			 * dual M3 subsystem).
1180 			 *
1181 			 * Non-IOMMU processors might also want to have this info.
1182 			 * In this case, the device address and the physical address
1183 			 * are the same.
1184 			 */
1185 
1186 			/* Use va if defined else dma to generate pa */
1187 			if (entry->va)
1188 				pa = (u64)rproc_va_to_pa(entry->va);
1189 			else
1190 				pa = (u64)entry->dma;
1191 
1192 			if (((u64)pa) & HIGH_BITS_MASK)
1193 				dev_warn(dev,
1194 					 "Physical address cast in 32bit to fit resource table format\n");
1195 
1196 			rsc->pa = (u32)pa;
1197 			rsc->da = entry->da;
1198 			rsc->len = entry->len;
1199 		}
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 
1206 /**
1207  * rproc_resource_cleanup() - clean up and free all acquired resources
1208  * @rproc: rproc handle
1209  *
1210  * This function will free all resources acquired for @rproc, and it
1211  * is called whenever @rproc either shuts down or fails to boot.
1212  */
1213 void rproc_resource_cleanup(struct rproc *rproc)
1214 {
1215 	struct rproc_mem_entry *entry, *tmp;
1216 	struct rproc_debug_trace *trace, *ttmp;
1217 	struct rproc_vdev *rvdev, *rvtmp;
1218 	struct device *dev = &rproc->dev;
1219 
1220 	/* clean up debugfs trace entries */
1221 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1222 		rproc_remove_trace_file(trace->tfile);
1223 		rproc->num_traces--;
1224 		list_del(&trace->node);
1225 		kfree(trace);
1226 	}
1227 
1228 	/* clean up iommu mapping entries */
1229 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1230 		size_t unmapped;
1231 
1232 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1233 		if (unmapped != entry->len) {
1234 			/* nothing much to do besides complaining */
1235 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1236 				unmapped);
1237 		}
1238 
1239 		list_del(&entry->node);
1240 		kfree(entry);
1241 	}
1242 
1243 	/* clean up carveout allocations */
1244 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1245 		if (entry->release)
1246 			entry->release(rproc, entry);
1247 		list_del(&entry->node);
1248 		kfree(entry);
1249 	}
1250 
1251 	/* clean up remote vdev entries */
1252 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1253 		platform_device_unregister(rvdev->pdev);
1254 
1255 	rproc_coredump_cleanup(rproc);
1256 }
1257 EXPORT_SYMBOL(rproc_resource_cleanup);
1258 
1259 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1260 {
1261 	struct resource_table *loaded_table;
1262 	struct device *dev = &rproc->dev;
1263 	int ret;
1264 
1265 	/* load the ELF segments to memory */
1266 	ret = rproc_load_segments(rproc, fw);
1267 	if (ret) {
1268 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1269 		return ret;
1270 	}
1271 
1272 	/*
1273 	 * The starting device has been given the rproc->cached_table as the
1274 	 * resource table. The address of the vring along with the other
1275 	 * allocated resources (carveouts etc) is stored in cached_table.
1276 	 * In order to pass this information to the remote device we must copy
1277 	 * this information to device memory. We also update the table_ptr so
1278 	 * that any subsequent changes will be applied to the loaded version.
1279 	 */
1280 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1281 	if (loaded_table) {
1282 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1283 		rproc->table_ptr = loaded_table;
1284 	}
1285 
1286 	ret = rproc_prepare_subdevices(rproc);
1287 	if (ret) {
1288 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1289 			rproc->name, ret);
1290 		goto reset_table_ptr;
1291 	}
1292 
1293 	/* power up the remote processor */
1294 	ret = rproc->ops->start(rproc);
1295 	if (ret) {
1296 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1297 		goto unprepare_subdevices;
1298 	}
1299 
1300 	/* Start any subdevices for the remote processor */
1301 	ret = rproc_start_subdevices(rproc);
1302 	if (ret) {
1303 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1304 			rproc->name, ret);
1305 		goto stop_rproc;
1306 	}
1307 
1308 	rproc->state = RPROC_RUNNING;
1309 
1310 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1311 
1312 	return 0;
1313 
1314 stop_rproc:
1315 	rproc->ops->stop(rproc);
1316 unprepare_subdevices:
1317 	rproc_unprepare_subdevices(rproc);
1318 reset_table_ptr:
1319 	rproc->table_ptr = rproc->cached_table;
1320 
1321 	return ret;
1322 }
1323 
1324 static int __rproc_attach(struct rproc *rproc)
1325 {
1326 	struct device *dev = &rproc->dev;
1327 	int ret;
1328 
1329 	ret = rproc_prepare_subdevices(rproc);
1330 	if (ret) {
1331 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1332 			rproc->name, ret);
1333 		goto out;
1334 	}
1335 
1336 	/* Attach to the remote processor */
1337 	ret = rproc_attach_device(rproc);
1338 	if (ret) {
1339 		dev_err(dev, "can't attach to rproc %s: %d\n",
1340 			rproc->name, ret);
1341 		goto unprepare_subdevices;
1342 	}
1343 
1344 	/* Start any subdevices for the remote processor */
1345 	ret = rproc_start_subdevices(rproc);
1346 	if (ret) {
1347 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1348 			rproc->name, ret);
1349 		goto stop_rproc;
1350 	}
1351 
1352 	rproc->state = RPROC_ATTACHED;
1353 
1354 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1355 
1356 	return 0;
1357 
1358 stop_rproc:
1359 	rproc->ops->stop(rproc);
1360 unprepare_subdevices:
1361 	rproc_unprepare_subdevices(rproc);
1362 out:
1363 	return ret;
1364 }
1365 
1366 /*
1367  * take a firmware and boot a remote processor with it.
1368  */
1369 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1370 {
1371 	struct device *dev = &rproc->dev;
1372 	const char *name = rproc->firmware;
1373 	int ret;
1374 
1375 	ret = rproc_fw_sanity_check(rproc, fw);
1376 	if (ret)
1377 		return ret;
1378 
1379 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1380 
1381 	/*
1382 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1383 	 * just a nop
1384 	 */
1385 	ret = rproc_enable_iommu(rproc);
1386 	if (ret) {
1387 		dev_err(dev, "can't enable iommu: %d\n", ret);
1388 		return ret;
1389 	}
1390 
1391 	/* Prepare rproc for firmware loading if needed */
1392 	ret = rproc_prepare_device(rproc);
1393 	if (ret) {
1394 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1395 		goto disable_iommu;
1396 	}
1397 
1398 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1399 
1400 	/* Load resource table, core dump segment list etc from the firmware */
1401 	ret = rproc_parse_fw(rproc, fw);
1402 	if (ret)
1403 		goto unprepare_rproc;
1404 
1405 	/* reset max_notifyid */
1406 	rproc->max_notifyid = -1;
1407 
1408 	/* reset handled vdev */
1409 	rproc->nb_vdev = 0;
1410 
1411 	/* handle fw resources which are required to boot rproc */
1412 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1413 	if (ret) {
1414 		dev_err(dev, "Failed to process resources: %d\n", ret);
1415 		goto clean_up_resources;
1416 	}
1417 
1418 	/* Allocate carveout resources associated to rproc */
1419 	ret = rproc_alloc_registered_carveouts(rproc);
1420 	if (ret) {
1421 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1422 			ret);
1423 		goto clean_up_resources;
1424 	}
1425 
1426 	ret = rproc_start(rproc, fw);
1427 	if (ret)
1428 		goto clean_up_resources;
1429 
1430 	return 0;
1431 
1432 clean_up_resources:
1433 	rproc_resource_cleanup(rproc);
1434 	kfree(rproc->cached_table);
1435 	rproc->cached_table = NULL;
1436 	rproc->table_ptr = NULL;
1437 unprepare_rproc:
1438 	/* release HW resources if needed */
1439 	rproc_unprepare_device(rproc);
1440 disable_iommu:
1441 	rproc_disable_iommu(rproc);
1442 	return ret;
1443 }
1444 
1445 static int rproc_set_rsc_table(struct rproc *rproc)
1446 {
1447 	struct resource_table *table_ptr;
1448 	struct device *dev = &rproc->dev;
1449 	size_t table_sz;
1450 	int ret;
1451 
1452 	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1453 	if (!table_ptr) {
1454 		/* Not having a resource table is acceptable */
1455 		return 0;
1456 	}
1457 
1458 	if (IS_ERR(table_ptr)) {
1459 		ret = PTR_ERR(table_ptr);
1460 		dev_err(dev, "can't load resource table: %d\n", ret);
1461 		return ret;
1462 	}
1463 
1464 	/*
1465 	 * If it is possible to detach the remote processor, keep an untouched
1466 	 * copy of the resource table.  That way we can start fresh again when
1467 	 * the remote processor is re-attached, that is:
1468 	 *
1469 	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1470 	 *
1471 	 * Free'd in rproc_reset_rsc_table_on_detach() and
1472 	 * rproc_reset_rsc_table_on_stop().
1473 	 */
1474 	if (rproc->ops->detach) {
1475 		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1476 		if (!rproc->clean_table)
1477 			return -ENOMEM;
1478 	} else {
1479 		rproc->clean_table = NULL;
1480 	}
1481 
1482 	rproc->cached_table = NULL;
1483 	rproc->table_ptr = table_ptr;
1484 	rproc->table_sz = table_sz;
1485 
1486 	return 0;
1487 }
1488 
1489 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1490 {
1491 	struct resource_table *table_ptr;
1492 
1493 	/* A resource table was never retrieved, nothing to do here */
1494 	if (!rproc->table_ptr)
1495 		return 0;
1496 
1497 	/*
1498 	 * If we made it to this point a clean_table _must_ have been
1499 	 * allocated in rproc_set_rsc_table().  If one isn't present
1500 	 * something went really wrong and we must complain.
1501 	 */
1502 	if (WARN_ON(!rproc->clean_table))
1503 		return -EINVAL;
1504 
1505 	/* Remember where the external entity installed the resource table */
1506 	table_ptr = rproc->table_ptr;
1507 
1508 	/*
1509 	 * If we made it here the remote processor was started by another
1510 	 * entity and a cache table doesn't exist.  As such make a copy of
1511 	 * the resource table currently used by the remote processor and
1512 	 * use that for the rest of the shutdown process.  The memory
1513 	 * allocated here is free'd in rproc_detach().
1514 	 */
1515 	rproc->cached_table = kmemdup(rproc->table_ptr,
1516 				      rproc->table_sz, GFP_KERNEL);
1517 	if (!rproc->cached_table)
1518 		return -ENOMEM;
1519 
1520 	/*
1521 	 * Use a copy of the resource table for the remainder of the
1522 	 * shutdown process.
1523 	 */
1524 	rproc->table_ptr = rproc->cached_table;
1525 
1526 	/*
1527 	 * Reset the memory area where the firmware loaded the resource table
1528 	 * to its original value.  That way when we re-attach the remote
1529 	 * processor the resource table is clean and ready to be used again.
1530 	 */
1531 	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1532 
1533 	/*
1534 	 * The clean resource table is no longer needed.  Allocated in
1535 	 * rproc_set_rsc_table().
1536 	 */
1537 	kfree(rproc->clean_table);
1538 
1539 	return 0;
1540 }
1541 
1542 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1543 {
1544 	/* A resource table was never retrieved, nothing to do here */
1545 	if (!rproc->table_ptr)
1546 		return 0;
1547 
1548 	/*
1549 	 * If a cache table exists the remote processor was started by
1550 	 * the remoteproc core.  That cache table should be used for
1551 	 * the rest of the shutdown process.
1552 	 */
1553 	if (rproc->cached_table)
1554 		goto out;
1555 
1556 	/*
1557 	 * If we made it here the remote processor was started by another
1558 	 * entity and a cache table doesn't exist.  As such make a copy of
1559 	 * the resource table currently used by the remote processor and
1560 	 * use that for the rest of the shutdown process.  The memory
1561 	 * allocated here is free'd in rproc_shutdown().
1562 	 */
1563 	rproc->cached_table = kmemdup(rproc->table_ptr,
1564 				      rproc->table_sz, GFP_KERNEL);
1565 	if (!rproc->cached_table)
1566 		return -ENOMEM;
1567 
1568 	/*
1569 	 * Since the remote processor is being switched off the clean table
1570 	 * won't be needed.  Allocated in rproc_set_rsc_table().
1571 	 */
1572 	kfree(rproc->clean_table);
1573 
1574 out:
1575 	/*
1576 	 * Use a copy of the resource table for the remainder of the
1577 	 * shutdown process.
1578 	 */
1579 	rproc->table_ptr = rproc->cached_table;
1580 	return 0;
1581 }
1582 
1583 /*
1584  * Attach to remote processor - similar to rproc_fw_boot() but without
1585  * the steps that deal with the firmware image.
1586  */
1587 static int rproc_attach(struct rproc *rproc)
1588 {
1589 	struct device *dev = &rproc->dev;
1590 	int ret;
1591 
1592 	/*
1593 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1594 	 * just a nop
1595 	 */
1596 	ret = rproc_enable_iommu(rproc);
1597 	if (ret) {
1598 		dev_err(dev, "can't enable iommu: %d\n", ret);
1599 		return ret;
1600 	}
1601 
1602 	/* Do anything that is needed to boot the remote processor */
1603 	ret = rproc_prepare_device(rproc);
1604 	if (ret) {
1605 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1606 		goto disable_iommu;
1607 	}
1608 
1609 	ret = rproc_set_rsc_table(rproc);
1610 	if (ret) {
1611 		dev_err(dev, "can't load resource table: %d\n", ret);
1612 		goto unprepare_device;
1613 	}
1614 
1615 	/* reset max_notifyid */
1616 	rproc->max_notifyid = -1;
1617 
1618 	/* reset handled vdev */
1619 	rproc->nb_vdev = 0;
1620 
1621 	/*
1622 	 * Handle firmware resources required to attach to a remote processor.
1623 	 * Because we are attaching rather than booting the remote processor,
1624 	 * we expect the platform driver to properly set rproc->table_ptr.
1625 	 */
1626 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1627 	if (ret) {
1628 		dev_err(dev, "Failed to process resources: %d\n", ret);
1629 		goto unprepare_device;
1630 	}
1631 
1632 	/* Allocate carveout resources associated to rproc */
1633 	ret = rproc_alloc_registered_carveouts(rproc);
1634 	if (ret) {
1635 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1636 			ret);
1637 		goto clean_up_resources;
1638 	}
1639 
1640 	ret = __rproc_attach(rproc);
1641 	if (ret)
1642 		goto clean_up_resources;
1643 
1644 	return 0;
1645 
1646 clean_up_resources:
1647 	rproc_resource_cleanup(rproc);
1648 unprepare_device:
1649 	/* release HW resources if needed */
1650 	rproc_unprepare_device(rproc);
1651 disable_iommu:
1652 	rproc_disable_iommu(rproc);
1653 	return ret;
1654 }
1655 
1656 /*
1657  * take a firmware and boot it up.
1658  *
1659  * Note: this function is called asynchronously upon registration of the
1660  * remote processor (so we must wait until it completes before we try
1661  * to unregister the device. one other option is just to use kref here,
1662  * that might be cleaner).
1663  */
1664 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1665 {
1666 	struct rproc *rproc = context;
1667 
1668 	rproc_boot(rproc);
1669 
1670 	release_firmware(fw);
1671 }
1672 
1673 static int rproc_trigger_auto_boot(struct rproc *rproc)
1674 {
1675 	int ret;
1676 
1677 	/*
1678 	 * Since the remote processor is in a detached state, it has already
1679 	 * been booted by another entity.  As such there is no point in waiting
1680 	 * for a firmware image to be loaded, we can simply initiate the process
1681 	 * of attaching to it immediately.
1682 	 */
1683 	if (rproc->state == RPROC_DETACHED)
1684 		return rproc_boot(rproc);
1685 
1686 	/*
1687 	 * We're initiating an asynchronous firmware loading, so we can
1688 	 * be built-in kernel code, without hanging the boot process.
1689 	 */
1690 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1691 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1692 				      rproc, rproc_auto_boot_callback);
1693 	if (ret < 0)
1694 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1695 
1696 	return ret;
1697 }
1698 
1699 static int rproc_stop(struct rproc *rproc, bool crashed)
1700 {
1701 	struct device *dev = &rproc->dev;
1702 	int ret;
1703 
1704 	/* No need to continue if a stop() operation has not been provided */
1705 	if (!rproc->ops->stop)
1706 		return -EINVAL;
1707 
1708 	/* Stop any subdevices for the remote processor */
1709 	rproc_stop_subdevices(rproc, crashed);
1710 
1711 	/* the installed resource table is no longer accessible */
1712 	ret = rproc_reset_rsc_table_on_stop(rproc);
1713 	if (ret) {
1714 		dev_err(dev, "can't reset resource table: %d\n", ret);
1715 		return ret;
1716 	}
1717 
1718 
1719 	/* power off the remote processor */
1720 	ret = rproc->ops->stop(rproc);
1721 	if (ret) {
1722 		dev_err(dev, "can't stop rproc: %d\n", ret);
1723 		return ret;
1724 	}
1725 
1726 	rproc_unprepare_subdevices(rproc);
1727 
1728 	rproc->state = RPROC_OFFLINE;
1729 
1730 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1731 
1732 	return 0;
1733 }
1734 
1735 /*
1736  * __rproc_detach(): Does the opposite of __rproc_attach()
1737  */
1738 static int __rproc_detach(struct rproc *rproc)
1739 {
1740 	struct device *dev = &rproc->dev;
1741 	int ret;
1742 
1743 	/* No need to continue if a detach() operation has not been provided */
1744 	if (!rproc->ops->detach)
1745 		return -EINVAL;
1746 
1747 	/* Stop any subdevices for the remote processor */
1748 	rproc_stop_subdevices(rproc, false);
1749 
1750 	/* the installed resource table is no longer accessible */
1751 	ret = rproc_reset_rsc_table_on_detach(rproc);
1752 	if (ret) {
1753 		dev_err(dev, "can't reset resource table: %d\n", ret);
1754 		return ret;
1755 	}
1756 
1757 	/* Tell the remote processor the core isn't available anymore */
1758 	ret = rproc->ops->detach(rproc);
1759 	if (ret) {
1760 		dev_err(dev, "can't detach from rproc: %d\n", ret);
1761 		return ret;
1762 	}
1763 
1764 	rproc_unprepare_subdevices(rproc);
1765 
1766 	rproc->state = RPROC_DETACHED;
1767 
1768 	dev_info(dev, "detached remote processor %s\n", rproc->name);
1769 
1770 	return 0;
1771 }
1772 
1773 static int rproc_attach_recovery(struct rproc *rproc)
1774 {
1775 	int ret;
1776 
1777 	ret = __rproc_detach(rproc);
1778 	if (ret)
1779 		return ret;
1780 
1781 	return __rproc_attach(rproc);
1782 }
1783 
1784 static int rproc_boot_recovery(struct rproc *rproc)
1785 {
1786 	const struct firmware *firmware_p;
1787 	struct device *dev = &rproc->dev;
1788 	int ret;
1789 
1790 	ret = rproc_stop(rproc, true);
1791 	if (ret)
1792 		return ret;
1793 
1794 	/* generate coredump */
1795 	rproc->ops->coredump(rproc);
1796 
1797 	/* load firmware */
1798 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1799 	if (ret < 0) {
1800 		dev_err(dev, "request_firmware failed: %d\n", ret);
1801 		return ret;
1802 	}
1803 
1804 	/* boot the remote processor up again */
1805 	ret = rproc_start(rproc, firmware_p);
1806 
1807 	release_firmware(firmware_p);
1808 
1809 	return ret;
1810 }
1811 
1812 /**
1813  * rproc_trigger_recovery() - recover a remoteproc
1814  * @rproc: the remote processor
1815  *
1816  * The recovery is done by resetting all the virtio devices, that way all the
1817  * rpmsg drivers will be reseted along with the remote processor making the
1818  * remoteproc functional again.
1819  *
1820  * This function can sleep, so it cannot be called from atomic context.
1821  *
1822  * Return: 0 on success or a negative value upon failure
1823  */
1824 int rproc_trigger_recovery(struct rproc *rproc)
1825 {
1826 	struct device *dev = &rproc->dev;
1827 	int ret;
1828 
1829 	ret = mutex_lock_interruptible(&rproc->lock);
1830 	if (ret)
1831 		return ret;
1832 
1833 	/* State could have changed before we got the mutex */
1834 	if (rproc->state != RPROC_CRASHED)
1835 		goto unlock_mutex;
1836 
1837 	dev_err(dev, "recovering %s\n", rproc->name);
1838 
1839 	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1840 		ret = rproc_attach_recovery(rproc);
1841 	else
1842 		ret = rproc_boot_recovery(rproc);
1843 
1844 unlock_mutex:
1845 	mutex_unlock(&rproc->lock);
1846 	return ret;
1847 }
1848 
1849 /**
1850  * rproc_crash_handler_work() - handle a crash
1851  * @work: work treating the crash
1852  *
1853  * This function needs to handle everything related to a crash, like cpu
1854  * registers and stack dump, information to help to debug the fatal error, etc.
1855  */
1856 static void rproc_crash_handler_work(struct work_struct *work)
1857 {
1858 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1859 	struct device *dev = &rproc->dev;
1860 
1861 	dev_dbg(dev, "enter %s\n", __func__);
1862 
1863 	mutex_lock(&rproc->lock);
1864 
1865 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1866 		/* handle only the first crash detected */
1867 		mutex_unlock(&rproc->lock);
1868 		return;
1869 	}
1870 
1871 	rproc->state = RPROC_CRASHED;
1872 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1873 		rproc->name);
1874 
1875 	mutex_unlock(&rproc->lock);
1876 
1877 	if (!rproc->recovery_disabled)
1878 		rproc_trigger_recovery(rproc);
1879 
1880 	pm_relax(rproc->dev.parent);
1881 }
1882 
1883 /**
1884  * rproc_boot() - boot a remote processor
1885  * @rproc: handle of a remote processor
1886  *
1887  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1888  *
1889  * If the remote processor is already powered on, this function immediately
1890  * returns (successfully).
1891  *
1892  * Return: 0 on success, and an appropriate error value otherwise
1893  */
1894 int rproc_boot(struct rproc *rproc)
1895 {
1896 	const struct firmware *firmware_p;
1897 	struct device *dev;
1898 	int ret;
1899 
1900 	if (!rproc) {
1901 		pr_err("invalid rproc handle\n");
1902 		return -EINVAL;
1903 	}
1904 
1905 	dev = &rproc->dev;
1906 
1907 	ret = mutex_lock_interruptible(&rproc->lock);
1908 	if (ret) {
1909 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1910 		return ret;
1911 	}
1912 
1913 	if (rproc->state == RPROC_DELETED) {
1914 		ret = -ENODEV;
1915 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1916 		goto unlock_mutex;
1917 	}
1918 
1919 	/* skip the boot or attach process if rproc is already powered up */
1920 	if (atomic_inc_return(&rproc->power) > 1) {
1921 		ret = 0;
1922 		goto unlock_mutex;
1923 	}
1924 
1925 	if (rproc->state == RPROC_DETACHED) {
1926 		dev_info(dev, "attaching to %s\n", rproc->name);
1927 
1928 		ret = rproc_attach(rproc);
1929 	} else {
1930 		dev_info(dev, "powering up %s\n", rproc->name);
1931 
1932 		/* load firmware */
1933 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1934 		if (ret < 0) {
1935 			dev_err(dev, "request_firmware failed: %d\n", ret);
1936 			goto downref_rproc;
1937 		}
1938 
1939 		ret = rproc_fw_boot(rproc, firmware_p);
1940 
1941 		release_firmware(firmware_p);
1942 	}
1943 
1944 downref_rproc:
1945 	if (ret)
1946 		atomic_dec(&rproc->power);
1947 unlock_mutex:
1948 	mutex_unlock(&rproc->lock);
1949 	return ret;
1950 }
1951 EXPORT_SYMBOL(rproc_boot);
1952 
1953 /**
1954  * rproc_shutdown() - power off the remote processor
1955  * @rproc: the remote processor
1956  *
1957  * Power off a remote processor (previously booted with rproc_boot()).
1958  *
1959  * In case @rproc is still being used by an additional user(s), then
1960  * this function will just decrement the power refcount and exit,
1961  * without really powering off the device.
1962  *
1963  * Every call to rproc_boot() must (eventually) be accompanied by a call
1964  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1965  *
1966  * Notes:
1967  * - we're not decrementing the rproc's refcount, only the power refcount.
1968  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1969  *   returns, and users can still use it with a subsequent rproc_boot(), if
1970  *   needed.
1971  *
1972  * Return: 0 on success, and an appropriate error value otherwise
1973  */
1974 int rproc_shutdown(struct rproc *rproc)
1975 {
1976 	struct device *dev = &rproc->dev;
1977 	int ret = 0;
1978 
1979 	ret = mutex_lock_interruptible(&rproc->lock);
1980 	if (ret) {
1981 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1982 		return ret;
1983 	}
1984 
1985 	if (rproc->state != RPROC_RUNNING &&
1986 	    rproc->state != RPROC_ATTACHED) {
1987 		ret = -EINVAL;
1988 		goto out;
1989 	}
1990 
1991 	/* if the remote proc is still needed, bail out */
1992 	if (!atomic_dec_and_test(&rproc->power))
1993 		goto out;
1994 
1995 	ret = rproc_stop(rproc, false);
1996 	if (ret) {
1997 		atomic_inc(&rproc->power);
1998 		goto out;
1999 	}
2000 
2001 	/* clean up all acquired resources */
2002 	rproc_resource_cleanup(rproc);
2003 
2004 	/* release HW resources if needed */
2005 	rproc_unprepare_device(rproc);
2006 
2007 	rproc_disable_iommu(rproc);
2008 
2009 	/* Free the copy of the resource table */
2010 	kfree(rproc->cached_table);
2011 	rproc->cached_table = NULL;
2012 	rproc->table_ptr = NULL;
2013 out:
2014 	mutex_unlock(&rproc->lock);
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL(rproc_shutdown);
2018 
2019 /**
2020  * rproc_detach() - Detach the remote processor from the
2021  * remoteproc core
2022  *
2023  * @rproc: the remote processor
2024  *
2025  * Detach a remote processor (previously attached to with rproc_attach()).
2026  *
2027  * In case @rproc is still being used by an additional user(s), then
2028  * this function will just decrement the power refcount and exit,
2029  * without disconnecting the device.
2030  *
2031  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2032  * processor know that services provided by the application processor are
2033  * no longer available.  From there it should be possible to remove the
2034  * platform driver and even power cycle the application processor (if the HW
2035  * supports it) without needing to switch off the remote processor.
2036  *
2037  * Return: 0 on success, and an appropriate error value otherwise
2038  */
2039 int rproc_detach(struct rproc *rproc)
2040 {
2041 	struct device *dev = &rproc->dev;
2042 	int ret;
2043 
2044 	ret = mutex_lock_interruptible(&rproc->lock);
2045 	if (ret) {
2046 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2047 		return ret;
2048 	}
2049 
2050 	if (rproc->state != RPROC_ATTACHED) {
2051 		ret = -EINVAL;
2052 		goto out;
2053 	}
2054 
2055 	/* if the remote proc is still needed, bail out */
2056 	if (!atomic_dec_and_test(&rproc->power)) {
2057 		ret = 0;
2058 		goto out;
2059 	}
2060 
2061 	ret = __rproc_detach(rproc);
2062 	if (ret) {
2063 		atomic_inc(&rproc->power);
2064 		goto out;
2065 	}
2066 
2067 	/* clean up all acquired resources */
2068 	rproc_resource_cleanup(rproc);
2069 
2070 	/* release HW resources if needed */
2071 	rproc_unprepare_device(rproc);
2072 
2073 	rproc_disable_iommu(rproc);
2074 
2075 	/* Free the copy of the resource table */
2076 	kfree(rproc->cached_table);
2077 	rproc->cached_table = NULL;
2078 	rproc->table_ptr = NULL;
2079 out:
2080 	mutex_unlock(&rproc->lock);
2081 	return ret;
2082 }
2083 EXPORT_SYMBOL(rproc_detach);
2084 
2085 /**
2086  * rproc_get_by_phandle() - find a remote processor by phandle
2087  * @phandle: phandle to the rproc
2088  *
2089  * Finds an rproc handle using the remote processor's phandle, and then
2090  * return a handle to the rproc.
2091  *
2092  * This function increments the remote processor's refcount, so always
2093  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2094  *
2095  * Return: rproc handle on success, and NULL on failure
2096  */
2097 #ifdef CONFIG_OF
2098 struct rproc *rproc_get_by_phandle(phandle phandle)
2099 {
2100 	struct rproc *rproc = NULL, *r;
2101 	struct device_node *np;
2102 
2103 	np = of_find_node_by_phandle(phandle);
2104 	if (!np)
2105 		return NULL;
2106 
2107 	rcu_read_lock();
2108 	list_for_each_entry_rcu(r, &rproc_list, node) {
2109 		if (r->dev.parent && r->dev.parent->of_node == np) {
2110 			/* prevent underlying implementation from being removed */
2111 			if (!try_module_get(r->dev.parent->driver->owner)) {
2112 				dev_err(&r->dev, "can't get owner\n");
2113 				break;
2114 			}
2115 
2116 			rproc = r;
2117 			get_device(&rproc->dev);
2118 			break;
2119 		}
2120 	}
2121 	rcu_read_unlock();
2122 
2123 	of_node_put(np);
2124 
2125 	return rproc;
2126 }
2127 #else
2128 struct rproc *rproc_get_by_phandle(phandle phandle)
2129 {
2130 	return NULL;
2131 }
2132 #endif
2133 EXPORT_SYMBOL(rproc_get_by_phandle);
2134 
2135 /**
2136  * rproc_set_firmware() - assign a new firmware
2137  * @rproc: rproc handle to which the new firmware is being assigned
2138  * @fw_name: new firmware name to be assigned
2139  *
2140  * This function allows remoteproc drivers or clients to configure a custom
2141  * firmware name that is different from the default name used during remoteproc
2142  * registration. The function does not trigger a remote processor boot,
2143  * only sets the firmware name used for a subsequent boot. This function
2144  * should also be called only when the remote processor is offline.
2145  *
2146  * This allows either the userspace to configure a different name through
2147  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2148  * a specific firmware when it is controlling the boot and shutdown of the
2149  * remote processor.
2150  *
2151  * Return: 0 on success or a negative value upon failure
2152  */
2153 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2154 {
2155 	struct device *dev;
2156 	int ret, len;
2157 	char *p;
2158 
2159 	if (!rproc || !fw_name)
2160 		return -EINVAL;
2161 
2162 	dev = rproc->dev.parent;
2163 
2164 	ret = mutex_lock_interruptible(&rproc->lock);
2165 	if (ret) {
2166 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2167 		return -EINVAL;
2168 	}
2169 
2170 	if (rproc->state != RPROC_OFFLINE) {
2171 		dev_err(dev, "can't change firmware while running\n");
2172 		ret = -EBUSY;
2173 		goto out;
2174 	}
2175 
2176 	len = strcspn(fw_name, "\n");
2177 	if (!len) {
2178 		dev_err(dev, "can't provide empty string for firmware name\n");
2179 		ret = -EINVAL;
2180 		goto out;
2181 	}
2182 
2183 	p = kstrndup(fw_name, len, GFP_KERNEL);
2184 	if (!p) {
2185 		ret = -ENOMEM;
2186 		goto out;
2187 	}
2188 
2189 	kfree_const(rproc->firmware);
2190 	rproc->firmware = p;
2191 
2192 out:
2193 	mutex_unlock(&rproc->lock);
2194 	return ret;
2195 }
2196 EXPORT_SYMBOL(rproc_set_firmware);
2197 
2198 static int rproc_validate(struct rproc *rproc)
2199 {
2200 	switch (rproc->state) {
2201 	case RPROC_OFFLINE:
2202 		/*
2203 		 * An offline processor without a start()
2204 		 * function makes no sense.
2205 		 */
2206 		if (!rproc->ops->start)
2207 			return -EINVAL;
2208 		break;
2209 	case RPROC_DETACHED:
2210 		/*
2211 		 * A remote processor in a detached state without an
2212 		 * attach() function makes not sense.
2213 		 */
2214 		if (!rproc->ops->attach)
2215 			return -EINVAL;
2216 		/*
2217 		 * When attaching to a remote processor the device memory
2218 		 * is already available and as such there is no need to have a
2219 		 * cached table.
2220 		 */
2221 		if (rproc->cached_table)
2222 			return -EINVAL;
2223 		break;
2224 	default:
2225 		/*
2226 		 * When adding a remote processor, the state of the device
2227 		 * can be offline or detached, nothing else.
2228 		 */
2229 		return -EINVAL;
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 /**
2236  * rproc_add() - register a remote processor
2237  * @rproc: the remote processor handle to register
2238  *
2239  * Registers @rproc with the remoteproc framework, after it has been
2240  * allocated with rproc_alloc().
2241  *
2242  * This is called by the platform-specific rproc implementation, whenever
2243  * a new remote processor device is probed.
2244  *
2245  * Note: this function initiates an asynchronous firmware loading
2246  * context, which will look for virtio devices supported by the rproc's
2247  * firmware.
2248  *
2249  * If found, those virtio devices will be created and added, so as a result
2250  * of registering this remote processor, additional virtio drivers might be
2251  * probed.
2252  *
2253  * Return: 0 on success and an appropriate error code otherwise
2254  */
2255 int rproc_add(struct rproc *rproc)
2256 {
2257 	struct device *dev = &rproc->dev;
2258 	int ret;
2259 
2260 	ret = rproc_validate(rproc);
2261 	if (ret < 0)
2262 		return ret;
2263 
2264 	/* add char device for this remoteproc */
2265 	ret = rproc_char_device_add(rproc);
2266 	if (ret < 0)
2267 		return ret;
2268 
2269 	ret = device_add(dev);
2270 	if (ret < 0) {
2271 		put_device(dev);
2272 		goto rproc_remove_cdev;
2273 	}
2274 
2275 	dev_info(dev, "%s is available\n", rproc->name);
2276 
2277 	/* create debugfs entries */
2278 	rproc_create_debug_dir(rproc);
2279 
2280 	/* if rproc is marked always-on, request it to boot */
2281 	if (rproc->auto_boot) {
2282 		ret = rproc_trigger_auto_boot(rproc);
2283 		if (ret < 0)
2284 			goto rproc_remove_dev;
2285 	}
2286 
2287 	/* expose to rproc_get_by_phandle users */
2288 	mutex_lock(&rproc_list_mutex);
2289 	list_add_rcu(&rproc->node, &rproc_list);
2290 	mutex_unlock(&rproc_list_mutex);
2291 
2292 	return 0;
2293 
2294 rproc_remove_dev:
2295 	rproc_delete_debug_dir(rproc);
2296 	device_del(dev);
2297 rproc_remove_cdev:
2298 	rproc_char_device_remove(rproc);
2299 	return ret;
2300 }
2301 EXPORT_SYMBOL(rproc_add);
2302 
2303 static void devm_rproc_remove(void *rproc)
2304 {
2305 	rproc_del(rproc);
2306 }
2307 
2308 /**
2309  * devm_rproc_add() - resource managed rproc_add()
2310  * @dev: the underlying device
2311  * @rproc: the remote processor handle to register
2312  *
2313  * This function performs like rproc_add() but the registered rproc device will
2314  * automatically be removed on driver detach.
2315  *
2316  * Return: 0 on success, negative errno on failure
2317  */
2318 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2319 {
2320 	int err;
2321 
2322 	err = rproc_add(rproc);
2323 	if (err)
2324 		return err;
2325 
2326 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2327 }
2328 EXPORT_SYMBOL(devm_rproc_add);
2329 
2330 /**
2331  * rproc_type_release() - release a remote processor instance
2332  * @dev: the rproc's device
2333  *
2334  * This function should _never_ be called directly.
2335  *
2336  * It will be called by the driver core when no one holds a valid pointer
2337  * to @dev anymore.
2338  */
2339 static void rproc_type_release(struct device *dev)
2340 {
2341 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2342 
2343 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2344 
2345 	idr_destroy(&rproc->notifyids);
2346 
2347 	if (rproc->index >= 0)
2348 		ida_free(&rproc_dev_index, rproc->index);
2349 
2350 	kfree_const(rproc->firmware);
2351 	kfree_const(rproc->name);
2352 	kfree(rproc->ops);
2353 	kfree(rproc);
2354 }
2355 
2356 static const struct device_type rproc_type = {
2357 	.name		= "remoteproc",
2358 	.release	= rproc_type_release,
2359 };
2360 
2361 static int rproc_alloc_firmware(struct rproc *rproc,
2362 				const char *name, const char *firmware)
2363 {
2364 	const char *p;
2365 
2366 	/*
2367 	 * Allocate a firmware name if the caller gave us one to work
2368 	 * with.  Otherwise construct a new one using a default pattern.
2369 	 */
2370 	if (firmware)
2371 		p = kstrdup_const(firmware, GFP_KERNEL);
2372 	else
2373 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2374 
2375 	if (!p)
2376 		return -ENOMEM;
2377 
2378 	rproc->firmware = p;
2379 
2380 	return 0;
2381 }
2382 
2383 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2384 {
2385 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2386 	if (!rproc->ops)
2387 		return -ENOMEM;
2388 
2389 	/* Default to rproc_coredump if no coredump function is specified */
2390 	if (!rproc->ops->coredump)
2391 		rproc->ops->coredump = rproc_coredump;
2392 
2393 	if (rproc->ops->load)
2394 		return 0;
2395 
2396 	/* Default to ELF loader if no load function is specified */
2397 	rproc->ops->load = rproc_elf_load_segments;
2398 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2399 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2400 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2401 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2402 
2403 	return 0;
2404 }
2405 
2406 /**
2407  * rproc_alloc() - allocate a remote processor handle
2408  * @dev: the underlying device
2409  * @name: name of this remote processor
2410  * @ops: platform-specific handlers (mainly start/stop)
2411  * @firmware: name of firmware file to load, can be NULL
2412  * @len: length of private data needed by the rproc driver (in bytes)
2413  *
2414  * Allocates a new remote processor handle, but does not register
2415  * it yet. if @firmware is NULL, a default name is used.
2416  *
2417  * This function should be used by rproc implementations during initialization
2418  * of the remote processor.
2419  *
2420  * After creating an rproc handle using this function, and when ready,
2421  * implementations should then call rproc_add() to complete
2422  * the registration of the remote processor.
2423  *
2424  * Note: _never_ directly deallocate @rproc, even if it was not registered
2425  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2426  *
2427  * Return: new rproc pointer on success, and NULL on failure
2428  */
2429 struct rproc *rproc_alloc(struct device *dev, const char *name,
2430 			  const struct rproc_ops *ops,
2431 			  const char *firmware, int len)
2432 {
2433 	struct rproc *rproc;
2434 
2435 	if (!dev || !name || !ops)
2436 		return NULL;
2437 
2438 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2439 	if (!rproc)
2440 		return NULL;
2441 
2442 	rproc->priv = &rproc[1];
2443 	rproc->auto_boot = true;
2444 	rproc->elf_class = ELFCLASSNONE;
2445 	rproc->elf_machine = EM_NONE;
2446 
2447 	device_initialize(&rproc->dev);
2448 	rproc->dev.parent = dev;
2449 	rproc->dev.type = &rproc_type;
2450 	rproc->dev.class = &rproc_class;
2451 	rproc->dev.driver_data = rproc;
2452 	idr_init(&rproc->notifyids);
2453 
2454 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2455 	if (!rproc->name)
2456 		goto put_device;
2457 
2458 	if (rproc_alloc_firmware(rproc, name, firmware))
2459 		goto put_device;
2460 
2461 	if (rproc_alloc_ops(rproc, ops))
2462 		goto put_device;
2463 
2464 	/* Assign a unique device index and name */
2465 	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2466 	if (rproc->index < 0) {
2467 		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2468 		goto put_device;
2469 	}
2470 
2471 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2472 
2473 	atomic_set(&rproc->power, 0);
2474 
2475 	mutex_init(&rproc->lock);
2476 
2477 	INIT_LIST_HEAD(&rproc->carveouts);
2478 	INIT_LIST_HEAD(&rproc->mappings);
2479 	INIT_LIST_HEAD(&rproc->traces);
2480 	INIT_LIST_HEAD(&rproc->rvdevs);
2481 	INIT_LIST_HEAD(&rproc->subdevs);
2482 	INIT_LIST_HEAD(&rproc->dump_segments);
2483 
2484 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2485 
2486 	rproc->state = RPROC_OFFLINE;
2487 
2488 	return rproc;
2489 
2490 put_device:
2491 	put_device(&rproc->dev);
2492 	return NULL;
2493 }
2494 EXPORT_SYMBOL(rproc_alloc);
2495 
2496 /**
2497  * rproc_free() - unroll rproc_alloc()
2498  * @rproc: the remote processor handle
2499  *
2500  * This function decrements the rproc dev refcount.
2501  *
2502  * If no one holds any reference to rproc anymore, then its refcount would
2503  * now drop to zero, and it would be freed.
2504  */
2505 void rproc_free(struct rproc *rproc)
2506 {
2507 	put_device(&rproc->dev);
2508 }
2509 EXPORT_SYMBOL(rproc_free);
2510 
2511 /**
2512  * rproc_put() - release rproc reference
2513  * @rproc: the remote processor handle
2514  *
2515  * This function decrements the rproc dev refcount.
2516  *
2517  * If no one holds any reference to rproc anymore, then its refcount would
2518  * now drop to zero, and it would be freed.
2519  */
2520 void rproc_put(struct rproc *rproc)
2521 {
2522 	module_put(rproc->dev.parent->driver->owner);
2523 	put_device(&rproc->dev);
2524 }
2525 EXPORT_SYMBOL(rproc_put);
2526 
2527 /**
2528  * rproc_del() - unregister a remote processor
2529  * @rproc: rproc handle to unregister
2530  *
2531  * This function should be called when the platform specific rproc
2532  * implementation decides to remove the rproc device. it should
2533  * _only_ be called if a previous invocation of rproc_add()
2534  * has completed successfully.
2535  *
2536  * After rproc_del() returns, @rproc isn't freed yet, because
2537  * of the outstanding reference created by rproc_alloc. To decrement that
2538  * one last refcount, one still needs to call rproc_free().
2539  *
2540  * Return: 0 on success and -EINVAL if @rproc isn't valid
2541  */
2542 int rproc_del(struct rproc *rproc)
2543 {
2544 	if (!rproc)
2545 		return -EINVAL;
2546 
2547 	/* TODO: make sure this works with rproc->power > 1 */
2548 	rproc_shutdown(rproc);
2549 
2550 	mutex_lock(&rproc->lock);
2551 	rproc->state = RPROC_DELETED;
2552 	mutex_unlock(&rproc->lock);
2553 
2554 	rproc_delete_debug_dir(rproc);
2555 
2556 	/* the rproc is downref'ed as soon as it's removed from the klist */
2557 	mutex_lock(&rproc_list_mutex);
2558 	list_del_rcu(&rproc->node);
2559 	mutex_unlock(&rproc_list_mutex);
2560 
2561 	/* Ensure that no readers of rproc_list are still active */
2562 	synchronize_rcu();
2563 
2564 	device_del(&rproc->dev);
2565 	rproc_char_device_remove(rproc);
2566 
2567 	return 0;
2568 }
2569 EXPORT_SYMBOL(rproc_del);
2570 
2571 static void devm_rproc_free(struct device *dev, void *res)
2572 {
2573 	rproc_free(*(struct rproc **)res);
2574 }
2575 
2576 /**
2577  * devm_rproc_alloc() - resource managed rproc_alloc()
2578  * @dev: the underlying device
2579  * @name: name of this remote processor
2580  * @ops: platform-specific handlers (mainly start/stop)
2581  * @firmware: name of firmware file to load, can be NULL
2582  * @len: length of private data needed by the rproc driver (in bytes)
2583  *
2584  * This function performs like rproc_alloc() but the acquired rproc device will
2585  * automatically be released on driver detach.
2586  *
2587  * Return: new rproc instance, or NULL on failure
2588  */
2589 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2590 			       const struct rproc_ops *ops,
2591 			       const char *firmware, int len)
2592 {
2593 	struct rproc **ptr, *rproc;
2594 
2595 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2596 	if (!ptr)
2597 		return NULL;
2598 
2599 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2600 	if (rproc) {
2601 		*ptr = rproc;
2602 		devres_add(dev, ptr);
2603 	} else {
2604 		devres_free(ptr);
2605 	}
2606 
2607 	return rproc;
2608 }
2609 EXPORT_SYMBOL(devm_rproc_alloc);
2610 
2611 /**
2612  * rproc_add_subdev() - add a subdevice to a remoteproc
2613  * @rproc: rproc handle to add the subdevice to
2614  * @subdev: subdev handle to register
2615  *
2616  * Caller is responsible for populating optional subdevice function pointers.
2617  */
2618 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2619 {
2620 	list_add_tail(&subdev->node, &rproc->subdevs);
2621 }
2622 EXPORT_SYMBOL(rproc_add_subdev);
2623 
2624 /**
2625  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2626  * @rproc: rproc handle to remove the subdevice from
2627  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2628  */
2629 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2630 {
2631 	list_del(&subdev->node);
2632 }
2633 EXPORT_SYMBOL(rproc_remove_subdev);
2634 
2635 /**
2636  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2637  * @dev:	child device to find ancestor of
2638  *
2639  * Return: the ancestor rproc instance, or NULL if not found
2640  */
2641 struct rproc *rproc_get_by_child(struct device *dev)
2642 {
2643 	for (dev = dev->parent; dev; dev = dev->parent) {
2644 		if (dev->type == &rproc_type)
2645 			return dev->driver_data;
2646 	}
2647 
2648 	return NULL;
2649 }
2650 EXPORT_SYMBOL(rproc_get_by_child);
2651 
2652 /**
2653  * rproc_report_crash() - rproc crash reporter function
2654  * @rproc: remote processor
2655  * @type: crash type
2656  *
2657  * This function must be called every time a crash is detected by the low-level
2658  * drivers implementing a specific remoteproc. This should not be called from a
2659  * non-remoteproc driver.
2660  *
2661  * This function can be called from atomic/interrupt context.
2662  */
2663 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2664 {
2665 	if (!rproc) {
2666 		pr_err("NULL rproc pointer\n");
2667 		return;
2668 	}
2669 
2670 	/* Prevent suspend while the remoteproc is being recovered */
2671 	pm_stay_awake(rproc->dev.parent);
2672 
2673 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2674 		rproc->name, rproc_crash_to_string(type));
2675 
2676 	queue_work(rproc_recovery_wq, &rproc->crash_handler);
2677 }
2678 EXPORT_SYMBOL(rproc_report_crash);
2679 
2680 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2681 			       void *ptr)
2682 {
2683 	unsigned int longest = 0;
2684 	struct rproc *rproc;
2685 	unsigned int d;
2686 
2687 	rcu_read_lock();
2688 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2689 		if (!rproc->ops->panic)
2690 			continue;
2691 
2692 		if (rproc->state != RPROC_RUNNING &&
2693 		    rproc->state != RPROC_ATTACHED)
2694 			continue;
2695 
2696 		d = rproc->ops->panic(rproc);
2697 		longest = max(longest, d);
2698 	}
2699 	rcu_read_unlock();
2700 
2701 	/*
2702 	 * Delay for the longest requested duration before returning. This can
2703 	 * be used by the remoteproc drivers to give the remote processor time
2704 	 * to perform any requested operations (such as flush caches), when
2705 	 * it's not possible to signal the Linux side due to the panic.
2706 	 */
2707 	mdelay(longest);
2708 
2709 	return NOTIFY_DONE;
2710 }
2711 
2712 static void __init rproc_init_panic(void)
2713 {
2714 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2715 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2716 }
2717 
2718 static void __exit rproc_exit_panic(void)
2719 {
2720 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2721 }
2722 
2723 static int __init remoteproc_init(void)
2724 {
2725 	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2726 						WQ_UNBOUND | WQ_FREEZABLE, 0);
2727 	if (!rproc_recovery_wq) {
2728 		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2729 		return -ENOMEM;
2730 	}
2731 
2732 	rproc_init_sysfs();
2733 	rproc_init_debugfs();
2734 	rproc_init_cdev();
2735 	rproc_init_panic();
2736 
2737 	return 0;
2738 }
2739 subsys_initcall(remoteproc_init);
2740 
2741 static void __exit remoteproc_exit(void)
2742 {
2743 	ida_destroy(&rproc_dev_index);
2744 
2745 	if (!rproc_recovery_wq)
2746 		return;
2747 
2748 	rproc_exit_panic();
2749 	rproc_exit_debugfs();
2750 	rproc_exit_sysfs();
2751 	destroy_workqueue(rproc_recovery_wq);
2752 }
2753 module_exit(remoteproc_exit);
2754 
2755 MODULE_LICENSE("GPL v2");
2756 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2757