xref: /linux/drivers/remoteproc/remoteproc_core.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/virtio_ids.h>
41 #include <linux/virtio_ring.h>
42 #include <asm/byteorder.h>
43 
44 #include "remoteproc_internal.h"
45 
46 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
47 				struct resource_table *table, int len);
48 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
49 
50 /* Unique indices for remoteproc devices */
51 static DEFINE_IDA(rproc_dev_index);
52 
53 /*
54  * This is the IOMMU fault handler we register with the IOMMU API
55  * (when relevant; not all remote processors access memory through
56  * an IOMMU).
57  *
58  * IOMMU core will invoke this handler whenever the remote processor
59  * will try to access an unmapped device address.
60  *
61  * Currently this is mostly a stub, but it will be later used to trigger
62  * the recovery of the remote processor.
63  */
64 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
65 		unsigned long iova, int flags, void *token)
66 {
67 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
68 
69 	/*
70 	 * Let the iommu core know we're not really handling this fault;
71 	 * we just plan to use this as a recovery trigger.
72 	 */
73 	return -ENOSYS;
74 }
75 
76 static int rproc_enable_iommu(struct rproc *rproc)
77 {
78 	struct iommu_domain *domain;
79 	struct device *dev = rproc->dev.parent;
80 	int ret;
81 
82 	/*
83 	 * We currently use iommu_present() to decide if an IOMMU
84 	 * setup is needed.
85 	 *
86 	 * This works for simple cases, but will easily fail with
87 	 * platforms that do have an IOMMU, but not for this specific
88 	 * rproc.
89 	 *
90 	 * This will be easily solved by introducing hw capabilities
91 	 * that will be set by the remoteproc driver.
92 	 */
93 	if (!iommu_present(dev->bus)) {
94 		dev_dbg(dev, "iommu not found\n");
95 		return 0;
96 	}
97 
98 	domain = iommu_domain_alloc(dev->bus);
99 	if (!domain) {
100 		dev_err(dev, "can't alloc iommu domain\n");
101 		return -ENOMEM;
102 	}
103 
104 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
105 
106 	ret = iommu_attach_device(domain, dev);
107 	if (ret) {
108 		dev_err(dev, "can't attach iommu device: %d\n", ret);
109 		goto free_domain;
110 	}
111 
112 	rproc->domain = domain;
113 
114 	return 0;
115 
116 free_domain:
117 	iommu_domain_free(domain);
118 	return ret;
119 }
120 
121 static void rproc_disable_iommu(struct rproc *rproc)
122 {
123 	struct iommu_domain *domain = rproc->domain;
124 	struct device *dev = rproc->dev.parent;
125 
126 	if (!domain)
127 		return;
128 
129 	iommu_detach_device(domain, dev);
130 	iommu_domain_free(domain);
131 
132 	return;
133 }
134 
135 /*
136  * Some remote processors will ask us to allocate them physically contiguous
137  * memory regions (which we call "carveouts"), and map them to specific
138  * device addresses (which are hardcoded in the firmware).
139  *
140  * They may then ask us to copy objects into specific device addresses (e.g.
141  * code/data sections) or expose us certain symbols in other device address
142  * (e.g. their trace buffer).
143  *
144  * This function is an internal helper with which we can go over the allocated
145  * carveouts and translate specific device address to kernel virtual addresses
146  * so we can access the referenced memory.
147  *
148  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
149  * but only on kernel direct mapped RAM memory. Instead, we're just using
150  * here the output of the DMA API, which should be more correct.
151  */
152 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
153 {
154 	struct rproc_mem_entry *carveout;
155 	void *ptr = NULL;
156 
157 	list_for_each_entry(carveout, &rproc->carveouts, node) {
158 		int offset = da - carveout->da;
159 
160 		/* try next carveout if da is too small */
161 		if (offset < 0)
162 			continue;
163 
164 		/* try next carveout if da is too large */
165 		if (offset + len > carveout->len)
166 			continue;
167 
168 		ptr = carveout->va + offset;
169 
170 		break;
171 	}
172 
173 	return ptr;
174 }
175 EXPORT_SYMBOL(rproc_da_to_va);
176 
177 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
178 {
179 	struct rproc *rproc = rvdev->rproc;
180 	struct device *dev = &rproc->dev;
181 	struct rproc_vring *rvring = &rvdev->vring[i];
182 	dma_addr_t dma;
183 	void *va;
184 	int ret, size, notifyid;
185 
186 	/* actual size of vring (in bytes) */
187 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
188 
189 	if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
190 		dev_err(dev, "idr_pre_get failed\n");
191 		return -ENOMEM;
192 	}
193 
194 	/*
195 	 * Allocate non-cacheable memory for the vring. In the future
196 	 * this call will also configure the IOMMU for us
197 	 * TODO: let the rproc know the da of this vring
198 	 */
199 	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
200 	if (!va) {
201 		dev_err(dev->parent, "dma_alloc_coherent failed\n");
202 		return -EINVAL;
203 	}
204 
205 	/*
206 	 * Assign an rproc-wide unique index for this vring
207 	 * TODO: assign a notifyid for rvdev updates as well
208 	 * TODO: let the rproc know the notifyid of this vring
209 	 * TODO: support predefined notifyids (via resource table)
210 	 */
211 	ret = idr_get_new(&rproc->notifyids, rvring, &notifyid);
212 	if (ret) {
213 		dev_err(dev, "idr_get_new failed: %d\n", ret);
214 		dma_free_coherent(dev->parent, size, va, dma);
215 		return ret;
216 	}
217 
218 	dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
219 					dma, size, notifyid);
220 
221 	rvring->va = va;
222 	rvring->dma = dma;
223 	rvring->notifyid = notifyid;
224 
225 	return 0;
226 }
227 
228 static int
229 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
230 {
231 	struct rproc *rproc = rvdev->rproc;
232 	struct device *dev = &rproc->dev;
233 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
234 	struct rproc_vring *rvring = &rvdev->vring[i];
235 
236 	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
237 				i, vring->da, vring->num, vring->align);
238 
239 	/* make sure reserved bytes are zeroes */
240 	if (vring->reserved) {
241 		dev_err(dev, "vring rsc has non zero reserved bytes\n");
242 		return -EINVAL;
243 	}
244 
245 	/* verify queue size and vring alignment are sane */
246 	if (!vring->num || !vring->align) {
247 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
248 						vring->num, vring->align);
249 		return -EINVAL;
250 	}
251 
252 	rvring->len = vring->num;
253 	rvring->align = vring->align;
254 	rvring->rvdev = rvdev;
255 
256 	return 0;
257 }
258 
259 void rproc_free_vring(struct rproc_vring *rvring)
260 {
261 	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
262 	struct rproc *rproc = rvring->rvdev->rproc;
263 
264 	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
265 	idr_remove(&rproc->notifyids, rvring->notifyid);
266 }
267 
268 /**
269  * rproc_handle_vdev() - handle a vdev fw resource
270  * @rproc: the remote processor
271  * @rsc: the vring resource descriptor
272  * @avail: size of available data (for sanity checking the image)
273  *
274  * This resource entry requests the host to statically register a virtio
275  * device (vdev), and setup everything needed to support it. It contains
276  * everything needed to make it possible: the virtio device id, virtio
277  * device features, vrings information, virtio config space, etc...
278  *
279  * Before registering the vdev, the vrings are allocated from non-cacheable
280  * physically contiguous memory. Currently we only support two vrings per
281  * remote processor (temporary limitation). We might also want to consider
282  * doing the vring allocation only later when ->find_vqs() is invoked, and
283  * then release them upon ->del_vqs().
284  *
285  * Note: @da is currently not really handled correctly: we dynamically
286  * allocate it using the DMA API, ignoring requested hard coded addresses,
287  * and we don't take care of any required IOMMU programming. This is all
288  * going to be taken care of when the generic iommu-based DMA API will be
289  * merged. Meanwhile, statically-addressed iommu-based firmware images should
290  * use RSC_DEVMEM resource entries to map their required @da to the physical
291  * address of their base CMA region (ouch, hacky!).
292  *
293  * Returns 0 on success, or an appropriate error code otherwise
294  */
295 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
296 								int avail)
297 {
298 	struct device *dev = &rproc->dev;
299 	struct rproc_vdev *rvdev;
300 	int i, ret;
301 
302 	/* make sure resource isn't truncated */
303 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
304 			+ rsc->config_len > avail) {
305 		dev_err(dev, "vdev rsc is truncated\n");
306 		return -EINVAL;
307 	}
308 
309 	/* make sure reserved bytes are zeroes */
310 	if (rsc->reserved[0] || rsc->reserved[1]) {
311 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
312 		return -EINVAL;
313 	}
314 
315 	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
316 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
317 
318 	/* we currently support only two vrings per rvdev */
319 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
320 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
321 		return -EINVAL;
322 	}
323 
324 	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
325 	if (!rvdev)
326 		return -ENOMEM;
327 
328 	rvdev->rproc = rproc;
329 
330 	/* parse the vrings */
331 	for (i = 0; i < rsc->num_of_vrings; i++) {
332 		ret = rproc_parse_vring(rvdev, rsc, i);
333 		if (ret)
334 			goto free_rvdev;
335 	}
336 
337 	/* remember the device features */
338 	rvdev->dfeatures = rsc->dfeatures;
339 
340 	list_add_tail(&rvdev->node, &rproc->rvdevs);
341 
342 	/* it is now safe to add the virtio device */
343 	ret = rproc_add_virtio_dev(rvdev, rsc->id);
344 	if (ret)
345 		goto free_rvdev;
346 
347 	return 0;
348 
349 free_rvdev:
350 	kfree(rvdev);
351 	return ret;
352 }
353 
354 /**
355  * rproc_handle_trace() - handle a shared trace buffer resource
356  * @rproc: the remote processor
357  * @rsc: the trace resource descriptor
358  * @avail: size of available data (for sanity checking the image)
359  *
360  * In case the remote processor dumps trace logs into memory,
361  * export it via debugfs.
362  *
363  * Currently, the 'da' member of @rsc should contain the device address
364  * where the remote processor is dumping the traces. Later we could also
365  * support dynamically allocating this address using the generic
366  * DMA API (but currently there isn't a use case for that).
367  *
368  * Returns 0 on success, or an appropriate error code otherwise
369  */
370 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
371 								int avail)
372 {
373 	struct rproc_mem_entry *trace;
374 	struct device *dev = &rproc->dev;
375 	void *ptr;
376 	char name[15];
377 
378 	if (sizeof(*rsc) > avail) {
379 		dev_err(dev, "trace rsc is truncated\n");
380 		return -EINVAL;
381 	}
382 
383 	/* make sure reserved bytes are zeroes */
384 	if (rsc->reserved) {
385 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
386 		return -EINVAL;
387 	}
388 
389 	/* what's the kernel address of this resource ? */
390 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
391 	if (!ptr) {
392 		dev_err(dev, "erroneous trace resource entry\n");
393 		return -EINVAL;
394 	}
395 
396 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
397 	if (!trace) {
398 		dev_err(dev, "kzalloc trace failed\n");
399 		return -ENOMEM;
400 	}
401 
402 	/* set the trace buffer dma properties */
403 	trace->len = rsc->len;
404 	trace->va = ptr;
405 
406 	/* make sure snprintf always null terminates, even if truncating */
407 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
408 
409 	/* create the debugfs entry */
410 	trace->priv = rproc_create_trace_file(name, rproc, trace);
411 	if (!trace->priv) {
412 		trace->va = NULL;
413 		kfree(trace);
414 		return -EINVAL;
415 	}
416 
417 	list_add_tail(&trace->node, &rproc->traces);
418 
419 	rproc->num_traces++;
420 
421 	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
422 						rsc->da, rsc->len);
423 
424 	return 0;
425 }
426 
427 /**
428  * rproc_handle_devmem() - handle devmem resource entry
429  * @rproc: remote processor handle
430  * @rsc: the devmem resource entry
431  * @avail: size of available data (for sanity checking the image)
432  *
433  * Remote processors commonly need to access certain on-chip peripherals.
434  *
435  * Some of these remote processors access memory via an iommu device,
436  * and might require us to configure their iommu before they can access
437  * the on-chip peripherals they need.
438  *
439  * This resource entry is a request to map such a peripheral device.
440  *
441  * These devmem entries will contain the physical address of the device in
442  * the 'pa' member. If a specific device address is expected, then 'da' will
443  * contain it (currently this is the only use case supported). 'len' will
444  * contain the size of the physical region we need to map.
445  *
446  * Currently we just "trust" those devmem entries to contain valid physical
447  * addresses, but this is going to change: we want the implementations to
448  * tell us ranges of physical addresses the firmware is allowed to request,
449  * and not allow firmwares to request access to physical addresses that
450  * are outside those ranges.
451  */
452 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
453 								int avail)
454 {
455 	struct rproc_mem_entry *mapping;
456 	struct device *dev = &rproc->dev;
457 	int ret;
458 
459 	/* no point in handling this resource without a valid iommu domain */
460 	if (!rproc->domain)
461 		return -EINVAL;
462 
463 	if (sizeof(*rsc) > avail) {
464 		dev_err(dev, "devmem rsc is truncated\n");
465 		return -EINVAL;
466 	}
467 
468 	/* make sure reserved bytes are zeroes */
469 	if (rsc->reserved) {
470 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
471 		return -EINVAL;
472 	}
473 
474 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
475 	if (!mapping) {
476 		dev_err(dev, "kzalloc mapping failed\n");
477 		return -ENOMEM;
478 	}
479 
480 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
481 	if (ret) {
482 		dev_err(dev, "failed to map devmem: %d\n", ret);
483 		goto out;
484 	}
485 
486 	/*
487 	 * We'll need this info later when we'll want to unmap everything
488 	 * (e.g. on shutdown).
489 	 *
490 	 * We can't trust the remote processor not to change the resource
491 	 * table, so we must maintain this info independently.
492 	 */
493 	mapping->da = rsc->da;
494 	mapping->len = rsc->len;
495 	list_add_tail(&mapping->node, &rproc->mappings);
496 
497 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
498 					rsc->pa, rsc->da, rsc->len);
499 
500 	return 0;
501 
502 out:
503 	kfree(mapping);
504 	return ret;
505 }
506 
507 /**
508  * rproc_handle_carveout() - handle phys contig memory allocation requests
509  * @rproc: rproc handle
510  * @rsc: the resource entry
511  * @avail: size of available data (for image validation)
512  *
513  * This function will handle firmware requests for allocation of physically
514  * contiguous memory regions.
515  *
516  * These request entries should come first in the firmware's resource table,
517  * as other firmware entries might request placing other data objects inside
518  * these memory regions (e.g. data/code segments, trace resource entries, ...).
519  *
520  * Allocating memory this way helps utilizing the reserved physical memory
521  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
522  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
523  * pressure is important; it may have a substantial impact on performance.
524  */
525 static int rproc_handle_carveout(struct rproc *rproc,
526 				struct fw_rsc_carveout *rsc, int avail)
527 {
528 	struct rproc_mem_entry *carveout, *mapping;
529 	struct device *dev = &rproc->dev;
530 	dma_addr_t dma;
531 	void *va;
532 	int ret;
533 
534 	if (sizeof(*rsc) > avail) {
535 		dev_err(dev, "carveout rsc is truncated\n");
536 		return -EINVAL;
537 	}
538 
539 	/* make sure reserved bytes are zeroes */
540 	if (rsc->reserved) {
541 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
542 		return -EINVAL;
543 	}
544 
545 	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
546 			rsc->da, rsc->pa, rsc->len, rsc->flags);
547 
548 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
549 	if (!mapping) {
550 		dev_err(dev, "kzalloc mapping failed\n");
551 		return -ENOMEM;
552 	}
553 
554 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
555 	if (!carveout) {
556 		dev_err(dev, "kzalloc carveout failed\n");
557 		ret = -ENOMEM;
558 		goto free_mapping;
559 	}
560 
561 	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
562 	if (!va) {
563 		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
564 		ret = -ENOMEM;
565 		goto free_carv;
566 	}
567 
568 	dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);
569 
570 	/*
571 	 * Ok, this is non-standard.
572 	 *
573 	 * Sometimes we can't rely on the generic iommu-based DMA API
574 	 * to dynamically allocate the device address and then set the IOMMU
575 	 * tables accordingly, because some remote processors might
576 	 * _require_ us to use hard coded device addresses that their
577 	 * firmware was compiled with.
578 	 *
579 	 * In this case, we must use the IOMMU API directly and map
580 	 * the memory to the device address as expected by the remote
581 	 * processor.
582 	 *
583 	 * Obviously such remote processor devices should not be configured
584 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
585 	 * physical address in this case.
586 	 */
587 	if (rproc->domain) {
588 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
589 								rsc->flags);
590 		if (ret) {
591 			dev_err(dev, "iommu_map failed: %d\n", ret);
592 			goto dma_free;
593 		}
594 
595 		/*
596 		 * We'll need this info later when we'll want to unmap
597 		 * everything (e.g. on shutdown).
598 		 *
599 		 * We can't trust the remote processor not to change the
600 		 * resource table, so we must maintain this info independently.
601 		 */
602 		mapping->da = rsc->da;
603 		mapping->len = rsc->len;
604 		list_add_tail(&mapping->node, &rproc->mappings);
605 
606 		dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
607 	}
608 
609 	/*
610 	 * Some remote processors might need to know the pa
611 	 * even though they are behind an IOMMU. E.g., OMAP4's
612 	 * remote M3 processor needs this so it can control
613 	 * on-chip hardware accelerators that are not behind
614 	 * the IOMMU, and therefor must know the pa.
615 	 *
616 	 * Generally we don't want to expose physical addresses
617 	 * if we don't have to (remote processors are generally
618 	 * _not_ trusted), so we might want to do this only for
619 	 * remote processor that _must_ have this (e.g. OMAP4's
620 	 * dual M3 subsystem).
621 	 *
622 	 * Non-IOMMU processors might also want to have this info.
623 	 * In this case, the device address and the physical address
624 	 * are the same.
625 	 */
626 	rsc->pa = dma;
627 
628 	carveout->va = va;
629 	carveout->len = rsc->len;
630 	carveout->dma = dma;
631 	carveout->da = rsc->da;
632 
633 	list_add_tail(&carveout->node, &rproc->carveouts);
634 
635 	return 0;
636 
637 dma_free:
638 	dma_free_coherent(dev->parent, rsc->len, va, dma);
639 free_carv:
640 	kfree(carveout);
641 free_mapping:
642 	kfree(mapping);
643 	return ret;
644 }
645 
646 /*
647  * A lookup table for resource handlers. The indices are defined in
648  * enum fw_resource_type.
649  */
650 static rproc_handle_resource_t rproc_handle_rsc[] = {
651 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
652 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
653 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
654 	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
655 };
656 
657 /* handle firmware resource entries before booting the remote processor */
658 static int
659 rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
660 {
661 	struct device *dev = &rproc->dev;
662 	rproc_handle_resource_t handler;
663 	int ret = 0, i;
664 
665 	for (i = 0; i < table->num; i++) {
666 		int offset = table->offset[i];
667 		struct fw_rsc_hdr *hdr = (void *)table + offset;
668 		int avail = len - offset - sizeof(*hdr);
669 		void *rsc = (void *)hdr + sizeof(*hdr);
670 
671 		/* make sure table isn't truncated */
672 		if (avail < 0) {
673 			dev_err(dev, "rsc table is truncated\n");
674 			return -EINVAL;
675 		}
676 
677 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
678 
679 		if (hdr->type >= RSC_LAST) {
680 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
681 			continue;
682 		}
683 
684 		handler = rproc_handle_rsc[hdr->type];
685 		if (!handler)
686 			continue;
687 
688 		ret = handler(rproc, rsc, avail);
689 		if (ret)
690 			break;
691 	}
692 
693 	return ret;
694 }
695 
696 /* handle firmware resource entries while registering the remote processor */
697 static int
698 rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
699 {
700 	struct device *dev = &rproc->dev;
701 	int ret = 0, i;
702 
703 	for (i = 0; i < table->num; i++) {
704 		int offset = table->offset[i];
705 		struct fw_rsc_hdr *hdr = (void *)table + offset;
706 		int avail = len - offset - sizeof(*hdr);
707 		struct fw_rsc_vdev *vrsc;
708 
709 		/* make sure table isn't truncated */
710 		if (avail < 0) {
711 			dev_err(dev, "rsc table is truncated\n");
712 			return -EINVAL;
713 		}
714 
715 		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
716 
717 		if (hdr->type != RSC_VDEV)
718 			continue;
719 
720 		vrsc = (struct fw_rsc_vdev *)hdr->data;
721 
722 		ret = rproc_handle_vdev(rproc, vrsc, avail);
723 		if (ret)
724 			break;
725 	}
726 
727 	return ret;
728 }
729 
730 /**
731  * rproc_resource_cleanup() - clean up and free all acquired resources
732  * @rproc: rproc handle
733  *
734  * This function will free all resources acquired for @rproc, and it
735  * is called whenever @rproc either shuts down or fails to boot.
736  */
737 static void rproc_resource_cleanup(struct rproc *rproc)
738 {
739 	struct rproc_mem_entry *entry, *tmp;
740 	struct device *dev = &rproc->dev;
741 
742 	/* clean up debugfs trace entries */
743 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
744 		rproc_remove_trace_file(entry->priv);
745 		rproc->num_traces--;
746 		list_del(&entry->node);
747 		kfree(entry);
748 	}
749 
750 	/* clean up carveout allocations */
751 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
752 		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
753 		list_del(&entry->node);
754 		kfree(entry);
755 	}
756 
757 	/* clean up iommu mapping entries */
758 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
759 		size_t unmapped;
760 
761 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
762 		if (unmapped != entry->len) {
763 			/* nothing much to do besides complaining */
764 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
765 								unmapped);
766 		}
767 
768 		list_del(&entry->node);
769 		kfree(entry);
770 	}
771 }
772 
773 /*
774  * take a firmware and boot a remote processor with it.
775  */
776 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
777 {
778 	struct device *dev = &rproc->dev;
779 	const char *name = rproc->firmware;
780 	struct resource_table *table;
781 	int ret, tablesz;
782 
783 	ret = rproc_fw_sanity_check(rproc, fw);
784 	if (ret)
785 		return ret;
786 
787 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
788 
789 	/*
790 	 * if enabling an IOMMU isn't relevant for this rproc, this is
791 	 * just a nop
792 	 */
793 	ret = rproc_enable_iommu(rproc);
794 	if (ret) {
795 		dev_err(dev, "can't enable iommu: %d\n", ret);
796 		return ret;
797 	}
798 
799 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
800 
801 	/* look for the resource table */
802 	table = rproc_find_rsc_table(rproc, fw, &tablesz);
803 	if (!table) {
804 		ret = -EINVAL;
805 		goto clean_up;
806 	}
807 
808 	/* handle fw resources which are required to boot rproc */
809 	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
810 	if (ret) {
811 		dev_err(dev, "Failed to process resources: %d\n", ret);
812 		goto clean_up;
813 	}
814 
815 	/* load the ELF segments to memory */
816 	ret = rproc_load_segments(rproc, fw);
817 	if (ret) {
818 		dev_err(dev, "Failed to load program segments: %d\n", ret);
819 		goto clean_up;
820 	}
821 
822 	/* power up the remote processor */
823 	ret = rproc->ops->start(rproc);
824 	if (ret) {
825 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
826 		goto clean_up;
827 	}
828 
829 	rproc->state = RPROC_RUNNING;
830 
831 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
832 
833 	return 0;
834 
835 clean_up:
836 	rproc_resource_cleanup(rproc);
837 	rproc_disable_iommu(rproc);
838 	return ret;
839 }
840 
841 /*
842  * take a firmware and look for virtio devices to register.
843  *
844  * Note: this function is called asynchronously upon registration of the
845  * remote processor (so we must wait until it completes before we try
846  * to unregister the device. one other option is just to use kref here,
847  * that might be cleaner).
848  */
849 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
850 {
851 	struct rproc *rproc = context;
852 	struct resource_table *table;
853 	int ret, tablesz;
854 
855 	if (rproc_fw_sanity_check(rproc, fw) < 0)
856 		goto out;
857 
858 	/* look for the resource table */
859 	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
860 	if (!table)
861 		goto out;
862 
863 	/* look for virtio devices and register them */
864 	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
865 	if (ret)
866 		goto out;
867 
868 out:
869 	release_firmware(fw);
870 	/* allow rproc_del() contexts, if any, to proceed */
871 	complete_all(&rproc->firmware_loading_complete);
872 }
873 
874 /**
875  * rproc_boot() - boot a remote processor
876  * @rproc: handle of a remote processor
877  *
878  * Boot a remote processor (i.e. load its firmware, power it on, ...).
879  *
880  * If the remote processor is already powered on, this function immediately
881  * returns (successfully).
882  *
883  * Returns 0 on success, and an appropriate error value otherwise.
884  */
885 int rproc_boot(struct rproc *rproc)
886 {
887 	const struct firmware *firmware_p;
888 	struct device *dev;
889 	int ret;
890 
891 	if (!rproc) {
892 		pr_err("invalid rproc handle\n");
893 		return -EINVAL;
894 	}
895 
896 	dev = &rproc->dev;
897 
898 	ret = mutex_lock_interruptible(&rproc->lock);
899 	if (ret) {
900 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
901 		return ret;
902 	}
903 
904 	/* loading a firmware is required */
905 	if (!rproc->firmware) {
906 		dev_err(dev, "%s: no firmware to load\n", __func__);
907 		ret = -EINVAL;
908 		goto unlock_mutex;
909 	}
910 
911 	/* prevent underlying implementation from being removed */
912 	if (!try_module_get(dev->parent->driver->owner)) {
913 		dev_err(dev, "%s: can't get owner\n", __func__);
914 		ret = -EINVAL;
915 		goto unlock_mutex;
916 	}
917 
918 	/* skip the boot process if rproc is already powered up */
919 	if (atomic_inc_return(&rproc->power) > 1) {
920 		ret = 0;
921 		goto unlock_mutex;
922 	}
923 
924 	dev_info(dev, "powering up %s\n", rproc->name);
925 
926 	/* load firmware */
927 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
928 	if (ret < 0) {
929 		dev_err(dev, "request_firmware failed: %d\n", ret);
930 		goto downref_rproc;
931 	}
932 
933 	ret = rproc_fw_boot(rproc, firmware_p);
934 
935 	release_firmware(firmware_p);
936 
937 downref_rproc:
938 	if (ret) {
939 		module_put(dev->parent->driver->owner);
940 		atomic_dec(&rproc->power);
941 	}
942 unlock_mutex:
943 	mutex_unlock(&rproc->lock);
944 	return ret;
945 }
946 EXPORT_SYMBOL(rproc_boot);
947 
948 /**
949  * rproc_shutdown() - power off the remote processor
950  * @rproc: the remote processor
951  *
952  * Power off a remote processor (previously booted with rproc_boot()).
953  *
954  * In case @rproc is still being used by an additional user(s), then
955  * this function will just decrement the power refcount and exit,
956  * without really powering off the device.
957  *
958  * Every call to rproc_boot() must (eventually) be accompanied by a call
959  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
960  *
961  * Notes:
962  * - we're not decrementing the rproc's refcount, only the power refcount.
963  *   which means that the @rproc handle stays valid even after rproc_shutdown()
964  *   returns, and users can still use it with a subsequent rproc_boot(), if
965  *   needed.
966  */
967 void rproc_shutdown(struct rproc *rproc)
968 {
969 	struct device *dev = &rproc->dev;
970 	int ret;
971 
972 	ret = mutex_lock_interruptible(&rproc->lock);
973 	if (ret) {
974 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
975 		return;
976 	}
977 
978 	/* if the remote proc is still needed, bail out */
979 	if (!atomic_dec_and_test(&rproc->power))
980 		goto out;
981 
982 	/* power off the remote processor */
983 	ret = rproc->ops->stop(rproc);
984 	if (ret) {
985 		atomic_inc(&rproc->power);
986 		dev_err(dev, "can't stop rproc: %d\n", ret);
987 		goto out;
988 	}
989 
990 	/* clean up all acquired resources */
991 	rproc_resource_cleanup(rproc);
992 
993 	rproc_disable_iommu(rproc);
994 
995 	rproc->state = RPROC_OFFLINE;
996 
997 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
998 
999 out:
1000 	mutex_unlock(&rproc->lock);
1001 	if (!ret)
1002 		module_put(dev->parent->driver->owner);
1003 }
1004 EXPORT_SYMBOL(rproc_shutdown);
1005 
1006 /**
1007  * rproc_add() - register a remote processor
1008  * @rproc: the remote processor handle to register
1009  *
1010  * Registers @rproc with the remoteproc framework, after it has been
1011  * allocated with rproc_alloc().
1012  *
1013  * This is called by the platform-specific rproc implementation, whenever
1014  * a new remote processor device is probed.
1015  *
1016  * Returns 0 on success and an appropriate error code otherwise.
1017  *
1018  * Note: this function initiates an asynchronous firmware loading
1019  * context, which will look for virtio devices supported by the rproc's
1020  * firmware.
1021  *
1022  * If found, those virtio devices will be created and added, so as a result
1023  * of registering this remote processor, additional virtio drivers might be
1024  * probed.
1025  */
1026 int rproc_add(struct rproc *rproc)
1027 {
1028 	struct device *dev = &rproc->dev;
1029 	int ret = 0;
1030 
1031 	ret = device_add(dev);
1032 	if (ret < 0)
1033 		return ret;
1034 
1035 	dev_info(dev, "%s is available\n", rproc->name);
1036 
1037 	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1038 	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1039 
1040 	/* create debugfs entries */
1041 	rproc_create_debug_dir(rproc);
1042 
1043 	/* rproc_del() calls must wait until async loader completes */
1044 	init_completion(&rproc->firmware_loading_complete);
1045 
1046 	/*
1047 	 * We must retrieve early virtio configuration info from
1048 	 * the firmware (e.g. whether to register a virtio device,
1049 	 * what virtio features does it support, ...).
1050 	 *
1051 	 * We're initiating an asynchronous firmware loading, so we can
1052 	 * be built-in kernel code, without hanging the boot process.
1053 	 */
1054 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1055 					rproc->firmware, dev, GFP_KERNEL,
1056 					rproc, rproc_fw_config_virtio);
1057 	if (ret < 0) {
1058 		dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
1059 		complete_all(&rproc->firmware_loading_complete);
1060 	}
1061 
1062 	return ret;
1063 }
1064 EXPORT_SYMBOL(rproc_add);
1065 
1066 /**
1067  * rproc_type_release() - release a remote processor instance
1068  * @dev: the rproc's device
1069  *
1070  * This function should _never_ be called directly.
1071  *
1072  * It will be called by the driver core when no one holds a valid pointer
1073  * to @dev anymore.
1074  */
1075 static void rproc_type_release(struct device *dev)
1076 {
1077 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1078 
1079 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1080 
1081 	rproc_delete_debug_dir(rproc);
1082 
1083 	idr_remove_all(&rproc->notifyids);
1084 	idr_destroy(&rproc->notifyids);
1085 
1086 	if (rproc->index >= 0)
1087 		ida_simple_remove(&rproc_dev_index, rproc->index);
1088 
1089 	kfree(rproc);
1090 }
1091 
1092 static struct device_type rproc_type = {
1093 	.name		= "remoteproc",
1094 	.release	= rproc_type_release,
1095 };
1096 
1097 /**
1098  * rproc_alloc() - allocate a remote processor handle
1099  * @dev: the underlying device
1100  * @name: name of this remote processor
1101  * @ops: platform-specific handlers (mainly start/stop)
1102  * @firmware: name of firmware file to load
1103  * @len: length of private data needed by the rproc driver (in bytes)
1104  *
1105  * Allocates a new remote processor handle, but does not register
1106  * it yet.
1107  *
1108  * This function should be used by rproc implementations during initialization
1109  * of the remote processor.
1110  *
1111  * After creating an rproc handle using this function, and when ready,
1112  * implementations should then call rproc_add() to complete
1113  * the registration of the remote processor.
1114  *
1115  * On success the new rproc is returned, and on failure, NULL.
1116  *
1117  * Note: _never_ directly deallocate @rproc, even if it was not registered
1118  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1119  */
1120 struct rproc *rproc_alloc(struct device *dev, const char *name,
1121 				const struct rproc_ops *ops,
1122 				const char *firmware, int len)
1123 {
1124 	struct rproc *rproc;
1125 
1126 	if (!dev || !name || !ops)
1127 		return NULL;
1128 
1129 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1130 	if (!rproc) {
1131 		dev_err(dev, "%s: kzalloc failed\n", __func__);
1132 		return NULL;
1133 	}
1134 
1135 	rproc->name = name;
1136 	rproc->ops = ops;
1137 	rproc->firmware = firmware;
1138 	rproc->priv = &rproc[1];
1139 
1140 	device_initialize(&rproc->dev);
1141 	rproc->dev.parent = dev;
1142 	rproc->dev.type = &rproc_type;
1143 
1144 	/* Assign a unique device index and name */
1145 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1146 	if (rproc->index < 0) {
1147 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1148 		put_device(&rproc->dev);
1149 		return NULL;
1150 	}
1151 
1152 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1153 
1154 	atomic_set(&rproc->power, 0);
1155 
1156 	/* Set ELF as the default fw_ops handler */
1157 	rproc->fw_ops = &rproc_elf_fw_ops;
1158 
1159 	mutex_init(&rproc->lock);
1160 
1161 	idr_init(&rproc->notifyids);
1162 
1163 	INIT_LIST_HEAD(&rproc->carveouts);
1164 	INIT_LIST_HEAD(&rproc->mappings);
1165 	INIT_LIST_HEAD(&rproc->traces);
1166 	INIT_LIST_HEAD(&rproc->rvdevs);
1167 
1168 	rproc->state = RPROC_OFFLINE;
1169 
1170 	return rproc;
1171 }
1172 EXPORT_SYMBOL(rproc_alloc);
1173 
1174 /**
1175  * rproc_put() - unroll rproc_alloc()
1176  * @rproc: the remote processor handle
1177  *
1178  * This function decrements the rproc dev refcount.
1179  *
1180  * If no one holds any reference to rproc anymore, then its refcount would
1181  * now drop to zero, and it would be freed.
1182  */
1183 void rproc_put(struct rproc *rproc)
1184 {
1185 	put_device(&rproc->dev);
1186 }
1187 EXPORT_SYMBOL(rproc_put);
1188 
1189 /**
1190  * rproc_del() - unregister a remote processor
1191  * @rproc: rproc handle to unregister
1192  *
1193  * This function should be called when the platform specific rproc
1194  * implementation decides to remove the rproc device. it should
1195  * _only_ be called if a previous invocation of rproc_add()
1196  * has completed successfully.
1197  *
1198  * After rproc_del() returns, @rproc isn't freed yet, because
1199  * of the outstanding reference created by rproc_alloc. To decrement that
1200  * one last refcount, one still needs to call rproc_put().
1201  *
1202  * Returns 0 on success and -EINVAL if @rproc isn't valid.
1203  */
1204 int rproc_del(struct rproc *rproc)
1205 {
1206 	struct rproc_vdev *rvdev, *tmp;
1207 
1208 	if (!rproc)
1209 		return -EINVAL;
1210 
1211 	/* if rproc is just being registered, wait */
1212 	wait_for_completion(&rproc->firmware_loading_complete);
1213 
1214 	/* clean up remote vdev entries */
1215 	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1216 		rproc_remove_virtio_dev(rvdev);
1217 
1218 	device_del(&rproc->dev);
1219 
1220 	return 0;
1221 }
1222 EXPORT_SYMBOL(rproc_del);
1223 
1224 static int __init remoteproc_init(void)
1225 {
1226 	rproc_init_debugfs();
1227 
1228 	return 0;
1229 }
1230 module_init(remoteproc_init);
1231 
1232 static void __exit remoteproc_exit(void)
1233 {
1234 	rproc_exit_debugfs();
1235 }
1236 module_exit(remoteproc_exit);
1237 
1238 MODULE_LICENSE("GPL v2");
1239 MODULE_DESCRIPTION("Generic Remote Processor Framework");
1240