xref: /linux/drivers/remoteproc/remoteproc_core.c (revision add452d09a38c7a7c44aea55c1015392cebf9fa7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_platform.h>
37 #include <linux/of_reserved_mem.h>
38 #include <linux/virtio_ids.h>
39 #include <linux/virtio_ring.h>
40 #include <asm/byteorder.h>
41 #include <linux/platform_device.h>
42 
43 #include "remoteproc_internal.h"
44 
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46 
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 static struct notifier_block rproc_panic_nb;
50 
51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52 				 void *, int offset, int avail);
53 
54 static int rproc_alloc_carveout(struct rproc *rproc,
55 				struct rproc_mem_entry *mem);
56 static int rproc_release_carveout(struct rproc *rproc,
57 				  struct rproc_mem_entry *mem);
58 
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index);
61 static struct workqueue_struct *rproc_recovery_wq;
62 
63 static const char * const rproc_crash_names[] = {
64 	[RPROC_MMUFAULT]	= "mmufault",
65 	[RPROC_WATCHDOG]	= "watchdog",
66 	[RPROC_FATAL_ERROR]	= "fatal error",
67 };
68 
69 /* translate rproc_crash_type to string */
70 static const char *rproc_crash_to_string(enum rproc_crash_type type)
71 {
72 	if (type < ARRAY_SIZE(rproc_crash_names))
73 		return rproc_crash_names[type];
74 	return "unknown";
75 }
76 
77 /*
78  * This is the IOMMU fault handler we register with the IOMMU API
79  * (when relevant; not all remote processors access memory through
80  * an IOMMU).
81  *
82  * IOMMU core will invoke this handler whenever the remote processor
83  * will try to access an unmapped device address.
84  */
85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
86 			     unsigned long iova, int flags, void *token)
87 {
88 	struct rproc *rproc = token;
89 
90 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91 
92 	rproc_report_crash(rproc, RPROC_MMUFAULT);
93 
94 	/*
95 	 * Let the iommu core know we're not really handling this fault;
96 	 * we just used it as a recovery trigger.
97 	 */
98 	return -ENOSYS;
99 }
100 
101 static int rproc_enable_iommu(struct rproc *rproc)
102 {
103 	struct iommu_domain *domain;
104 	struct device *dev = rproc->dev.parent;
105 	int ret;
106 
107 	if (!rproc->has_iommu) {
108 		dev_dbg(dev, "iommu not present\n");
109 		return 0;
110 	}
111 
112 	domain = iommu_domain_alloc(dev->bus);
113 	if (!domain) {
114 		dev_err(dev, "can't alloc iommu domain\n");
115 		return -ENOMEM;
116 	}
117 
118 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119 
120 	ret = iommu_attach_device(domain, dev);
121 	if (ret) {
122 		dev_err(dev, "can't attach iommu device: %d\n", ret);
123 		goto free_domain;
124 	}
125 
126 	rproc->domain = domain;
127 
128 	return 0;
129 
130 free_domain:
131 	iommu_domain_free(domain);
132 	return ret;
133 }
134 
135 static void rproc_disable_iommu(struct rproc *rproc)
136 {
137 	struct iommu_domain *domain = rproc->domain;
138 	struct device *dev = rproc->dev.parent;
139 
140 	if (!domain)
141 		return;
142 
143 	iommu_detach_device(domain, dev);
144 	iommu_domain_free(domain);
145 }
146 
147 phys_addr_t rproc_va_to_pa(void *cpu_addr)
148 {
149 	/*
150 	 * Return physical address according to virtual address location
151 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152 	 * - in kernel: if region allocated in generic dma memory pool
153 	 */
154 	if (is_vmalloc_addr(cpu_addr)) {
155 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
156 				    offset_in_page(cpu_addr);
157 	}
158 
159 	WARN_ON(!virt_addr_valid(cpu_addr));
160 	return virt_to_phys(cpu_addr);
161 }
162 EXPORT_SYMBOL(rproc_va_to_pa);
163 
164 /**
165  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166  * @rproc: handle of a remote processor
167  * @da: remoteproc device address to translate
168  * @len: length of the memory region @da is pointing to
169  * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
170  *
171  * Some remote processors will ask us to allocate them physically contiguous
172  * memory regions (which we call "carveouts"), and map them to specific
173  * device addresses (which are hardcoded in the firmware). They may also have
174  * dedicated memory regions internal to the processors, and use them either
175  * exclusively or alongside carveouts.
176  *
177  * They may then ask us to copy objects into specific device addresses (e.g.
178  * code/data sections) or expose us certain symbols in other device address
179  * (e.g. their trace buffer).
180  *
181  * This function is a helper function with which we can go over the allocated
182  * carveouts and translate specific device addresses to kernel virtual addresses
183  * so we can access the referenced memory. This function also allows to perform
184  * translations on the internal remoteproc memory regions through a platform
185  * implementation specific da_to_va ops, if present.
186  *
187  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188  * but only on kernel direct mapped RAM memory. Instead, we're just using
189  * here the output of the DMA API for the carveouts, which should be more
190  * correct.
191  *
192  * Return: a valid kernel address on success or NULL on failure
193  */
194 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
195 {
196 	struct rproc_mem_entry *carveout;
197 	void *ptr = NULL;
198 
199 	if (rproc->ops->da_to_va) {
200 		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
201 		if (ptr)
202 			goto out;
203 	}
204 
205 	list_for_each_entry(carveout, &rproc->carveouts, node) {
206 		int offset = da - carveout->da;
207 
208 		/*  Verify that carveout is allocated */
209 		if (!carveout->va)
210 			continue;
211 
212 		/* try next carveout if da is too small */
213 		if (offset < 0)
214 			continue;
215 
216 		/* try next carveout if da is too large */
217 		if (offset + len > carveout->len)
218 			continue;
219 
220 		ptr = carveout->va + offset;
221 
222 		if (is_iomem)
223 			*is_iomem = carveout->is_iomem;
224 
225 		break;
226 	}
227 
228 out:
229 	return ptr;
230 }
231 EXPORT_SYMBOL(rproc_da_to_va);
232 
233 /**
234  * rproc_find_carveout_by_name() - lookup the carveout region by a name
235  * @rproc: handle of a remote processor
236  * @name: carveout name to find (format string)
237  * @...: optional parameters matching @name string
238  *
239  * Platform driver has the capability to register some pre-allacoted carveout
240  * (physically contiguous memory regions) before rproc firmware loading and
241  * associated resource table analysis. These regions may be dedicated memory
242  * regions internal to the coprocessor or specified DDR region with specific
243  * attributes
244  *
245  * This function is a helper function with which we can go over the
246  * allocated carveouts and return associated region characteristics like
247  * coprocessor address, length or processor virtual address.
248  *
249  * Return: a valid pointer on carveout entry on success or NULL on failure.
250  */
251 __printf(2, 3)
252 struct rproc_mem_entry *
253 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
254 {
255 	va_list args;
256 	char _name[32];
257 	struct rproc_mem_entry *carveout, *mem = NULL;
258 
259 	if (!name)
260 		return NULL;
261 
262 	va_start(args, name);
263 	vsnprintf(_name, sizeof(_name), name, args);
264 	va_end(args);
265 
266 	list_for_each_entry(carveout, &rproc->carveouts, node) {
267 		/* Compare carveout and requested names */
268 		if (!strcmp(carveout->name, _name)) {
269 			mem = carveout;
270 			break;
271 		}
272 	}
273 
274 	return mem;
275 }
276 
277 /**
278  * rproc_check_carveout_da() - Check specified carveout da configuration
279  * @rproc: handle of a remote processor
280  * @mem: pointer on carveout to check
281  * @da: area device address
282  * @len: associated area size
283  *
284  * This function is a helper function to verify requested device area (couple
285  * da, len) is part of specified carveout.
286  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
287  * checked.
288  *
289  * Return: 0 if carveout matches request else error
290  */
291 static int rproc_check_carveout_da(struct rproc *rproc,
292 				   struct rproc_mem_entry *mem, u32 da, u32 len)
293 {
294 	struct device *dev = &rproc->dev;
295 	int delta;
296 
297 	/* Check requested resource length */
298 	if (len > mem->len) {
299 		dev_err(dev, "Registered carveout doesn't fit len request\n");
300 		return -EINVAL;
301 	}
302 
303 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
304 		/* Address doesn't match registered carveout configuration */
305 		return -EINVAL;
306 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
307 		delta = da - mem->da;
308 
309 		/* Check requested resource belongs to registered carveout */
310 		if (delta < 0) {
311 			dev_err(dev,
312 				"Registered carveout doesn't fit da request\n");
313 			return -EINVAL;
314 		}
315 
316 		if (delta + len > mem->len) {
317 			dev_err(dev,
318 				"Registered carveout doesn't fit len request\n");
319 			return -EINVAL;
320 		}
321 	}
322 
323 	return 0;
324 }
325 
326 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
327 {
328 	struct rproc *rproc = rvdev->rproc;
329 	struct device *dev = &rproc->dev;
330 	struct rproc_vring *rvring = &rvdev->vring[i];
331 	struct fw_rsc_vdev *rsc;
332 	int ret, notifyid;
333 	struct rproc_mem_entry *mem;
334 	size_t size;
335 
336 	/* actual size of vring (in bytes) */
337 	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
338 
339 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
340 
341 	/* Search for pre-registered carveout */
342 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
343 					  i);
344 	if (mem) {
345 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
346 			return -ENOMEM;
347 	} else {
348 		/* Register carveout in list */
349 		mem = rproc_mem_entry_init(dev, NULL, 0,
350 					   size, rsc->vring[i].da,
351 					   rproc_alloc_carveout,
352 					   rproc_release_carveout,
353 					   "vdev%dvring%d",
354 					   rvdev->index, i);
355 		if (!mem) {
356 			dev_err(dev, "Can't allocate memory entry structure\n");
357 			return -ENOMEM;
358 		}
359 
360 		rproc_add_carveout(rproc, mem);
361 	}
362 
363 	/*
364 	 * Assign an rproc-wide unique index for this vring
365 	 * TODO: assign a notifyid for rvdev updates as well
366 	 * TODO: support predefined notifyids (via resource table)
367 	 */
368 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
369 	if (ret < 0) {
370 		dev_err(dev, "idr_alloc failed: %d\n", ret);
371 		return ret;
372 	}
373 	notifyid = ret;
374 
375 	/* Potentially bump max_notifyid */
376 	if (notifyid > rproc->max_notifyid)
377 		rproc->max_notifyid = notifyid;
378 
379 	rvring->notifyid = notifyid;
380 
381 	/* Let the rproc know the notifyid of this vring.*/
382 	rsc->vring[i].notifyid = notifyid;
383 	return 0;
384 }
385 
386 int
387 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
388 {
389 	struct rproc *rproc = rvdev->rproc;
390 	struct device *dev = &rproc->dev;
391 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
392 	struct rproc_vring *rvring = &rvdev->vring[i];
393 
394 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
395 		i, vring->da, vring->num, vring->align);
396 
397 	/* verify queue size and vring alignment are sane */
398 	if (!vring->num || !vring->align) {
399 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
400 			vring->num, vring->align);
401 		return -EINVAL;
402 	}
403 
404 	rvring->num = vring->num;
405 	rvring->align = vring->align;
406 	rvring->rvdev = rvdev;
407 
408 	return 0;
409 }
410 
411 void rproc_free_vring(struct rproc_vring *rvring)
412 {
413 	struct rproc *rproc = rvring->rvdev->rproc;
414 	int idx = rvring - rvring->rvdev->vring;
415 	struct fw_rsc_vdev *rsc;
416 
417 	idr_remove(&rproc->notifyids, rvring->notifyid);
418 
419 	/*
420 	 * At this point rproc_stop() has been called and the installed resource
421 	 * table in the remote processor memory may no longer be accessible. As
422 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
423 	 * resource table (rproc->cached_table).  The cached resource table is
424 	 * only available when a remote processor has been booted by the
425 	 * remoteproc core, otherwise it is NULL.
426 	 *
427 	 * Based on the above, reset the virtio device section in the cached
428 	 * resource table only if there is one to work with.
429 	 */
430 	if (rproc->table_ptr) {
431 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
432 		rsc->vring[idx].da = 0;
433 		rsc->vring[idx].notifyid = -1;
434 	}
435 }
436 
437 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
438 {
439 	if (rvdev && rproc)
440 		list_add_tail(&rvdev->node, &rproc->rvdevs);
441 }
442 
443 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
444 {
445 	if (rvdev)
446 		list_del(&rvdev->node);
447 }
448 /**
449  * rproc_handle_vdev() - handle a vdev fw resource
450  * @rproc: the remote processor
451  * @ptr: the vring resource descriptor
452  * @offset: offset of the resource entry
453  * @avail: size of available data (for sanity checking the image)
454  *
455  * This resource entry requests the host to statically register a virtio
456  * device (vdev), and setup everything needed to support it. It contains
457  * everything needed to make it possible: the virtio device id, virtio
458  * device features, vrings information, virtio config space, etc...
459  *
460  * Before registering the vdev, the vrings are allocated from non-cacheable
461  * physically contiguous memory. Currently we only support two vrings per
462  * remote processor (temporary limitation). We might also want to consider
463  * doing the vring allocation only later when ->find_vqs() is invoked, and
464  * then release them upon ->del_vqs().
465  *
466  * Note: @da is currently not really handled correctly: we dynamically
467  * allocate it using the DMA API, ignoring requested hard coded addresses,
468  * and we don't take care of any required IOMMU programming. This is all
469  * going to be taken care of when the generic iommu-based DMA API will be
470  * merged. Meanwhile, statically-addressed iommu-based firmware images should
471  * use RSC_DEVMEM resource entries to map their required @da to the physical
472  * address of their base CMA region (ouch, hacky!).
473  *
474  * Return: 0 on success, or an appropriate error code otherwise
475  */
476 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
477 			     int offset, int avail)
478 {
479 	struct fw_rsc_vdev *rsc = ptr;
480 	struct device *dev = &rproc->dev;
481 	struct rproc_vdev *rvdev;
482 	size_t rsc_size;
483 	struct rproc_vdev_data rvdev_data;
484 	struct platform_device *pdev;
485 
486 	/* make sure resource isn't truncated */
487 	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
488 	if (size_add(rsc_size, rsc->config_len) > avail) {
489 		dev_err(dev, "vdev rsc is truncated\n");
490 		return -EINVAL;
491 	}
492 
493 	/* make sure reserved bytes are zeroes */
494 	if (rsc->reserved[0] || rsc->reserved[1]) {
495 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
496 		return -EINVAL;
497 	}
498 
499 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
500 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
501 
502 	/* we currently support only two vrings per rvdev */
503 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
504 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
505 		return -EINVAL;
506 	}
507 
508 	rvdev_data.id = rsc->id;
509 	rvdev_data.index = rproc->nb_vdev++;
510 	rvdev_data.rsc_offset = offset;
511 	rvdev_data.rsc = rsc;
512 
513 	/*
514 	 * When there is more than one remote processor, rproc->nb_vdev number is
515 	 * same for each separate instances of "rproc". If rvdev_data.index is used
516 	 * as device id, then we get duplication in sysfs, so need to use
517 	 * PLATFORM_DEVID_AUTO to auto select device id.
518 	 */
519 	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
520 					     sizeof(rvdev_data));
521 	if (IS_ERR(pdev)) {
522 		dev_err(dev, "failed to create rproc-virtio device\n");
523 		return PTR_ERR(pdev);
524 	}
525 
526 	return 0;
527 }
528 
529 /**
530  * rproc_handle_trace() - handle a shared trace buffer resource
531  * @rproc: the remote processor
532  * @ptr: the trace resource descriptor
533  * @offset: offset of the resource entry
534  * @avail: size of available data (for sanity checking the image)
535  *
536  * In case the remote processor dumps trace logs into memory,
537  * export it via debugfs.
538  *
539  * Currently, the 'da' member of @rsc should contain the device address
540  * where the remote processor is dumping the traces. Later we could also
541  * support dynamically allocating this address using the generic
542  * DMA API (but currently there isn't a use case for that).
543  *
544  * Return: 0 on success, or an appropriate error code otherwise
545  */
546 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
547 			      int offset, int avail)
548 {
549 	struct fw_rsc_trace *rsc = ptr;
550 	struct rproc_debug_trace *trace;
551 	struct device *dev = &rproc->dev;
552 	char name[15];
553 
554 	if (sizeof(*rsc) > avail) {
555 		dev_err(dev, "trace rsc is truncated\n");
556 		return -EINVAL;
557 	}
558 
559 	/* make sure reserved bytes are zeroes */
560 	if (rsc->reserved) {
561 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
562 		return -EINVAL;
563 	}
564 
565 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
566 	if (!trace)
567 		return -ENOMEM;
568 
569 	/* set the trace buffer dma properties */
570 	trace->trace_mem.len = rsc->len;
571 	trace->trace_mem.da = rsc->da;
572 
573 	/* set pointer on rproc device */
574 	trace->rproc = rproc;
575 
576 	/* make sure snprintf always null terminates, even if truncating */
577 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
578 
579 	/* create the debugfs entry */
580 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
581 
582 	list_add_tail(&trace->node, &rproc->traces);
583 
584 	rproc->num_traces++;
585 
586 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
587 		name, rsc->da, rsc->len);
588 
589 	return 0;
590 }
591 
592 /**
593  * rproc_handle_devmem() - handle devmem resource entry
594  * @rproc: remote processor handle
595  * @ptr: the devmem resource entry
596  * @offset: offset of the resource entry
597  * @avail: size of available data (for sanity checking the image)
598  *
599  * Remote processors commonly need to access certain on-chip peripherals.
600  *
601  * Some of these remote processors access memory via an iommu device,
602  * and might require us to configure their iommu before they can access
603  * the on-chip peripherals they need.
604  *
605  * This resource entry is a request to map such a peripheral device.
606  *
607  * These devmem entries will contain the physical address of the device in
608  * the 'pa' member. If a specific device address is expected, then 'da' will
609  * contain it (currently this is the only use case supported). 'len' will
610  * contain the size of the physical region we need to map.
611  *
612  * Currently we just "trust" those devmem entries to contain valid physical
613  * addresses, but this is going to change: we want the implementations to
614  * tell us ranges of physical addresses the firmware is allowed to request,
615  * and not allow firmwares to request access to physical addresses that
616  * are outside those ranges.
617  *
618  * Return: 0 on success, or an appropriate error code otherwise
619  */
620 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
621 			       int offset, int avail)
622 {
623 	struct fw_rsc_devmem *rsc = ptr;
624 	struct rproc_mem_entry *mapping;
625 	struct device *dev = &rproc->dev;
626 	int ret;
627 
628 	/* no point in handling this resource without a valid iommu domain */
629 	if (!rproc->domain)
630 		return -EINVAL;
631 
632 	if (sizeof(*rsc) > avail) {
633 		dev_err(dev, "devmem rsc is truncated\n");
634 		return -EINVAL;
635 	}
636 
637 	/* make sure reserved bytes are zeroes */
638 	if (rsc->reserved) {
639 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
640 		return -EINVAL;
641 	}
642 
643 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
644 	if (!mapping)
645 		return -ENOMEM;
646 
647 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
648 			GFP_KERNEL);
649 	if (ret) {
650 		dev_err(dev, "failed to map devmem: %d\n", ret);
651 		goto out;
652 	}
653 
654 	/*
655 	 * We'll need this info later when we'll want to unmap everything
656 	 * (e.g. on shutdown).
657 	 *
658 	 * We can't trust the remote processor not to change the resource
659 	 * table, so we must maintain this info independently.
660 	 */
661 	mapping->da = rsc->da;
662 	mapping->len = rsc->len;
663 	list_add_tail(&mapping->node, &rproc->mappings);
664 
665 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
666 		rsc->pa, rsc->da, rsc->len);
667 
668 	return 0;
669 
670 out:
671 	kfree(mapping);
672 	return ret;
673 }
674 
675 /**
676  * rproc_alloc_carveout() - allocated specified carveout
677  * @rproc: rproc handle
678  * @mem: the memory entry to allocate
679  *
680  * This function allocate specified memory entry @mem using
681  * dma_alloc_coherent() as default allocator
682  *
683  * Return: 0 on success, or an appropriate error code otherwise
684  */
685 static int rproc_alloc_carveout(struct rproc *rproc,
686 				struct rproc_mem_entry *mem)
687 {
688 	struct rproc_mem_entry *mapping = NULL;
689 	struct device *dev = &rproc->dev;
690 	dma_addr_t dma;
691 	void *va;
692 	int ret;
693 
694 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
695 	if (!va) {
696 		dev_err(dev->parent,
697 			"failed to allocate dma memory: len 0x%zx\n",
698 			mem->len);
699 		return -ENOMEM;
700 	}
701 
702 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
703 		va, &dma, mem->len);
704 
705 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
706 		/*
707 		 * Check requested da is equal to dma address
708 		 * and print a warn message in case of missalignment.
709 		 * Don't stop rproc_start sequence as coprocessor may
710 		 * build pa to da translation on its side.
711 		 */
712 		if (mem->da != (u32)dma)
713 			dev_warn(dev->parent,
714 				 "Allocated carveout doesn't fit device address request\n");
715 	}
716 
717 	/*
718 	 * Ok, this is non-standard.
719 	 *
720 	 * Sometimes we can't rely on the generic iommu-based DMA API
721 	 * to dynamically allocate the device address and then set the IOMMU
722 	 * tables accordingly, because some remote processors might
723 	 * _require_ us to use hard coded device addresses that their
724 	 * firmware was compiled with.
725 	 *
726 	 * In this case, we must use the IOMMU API directly and map
727 	 * the memory to the device address as expected by the remote
728 	 * processor.
729 	 *
730 	 * Obviously such remote processor devices should not be configured
731 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
732 	 * physical address in this case.
733 	 */
734 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
735 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
736 		if (!mapping) {
737 			ret = -ENOMEM;
738 			goto dma_free;
739 		}
740 
741 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
742 				mem->flags, GFP_KERNEL);
743 		if (ret) {
744 			dev_err(dev, "iommu_map failed: %d\n", ret);
745 			goto free_mapping;
746 		}
747 
748 		/*
749 		 * We'll need this info later when we'll want to unmap
750 		 * everything (e.g. on shutdown).
751 		 *
752 		 * We can't trust the remote processor not to change the
753 		 * resource table, so we must maintain this info independently.
754 		 */
755 		mapping->da = mem->da;
756 		mapping->len = mem->len;
757 		list_add_tail(&mapping->node, &rproc->mappings);
758 
759 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
760 			mem->da, &dma);
761 	}
762 
763 	if (mem->da == FW_RSC_ADDR_ANY) {
764 		/* Update device address as undefined by requester */
765 		if ((u64)dma & HIGH_BITS_MASK)
766 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
767 
768 		mem->da = (u32)dma;
769 	}
770 
771 	mem->dma = dma;
772 	mem->va = va;
773 
774 	return 0;
775 
776 free_mapping:
777 	kfree(mapping);
778 dma_free:
779 	dma_free_coherent(dev->parent, mem->len, va, dma);
780 	return ret;
781 }
782 
783 /**
784  * rproc_release_carveout() - release acquired carveout
785  * @rproc: rproc handle
786  * @mem: the memory entry to release
787  *
788  * This function releases specified memory entry @mem allocated via
789  * rproc_alloc_carveout() function by @rproc.
790  *
791  * Return: 0 on success, or an appropriate error code otherwise
792  */
793 static int rproc_release_carveout(struct rproc *rproc,
794 				  struct rproc_mem_entry *mem)
795 {
796 	struct device *dev = &rproc->dev;
797 
798 	/* clean up carveout allocations */
799 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
800 	return 0;
801 }
802 
803 /**
804  * rproc_handle_carveout() - handle phys contig memory allocation requests
805  * @rproc: rproc handle
806  * @ptr: the resource entry
807  * @offset: offset of the resource entry
808  * @avail: size of available data (for image validation)
809  *
810  * This function will handle firmware requests for allocation of physically
811  * contiguous memory regions.
812  *
813  * These request entries should come first in the firmware's resource table,
814  * as other firmware entries might request placing other data objects inside
815  * these memory regions (e.g. data/code segments, trace resource entries, ...).
816  *
817  * Allocating memory this way helps utilizing the reserved physical memory
818  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
819  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
820  * pressure is important; it may have a substantial impact on performance.
821  *
822  * Return: 0 on success, or an appropriate error code otherwise
823  */
824 static int rproc_handle_carveout(struct rproc *rproc,
825 				 void *ptr, int offset, int avail)
826 {
827 	struct fw_rsc_carveout *rsc = ptr;
828 	struct rproc_mem_entry *carveout;
829 	struct device *dev = &rproc->dev;
830 
831 	if (sizeof(*rsc) > avail) {
832 		dev_err(dev, "carveout rsc is truncated\n");
833 		return -EINVAL;
834 	}
835 
836 	/* make sure reserved bytes are zeroes */
837 	if (rsc->reserved) {
838 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
839 		return -EINVAL;
840 	}
841 
842 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
843 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
844 
845 	/*
846 	 * Check carveout rsc already part of a registered carveout,
847 	 * Search by name, then check the da and length
848 	 */
849 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
850 
851 	if (carveout) {
852 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
853 			dev_err(dev,
854 				"Carveout already associated to resource table\n");
855 			return -ENOMEM;
856 		}
857 
858 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
859 			return -ENOMEM;
860 
861 		/* Update memory carveout with resource table info */
862 		carveout->rsc_offset = offset;
863 		carveout->flags = rsc->flags;
864 
865 		return 0;
866 	}
867 
868 	/* Register carveout in list */
869 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
870 					rproc_alloc_carveout,
871 					rproc_release_carveout, rsc->name);
872 	if (!carveout) {
873 		dev_err(dev, "Can't allocate memory entry structure\n");
874 		return -ENOMEM;
875 	}
876 
877 	carveout->flags = rsc->flags;
878 	carveout->rsc_offset = offset;
879 	rproc_add_carveout(rproc, carveout);
880 
881 	return 0;
882 }
883 
884 /**
885  * rproc_add_carveout() - register an allocated carveout region
886  * @rproc: rproc handle
887  * @mem: memory entry to register
888  *
889  * This function registers specified memory entry in @rproc carveouts list.
890  * Specified carveout should have been allocated before registering.
891  */
892 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
893 {
894 	list_add_tail(&mem->node, &rproc->carveouts);
895 }
896 EXPORT_SYMBOL(rproc_add_carveout);
897 
898 /**
899  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
900  * @dev: pointer on device struct
901  * @va: virtual address
902  * @dma: dma address
903  * @len: memory carveout length
904  * @da: device address
905  * @alloc: memory carveout allocation function
906  * @release: memory carveout release function
907  * @name: carveout name
908  *
909  * This function allocates a rproc_mem_entry struct and fill it with parameters
910  * provided by client.
911  *
912  * Return: a valid pointer on success, or NULL on failure
913  */
914 __printf(8, 9)
915 struct rproc_mem_entry *
916 rproc_mem_entry_init(struct device *dev,
917 		     void *va, dma_addr_t dma, size_t len, u32 da,
918 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
919 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
920 		     const char *name, ...)
921 {
922 	struct rproc_mem_entry *mem;
923 	va_list args;
924 
925 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
926 	if (!mem)
927 		return mem;
928 
929 	mem->va = va;
930 	mem->dma = dma;
931 	mem->da = da;
932 	mem->len = len;
933 	mem->alloc = alloc;
934 	mem->release = release;
935 	mem->rsc_offset = FW_RSC_ADDR_ANY;
936 	mem->of_resm_idx = -1;
937 
938 	va_start(args, name);
939 	vsnprintf(mem->name, sizeof(mem->name), name, args);
940 	va_end(args);
941 
942 	return mem;
943 }
944 EXPORT_SYMBOL(rproc_mem_entry_init);
945 
946 /**
947  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
948  * from a reserved memory phandle
949  * @dev: pointer on device struct
950  * @of_resm_idx: reserved memory phandle index in "memory-region"
951  * @len: memory carveout length
952  * @da: device address
953  * @name: carveout name
954  *
955  * This function allocates a rproc_mem_entry struct and fill it with parameters
956  * provided by client.
957  *
958  * Return: a valid pointer on success, or NULL on failure
959  */
960 __printf(5, 6)
961 struct rproc_mem_entry *
962 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
963 			     u32 da, const char *name, ...)
964 {
965 	struct rproc_mem_entry *mem;
966 	va_list args;
967 
968 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
969 	if (!mem)
970 		return mem;
971 
972 	mem->da = da;
973 	mem->len = len;
974 	mem->rsc_offset = FW_RSC_ADDR_ANY;
975 	mem->of_resm_idx = of_resm_idx;
976 
977 	va_start(args, name);
978 	vsnprintf(mem->name, sizeof(mem->name), name, args);
979 	va_end(args);
980 
981 	return mem;
982 }
983 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
984 
985 /**
986  * rproc_of_parse_firmware() - parse and return the firmware-name
987  * @dev: pointer on device struct representing a rproc
988  * @index: index to use for the firmware-name retrieval
989  * @fw_name: pointer to a character string, in which the firmware
990  *           name is returned on success and unmodified otherwise.
991  *
992  * This is an OF helper function that parses a device's DT node for
993  * the "firmware-name" property and returns the firmware name pointer
994  * in @fw_name on success.
995  *
996  * Return: 0 on success, or an appropriate failure.
997  */
998 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
999 {
1000 	int ret;
1001 
1002 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1003 					    index, fw_name);
1004 	return ret ? ret : 0;
1005 }
1006 EXPORT_SYMBOL(rproc_of_parse_firmware);
1007 
1008 /*
1009  * A lookup table for resource handlers. The indices are defined in
1010  * enum fw_resource_type.
1011  */
1012 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1013 	[RSC_CARVEOUT] = rproc_handle_carveout,
1014 	[RSC_DEVMEM] = rproc_handle_devmem,
1015 	[RSC_TRACE] = rproc_handle_trace,
1016 	[RSC_VDEV] = rproc_handle_vdev,
1017 };
1018 
1019 /* handle firmware resource entries before booting the remote processor */
1020 static int rproc_handle_resources(struct rproc *rproc,
1021 				  rproc_handle_resource_t handlers[RSC_LAST])
1022 {
1023 	struct device *dev = &rproc->dev;
1024 	rproc_handle_resource_t handler;
1025 	int ret = 0, i;
1026 
1027 	if (!rproc->table_ptr)
1028 		return 0;
1029 
1030 	for (i = 0; i < rproc->table_ptr->num; i++) {
1031 		int offset = rproc->table_ptr->offset[i];
1032 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1033 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1034 		void *rsc = (void *)hdr + sizeof(*hdr);
1035 
1036 		/* make sure table isn't truncated */
1037 		if (avail < 0) {
1038 			dev_err(dev, "rsc table is truncated\n");
1039 			return -EINVAL;
1040 		}
1041 
1042 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1043 
1044 		if (hdr->type >= RSC_VENDOR_START &&
1045 		    hdr->type <= RSC_VENDOR_END) {
1046 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1047 					       offset + sizeof(*hdr), avail);
1048 			if (ret == RSC_HANDLED)
1049 				continue;
1050 			else if (ret < 0)
1051 				break;
1052 
1053 			dev_warn(dev, "unsupported vendor resource %d\n",
1054 				 hdr->type);
1055 			continue;
1056 		}
1057 
1058 		if (hdr->type >= RSC_LAST) {
1059 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1060 			continue;
1061 		}
1062 
1063 		handler = handlers[hdr->type];
1064 		if (!handler)
1065 			continue;
1066 
1067 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1068 		if (ret)
1069 			break;
1070 	}
1071 
1072 	return ret;
1073 }
1074 
1075 static int rproc_prepare_subdevices(struct rproc *rproc)
1076 {
1077 	struct rproc_subdev *subdev;
1078 	int ret;
1079 
1080 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1081 		if (subdev->prepare) {
1082 			ret = subdev->prepare(subdev);
1083 			if (ret)
1084 				goto unroll_preparation;
1085 		}
1086 	}
1087 
1088 	return 0;
1089 
1090 unroll_preparation:
1091 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1092 		if (subdev->unprepare)
1093 			subdev->unprepare(subdev);
1094 	}
1095 
1096 	return ret;
1097 }
1098 
1099 static int rproc_start_subdevices(struct rproc *rproc)
1100 {
1101 	struct rproc_subdev *subdev;
1102 	int ret;
1103 
1104 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1105 		if (subdev->start) {
1106 			ret = subdev->start(subdev);
1107 			if (ret)
1108 				goto unroll_registration;
1109 		}
1110 	}
1111 
1112 	return 0;
1113 
1114 unroll_registration:
1115 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1116 		if (subdev->stop)
1117 			subdev->stop(subdev, true);
1118 	}
1119 
1120 	return ret;
1121 }
1122 
1123 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1124 {
1125 	struct rproc_subdev *subdev;
1126 
1127 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1128 		if (subdev->stop)
1129 			subdev->stop(subdev, crashed);
1130 	}
1131 }
1132 
1133 static void rproc_unprepare_subdevices(struct rproc *rproc)
1134 {
1135 	struct rproc_subdev *subdev;
1136 
1137 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1138 		if (subdev->unprepare)
1139 			subdev->unprepare(subdev);
1140 	}
1141 }
1142 
1143 /**
1144  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1145  * in the list
1146  * @rproc: the remote processor handle
1147  *
1148  * This function parses registered carveout list, performs allocation
1149  * if alloc() ops registered and updates resource table information
1150  * if rsc_offset set.
1151  *
1152  * Return: 0 on success
1153  */
1154 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1155 {
1156 	struct rproc_mem_entry *entry, *tmp;
1157 	struct fw_rsc_carveout *rsc;
1158 	struct device *dev = &rproc->dev;
1159 	u64 pa;
1160 	int ret;
1161 
1162 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1163 		if (entry->alloc) {
1164 			ret = entry->alloc(rproc, entry);
1165 			if (ret) {
1166 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1167 					entry->name, ret);
1168 				return -ENOMEM;
1169 			}
1170 		}
1171 
1172 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1173 			/* update resource table */
1174 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1175 
1176 			/*
1177 			 * Some remote processors might need to know the pa
1178 			 * even though they are behind an IOMMU. E.g., OMAP4's
1179 			 * remote M3 processor needs this so it can control
1180 			 * on-chip hardware accelerators that are not behind
1181 			 * the IOMMU, and therefor must know the pa.
1182 			 *
1183 			 * Generally we don't want to expose physical addresses
1184 			 * if we don't have to (remote processors are generally
1185 			 * _not_ trusted), so we might want to do this only for
1186 			 * remote processor that _must_ have this (e.g. OMAP4's
1187 			 * dual M3 subsystem).
1188 			 *
1189 			 * Non-IOMMU processors might also want to have this info.
1190 			 * In this case, the device address and the physical address
1191 			 * are the same.
1192 			 */
1193 
1194 			/* Use va if defined else dma to generate pa */
1195 			if (entry->va)
1196 				pa = (u64)rproc_va_to_pa(entry->va);
1197 			else
1198 				pa = (u64)entry->dma;
1199 
1200 			if (((u64)pa) & HIGH_BITS_MASK)
1201 				dev_warn(dev,
1202 					 "Physical address cast in 32bit to fit resource table format\n");
1203 
1204 			rsc->pa = (u32)pa;
1205 			rsc->da = entry->da;
1206 			rsc->len = entry->len;
1207 		}
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 
1214 /**
1215  * rproc_resource_cleanup() - clean up and free all acquired resources
1216  * @rproc: rproc handle
1217  *
1218  * This function will free all resources acquired for @rproc, and it
1219  * is called whenever @rproc either shuts down or fails to boot.
1220  */
1221 void rproc_resource_cleanup(struct rproc *rproc)
1222 {
1223 	struct rproc_mem_entry *entry, *tmp;
1224 	struct rproc_debug_trace *trace, *ttmp;
1225 	struct rproc_vdev *rvdev, *rvtmp;
1226 	struct device *dev = &rproc->dev;
1227 
1228 	/* clean up debugfs trace entries */
1229 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1230 		rproc_remove_trace_file(trace->tfile);
1231 		rproc->num_traces--;
1232 		list_del(&trace->node);
1233 		kfree(trace);
1234 	}
1235 
1236 	/* clean up iommu mapping entries */
1237 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1238 		size_t unmapped;
1239 
1240 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1241 		if (unmapped != entry->len) {
1242 			/* nothing much to do besides complaining */
1243 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1244 				unmapped);
1245 		}
1246 
1247 		list_del(&entry->node);
1248 		kfree(entry);
1249 	}
1250 
1251 	/* clean up carveout allocations */
1252 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1253 		if (entry->release)
1254 			entry->release(rproc, entry);
1255 		list_del(&entry->node);
1256 		kfree(entry);
1257 	}
1258 
1259 	/* clean up remote vdev entries */
1260 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1261 		platform_device_unregister(rvdev->pdev);
1262 
1263 	rproc_coredump_cleanup(rproc);
1264 }
1265 EXPORT_SYMBOL(rproc_resource_cleanup);
1266 
1267 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1268 {
1269 	struct resource_table *loaded_table;
1270 	struct device *dev = &rproc->dev;
1271 	int ret;
1272 
1273 	/* load the ELF segments to memory */
1274 	ret = rproc_load_segments(rproc, fw);
1275 	if (ret) {
1276 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1277 		return ret;
1278 	}
1279 
1280 	/*
1281 	 * The starting device has been given the rproc->cached_table as the
1282 	 * resource table. The address of the vring along with the other
1283 	 * allocated resources (carveouts etc) is stored in cached_table.
1284 	 * In order to pass this information to the remote device we must copy
1285 	 * this information to device memory. We also update the table_ptr so
1286 	 * that any subsequent changes will be applied to the loaded version.
1287 	 */
1288 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1289 	if (loaded_table) {
1290 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1291 		rproc->table_ptr = loaded_table;
1292 	}
1293 
1294 	ret = rproc_prepare_subdevices(rproc);
1295 	if (ret) {
1296 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1297 			rproc->name, ret);
1298 		goto reset_table_ptr;
1299 	}
1300 
1301 	/* power up the remote processor */
1302 	ret = rproc->ops->start(rproc);
1303 	if (ret) {
1304 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1305 		goto unprepare_subdevices;
1306 	}
1307 
1308 	/* Start any subdevices for the remote processor */
1309 	ret = rproc_start_subdevices(rproc);
1310 	if (ret) {
1311 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1312 			rproc->name, ret);
1313 		goto stop_rproc;
1314 	}
1315 
1316 	rproc->state = RPROC_RUNNING;
1317 
1318 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1319 
1320 	return 0;
1321 
1322 stop_rproc:
1323 	rproc->ops->stop(rproc);
1324 unprepare_subdevices:
1325 	rproc_unprepare_subdevices(rproc);
1326 reset_table_ptr:
1327 	rproc->table_ptr = rproc->cached_table;
1328 
1329 	return ret;
1330 }
1331 
1332 static int __rproc_attach(struct rproc *rproc)
1333 {
1334 	struct device *dev = &rproc->dev;
1335 	int ret;
1336 
1337 	ret = rproc_prepare_subdevices(rproc);
1338 	if (ret) {
1339 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1340 			rproc->name, ret);
1341 		goto out;
1342 	}
1343 
1344 	/* Attach to the remote processor */
1345 	ret = rproc_attach_device(rproc);
1346 	if (ret) {
1347 		dev_err(dev, "can't attach to rproc %s: %d\n",
1348 			rproc->name, ret);
1349 		goto unprepare_subdevices;
1350 	}
1351 
1352 	/* Start any subdevices for the remote processor */
1353 	ret = rproc_start_subdevices(rproc);
1354 	if (ret) {
1355 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1356 			rproc->name, ret);
1357 		goto stop_rproc;
1358 	}
1359 
1360 	rproc->state = RPROC_ATTACHED;
1361 
1362 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1363 
1364 	return 0;
1365 
1366 stop_rproc:
1367 	rproc->ops->stop(rproc);
1368 unprepare_subdevices:
1369 	rproc_unprepare_subdevices(rproc);
1370 out:
1371 	return ret;
1372 }
1373 
1374 /*
1375  * take a firmware and boot a remote processor with it.
1376  */
1377 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1378 {
1379 	struct device *dev = &rproc->dev;
1380 	const char *name = rproc->firmware;
1381 	int ret;
1382 
1383 	ret = rproc_fw_sanity_check(rproc, fw);
1384 	if (ret)
1385 		return ret;
1386 
1387 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1388 
1389 	/*
1390 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1391 	 * just a nop
1392 	 */
1393 	ret = rproc_enable_iommu(rproc);
1394 	if (ret) {
1395 		dev_err(dev, "can't enable iommu: %d\n", ret);
1396 		return ret;
1397 	}
1398 
1399 	/* Prepare rproc for firmware loading if needed */
1400 	ret = rproc_prepare_device(rproc);
1401 	if (ret) {
1402 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1403 		goto disable_iommu;
1404 	}
1405 
1406 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1407 
1408 	/* Load resource table, core dump segment list etc from the firmware */
1409 	ret = rproc_parse_fw(rproc, fw);
1410 	if (ret)
1411 		goto unprepare_rproc;
1412 
1413 	/* reset max_notifyid */
1414 	rproc->max_notifyid = -1;
1415 
1416 	/* reset handled vdev */
1417 	rproc->nb_vdev = 0;
1418 
1419 	/* handle fw resources which are required to boot rproc */
1420 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1421 	if (ret) {
1422 		dev_err(dev, "Failed to process resources: %d\n", ret);
1423 		goto clean_up_resources;
1424 	}
1425 
1426 	/* Allocate carveout resources associated to rproc */
1427 	ret = rproc_alloc_registered_carveouts(rproc);
1428 	if (ret) {
1429 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1430 			ret);
1431 		goto clean_up_resources;
1432 	}
1433 
1434 	ret = rproc_start(rproc, fw);
1435 	if (ret)
1436 		goto clean_up_resources;
1437 
1438 	return 0;
1439 
1440 clean_up_resources:
1441 	rproc_resource_cleanup(rproc);
1442 	kfree(rproc->cached_table);
1443 	rproc->cached_table = NULL;
1444 	rproc->table_ptr = NULL;
1445 unprepare_rproc:
1446 	/* release HW resources if needed */
1447 	rproc_unprepare_device(rproc);
1448 disable_iommu:
1449 	rproc_disable_iommu(rproc);
1450 	return ret;
1451 }
1452 
1453 static int rproc_set_rsc_table(struct rproc *rproc)
1454 {
1455 	struct resource_table *table_ptr;
1456 	struct device *dev = &rproc->dev;
1457 	size_t table_sz;
1458 	int ret;
1459 
1460 	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1461 	if (!table_ptr) {
1462 		/* Not having a resource table is acceptable */
1463 		return 0;
1464 	}
1465 
1466 	if (IS_ERR(table_ptr)) {
1467 		ret = PTR_ERR(table_ptr);
1468 		dev_err(dev, "can't load resource table: %d\n", ret);
1469 		return ret;
1470 	}
1471 
1472 	/*
1473 	 * If it is possible to detach the remote processor, keep an untouched
1474 	 * copy of the resource table.  That way we can start fresh again when
1475 	 * the remote processor is re-attached, that is:
1476 	 *
1477 	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1478 	 *
1479 	 * Free'd in rproc_reset_rsc_table_on_detach() and
1480 	 * rproc_reset_rsc_table_on_stop().
1481 	 */
1482 	if (rproc->ops->detach) {
1483 		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1484 		if (!rproc->clean_table)
1485 			return -ENOMEM;
1486 	} else {
1487 		rproc->clean_table = NULL;
1488 	}
1489 
1490 	rproc->cached_table = NULL;
1491 	rproc->table_ptr = table_ptr;
1492 	rproc->table_sz = table_sz;
1493 
1494 	return 0;
1495 }
1496 
1497 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1498 {
1499 	struct resource_table *table_ptr;
1500 
1501 	/* A resource table was never retrieved, nothing to do here */
1502 	if (!rproc->table_ptr)
1503 		return 0;
1504 
1505 	/*
1506 	 * If we made it to this point a clean_table _must_ have been
1507 	 * allocated in rproc_set_rsc_table().  If one isn't present
1508 	 * something went really wrong and we must complain.
1509 	 */
1510 	if (WARN_ON(!rproc->clean_table))
1511 		return -EINVAL;
1512 
1513 	/* Remember where the external entity installed the resource table */
1514 	table_ptr = rproc->table_ptr;
1515 
1516 	/*
1517 	 * If we made it here the remote processor was started by another
1518 	 * entity and a cache table doesn't exist.  As such make a copy of
1519 	 * the resource table currently used by the remote processor and
1520 	 * use that for the rest of the shutdown process.  The memory
1521 	 * allocated here is free'd in rproc_detach().
1522 	 */
1523 	rproc->cached_table = kmemdup(rproc->table_ptr,
1524 				      rproc->table_sz, GFP_KERNEL);
1525 	if (!rproc->cached_table)
1526 		return -ENOMEM;
1527 
1528 	/*
1529 	 * Use a copy of the resource table for the remainder of the
1530 	 * shutdown process.
1531 	 */
1532 	rproc->table_ptr = rproc->cached_table;
1533 
1534 	/*
1535 	 * Reset the memory area where the firmware loaded the resource table
1536 	 * to its original value.  That way when we re-attach the remote
1537 	 * processor the resource table is clean and ready to be used again.
1538 	 */
1539 	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1540 
1541 	/*
1542 	 * The clean resource table is no longer needed.  Allocated in
1543 	 * rproc_set_rsc_table().
1544 	 */
1545 	kfree(rproc->clean_table);
1546 
1547 	return 0;
1548 }
1549 
1550 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1551 {
1552 	/* A resource table was never retrieved, nothing to do here */
1553 	if (!rproc->table_ptr)
1554 		return 0;
1555 
1556 	/*
1557 	 * If a cache table exists the remote processor was started by
1558 	 * the remoteproc core.  That cache table should be used for
1559 	 * the rest of the shutdown process.
1560 	 */
1561 	if (rproc->cached_table)
1562 		goto out;
1563 
1564 	/*
1565 	 * If we made it here the remote processor was started by another
1566 	 * entity and a cache table doesn't exist.  As such make a copy of
1567 	 * the resource table currently used by the remote processor and
1568 	 * use that for the rest of the shutdown process.  The memory
1569 	 * allocated here is free'd in rproc_shutdown().
1570 	 */
1571 	rproc->cached_table = kmemdup(rproc->table_ptr,
1572 				      rproc->table_sz, GFP_KERNEL);
1573 	if (!rproc->cached_table)
1574 		return -ENOMEM;
1575 
1576 	/*
1577 	 * Since the remote processor is being switched off the clean table
1578 	 * won't be needed.  Allocated in rproc_set_rsc_table().
1579 	 */
1580 	kfree(rproc->clean_table);
1581 
1582 out:
1583 	/*
1584 	 * Use a copy of the resource table for the remainder of the
1585 	 * shutdown process.
1586 	 */
1587 	rproc->table_ptr = rproc->cached_table;
1588 	return 0;
1589 }
1590 
1591 /*
1592  * Attach to remote processor - similar to rproc_fw_boot() but without
1593  * the steps that deal with the firmware image.
1594  */
1595 static int rproc_attach(struct rproc *rproc)
1596 {
1597 	struct device *dev = &rproc->dev;
1598 	int ret;
1599 
1600 	/*
1601 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1602 	 * just a nop
1603 	 */
1604 	ret = rproc_enable_iommu(rproc);
1605 	if (ret) {
1606 		dev_err(dev, "can't enable iommu: %d\n", ret);
1607 		return ret;
1608 	}
1609 
1610 	/* Do anything that is needed to boot the remote processor */
1611 	ret = rproc_prepare_device(rproc);
1612 	if (ret) {
1613 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1614 		goto disable_iommu;
1615 	}
1616 
1617 	ret = rproc_set_rsc_table(rproc);
1618 	if (ret) {
1619 		dev_err(dev, "can't load resource table: %d\n", ret);
1620 		goto unprepare_device;
1621 	}
1622 
1623 	/* reset max_notifyid */
1624 	rproc->max_notifyid = -1;
1625 
1626 	/* reset handled vdev */
1627 	rproc->nb_vdev = 0;
1628 
1629 	/*
1630 	 * Handle firmware resources required to attach to a remote processor.
1631 	 * Because we are attaching rather than booting the remote processor,
1632 	 * we expect the platform driver to properly set rproc->table_ptr.
1633 	 */
1634 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1635 	if (ret) {
1636 		dev_err(dev, "Failed to process resources: %d\n", ret);
1637 		goto unprepare_device;
1638 	}
1639 
1640 	/* Allocate carveout resources associated to rproc */
1641 	ret = rproc_alloc_registered_carveouts(rproc);
1642 	if (ret) {
1643 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1644 			ret);
1645 		goto clean_up_resources;
1646 	}
1647 
1648 	ret = __rproc_attach(rproc);
1649 	if (ret)
1650 		goto clean_up_resources;
1651 
1652 	return 0;
1653 
1654 clean_up_resources:
1655 	rproc_resource_cleanup(rproc);
1656 unprepare_device:
1657 	/* release HW resources if needed */
1658 	rproc_unprepare_device(rproc);
1659 disable_iommu:
1660 	rproc_disable_iommu(rproc);
1661 	return ret;
1662 }
1663 
1664 /*
1665  * take a firmware and boot it up.
1666  *
1667  * Note: this function is called asynchronously upon registration of the
1668  * remote processor (so we must wait until it completes before we try
1669  * to unregister the device. one other option is just to use kref here,
1670  * that might be cleaner).
1671  */
1672 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1673 {
1674 	struct rproc *rproc = context;
1675 
1676 	rproc_boot(rproc);
1677 
1678 	release_firmware(fw);
1679 }
1680 
1681 static int rproc_trigger_auto_boot(struct rproc *rproc)
1682 {
1683 	int ret;
1684 
1685 	/*
1686 	 * Since the remote processor is in a detached state, it has already
1687 	 * been booted by another entity.  As such there is no point in waiting
1688 	 * for a firmware image to be loaded, we can simply initiate the process
1689 	 * of attaching to it immediately.
1690 	 */
1691 	if (rproc->state == RPROC_DETACHED)
1692 		return rproc_boot(rproc);
1693 
1694 	/*
1695 	 * We're initiating an asynchronous firmware loading, so we can
1696 	 * be built-in kernel code, without hanging the boot process.
1697 	 */
1698 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1699 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1700 				      rproc, rproc_auto_boot_callback);
1701 	if (ret < 0)
1702 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1703 
1704 	return ret;
1705 }
1706 
1707 static int rproc_stop(struct rproc *rproc, bool crashed)
1708 {
1709 	struct device *dev = &rproc->dev;
1710 	int ret;
1711 
1712 	/* No need to continue if a stop() operation has not been provided */
1713 	if (!rproc->ops->stop)
1714 		return -EINVAL;
1715 
1716 	/* Stop any subdevices for the remote processor */
1717 	rproc_stop_subdevices(rproc, crashed);
1718 
1719 	/* the installed resource table is no longer accessible */
1720 	ret = rproc_reset_rsc_table_on_stop(rproc);
1721 	if (ret) {
1722 		dev_err(dev, "can't reset resource table: %d\n", ret);
1723 		return ret;
1724 	}
1725 
1726 
1727 	/* power off the remote processor */
1728 	ret = rproc->ops->stop(rproc);
1729 	if (ret) {
1730 		dev_err(dev, "can't stop rproc: %d\n", ret);
1731 		return ret;
1732 	}
1733 
1734 	rproc_unprepare_subdevices(rproc);
1735 
1736 	rproc->state = RPROC_OFFLINE;
1737 
1738 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1739 
1740 	return 0;
1741 }
1742 
1743 /*
1744  * __rproc_detach(): Does the opposite of __rproc_attach()
1745  */
1746 static int __rproc_detach(struct rproc *rproc)
1747 {
1748 	struct device *dev = &rproc->dev;
1749 	int ret;
1750 
1751 	/* No need to continue if a detach() operation has not been provided */
1752 	if (!rproc->ops->detach)
1753 		return -EINVAL;
1754 
1755 	/* Stop any subdevices for the remote processor */
1756 	rproc_stop_subdevices(rproc, false);
1757 
1758 	/* the installed resource table is no longer accessible */
1759 	ret = rproc_reset_rsc_table_on_detach(rproc);
1760 	if (ret) {
1761 		dev_err(dev, "can't reset resource table: %d\n", ret);
1762 		return ret;
1763 	}
1764 
1765 	/* Tell the remote processor the core isn't available anymore */
1766 	ret = rproc->ops->detach(rproc);
1767 	if (ret) {
1768 		dev_err(dev, "can't detach from rproc: %d\n", ret);
1769 		return ret;
1770 	}
1771 
1772 	rproc_unprepare_subdevices(rproc);
1773 
1774 	rproc->state = RPROC_DETACHED;
1775 
1776 	dev_info(dev, "detached remote processor %s\n", rproc->name);
1777 
1778 	return 0;
1779 }
1780 
1781 static int rproc_attach_recovery(struct rproc *rproc)
1782 {
1783 	int ret;
1784 
1785 	ret = __rproc_detach(rproc);
1786 	if (ret)
1787 		return ret;
1788 
1789 	return __rproc_attach(rproc);
1790 }
1791 
1792 static int rproc_boot_recovery(struct rproc *rproc)
1793 {
1794 	const struct firmware *firmware_p;
1795 	struct device *dev = &rproc->dev;
1796 	int ret;
1797 
1798 	ret = rproc_stop(rproc, true);
1799 	if (ret)
1800 		return ret;
1801 
1802 	/* generate coredump */
1803 	rproc->ops->coredump(rproc);
1804 
1805 	/* load firmware */
1806 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1807 	if (ret < 0) {
1808 		dev_err(dev, "request_firmware failed: %d\n", ret);
1809 		return ret;
1810 	}
1811 
1812 	/* boot the remote processor up again */
1813 	ret = rproc_start(rproc, firmware_p);
1814 
1815 	release_firmware(firmware_p);
1816 
1817 	return ret;
1818 }
1819 
1820 /**
1821  * rproc_trigger_recovery() - recover a remoteproc
1822  * @rproc: the remote processor
1823  *
1824  * The recovery is done by resetting all the virtio devices, that way all the
1825  * rpmsg drivers will be reseted along with the remote processor making the
1826  * remoteproc functional again.
1827  *
1828  * This function can sleep, so it cannot be called from atomic context.
1829  *
1830  * Return: 0 on success or a negative value upon failure
1831  */
1832 int rproc_trigger_recovery(struct rproc *rproc)
1833 {
1834 	struct device *dev = &rproc->dev;
1835 	int ret;
1836 
1837 	ret = mutex_lock_interruptible(&rproc->lock);
1838 	if (ret)
1839 		return ret;
1840 
1841 	/* State could have changed before we got the mutex */
1842 	if (rproc->state != RPROC_CRASHED)
1843 		goto unlock_mutex;
1844 
1845 	dev_err(dev, "recovering %s\n", rproc->name);
1846 
1847 	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1848 		ret = rproc_attach_recovery(rproc);
1849 	else
1850 		ret = rproc_boot_recovery(rproc);
1851 
1852 unlock_mutex:
1853 	mutex_unlock(&rproc->lock);
1854 	return ret;
1855 }
1856 
1857 /**
1858  * rproc_crash_handler_work() - handle a crash
1859  * @work: work treating the crash
1860  *
1861  * This function needs to handle everything related to a crash, like cpu
1862  * registers and stack dump, information to help to debug the fatal error, etc.
1863  */
1864 static void rproc_crash_handler_work(struct work_struct *work)
1865 {
1866 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1867 	struct device *dev = &rproc->dev;
1868 
1869 	dev_dbg(dev, "enter %s\n", __func__);
1870 
1871 	mutex_lock(&rproc->lock);
1872 
1873 	if (rproc->state == RPROC_CRASHED) {
1874 		/* handle only the first crash detected */
1875 		mutex_unlock(&rproc->lock);
1876 		return;
1877 	}
1878 
1879 	if (rproc->state == RPROC_OFFLINE) {
1880 		/* Don't recover if the remote processor was stopped */
1881 		mutex_unlock(&rproc->lock);
1882 		goto out;
1883 	}
1884 
1885 	rproc->state = RPROC_CRASHED;
1886 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1887 		rproc->name);
1888 
1889 	mutex_unlock(&rproc->lock);
1890 
1891 	if (!rproc->recovery_disabled)
1892 		rproc_trigger_recovery(rproc);
1893 
1894 out:
1895 	pm_relax(rproc->dev.parent);
1896 }
1897 
1898 /**
1899  * rproc_boot() - boot a remote processor
1900  * @rproc: handle of a remote processor
1901  *
1902  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1903  *
1904  * If the remote processor is already powered on, this function immediately
1905  * returns (successfully).
1906  *
1907  * Return: 0 on success, and an appropriate error value otherwise
1908  */
1909 int rproc_boot(struct rproc *rproc)
1910 {
1911 	const struct firmware *firmware_p;
1912 	struct device *dev;
1913 	int ret;
1914 
1915 	if (!rproc) {
1916 		pr_err("invalid rproc handle\n");
1917 		return -EINVAL;
1918 	}
1919 
1920 	dev = &rproc->dev;
1921 
1922 	ret = mutex_lock_interruptible(&rproc->lock);
1923 	if (ret) {
1924 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1925 		return ret;
1926 	}
1927 
1928 	if (rproc->state == RPROC_DELETED) {
1929 		ret = -ENODEV;
1930 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1931 		goto unlock_mutex;
1932 	}
1933 
1934 	/* skip the boot or attach process if rproc is already powered up */
1935 	if (atomic_inc_return(&rproc->power) > 1) {
1936 		ret = 0;
1937 		goto unlock_mutex;
1938 	}
1939 
1940 	if (rproc->state == RPROC_DETACHED) {
1941 		dev_info(dev, "attaching to %s\n", rproc->name);
1942 
1943 		ret = rproc_attach(rproc);
1944 	} else {
1945 		dev_info(dev, "powering up %s\n", rproc->name);
1946 
1947 		/* load firmware */
1948 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1949 		if (ret < 0) {
1950 			dev_err(dev, "request_firmware failed: %d\n", ret);
1951 			goto downref_rproc;
1952 		}
1953 
1954 		ret = rproc_fw_boot(rproc, firmware_p);
1955 
1956 		release_firmware(firmware_p);
1957 	}
1958 
1959 downref_rproc:
1960 	if (ret)
1961 		atomic_dec(&rproc->power);
1962 unlock_mutex:
1963 	mutex_unlock(&rproc->lock);
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL(rproc_boot);
1967 
1968 /**
1969  * rproc_shutdown() - power off the remote processor
1970  * @rproc: the remote processor
1971  *
1972  * Power off a remote processor (previously booted with rproc_boot()).
1973  *
1974  * In case @rproc is still being used by an additional user(s), then
1975  * this function will just decrement the power refcount and exit,
1976  * without really powering off the device.
1977  *
1978  * Every call to rproc_boot() must (eventually) be accompanied by a call
1979  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1980  *
1981  * Notes:
1982  * - we're not decrementing the rproc's refcount, only the power refcount.
1983  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1984  *   returns, and users can still use it with a subsequent rproc_boot(), if
1985  *   needed.
1986  *
1987  * Return: 0 on success, and an appropriate error value otherwise
1988  */
1989 int rproc_shutdown(struct rproc *rproc)
1990 {
1991 	struct device *dev = &rproc->dev;
1992 	int ret = 0;
1993 
1994 	ret = mutex_lock_interruptible(&rproc->lock);
1995 	if (ret) {
1996 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1997 		return ret;
1998 	}
1999 
2000 	if (rproc->state != RPROC_RUNNING &&
2001 	    rproc->state != RPROC_ATTACHED) {
2002 		ret = -EINVAL;
2003 		goto out;
2004 	}
2005 
2006 	/* if the remote proc is still needed, bail out */
2007 	if (!atomic_dec_and_test(&rproc->power))
2008 		goto out;
2009 
2010 	ret = rproc_stop(rproc, false);
2011 	if (ret) {
2012 		atomic_inc(&rproc->power);
2013 		goto out;
2014 	}
2015 
2016 	/* clean up all acquired resources */
2017 	rproc_resource_cleanup(rproc);
2018 
2019 	/* release HW resources if needed */
2020 	rproc_unprepare_device(rproc);
2021 
2022 	rproc_disable_iommu(rproc);
2023 
2024 	/* Free the copy of the resource table */
2025 	kfree(rproc->cached_table);
2026 	rproc->cached_table = NULL;
2027 	rproc->table_ptr = NULL;
2028 out:
2029 	mutex_unlock(&rproc->lock);
2030 	return ret;
2031 }
2032 EXPORT_SYMBOL(rproc_shutdown);
2033 
2034 /**
2035  * rproc_detach() - Detach the remote processor from the
2036  * remoteproc core
2037  *
2038  * @rproc: the remote processor
2039  *
2040  * Detach a remote processor (previously attached to with rproc_attach()).
2041  *
2042  * In case @rproc is still being used by an additional user(s), then
2043  * this function will just decrement the power refcount and exit,
2044  * without disconnecting the device.
2045  *
2046  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2047  * processor know that services provided by the application processor are
2048  * no longer available.  From there it should be possible to remove the
2049  * platform driver and even power cycle the application processor (if the HW
2050  * supports it) without needing to switch off the remote processor.
2051  *
2052  * Return: 0 on success, and an appropriate error value otherwise
2053  */
2054 int rproc_detach(struct rproc *rproc)
2055 {
2056 	struct device *dev = &rproc->dev;
2057 	int ret;
2058 
2059 	ret = mutex_lock_interruptible(&rproc->lock);
2060 	if (ret) {
2061 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2062 		return ret;
2063 	}
2064 
2065 	if (rproc->state != RPROC_ATTACHED) {
2066 		ret = -EINVAL;
2067 		goto out;
2068 	}
2069 
2070 	/* if the remote proc is still needed, bail out */
2071 	if (!atomic_dec_and_test(&rproc->power)) {
2072 		ret = 0;
2073 		goto out;
2074 	}
2075 
2076 	ret = __rproc_detach(rproc);
2077 	if (ret) {
2078 		atomic_inc(&rproc->power);
2079 		goto out;
2080 	}
2081 
2082 	/* clean up all acquired resources */
2083 	rproc_resource_cleanup(rproc);
2084 
2085 	/* release HW resources if needed */
2086 	rproc_unprepare_device(rproc);
2087 
2088 	rproc_disable_iommu(rproc);
2089 
2090 	/* Free the copy of the resource table */
2091 	kfree(rproc->cached_table);
2092 	rproc->cached_table = NULL;
2093 	rproc->table_ptr = NULL;
2094 out:
2095 	mutex_unlock(&rproc->lock);
2096 	return ret;
2097 }
2098 EXPORT_SYMBOL(rproc_detach);
2099 
2100 /**
2101  * rproc_get_by_phandle() - find a remote processor by phandle
2102  * @phandle: phandle to the rproc
2103  *
2104  * Finds an rproc handle using the remote processor's phandle, and then
2105  * return a handle to the rproc.
2106  *
2107  * This function increments the remote processor's refcount, so always
2108  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2109  *
2110  * Return: rproc handle on success, and NULL on failure
2111  */
2112 #ifdef CONFIG_OF
2113 struct rproc *rproc_get_by_phandle(phandle phandle)
2114 {
2115 	struct rproc *rproc = NULL, *r;
2116 	struct device_driver *driver;
2117 	struct device_node *np;
2118 
2119 	np = of_find_node_by_phandle(phandle);
2120 	if (!np)
2121 		return NULL;
2122 
2123 	rcu_read_lock();
2124 	list_for_each_entry_rcu(r, &rproc_list, node) {
2125 		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2126 			/* prevent underlying implementation from being removed */
2127 
2128 			/*
2129 			 * If the remoteproc's parent has a driver, the
2130 			 * remoteproc is not part of a cluster and we can use
2131 			 * that driver.
2132 			 */
2133 			driver = r->dev.parent->driver;
2134 
2135 			/*
2136 			 * If the remoteproc's parent does not have a driver,
2137 			 * look for the driver associated with the cluster.
2138 			 */
2139 			if (!driver) {
2140 				if (r->dev.parent->parent)
2141 					driver = r->dev.parent->parent->driver;
2142 				if (!driver)
2143 					break;
2144 			}
2145 
2146 			if (!try_module_get(driver->owner)) {
2147 				dev_err(&r->dev, "can't get owner\n");
2148 				break;
2149 			}
2150 
2151 			rproc = r;
2152 			get_device(&rproc->dev);
2153 			break;
2154 		}
2155 	}
2156 	rcu_read_unlock();
2157 
2158 	of_node_put(np);
2159 
2160 	return rproc;
2161 }
2162 #else
2163 struct rproc *rproc_get_by_phandle(phandle phandle)
2164 {
2165 	return NULL;
2166 }
2167 #endif
2168 EXPORT_SYMBOL(rproc_get_by_phandle);
2169 
2170 /**
2171  * rproc_set_firmware() - assign a new firmware
2172  * @rproc: rproc handle to which the new firmware is being assigned
2173  * @fw_name: new firmware name to be assigned
2174  *
2175  * This function allows remoteproc drivers or clients to configure a custom
2176  * firmware name that is different from the default name used during remoteproc
2177  * registration. The function does not trigger a remote processor boot,
2178  * only sets the firmware name used for a subsequent boot. This function
2179  * should also be called only when the remote processor is offline.
2180  *
2181  * This allows either the userspace to configure a different name through
2182  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2183  * a specific firmware when it is controlling the boot and shutdown of the
2184  * remote processor.
2185  *
2186  * Return: 0 on success or a negative value upon failure
2187  */
2188 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2189 {
2190 	struct device *dev;
2191 	int ret, len;
2192 	char *p;
2193 
2194 	if (!rproc || !fw_name)
2195 		return -EINVAL;
2196 
2197 	dev = rproc->dev.parent;
2198 
2199 	ret = mutex_lock_interruptible(&rproc->lock);
2200 	if (ret) {
2201 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2202 		return -EINVAL;
2203 	}
2204 
2205 	if (rproc->state != RPROC_OFFLINE) {
2206 		dev_err(dev, "can't change firmware while running\n");
2207 		ret = -EBUSY;
2208 		goto out;
2209 	}
2210 
2211 	len = strcspn(fw_name, "\n");
2212 	if (!len) {
2213 		dev_err(dev, "can't provide empty string for firmware name\n");
2214 		ret = -EINVAL;
2215 		goto out;
2216 	}
2217 
2218 	p = kstrndup(fw_name, len, GFP_KERNEL);
2219 	if (!p) {
2220 		ret = -ENOMEM;
2221 		goto out;
2222 	}
2223 
2224 	kfree_const(rproc->firmware);
2225 	rproc->firmware = p;
2226 
2227 out:
2228 	mutex_unlock(&rproc->lock);
2229 	return ret;
2230 }
2231 EXPORT_SYMBOL(rproc_set_firmware);
2232 
2233 static int rproc_validate(struct rproc *rproc)
2234 {
2235 	switch (rproc->state) {
2236 	case RPROC_OFFLINE:
2237 		/*
2238 		 * An offline processor without a start()
2239 		 * function makes no sense.
2240 		 */
2241 		if (!rproc->ops->start)
2242 			return -EINVAL;
2243 		break;
2244 	case RPROC_DETACHED:
2245 		/*
2246 		 * A remote processor in a detached state without an
2247 		 * attach() function makes not sense.
2248 		 */
2249 		if (!rproc->ops->attach)
2250 			return -EINVAL;
2251 		/*
2252 		 * When attaching to a remote processor the device memory
2253 		 * is already available and as such there is no need to have a
2254 		 * cached table.
2255 		 */
2256 		if (rproc->cached_table)
2257 			return -EINVAL;
2258 		break;
2259 	default:
2260 		/*
2261 		 * When adding a remote processor, the state of the device
2262 		 * can be offline or detached, nothing else.
2263 		 */
2264 		return -EINVAL;
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 /**
2271  * rproc_add() - register a remote processor
2272  * @rproc: the remote processor handle to register
2273  *
2274  * Registers @rproc with the remoteproc framework, after it has been
2275  * allocated with rproc_alloc().
2276  *
2277  * This is called by the platform-specific rproc implementation, whenever
2278  * a new remote processor device is probed.
2279  *
2280  * Note: this function initiates an asynchronous firmware loading
2281  * context, which will look for virtio devices supported by the rproc's
2282  * firmware.
2283  *
2284  * If found, those virtio devices will be created and added, so as a result
2285  * of registering this remote processor, additional virtio drivers might be
2286  * probed.
2287  *
2288  * Return: 0 on success and an appropriate error code otherwise
2289  */
2290 int rproc_add(struct rproc *rproc)
2291 {
2292 	struct device *dev = &rproc->dev;
2293 	int ret;
2294 
2295 	ret = rproc_validate(rproc);
2296 	if (ret < 0)
2297 		return ret;
2298 
2299 	/* add char device for this remoteproc */
2300 	ret = rproc_char_device_add(rproc);
2301 	if (ret < 0)
2302 		return ret;
2303 
2304 	ret = device_add(dev);
2305 	if (ret < 0) {
2306 		put_device(dev);
2307 		goto rproc_remove_cdev;
2308 	}
2309 
2310 	dev_info(dev, "%s is available\n", rproc->name);
2311 
2312 	/* create debugfs entries */
2313 	rproc_create_debug_dir(rproc);
2314 
2315 	/* if rproc is marked always-on, request it to boot */
2316 	if (rproc->auto_boot) {
2317 		ret = rproc_trigger_auto_boot(rproc);
2318 		if (ret < 0)
2319 			goto rproc_remove_dev;
2320 	}
2321 
2322 	/* expose to rproc_get_by_phandle users */
2323 	mutex_lock(&rproc_list_mutex);
2324 	list_add_rcu(&rproc->node, &rproc_list);
2325 	mutex_unlock(&rproc_list_mutex);
2326 
2327 	return 0;
2328 
2329 rproc_remove_dev:
2330 	rproc_delete_debug_dir(rproc);
2331 	device_del(dev);
2332 rproc_remove_cdev:
2333 	rproc_char_device_remove(rproc);
2334 	return ret;
2335 }
2336 EXPORT_SYMBOL(rproc_add);
2337 
2338 static void devm_rproc_remove(void *rproc)
2339 {
2340 	rproc_del(rproc);
2341 }
2342 
2343 /**
2344  * devm_rproc_add() - resource managed rproc_add()
2345  * @dev: the underlying device
2346  * @rproc: the remote processor handle to register
2347  *
2348  * This function performs like rproc_add() but the registered rproc device will
2349  * automatically be removed on driver detach.
2350  *
2351  * Return: 0 on success, negative errno on failure
2352  */
2353 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2354 {
2355 	int err;
2356 
2357 	err = rproc_add(rproc);
2358 	if (err)
2359 		return err;
2360 
2361 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2362 }
2363 EXPORT_SYMBOL(devm_rproc_add);
2364 
2365 /**
2366  * rproc_type_release() - release a remote processor instance
2367  * @dev: the rproc's device
2368  *
2369  * This function should _never_ be called directly.
2370  *
2371  * It will be called by the driver core when no one holds a valid pointer
2372  * to @dev anymore.
2373  */
2374 static void rproc_type_release(struct device *dev)
2375 {
2376 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2377 
2378 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2379 
2380 	idr_destroy(&rproc->notifyids);
2381 
2382 	if (rproc->index >= 0)
2383 		ida_free(&rproc_dev_index, rproc->index);
2384 
2385 	kfree_const(rproc->firmware);
2386 	kfree_const(rproc->name);
2387 	kfree(rproc->ops);
2388 	kfree(rproc);
2389 }
2390 
2391 static const struct device_type rproc_type = {
2392 	.name		= "remoteproc",
2393 	.release	= rproc_type_release,
2394 };
2395 
2396 static int rproc_alloc_firmware(struct rproc *rproc,
2397 				const char *name, const char *firmware)
2398 {
2399 	const char *p;
2400 
2401 	/*
2402 	 * Allocate a firmware name if the caller gave us one to work
2403 	 * with.  Otherwise construct a new one using a default pattern.
2404 	 */
2405 	if (firmware)
2406 		p = kstrdup_const(firmware, GFP_KERNEL);
2407 	else
2408 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2409 
2410 	if (!p)
2411 		return -ENOMEM;
2412 
2413 	rproc->firmware = p;
2414 
2415 	return 0;
2416 }
2417 
2418 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2419 {
2420 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2421 	if (!rproc->ops)
2422 		return -ENOMEM;
2423 
2424 	/* Default to rproc_coredump if no coredump function is specified */
2425 	if (!rproc->ops->coredump)
2426 		rproc->ops->coredump = rproc_coredump;
2427 
2428 	if (rproc->ops->load)
2429 		return 0;
2430 
2431 	/* Default to ELF loader if no load function is specified */
2432 	rproc->ops->load = rproc_elf_load_segments;
2433 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2434 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2435 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2436 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2437 
2438 	return 0;
2439 }
2440 
2441 /**
2442  * rproc_alloc() - allocate a remote processor handle
2443  * @dev: the underlying device
2444  * @name: name of this remote processor
2445  * @ops: platform-specific handlers (mainly start/stop)
2446  * @firmware: name of firmware file to load, can be NULL
2447  * @len: length of private data needed by the rproc driver (in bytes)
2448  *
2449  * Allocates a new remote processor handle, but does not register
2450  * it yet. if @firmware is NULL, a default name is used.
2451  *
2452  * This function should be used by rproc implementations during initialization
2453  * of the remote processor.
2454  *
2455  * After creating an rproc handle using this function, and when ready,
2456  * implementations should then call rproc_add() to complete
2457  * the registration of the remote processor.
2458  *
2459  * Note: _never_ directly deallocate @rproc, even if it was not registered
2460  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2461  *
2462  * Return: new rproc pointer on success, and NULL on failure
2463  */
2464 struct rproc *rproc_alloc(struct device *dev, const char *name,
2465 			  const struct rproc_ops *ops,
2466 			  const char *firmware, int len)
2467 {
2468 	struct rproc *rproc;
2469 
2470 	if (!dev || !name || !ops)
2471 		return NULL;
2472 
2473 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2474 	if (!rproc)
2475 		return NULL;
2476 
2477 	rproc->priv = &rproc[1];
2478 	rproc->auto_boot = true;
2479 	rproc->elf_class = ELFCLASSNONE;
2480 	rproc->elf_machine = EM_NONE;
2481 
2482 	device_initialize(&rproc->dev);
2483 	rproc->dev.parent = dev;
2484 	rproc->dev.type = &rproc_type;
2485 	rproc->dev.class = &rproc_class;
2486 	rproc->dev.driver_data = rproc;
2487 	idr_init(&rproc->notifyids);
2488 
2489 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2490 	if (!rproc->name)
2491 		goto put_device;
2492 
2493 	if (rproc_alloc_firmware(rproc, name, firmware))
2494 		goto put_device;
2495 
2496 	if (rproc_alloc_ops(rproc, ops))
2497 		goto put_device;
2498 
2499 	/* Assign a unique device index and name */
2500 	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2501 	if (rproc->index < 0) {
2502 		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2503 		goto put_device;
2504 	}
2505 
2506 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2507 
2508 	atomic_set(&rproc->power, 0);
2509 
2510 	mutex_init(&rproc->lock);
2511 
2512 	INIT_LIST_HEAD(&rproc->carveouts);
2513 	INIT_LIST_HEAD(&rproc->mappings);
2514 	INIT_LIST_HEAD(&rproc->traces);
2515 	INIT_LIST_HEAD(&rproc->rvdevs);
2516 	INIT_LIST_HEAD(&rproc->subdevs);
2517 	INIT_LIST_HEAD(&rproc->dump_segments);
2518 
2519 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2520 
2521 	rproc->state = RPROC_OFFLINE;
2522 
2523 	return rproc;
2524 
2525 put_device:
2526 	put_device(&rproc->dev);
2527 	return NULL;
2528 }
2529 EXPORT_SYMBOL(rproc_alloc);
2530 
2531 /**
2532  * rproc_free() - unroll rproc_alloc()
2533  * @rproc: the remote processor handle
2534  *
2535  * This function decrements the rproc dev refcount.
2536  *
2537  * If no one holds any reference to rproc anymore, then its refcount would
2538  * now drop to zero, and it would be freed.
2539  */
2540 void rproc_free(struct rproc *rproc)
2541 {
2542 	put_device(&rproc->dev);
2543 }
2544 EXPORT_SYMBOL(rproc_free);
2545 
2546 /**
2547  * rproc_put() - release rproc reference
2548  * @rproc: the remote processor handle
2549  *
2550  * This function decrements the rproc dev refcount.
2551  *
2552  * If no one holds any reference to rproc anymore, then its refcount would
2553  * now drop to zero, and it would be freed.
2554  */
2555 void rproc_put(struct rproc *rproc)
2556 {
2557 	if (rproc->dev.parent->driver)
2558 		module_put(rproc->dev.parent->driver->owner);
2559 	else
2560 		module_put(rproc->dev.parent->parent->driver->owner);
2561 
2562 	put_device(&rproc->dev);
2563 }
2564 EXPORT_SYMBOL(rproc_put);
2565 
2566 /**
2567  * rproc_del() - unregister a remote processor
2568  * @rproc: rproc handle to unregister
2569  *
2570  * This function should be called when the platform specific rproc
2571  * implementation decides to remove the rproc device. it should
2572  * _only_ be called if a previous invocation of rproc_add()
2573  * has completed successfully.
2574  *
2575  * After rproc_del() returns, @rproc isn't freed yet, because
2576  * of the outstanding reference created by rproc_alloc. To decrement that
2577  * one last refcount, one still needs to call rproc_free().
2578  *
2579  * Return: 0 on success and -EINVAL if @rproc isn't valid
2580  */
2581 int rproc_del(struct rproc *rproc)
2582 {
2583 	if (!rproc)
2584 		return -EINVAL;
2585 
2586 	/* TODO: make sure this works with rproc->power > 1 */
2587 	rproc_shutdown(rproc);
2588 
2589 	mutex_lock(&rproc->lock);
2590 	rproc->state = RPROC_DELETED;
2591 	mutex_unlock(&rproc->lock);
2592 
2593 	rproc_delete_debug_dir(rproc);
2594 
2595 	/* the rproc is downref'ed as soon as it's removed from the klist */
2596 	mutex_lock(&rproc_list_mutex);
2597 	list_del_rcu(&rproc->node);
2598 	mutex_unlock(&rproc_list_mutex);
2599 
2600 	/* Ensure that no readers of rproc_list are still active */
2601 	synchronize_rcu();
2602 
2603 	device_del(&rproc->dev);
2604 	rproc_char_device_remove(rproc);
2605 
2606 	return 0;
2607 }
2608 EXPORT_SYMBOL(rproc_del);
2609 
2610 static void devm_rproc_free(struct device *dev, void *res)
2611 {
2612 	rproc_free(*(struct rproc **)res);
2613 }
2614 
2615 /**
2616  * devm_rproc_alloc() - resource managed rproc_alloc()
2617  * @dev: the underlying device
2618  * @name: name of this remote processor
2619  * @ops: platform-specific handlers (mainly start/stop)
2620  * @firmware: name of firmware file to load, can be NULL
2621  * @len: length of private data needed by the rproc driver (in bytes)
2622  *
2623  * This function performs like rproc_alloc() but the acquired rproc device will
2624  * automatically be released on driver detach.
2625  *
2626  * Return: new rproc instance, or NULL on failure
2627  */
2628 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2629 			       const struct rproc_ops *ops,
2630 			       const char *firmware, int len)
2631 {
2632 	struct rproc **ptr, *rproc;
2633 
2634 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2635 	if (!ptr)
2636 		return NULL;
2637 
2638 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2639 	if (rproc) {
2640 		*ptr = rproc;
2641 		devres_add(dev, ptr);
2642 	} else {
2643 		devres_free(ptr);
2644 	}
2645 
2646 	return rproc;
2647 }
2648 EXPORT_SYMBOL(devm_rproc_alloc);
2649 
2650 /**
2651  * rproc_add_subdev() - add a subdevice to a remoteproc
2652  * @rproc: rproc handle to add the subdevice to
2653  * @subdev: subdev handle to register
2654  *
2655  * Caller is responsible for populating optional subdevice function pointers.
2656  */
2657 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2658 {
2659 	list_add_tail(&subdev->node, &rproc->subdevs);
2660 }
2661 EXPORT_SYMBOL(rproc_add_subdev);
2662 
2663 /**
2664  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2665  * @rproc: rproc handle to remove the subdevice from
2666  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2667  */
2668 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2669 {
2670 	list_del(&subdev->node);
2671 }
2672 EXPORT_SYMBOL(rproc_remove_subdev);
2673 
2674 /**
2675  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2676  * @dev:	child device to find ancestor of
2677  *
2678  * Return: the ancestor rproc instance, or NULL if not found
2679  */
2680 struct rproc *rproc_get_by_child(struct device *dev)
2681 {
2682 	for (dev = dev->parent; dev; dev = dev->parent) {
2683 		if (dev->type == &rproc_type)
2684 			return dev->driver_data;
2685 	}
2686 
2687 	return NULL;
2688 }
2689 EXPORT_SYMBOL(rproc_get_by_child);
2690 
2691 /**
2692  * rproc_report_crash() - rproc crash reporter function
2693  * @rproc: remote processor
2694  * @type: crash type
2695  *
2696  * This function must be called every time a crash is detected by the low-level
2697  * drivers implementing a specific remoteproc. This should not be called from a
2698  * non-remoteproc driver.
2699  *
2700  * This function can be called from atomic/interrupt context.
2701  */
2702 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2703 {
2704 	if (!rproc) {
2705 		pr_err("NULL rproc pointer\n");
2706 		return;
2707 	}
2708 
2709 	/* Prevent suspend while the remoteproc is being recovered */
2710 	pm_stay_awake(rproc->dev.parent);
2711 
2712 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2713 		rproc->name, rproc_crash_to_string(type));
2714 
2715 	queue_work(rproc_recovery_wq, &rproc->crash_handler);
2716 }
2717 EXPORT_SYMBOL(rproc_report_crash);
2718 
2719 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2720 			       void *ptr)
2721 {
2722 	unsigned int longest = 0;
2723 	struct rproc *rproc;
2724 	unsigned int d;
2725 
2726 	rcu_read_lock();
2727 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2728 		if (!rproc->ops->panic)
2729 			continue;
2730 
2731 		if (rproc->state != RPROC_RUNNING &&
2732 		    rproc->state != RPROC_ATTACHED)
2733 			continue;
2734 
2735 		d = rproc->ops->panic(rproc);
2736 		longest = max(longest, d);
2737 	}
2738 	rcu_read_unlock();
2739 
2740 	/*
2741 	 * Delay for the longest requested duration before returning. This can
2742 	 * be used by the remoteproc drivers to give the remote processor time
2743 	 * to perform any requested operations (such as flush caches), when
2744 	 * it's not possible to signal the Linux side due to the panic.
2745 	 */
2746 	mdelay(longest);
2747 
2748 	return NOTIFY_DONE;
2749 }
2750 
2751 static void __init rproc_init_panic(void)
2752 {
2753 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2754 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2755 }
2756 
2757 static void __exit rproc_exit_panic(void)
2758 {
2759 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2760 }
2761 
2762 static int __init remoteproc_init(void)
2763 {
2764 	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2765 						WQ_UNBOUND | WQ_FREEZABLE, 0);
2766 	if (!rproc_recovery_wq) {
2767 		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2768 		return -ENOMEM;
2769 	}
2770 
2771 	rproc_init_sysfs();
2772 	rproc_init_debugfs();
2773 	rproc_init_cdev();
2774 	rproc_init_panic();
2775 
2776 	return 0;
2777 }
2778 subsys_initcall(remoteproc_init);
2779 
2780 static void __exit remoteproc_exit(void)
2781 {
2782 	ida_destroy(&rproc_dev_index);
2783 
2784 	if (!rproc_recovery_wq)
2785 		return;
2786 
2787 	rproc_exit_panic();
2788 	rproc_exit_debugfs();
2789 	rproc_exit_sysfs();
2790 	destroy_workqueue(rproc_recovery_wq);
2791 }
2792 module_exit(remoteproc_exit);
2793 
2794 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2795