xref: /linux/drivers/remoteproc/remoteproc_core.c (revision 8b83369ddcb3fb9cab5c1088987ce477565bb630)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/mutex.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
28 #include <linux/firmware.h>
29 #include <linux/string.h>
30 #include <linux/debugfs.h>
31 #include <linux/rculist.h>
32 #include <linux/remoteproc.h>
33 #include <linux/iommu.h>
34 #include <linux/idr.h>
35 #include <linux/elf.h>
36 #include <linux/crc32.h>
37 #include <linux/of_reserved_mem.h>
38 #include <linux/virtio_ids.h>
39 #include <linux/virtio_ring.h>
40 #include <asm/byteorder.h>
41 #include <linux/platform_device.h>
42 
43 #include "remoteproc_internal.h"
44 
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46 
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 static struct notifier_block rproc_panic_nb;
50 
51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52 				 void *, int offset, int avail);
53 
54 static int rproc_alloc_carveout(struct rproc *rproc,
55 				struct rproc_mem_entry *mem);
56 static int rproc_release_carveout(struct rproc *rproc,
57 				  struct rproc_mem_entry *mem);
58 
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index);
61 
62 static const char * const rproc_crash_names[] = {
63 	[RPROC_MMUFAULT]	= "mmufault",
64 	[RPROC_WATCHDOG]	= "watchdog",
65 	[RPROC_FATAL_ERROR]	= "fatal error",
66 };
67 
68 /* translate rproc_crash_type to string */
69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
70 {
71 	if (type < ARRAY_SIZE(rproc_crash_names))
72 		return rproc_crash_names[type];
73 	return "unknown";
74 }
75 
76 /*
77  * This is the IOMMU fault handler we register with the IOMMU API
78  * (when relevant; not all remote processors access memory through
79  * an IOMMU).
80  *
81  * IOMMU core will invoke this handler whenever the remote processor
82  * will try to access an unmapped device address.
83  */
84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 			     unsigned long iova, int flags, void *token)
86 {
87 	struct rproc *rproc = token;
88 
89 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90 
91 	rproc_report_crash(rproc, RPROC_MMUFAULT);
92 
93 	/*
94 	 * Let the iommu core know we're not really handling this fault;
95 	 * we just used it as a recovery trigger.
96 	 */
97 	return -ENOSYS;
98 }
99 
100 static int rproc_enable_iommu(struct rproc *rproc)
101 {
102 	struct iommu_domain *domain;
103 	struct device *dev = rproc->dev.parent;
104 	int ret;
105 
106 	if (!rproc->has_iommu) {
107 		dev_dbg(dev, "iommu not present\n");
108 		return 0;
109 	}
110 
111 	domain = iommu_domain_alloc(dev->bus);
112 	if (!domain) {
113 		dev_err(dev, "can't alloc iommu domain\n");
114 		return -ENOMEM;
115 	}
116 
117 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118 
119 	ret = iommu_attach_device(domain, dev);
120 	if (ret) {
121 		dev_err(dev, "can't attach iommu device: %d\n", ret);
122 		goto free_domain;
123 	}
124 
125 	rproc->domain = domain;
126 
127 	return 0;
128 
129 free_domain:
130 	iommu_domain_free(domain);
131 	return ret;
132 }
133 
134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 	struct iommu_domain *domain = rproc->domain;
137 	struct device *dev = rproc->dev.parent;
138 
139 	if (!domain)
140 		return;
141 
142 	iommu_detach_device(domain, dev);
143 	iommu_domain_free(domain);
144 }
145 
146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
147 {
148 	/*
149 	 * Return physical address according to virtual address location
150 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 	 * - in kernel: if region allocated in generic dma memory pool
152 	 */
153 	if (is_vmalloc_addr(cpu_addr)) {
154 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 				    offset_in_page(cpu_addr);
156 	}
157 
158 	WARN_ON(!virt_addr_valid(cpu_addr));
159 	return virt_to_phys(cpu_addr);
160 }
161 EXPORT_SYMBOL(rproc_va_to_pa);
162 
163 /**
164  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165  * @rproc: handle of a remote processor
166  * @da: remoteproc device address to translate
167  * @len: length of the memory region @da is pointing to
168  *
169  * Some remote processors will ask us to allocate them physically contiguous
170  * memory regions (which we call "carveouts"), and map them to specific
171  * device addresses (which are hardcoded in the firmware). They may also have
172  * dedicated memory regions internal to the processors, and use them either
173  * exclusively or alongside carveouts.
174  *
175  * They may then ask us to copy objects into specific device addresses (e.g.
176  * code/data sections) or expose us certain symbols in other device address
177  * (e.g. their trace buffer).
178  *
179  * This function is a helper function with which we can go over the allocated
180  * carveouts and translate specific device addresses to kernel virtual addresses
181  * so we can access the referenced memory. This function also allows to perform
182  * translations on the internal remoteproc memory regions through a platform
183  * implementation specific da_to_va ops, if present.
184  *
185  * The function returns a valid kernel address on success or NULL on failure.
186  *
187  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188  * but only on kernel direct mapped RAM memory. Instead, we're just using
189  * here the output of the DMA API for the carveouts, which should be more
190  * correct.
191  */
192 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
193 {
194 	struct rproc_mem_entry *carveout;
195 	void *ptr = NULL;
196 
197 	if (rproc->ops->da_to_va) {
198 		ptr = rproc->ops->da_to_va(rproc, da, len);
199 		if (ptr)
200 			goto out;
201 	}
202 
203 	list_for_each_entry(carveout, &rproc->carveouts, node) {
204 		int offset = da - carveout->da;
205 
206 		/*  Verify that carveout is allocated */
207 		if (!carveout->va)
208 			continue;
209 
210 		/* try next carveout if da is too small */
211 		if (offset < 0)
212 			continue;
213 
214 		/* try next carveout if da is too large */
215 		if (offset + len > carveout->len)
216 			continue;
217 
218 		ptr = carveout->va + offset;
219 
220 		break;
221 	}
222 
223 out:
224 	return ptr;
225 }
226 EXPORT_SYMBOL(rproc_da_to_va);
227 
228 /**
229  * rproc_find_carveout_by_name() - lookup the carveout region by a name
230  * @rproc: handle of a remote processor
231  * @name: carveout name to find (format string)
232  * @...: optional parameters matching @name string
233  *
234  * Platform driver has the capability to register some pre-allacoted carveout
235  * (physically contiguous memory regions) before rproc firmware loading and
236  * associated resource table analysis. These regions may be dedicated memory
237  * regions internal to the coprocessor or specified DDR region with specific
238  * attributes
239  *
240  * This function is a helper function with which we can go over the
241  * allocated carveouts and return associated region characteristics like
242  * coprocessor address, length or processor virtual address.
243  *
244  * Return: a valid pointer on carveout entry on success or NULL on failure.
245  */
246 __printf(2, 3)
247 struct rproc_mem_entry *
248 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
249 {
250 	va_list args;
251 	char _name[32];
252 	struct rproc_mem_entry *carveout, *mem = NULL;
253 
254 	if (!name)
255 		return NULL;
256 
257 	va_start(args, name);
258 	vsnprintf(_name, sizeof(_name), name, args);
259 	va_end(args);
260 
261 	list_for_each_entry(carveout, &rproc->carveouts, node) {
262 		/* Compare carveout and requested names */
263 		if (!strcmp(carveout->name, _name)) {
264 			mem = carveout;
265 			break;
266 		}
267 	}
268 
269 	return mem;
270 }
271 
272 /**
273  * rproc_check_carveout_da() - Check specified carveout da configuration
274  * @rproc: handle of a remote processor
275  * @mem: pointer on carveout to check
276  * @da: area device address
277  * @len: associated area size
278  *
279  * This function is a helper function to verify requested device area (couple
280  * da, len) is part of specified carveout.
281  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
282  * checked.
283  *
284  * Return: 0 if carveout matches request else error
285  */
286 static int rproc_check_carveout_da(struct rproc *rproc,
287 				   struct rproc_mem_entry *mem, u32 da, u32 len)
288 {
289 	struct device *dev = &rproc->dev;
290 	int delta;
291 
292 	/* Check requested resource length */
293 	if (len > mem->len) {
294 		dev_err(dev, "Registered carveout doesn't fit len request\n");
295 		return -EINVAL;
296 	}
297 
298 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
299 		/* Address doesn't match registered carveout configuration */
300 		return -EINVAL;
301 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
302 		delta = da - mem->da;
303 
304 		/* Check requested resource belongs to registered carveout */
305 		if (delta < 0) {
306 			dev_err(dev,
307 				"Registered carveout doesn't fit da request\n");
308 			return -EINVAL;
309 		}
310 
311 		if (delta + len > mem->len) {
312 			dev_err(dev,
313 				"Registered carveout doesn't fit len request\n");
314 			return -EINVAL;
315 		}
316 	}
317 
318 	return 0;
319 }
320 
321 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
322 {
323 	struct rproc *rproc = rvdev->rproc;
324 	struct device *dev = &rproc->dev;
325 	struct rproc_vring *rvring = &rvdev->vring[i];
326 	struct fw_rsc_vdev *rsc;
327 	int ret, notifyid;
328 	struct rproc_mem_entry *mem;
329 	size_t size;
330 
331 	/* actual size of vring (in bytes) */
332 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
333 
334 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
335 
336 	/* Search for pre-registered carveout */
337 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
338 					  i);
339 	if (mem) {
340 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
341 			return -ENOMEM;
342 	} else {
343 		/* Register carveout in in list */
344 		mem = rproc_mem_entry_init(dev, NULL, 0,
345 					   size, rsc->vring[i].da,
346 					   rproc_alloc_carveout,
347 					   rproc_release_carveout,
348 					   "vdev%dvring%d",
349 					   rvdev->index, i);
350 		if (!mem) {
351 			dev_err(dev, "Can't allocate memory entry structure\n");
352 			return -ENOMEM;
353 		}
354 
355 		rproc_add_carveout(rproc, mem);
356 	}
357 
358 	/*
359 	 * Assign an rproc-wide unique index for this vring
360 	 * TODO: assign a notifyid for rvdev updates as well
361 	 * TODO: support predefined notifyids (via resource table)
362 	 */
363 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
364 	if (ret < 0) {
365 		dev_err(dev, "idr_alloc failed: %d\n", ret);
366 		return ret;
367 	}
368 	notifyid = ret;
369 
370 	/* Potentially bump max_notifyid */
371 	if (notifyid > rproc->max_notifyid)
372 		rproc->max_notifyid = notifyid;
373 
374 	rvring->notifyid = notifyid;
375 
376 	/* Let the rproc know the notifyid of this vring.*/
377 	rsc->vring[i].notifyid = notifyid;
378 	return 0;
379 }
380 
381 static int
382 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
383 {
384 	struct rproc *rproc = rvdev->rproc;
385 	struct device *dev = &rproc->dev;
386 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
387 	struct rproc_vring *rvring = &rvdev->vring[i];
388 
389 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
390 		i, vring->da, vring->num, vring->align);
391 
392 	/* verify queue size and vring alignment are sane */
393 	if (!vring->num || !vring->align) {
394 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
395 			vring->num, vring->align);
396 		return -EINVAL;
397 	}
398 
399 	rvring->len = vring->num;
400 	rvring->align = vring->align;
401 	rvring->rvdev = rvdev;
402 
403 	return 0;
404 }
405 
406 void rproc_free_vring(struct rproc_vring *rvring)
407 {
408 	struct rproc *rproc = rvring->rvdev->rproc;
409 	int idx = rvring - rvring->rvdev->vring;
410 	struct fw_rsc_vdev *rsc;
411 
412 	idr_remove(&rproc->notifyids, rvring->notifyid);
413 
414 	/*
415 	 * At this point rproc_stop() has been called and the installed resource
416 	 * table in the remote processor memory may no longer be accessible. As
417 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
418 	 * resource table (rproc->cached_table).  The cached resource table is
419 	 * only available when a remote processor has been booted by the
420 	 * remoteproc core, otherwise it is NULL.
421 	 *
422 	 * Based on the above, reset the virtio device section in the cached
423 	 * resource table only if there is one to work with.
424 	 */
425 	if (rproc->table_ptr) {
426 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
427 		rsc->vring[idx].da = 0;
428 		rsc->vring[idx].notifyid = -1;
429 	}
430 }
431 
432 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
433 {
434 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
435 
436 	return rproc_add_virtio_dev(rvdev, rvdev->id);
437 }
438 
439 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
440 {
441 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
442 	int ret;
443 
444 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
445 	if (ret)
446 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
447 }
448 
449 /**
450  * rproc_rvdev_release() - release the existence of a rvdev
451  *
452  * @dev: the subdevice's dev
453  */
454 static void rproc_rvdev_release(struct device *dev)
455 {
456 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
457 
458 	of_reserved_mem_device_release(dev);
459 
460 	kfree(rvdev);
461 }
462 
463 static int copy_dma_range_map(struct device *to, struct device *from)
464 {
465 	const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
466 	int num_ranges = 0;
467 
468 	if (!map)
469 		return 0;
470 
471 	for (r = map; r->size; r++)
472 		num_ranges++;
473 
474 	new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
475 			  GFP_KERNEL);
476 	if (!new_map)
477 		return -ENOMEM;
478 	to->dma_range_map = new_map;
479 	return 0;
480 }
481 
482 /**
483  * rproc_handle_vdev() - handle a vdev fw resource
484  * @rproc: the remote processor
485  * @rsc: the vring resource descriptor
486  * @offset: offset of the resource entry
487  * @avail: size of available data (for sanity checking the image)
488  *
489  * This resource entry requests the host to statically register a virtio
490  * device (vdev), and setup everything needed to support it. It contains
491  * everything needed to make it possible: the virtio device id, virtio
492  * device features, vrings information, virtio config space, etc...
493  *
494  * Before registering the vdev, the vrings are allocated from non-cacheable
495  * physically contiguous memory. Currently we only support two vrings per
496  * remote processor (temporary limitation). We might also want to consider
497  * doing the vring allocation only later when ->find_vqs() is invoked, and
498  * then release them upon ->del_vqs().
499  *
500  * Note: @da is currently not really handled correctly: we dynamically
501  * allocate it using the DMA API, ignoring requested hard coded addresses,
502  * and we don't take care of any required IOMMU programming. This is all
503  * going to be taken care of when the generic iommu-based DMA API will be
504  * merged. Meanwhile, statically-addressed iommu-based firmware images should
505  * use RSC_DEVMEM resource entries to map their required @da to the physical
506  * address of their base CMA region (ouch, hacky!).
507  *
508  * Returns 0 on success, or an appropriate error code otherwise
509  */
510 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
511 			     int offset, int avail)
512 {
513 	struct device *dev = &rproc->dev;
514 	struct rproc_vdev *rvdev;
515 	int i, ret;
516 	char name[16];
517 
518 	/* make sure resource isn't truncated */
519 	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
520 			avail) {
521 		dev_err(dev, "vdev rsc is truncated\n");
522 		return -EINVAL;
523 	}
524 
525 	/* make sure reserved bytes are zeroes */
526 	if (rsc->reserved[0] || rsc->reserved[1]) {
527 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
528 		return -EINVAL;
529 	}
530 
531 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
532 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
533 
534 	/* we currently support only two vrings per rvdev */
535 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
536 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
537 		return -EINVAL;
538 	}
539 
540 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
541 	if (!rvdev)
542 		return -ENOMEM;
543 
544 	kref_init(&rvdev->refcount);
545 
546 	rvdev->id = rsc->id;
547 	rvdev->rproc = rproc;
548 	rvdev->index = rproc->nb_vdev++;
549 
550 	/* Initialise vdev subdevice */
551 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
552 	rvdev->dev.parent = &rproc->dev;
553 	ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
554 	if (ret)
555 		return ret;
556 	rvdev->dev.release = rproc_rvdev_release;
557 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
558 	dev_set_drvdata(&rvdev->dev, rvdev);
559 
560 	ret = device_register(&rvdev->dev);
561 	if (ret) {
562 		put_device(&rvdev->dev);
563 		return ret;
564 	}
565 	/* Make device dma capable by inheriting from parent's capabilities */
566 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
567 
568 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
569 					   dma_get_mask(rproc->dev.parent));
570 	if (ret) {
571 		dev_warn(dev,
572 			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
573 			 dma_get_mask(rproc->dev.parent), ret);
574 	}
575 
576 	/* parse the vrings */
577 	for (i = 0; i < rsc->num_of_vrings; i++) {
578 		ret = rproc_parse_vring(rvdev, rsc, i);
579 		if (ret)
580 			goto free_rvdev;
581 	}
582 
583 	/* remember the resource offset*/
584 	rvdev->rsc_offset = offset;
585 
586 	/* allocate the vring resources */
587 	for (i = 0; i < rsc->num_of_vrings; i++) {
588 		ret = rproc_alloc_vring(rvdev, i);
589 		if (ret)
590 			goto unwind_vring_allocations;
591 	}
592 
593 	list_add_tail(&rvdev->node, &rproc->rvdevs);
594 
595 	rvdev->subdev.start = rproc_vdev_do_start;
596 	rvdev->subdev.stop = rproc_vdev_do_stop;
597 
598 	rproc_add_subdev(rproc, &rvdev->subdev);
599 
600 	return 0;
601 
602 unwind_vring_allocations:
603 	for (i--; i >= 0; i--)
604 		rproc_free_vring(&rvdev->vring[i]);
605 free_rvdev:
606 	device_unregister(&rvdev->dev);
607 	return ret;
608 }
609 
610 void rproc_vdev_release(struct kref *ref)
611 {
612 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
613 	struct rproc_vring *rvring;
614 	struct rproc *rproc = rvdev->rproc;
615 	int id;
616 
617 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
618 		rvring = &rvdev->vring[id];
619 		rproc_free_vring(rvring);
620 	}
621 
622 	rproc_remove_subdev(rproc, &rvdev->subdev);
623 	list_del(&rvdev->node);
624 	device_unregister(&rvdev->dev);
625 }
626 
627 /**
628  * rproc_handle_trace() - handle a shared trace buffer resource
629  * @rproc: the remote processor
630  * @rsc: the trace resource descriptor
631  * @offset: offset of the resource entry
632  * @avail: size of available data (for sanity checking the image)
633  *
634  * In case the remote processor dumps trace logs into memory,
635  * export it via debugfs.
636  *
637  * Currently, the 'da' member of @rsc should contain the device address
638  * where the remote processor is dumping the traces. Later we could also
639  * support dynamically allocating this address using the generic
640  * DMA API (but currently there isn't a use case for that).
641  *
642  * Returns 0 on success, or an appropriate error code otherwise
643  */
644 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
645 			      int offset, int avail)
646 {
647 	struct rproc_debug_trace *trace;
648 	struct device *dev = &rproc->dev;
649 	char name[15];
650 
651 	if (sizeof(*rsc) > avail) {
652 		dev_err(dev, "trace rsc is truncated\n");
653 		return -EINVAL;
654 	}
655 
656 	/* make sure reserved bytes are zeroes */
657 	if (rsc->reserved) {
658 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
659 		return -EINVAL;
660 	}
661 
662 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
663 	if (!trace)
664 		return -ENOMEM;
665 
666 	/* set the trace buffer dma properties */
667 	trace->trace_mem.len = rsc->len;
668 	trace->trace_mem.da = rsc->da;
669 
670 	/* set pointer on rproc device */
671 	trace->rproc = rproc;
672 
673 	/* make sure snprintf always null terminates, even if truncating */
674 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
675 
676 	/* create the debugfs entry */
677 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
678 	if (!trace->tfile) {
679 		kfree(trace);
680 		return -EINVAL;
681 	}
682 
683 	list_add_tail(&trace->node, &rproc->traces);
684 
685 	rproc->num_traces++;
686 
687 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
688 		name, rsc->da, rsc->len);
689 
690 	return 0;
691 }
692 
693 /**
694  * rproc_handle_devmem() - handle devmem resource entry
695  * @rproc: remote processor handle
696  * @rsc: the devmem resource entry
697  * @offset: offset of the resource entry
698  * @avail: size of available data (for sanity checking the image)
699  *
700  * Remote processors commonly need to access certain on-chip peripherals.
701  *
702  * Some of these remote processors access memory via an iommu device,
703  * and might require us to configure their iommu before they can access
704  * the on-chip peripherals they need.
705  *
706  * This resource entry is a request to map such a peripheral device.
707  *
708  * These devmem entries will contain the physical address of the device in
709  * the 'pa' member. If a specific device address is expected, then 'da' will
710  * contain it (currently this is the only use case supported). 'len' will
711  * contain the size of the physical region we need to map.
712  *
713  * Currently we just "trust" those devmem entries to contain valid physical
714  * addresses, but this is going to change: we want the implementations to
715  * tell us ranges of physical addresses the firmware is allowed to request,
716  * and not allow firmwares to request access to physical addresses that
717  * are outside those ranges.
718  */
719 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
720 			       int offset, int avail)
721 {
722 	struct rproc_mem_entry *mapping;
723 	struct device *dev = &rproc->dev;
724 	int ret;
725 
726 	/* no point in handling this resource without a valid iommu domain */
727 	if (!rproc->domain)
728 		return -EINVAL;
729 
730 	if (sizeof(*rsc) > avail) {
731 		dev_err(dev, "devmem rsc is truncated\n");
732 		return -EINVAL;
733 	}
734 
735 	/* make sure reserved bytes are zeroes */
736 	if (rsc->reserved) {
737 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
738 		return -EINVAL;
739 	}
740 
741 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
742 	if (!mapping)
743 		return -ENOMEM;
744 
745 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
746 	if (ret) {
747 		dev_err(dev, "failed to map devmem: %d\n", ret);
748 		goto out;
749 	}
750 
751 	/*
752 	 * We'll need this info later when we'll want to unmap everything
753 	 * (e.g. on shutdown).
754 	 *
755 	 * We can't trust the remote processor not to change the resource
756 	 * table, so we must maintain this info independently.
757 	 */
758 	mapping->da = rsc->da;
759 	mapping->len = rsc->len;
760 	list_add_tail(&mapping->node, &rproc->mappings);
761 
762 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
763 		rsc->pa, rsc->da, rsc->len);
764 
765 	return 0;
766 
767 out:
768 	kfree(mapping);
769 	return ret;
770 }
771 
772 /**
773  * rproc_alloc_carveout() - allocated specified carveout
774  * @rproc: rproc handle
775  * @mem: the memory entry to allocate
776  *
777  * This function allocate specified memory entry @mem using
778  * dma_alloc_coherent() as default allocator
779  */
780 static int rproc_alloc_carveout(struct rproc *rproc,
781 				struct rproc_mem_entry *mem)
782 {
783 	struct rproc_mem_entry *mapping = NULL;
784 	struct device *dev = &rproc->dev;
785 	dma_addr_t dma;
786 	void *va;
787 	int ret;
788 
789 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
790 	if (!va) {
791 		dev_err(dev->parent,
792 			"failed to allocate dma memory: len 0x%zx\n",
793 			mem->len);
794 		return -ENOMEM;
795 	}
796 
797 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
798 		va, &dma, mem->len);
799 
800 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
801 		/*
802 		 * Check requested da is equal to dma address
803 		 * and print a warn message in case of missalignment.
804 		 * Don't stop rproc_start sequence as coprocessor may
805 		 * build pa to da translation on its side.
806 		 */
807 		if (mem->da != (u32)dma)
808 			dev_warn(dev->parent,
809 				 "Allocated carveout doesn't fit device address request\n");
810 	}
811 
812 	/*
813 	 * Ok, this is non-standard.
814 	 *
815 	 * Sometimes we can't rely on the generic iommu-based DMA API
816 	 * to dynamically allocate the device address and then set the IOMMU
817 	 * tables accordingly, because some remote processors might
818 	 * _require_ us to use hard coded device addresses that their
819 	 * firmware was compiled with.
820 	 *
821 	 * In this case, we must use the IOMMU API directly and map
822 	 * the memory to the device address as expected by the remote
823 	 * processor.
824 	 *
825 	 * Obviously such remote processor devices should not be configured
826 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
827 	 * physical address in this case.
828 	 */
829 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
830 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
831 		if (!mapping) {
832 			ret = -ENOMEM;
833 			goto dma_free;
834 		}
835 
836 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
837 				mem->flags);
838 		if (ret) {
839 			dev_err(dev, "iommu_map failed: %d\n", ret);
840 			goto free_mapping;
841 		}
842 
843 		/*
844 		 * We'll need this info later when we'll want to unmap
845 		 * everything (e.g. on shutdown).
846 		 *
847 		 * We can't trust the remote processor not to change the
848 		 * resource table, so we must maintain this info independently.
849 		 */
850 		mapping->da = mem->da;
851 		mapping->len = mem->len;
852 		list_add_tail(&mapping->node, &rproc->mappings);
853 
854 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
855 			mem->da, &dma);
856 	}
857 
858 	if (mem->da == FW_RSC_ADDR_ANY) {
859 		/* Update device address as undefined by requester */
860 		if ((u64)dma & HIGH_BITS_MASK)
861 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
862 
863 		mem->da = (u32)dma;
864 	}
865 
866 	mem->dma = dma;
867 	mem->va = va;
868 
869 	return 0;
870 
871 free_mapping:
872 	kfree(mapping);
873 dma_free:
874 	dma_free_coherent(dev->parent, mem->len, va, dma);
875 	return ret;
876 }
877 
878 /**
879  * rproc_release_carveout() - release acquired carveout
880  * @rproc: rproc handle
881  * @mem: the memory entry to release
882  *
883  * This function releases specified memory entry @mem allocated via
884  * rproc_alloc_carveout() function by @rproc.
885  */
886 static int rproc_release_carveout(struct rproc *rproc,
887 				  struct rproc_mem_entry *mem)
888 {
889 	struct device *dev = &rproc->dev;
890 
891 	/* clean up carveout allocations */
892 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
893 	return 0;
894 }
895 
896 /**
897  * rproc_handle_carveout() - handle phys contig memory allocation requests
898  * @rproc: rproc handle
899  * @rsc: the resource entry
900  * @offset: offset of the resource entry
901  * @avail: size of available data (for image validation)
902  *
903  * This function will handle firmware requests for allocation of physically
904  * contiguous memory regions.
905  *
906  * These request entries should come first in the firmware's resource table,
907  * as other firmware entries might request placing other data objects inside
908  * these memory regions (e.g. data/code segments, trace resource entries, ...).
909  *
910  * Allocating memory this way helps utilizing the reserved physical memory
911  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
912  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
913  * pressure is important; it may have a substantial impact on performance.
914  */
915 static int rproc_handle_carveout(struct rproc *rproc,
916 				 struct fw_rsc_carveout *rsc,
917 				 int offset, int avail)
918 {
919 	struct rproc_mem_entry *carveout;
920 	struct device *dev = &rproc->dev;
921 
922 	if (sizeof(*rsc) > avail) {
923 		dev_err(dev, "carveout rsc is truncated\n");
924 		return -EINVAL;
925 	}
926 
927 	/* make sure reserved bytes are zeroes */
928 	if (rsc->reserved) {
929 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
930 		return -EINVAL;
931 	}
932 
933 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
934 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
935 
936 	/*
937 	 * Check carveout rsc already part of a registered carveout,
938 	 * Search by name, then check the da and length
939 	 */
940 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
941 
942 	if (carveout) {
943 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
944 			dev_err(dev,
945 				"Carveout already associated to resource table\n");
946 			return -ENOMEM;
947 		}
948 
949 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
950 			return -ENOMEM;
951 
952 		/* Update memory carveout with resource table info */
953 		carveout->rsc_offset = offset;
954 		carveout->flags = rsc->flags;
955 
956 		return 0;
957 	}
958 
959 	/* Register carveout in in list */
960 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
961 					rproc_alloc_carveout,
962 					rproc_release_carveout, rsc->name);
963 	if (!carveout) {
964 		dev_err(dev, "Can't allocate memory entry structure\n");
965 		return -ENOMEM;
966 	}
967 
968 	carveout->flags = rsc->flags;
969 	carveout->rsc_offset = offset;
970 	rproc_add_carveout(rproc, carveout);
971 
972 	return 0;
973 }
974 
975 /**
976  * rproc_add_carveout() - register an allocated carveout region
977  * @rproc: rproc handle
978  * @mem: memory entry to register
979  *
980  * This function registers specified memory entry in @rproc carveouts list.
981  * Specified carveout should have been allocated before registering.
982  */
983 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
984 {
985 	list_add_tail(&mem->node, &rproc->carveouts);
986 }
987 EXPORT_SYMBOL(rproc_add_carveout);
988 
989 /**
990  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
991  * @dev: pointer on device struct
992  * @va: virtual address
993  * @dma: dma address
994  * @len: memory carveout length
995  * @da: device address
996  * @alloc: memory carveout allocation function
997  * @release: memory carveout release function
998  * @name: carveout name
999  *
1000  * This function allocates a rproc_mem_entry struct and fill it with parameters
1001  * provided by client.
1002  */
1003 __printf(8, 9)
1004 struct rproc_mem_entry *
1005 rproc_mem_entry_init(struct device *dev,
1006 		     void *va, dma_addr_t dma, size_t len, u32 da,
1007 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1008 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
1009 		     const char *name, ...)
1010 {
1011 	struct rproc_mem_entry *mem;
1012 	va_list args;
1013 
1014 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1015 	if (!mem)
1016 		return mem;
1017 
1018 	mem->va = va;
1019 	mem->dma = dma;
1020 	mem->da = da;
1021 	mem->len = len;
1022 	mem->alloc = alloc;
1023 	mem->release = release;
1024 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1025 	mem->of_resm_idx = -1;
1026 
1027 	va_start(args, name);
1028 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1029 	va_end(args);
1030 
1031 	return mem;
1032 }
1033 EXPORT_SYMBOL(rproc_mem_entry_init);
1034 
1035 /**
1036  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1037  * from a reserved memory phandle
1038  * @dev: pointer on device struct
1039  * @of_resm_idx: reserved memory phandle index in "memory-region"
1040  * @len: memory carveout length
1041  * @da: device address
1042  * @name: carveout name
1043  *
1044  * This function allocates a rproc_mem_entry struct and fill it with parameters
1045  * provided by client.
1046  */
1047 __printf(5, 6)
1048 struct rproc_mem_entry *
1049 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1050 			     u32 da, const char *name, ...)
1051 {
1052 	struct rproc_mem_entry *mem;
1053 	va_list args;
1054 
1055 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1056 	if (!mem)
1057 		return mem;
1058 
1059 	mem->da = da;
1060 	mem->len = len;
1061 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1062 	mem->of_resm_idx = of_resm_idx;
1063 
1064 	va_start(args, name);
1065 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1066 	va_end(args);
1067 
1068 	return mem;
1069 }
1070 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1071 
1072 /**
1073  * rproc_of_parse_firmware() - parse and return the firmware-name
1074  * @dev: pointer on device struct representing a rproc
1075  * @index: index to use for the firmware-name retrieval
1076  * @fw_name: pointer to a character string, in which the firmware
1077  *           name is returned on success and unmodified otherwise.
1078  *
1079  * This is an OF helper function that parses a device's DT node for
1080  * the "firmware-name" property and returns the firmware name pointer
1081  * in @fw_name on success.
1082  *
1083  * Return: 0 on success, or an appropriate failure.
1084  */
1085 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1086 {
1087 	int ret;
1088 
1089 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1090 					    index, fw_name);
1091 	return ret ? ret : 0;
1092 }
1093 EXPORT_SYMBOL(rproc_of_parse_firmware);
1094 
1095 /*
1096  * A lookup table for resource handlers. The indices are defined in
1097  * enum fw_resource_type.
1098  */
1099 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1100 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1101 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1102 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1103 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1104 };
1105 
1106 /* handle firmware resource entries before booting the remote processor */
1107 static int rproc_handle_resources(struct rproc *rproc,
1108 				  rproc_handle_resource_t handlers[RSC_LAST])
1109 {
1110 	struct device *dev = &rproc->dev;
1111 	rproc_handle_resource_t handler;
1112 	int ret = 0, i;
1113 
1114 	if (!rproc->table_ptr)
1115 		return 0;
1116 
1117 	for (i = 0; i < rproc->table_ptr->num; i++) {
1118 		int offset = rproc->table_ptr->offset[i];
1119 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1120 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1121 		void *rsc = (void *)hdr + sizeof(*hdr);
1122 
1123 		/* make sure table isn't truncated */
1124 		if (avail < 0) {
1125 			dev_err(dev, "rsc table is truncated\n");
1126 			return -EINVAL;
1127 		}
1128 
1129 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1130 
1131 		if (hdr->type >= RSC_VENDOR_START &&
1132 		    hdr->type <= RSC_VENDOR_END) {
1133 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1134 					       offset + sizeof(*hdr), avail);
1135 			if (ret == RSC_HANDLED)
1136 				continue;
1137 			else if (ret < 0)
1138 				break;
1139 
1140 			dev_warn(dev, "unsupported vendor resource %d\n",
1141 				 hdr->type);
1142 			continue;
1143 		}
1144 
1145 		if (hdr->type >= RSC_LAST) {
1146 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1147 			continue;
1148 		}
1149 
1150 		handler = handlers[hdr->type];
1151 		if (!handler)
1152 			continue;
1153 
1154 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1155 		if (ret)
1156 			break;
1157 	}
1158 
1159 	return ret;
1160 }
1161 
1162 static int rproc_prepare_subdevices(struct rproc *rproc)
1163 {
1164 	struct rproc_subdev *subdev;
1165 	int ret;
1166 
1167 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1168 		if (subdev->prepare) {
1169 			ret = subdev->prepare(subdev);
1170 			if (ret)
1171 				goto unroll_preparation;
1172 		}
1173 	}
1174 
1175 	return 0;
1176 
1177 unroll_preparation:
1178 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1179 		if (subdev->unprepare)
1180 			subdev->unprepare(subdev);
1181 	}
1182 
1183 	return ret;
1184 }
1185 
1186 static int rproc_start_subdevices(struct rproc *rproc)
1187 {
1188 	struct rproc_subdev *subdev;
1189 	int ret;
1190 
1191 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1192 		if (subdev->start) {
1193 			ret = subdev->start(subdev);
1194 			if (ret)
1195 				goto unroll_registration;
1196 		}
1197 	}
1198 
1199 	return 0;
1200 
1201 unroll_registration:
1202 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1203 		if (subdev->stop)
1204 			subdev->stop(subdev, true);
1205 	}
1206 
1207 	return ret;
1208 }
1209 
1210 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1211 {
1212 	struct rproc_subdev *subdev;
1213 
1214 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1215 		if (subdev->stop)
1216 			subdev->stop(subdev, crashed);
1217 	}
1218 }
1219 
1220 static void rproc_unprepare_subdevices(struct rproc *rproc)
1221 {
1222 	struct rproc_subdev *subdev;
1223 
1224 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1225 		if (subdev->unprepare)
1226 			subdev->unprepare(subdev);
1227 	}
1228 }
1229 
1230 /**
1231  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1232  * in the list
1233  * @rproc: the remote processor handle
1234  *
1235  * This function parses registered carveout list, performs allocation
1236  * if alloc() ops registered and updates resource table information
1237  * if rsc_offset set.
1238  *
1239  * Return: 0 on success
1240  */
1241 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1242 {
1243 	struct rproc_mem_entry *entry, *tmp;
1244 	struct fw_rsc_carveout *rsc;
1245 	struct device *dev = &rproc->dev;
1246 	u64 pa;
1247 	int ret;
1248 
1249 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1250 		if (entry->alloc) {
1251 			ret = entry->alloc(rproc, entry);
1252 			if (ret) {
1253 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1254 					entry->name, ret);
1255 				return -ENOMEM;
1256 			}
1257 		}
1258 
1259 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1260 			/* update resource table */
1261 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1262 
1263 			/*
1264 			 * Some remote processors might need to know the pa
1265 			 * even though they are behind an IOMMU. E.g., OMAP4's
1266 			 * remote M3 processor needs this so it can control
1267 			 * on-chip hardware accelerators that are not behind
1268 			 * the IOMMU, and therefor must know the pa.
1269 			 *
1270 			 * Generally we don't want to expose physical addresses
1271 			 * if we don't have to (remote processors are generally
1272 			 * _not_ trusted), so we might want to do this only for
1273 			 * remote processor that _must_ have this (e.g. OMAP4's
1274 			 * dual M3 subsystem).
1275 			 *
1276 			 * Non-IOMMU processors might also want to have this info.
1277 			 * In this case, the device address and the physical address
1278 			 * are the same.
1279 			 */
1280 
1281 			/* Use va if defined else dma to generate pa */
1282 			if (entry->va)
1283 				pa = (u64)rproc_va_to_pa(entry->va);
1284 			else
1285 				pa = (u64)entry->dma;
1286 
1287 			if (((u64)pa) & HIGH_BITS_MASK)
1288 				dev_warn(dev,
1289 					 "Physical address cast in 32bit to fit resource table format\n");
1290 
1291 			rsc->pa = (u32)pa;
1292 			rsc->da = entry->da;
1293 			rsc->len = entry->len;
1294 		}
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 
1301 /**
1302  * rproc_resource_cleanup() - clean up and free all acquired resources
1303  * @rproc: rproc handle
1304  *
1305  * This function will free all resources acquired for @rproc, and it
1306  * is called whenever @rproc either shuts down or fails to boot.
1307  */
1308 void rproc_resource_cleanup(struct rproc *rproc)
1309 {
1310 	struct rproc_mem_entry *entry, *tmp;
1311 	struct rproc_debug_trace *trace, *ttmp;
1312 	struct rproc_vdev *rvdev, *rvtmp;
1313 	struct device *dev = &rproc->dev;
1314 
1315 	/* clean up debugfs trace entries */
1316 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1317 		rproc_remove_trace_file(trace->tfile);
1318 		rproc->num_traces--;
1319 		list_del(&trace->node);
1320 		kfree(trace);
1321 	}
1322 
1323 	/* clean up iommu mapping entries */
1324 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1325 		size_t unmapped;
1326 
1327 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1328 		if (unmapped != entry->len) {
1329 			/* nothing much to do besides complaining */
1330 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1331 				unmapped);
1332 		}
1333 
1334 		list_del(&entry->node);
1335 		kfree(entry);
1336 	}
1337 
1338 	/* clean up carveout allocations */
1339 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1340 		if (entry->release)
1341 			entry->release(rproc, entry);
1342 		list_del(&entry->node);
1343 		kfree(entry);
1344 	}
1345 
1346 	/* clean up remote vdev entries */
1347 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1348 		kref_put(&rvdev->refcount, rproc_vdev_release);
1349 
1350 	rproc_coredump_cleanup(rproc);
1351 }
1352 EXPORT_SYMBOL(rproc_resource_cleanup);
1353 
1354 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1355 {
1356 	struct resource_table *loaded_table;
1357 	struct device *dev = &rproc->dev;
1358 	int ret;
1359 
1360 	/* load the ELF segments to memory */
1361 	ret = rproc_load_segments(rproc, fw);
1362 	if (ret) {
1363 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1364 		return ret;
1365 	}
1366 
1367 	/*
1368 	 * The starting device has been given the rproc->cached_table as the
1369 	 * resource table. The address of the vring along with the other
1370 	 * allocated resources (carveouts etc) is stored in cached_table.
1371 	 * In order to pass this information to the remote device we must copy
1372 	 * this information to device memory. We also update the table_ptr so
1373 	 * that any subsequent changes will be applied to the loaded version.
1374 	 */
1375 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1376 	if (loaded_table) {
1377 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1378 		rproc->table_ptr = loaded_table;
1379 	}
1380 
1381 	ret = rproc_prepare_subdevices(rproc);
1382 	if (ret) {
1383 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1384 			rproc->name, ret);
1385 		goto reset_table_ptr;
1386 	}
1387 
1388 	/* power up the remote processor */
1389 	ret = rproc->ops->start(rproc);
1390 	if (ret) {
1391 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1392 		goto unprepare_subdevices;
1393 	}
1394 
1395 	/* Start any subdevices for the remote processor */
1396 	ret = rproc_start_subdevices(rproc);
1397 	if (ret) {
1398 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1399 			rproc->name, ret);
1400 		goto stop_rproc;
1401 	}
1402 
1403 	rproc->state = RPROC_RUNNING;
1404 
1405 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1406 
1407 	return 0;
1408 
1409 stop_rproc:
1410 	rproc->ops->stop(rproc);
1411 unprepare_subdevices:
1412 	rproc_unprepare_subdevices(rproc);
1413 reset_table_ptr:
1414 	rproc->table_ptr = rproc->cached_table;
1415 
1416 	return ret;
1417 }
1418 
1419 static int rproc_attach(struct rproc *rproc)
1420 {
1421 	struct device *dev = &rproc->dev;
1422 	int ret;
1423 
1424 	ret = rproc_prepare_subdevices(rproc);
1425 	if (ret) {
1426 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1427 			rproc->name, ret);
1428 		goto out;
1429 	}
1430 
1431 	/* Attach to the remote processor */
1432 	ret = rproc_attach_device(rproc);
1433 	if (ret) {
1434 		dev_err(dev, "can't attach to rproc %s: %d\n",
1435 			rproc->name, ret);
1436 		goto unprepare_subdevices;
1437 	}
1438 
1439 	/* Start any subdevices for the remote processor */
1440 	ret = rproc_start_subdevices(rproc);
1441 	if (ret) {
1442 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1443 			rproc->name, ret);
1444 		goto stop_rproc;
1445 	}
1446 
1447 	rproc->state = RPROC_RUNNING;
1448 
1449 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1450 
1451 	return 0;
1452 
1453 stop_rproc:
1454 	rproc->ops->stop(rproc);
1455 unprepare_subdevices:
1456 	rproc_unprepare_subdevices(rproc);
1457 out:
1458 	return ret;
1459 }
1460 
1461 /*
1462  * take a firmware and boot a remote processor with it.
1463  */
1464 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1465 {
1466 	struct device *dev = &rproc->dev;
1467 	const char *name = rproc->firmware;
1468 	int ret;
1469 
1470 	ret = rproc_fw_sanity_check(rproc, fw);
1471 	if (ret)
1472 		return ret;
1473 
1474 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1475 
1476 	/*
1477 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1478 	 * just a nop
1479 	 */
1480 	ret = rproc_enable_iommu(rproc);
1481 	if (ret) {
1482 		dev_err(dev, "can't enable iommu: %d\n", ret);
1483 		return ret;
1484 	}
1485 
1486 	/* Prepare rproc for firmware loading if needed */
1487 	ret = rproc_prepare_device(rproc);
1488 	if (ret) {
1489 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1490 		goto disable_iommu;
1491 	}
1492 
1493 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1494 
1495 	/* Load resource table, core dump segment list etc from the firmware */
1496 	ret = rproc_parse_fw(rproc, fw);
1497 	if (ret)
1498 		goto unprepare_rproc;
1499 
1500 	/* reset max_notifyid */
1501 	rproc->max_notifyid = -1;
1502 
1503 	/* reset handled vdev */
1504 	rproc->nb_vdev = 0;
1505 
1506 	/* handle fw resources which are required to boot rproc */
1507 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1508 	if (ret) {
1509 		dev_err(dev, "Failed to process resources: %d\n", ret);
1510 		goto clean_up_resources;
1511 	}
1512 
1513 	/* Allocate carveout resources associated to rproc */
1514 	ret = rproc_alloc_registered_carveouts(rproc);
1515 	if (ret) {
1516 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1517 			ret);
1518 		goto clean_up_resources;
1519 	}
1520 
1521 	ret = rproc_start(rproc, fw);
1522 	if (ret)
1523 		goto clean_up_resources;
1524 
1525 	return 0;
1526 
1527 clean_up_resources:
1528 	rproc_resource_cleanup(rproc);
1529 	kfree(rproc->cached_table);
1530 	rproc->cached_table = NULL;
1531 	rproc->table_ptr = NULL;
1532 unprepare_rproc:
1533 	/* release HW resources if needed */
1534 	rproc_unprepare_device(rproc);
1535 disable_iommu:
1536 	rproc_disable_iommu(rproc);
1537 	return ret;
1538 }
1539 
1540 /*
1541  * Attach to remote processor - similar to rproc_fw_boot() but without
1542  * the steps that deal with the firmware image.
1543  */
1544 static int rproc_actuate(struct rproc *rproc)
1545 {
1546 	struct device *dev = &rproc->dev;
1547 	int ret;
1548 
1549 	/*
1550 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1551 	 * just a nop
1552 	 */
1553 	ret = rproc_enable_iommu(rproc);
1554 	if (ret) {
1555 		dev_err(dev, "can't enable iommu: %d\n", ret);
1556 		return ret;
1557 	}
1558 
1559 	/* reset max_notifyid */
1560 	rproc->max_notifyid = -1;
1561 
1562 	/* reset handled vdev */
1563 	rproc->nb_vdev = 0;
1564 
1565 	/*
1566 	 * Handle firmware resources required to attach to a remote processor.
1567 	 * Because we are attaching rather than booting the remote processor,
1568 	 * we expect the platform driver to properly set rproc->table_ptr.
1569 	 */
1570 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1571 	if (ret) {
1572 		dev_err(dev, "Failed to process resources: %d\n", ret);
1573 		goto disable_iommu;
1574 	}
1575 
1576 	/* Allocate carveout resources associated to rproc */
1577 	ret = rproc_alloc_registered_carveouts(rproc);
1578 	if (ret) {
1579 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1580 			ret);
1581 		goto clean_up_resources;
1582 	}
1583 
1584 	ret = rproc_attach(rproc);
1585 	if (ret)
1586 		goto clean_up_resources;
1587 
1588 	return 0;
1589 
1590 clean_up_resources:
1591 	rproc_resource_cleanup(rproc);
1592 disable_iommu:
1593 	rproc_disable_iommu(rproc);
1594 	return ret;
1595 }
1596 
1597 /*
1598  * take a firmware and boot it up.
1599  *
1600  * Note: this function is called asynchronously upon registration of the
1601  * remote processor (so we must wait until it completes before we try
1602  * to unregister the device. one other option is just to use kref here,
1603  * that might be cleaner).
1604  */
1605 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1606 {
1607 	struct rproc *rproc = context;
1608 
1609 	rproc_boot(rproc);
1610 
1611 	release_firmware(fw);
1612 }
1613 
1614 static int rproc_trigger_auto_boot(struct rproc *rproc)
1615 {
1616 	int ret;
1617 
1618 	/*
1619 	 * Since the remote processor is in a detached state, it has already
1620 	 * been booted by another entity.  As such there is no point in waiting
1621 	 * for a firmware image to be loaded, we can simply initiate the process
1622 	 * of attaching to it immediately.
1623 	 */
1624 	if (rproc->state == RPROC_DETACHED)
1625 		return rproc_boot(rproc);
1626 
1627 	/*
1628 	 * We're initiating an asynchronous firmware loading, so we can
1629 	 * be built-in kernel code, without hanging the boot process.
1630 	 */
1631 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1632 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1633 				      rproc, rproc_auto_boot_callback);
1634 	if (ret < 0)
1635 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1636 
1637 	return ret;
1638 }
1639 
1640 static int rproc_stop(struct rproc *rproc, bool crashed)
1641 {
1642 	struct device *dev = &rproc->dev;
1643 	int ret;
1644 
1645 	/* Stop any subdevices for the remote processor */
1646 	rproc_stop_subdevices(rproc, crashed);
1647 
1648 	/* the installed resource table is no longer accessible */
1649 	rproc->table_ptr = rproc->cached_table;
1650 
1651 	/* power off the remote processor */
1652 	ret = rproc->ops->stop(rproc);
1653 	if (ret) {
1654 		dev_err(dev, "can't stop rproc: %d\n", ret);
1655 		return ret;
1656 	}
1657 
1658 	rproc_unprepare_subdevices(rproc);
1659 
1660 	rproc->state = RPROC_OFFLINE;
1661 
1662 	/*
1663 	 * The remote processor has been stopped and is now offline, which means
1664 	 * that the next time it is brought back online the remoteproc core will
1665 	 * be responsible to load its firmware.  As such it is no longer
1666 	 * autonomous.
1667 	 */
1668 	rproc->autonomous = false;
1669 
1670 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1671 
1672 	return 0;
1673 }
1674 
1675 
1676 /**
1677  * rproc_trigger_recovery() - recover a remoteproc
1678  * @rproc: the remote processor
1679  *
1680  * The recovery is done by resetting all the virtio devices, that way all the
1681  * rpmsg drivers will be reseted along with the remote processor making the
1682  * remoteproc functional again.
1683  *
1684  * This function can sleep, so it cannot be called from atomic context.
1685  */
1686 int rproc_trigger_recovery(struct rproc *rproc)
1687 {
1688 	const struct firmware *firmware_p;
1689 	struct device *dev = &rproc->dev;
1690 	int ret;
1691 
1692 	ret = mutex_lock_interruptible(&rproc->lock);
1693 	if (ret)
1694 		return ret;
1695 
1696 	/* State could have changed before we got the mutex */
1697 	if (rproc->state != RPROC_CRASHED)
1698 		goto unlock_mutex;
1699 
1700 	dev_err(dev, "recovering %s\n", rproc->name);
1701 
1702 	ret = rproc_stop(rproc, true);
1703 	if (ret)
1704 		goto unlock_mutex;
1705 
1706 	/* generate coredump */
1707 	rproc->ops->coredump(rproc);
1708 
1709 	/* load firmware */
1710 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1711 	if (ret < 0) {
1712 		dev_err(dev, "request_firmware failed: %d\n", ret);
1713 		goto unlock_mutex;
1714 	}
1715 
1716 	/* boot the remote processor up again */
1717 	ret = rproc_start(rproc, firmware_p);
1718 
1719 	release_firmware(firmware_p);
1720 
1721 unlock_mutex:
1722 	mutex_unlock(&rproc->lock);
1723 	return ret;
1724 }
1725 
1726 /**
1727  * rproc_crash_handler_work() - handle a crash
1728  * @work: work treating the crash
1729  *
1730  * This function needs to handle everything related to a crash, like cpu
1731  * registers and stack dump, information to help to debug the fatal error, etc.
1732  */
1733 static void rproc_crash_handler_work(struct work_struct *work)
1734 {
1735 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1736 	struct device *dev = &rproc->dev;
1737 
1738 	dev_dbg(dev, "enter %s\n", __func__);
1739 
1740 	mutex_lock(&rproc->lock);
1741 
1742 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1743 		/* handle only the first crash detected */
1744 		mutex_unlock(&rproc->lock);
1745 		return;
1746 	}
1747 
1748 	rproc->state = RPROC_CRASHED;
1749 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1750 		rproc->name);
1751 
1752 	mutex_unlock(&rproc->lock);
1753 
1754 	if (!rproc->recovery_disabled)
1755 		rproc_trigger_recovery(rproc);
1756 
1757 	pm_relax(rproc->dev.parent);
1758 }
1759 
1760 /**
1761  * rproc_boot() - boot a remote processor
1762  * @rproc: handle of a remote processor
1763  *
1764  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1765  *
1766  * If the remote processor is already powered on, this function immediately
1767  * returns (successfully).
1768  *
1769  * Returns 0 on success, and an appropriate error value otherwise.
1770  */
1771 int rproc_boot(struct rproc *rproc)
1772 {
1773 	const struct firmware *firmware_p;
1774 	struct device *dev;
1775 	int ret;
1776 
1777 	if (!rproc) {
1778 		pr_err("invalid rproc handle\n");
1779 		return -EINVAL;
1780 	}
1781 
1782 	dev = &rproc->dev;
1783 
1784 	ret = mutex_lock_interruptible(&rproc->lock);
1785 	if (ret) {
1786 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1787 		return ret;
1788 	}
1789 
1790 	if (rproc->state == RPROC_DELETED) {
1791 		ret = -ENODEV;
1792 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1793 		goto unlock_mutex;
1794 	}
1795 
1796 	/* skip the boot or attach process if rproc is already powered up */
1797 	if (atomic_inc_return(&rproc->power) > 1) {
1798 		ret = 0;
1799 		goto unlock_mutex;
1800 	}
1801 
1802 	if (rproc->state == RPROC_DETACHED) {
1803 		dev_info(dev, "attaching to %s\n", rproc->name);
1804 
1805 		ret = rproc_actuate(rproc);
1806 	} else {
1807 		dev_info(dev, "powering up %s\n", rproc->name);
1808 
1809 		/* load firmware */
1810 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1811 		if (ret < 0) {
1812 			dev_err(dev, "request_firmware failed: %d\n", ret);
1813 			goto downref_rproc;
1814 		}
1815 
1816 		ret = rproc_fw_boot(rproc, firmware_p);
1817 
1818 		release_firmware(firmware_p);
1819 	}
1820 
1821 downref_rproc:
1822 	if (ret)
1823 		atomic_dec(&rproc->power);
1824 unlock_mutex:
1825 	mutex_unlock(&rproc->lock);
1826 	return ret;
1827 }
1828 EXPORT_SYMBOL(rproc_boot);
1829 
1830 /**
1831  * rproc_shutdown() - power off the remote processor
1832  * @rproc: the remote processor
1833  *
1834  * Power off a remote processor (previously booted with rproc_boot()).
1835  *
1836  * In case @rproc is still being used by an additional user(s), then
1837  * this function will just decrement the power refcount and exit,
1838  * without really powering off the device.
1839  *
1840  * Every call to rproc_boot() must (eventually) be accompanied by a call
1841  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1842  *
1843  * Notes:
1844  * - we're not decrementing the rproc's refcount, only the power refcount.
1845  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1846  *   returns, and users can still use it with a subsequent rproc_boot(), if
1847  *   needed.
1848  */
1849 void rproc_shutdown(struct rproc *rproc)
1850 {
1851 	struct device *dev = &rproc->dev;
1852 	int ret;
1853 
1854 	ret = mutex_lock_interruptible(&rproc->lock);
1855 	if (ret) {
1856 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1857 		return;
1858 	}
1859 
1860 	/* if the remote proc is still needed, bail out */
1861 	if (!atomic_dec_and_test(&rproc->power))
1862 		goto out;
1863 
1864 	ret = rproc_stop(rproc, false);
1865 	if (ret) {
1866 		atomic_inc(&rproc->power);
1867 		goto out;
1868 	}
1869 
1870 	/* clean up all acquired resources */
1871 	rproc_resource_cleanup(rproc);
1872 
1873 	/* release HW resources if needed */
1874 	rproc_unprepare_device(rproc);
1875 
1876 	rproc_disable_iommu(rproc);
1877 
1878 	/* Free the copy of the resource table */
1879 	kfree(rproc->cached_table);
1880 	rproc->cached_table = NULL;
1881 	rproc->table_ptr = NULL;
1882 out:
1883 	mutex_unlock(&rproc->lock);
1884 }
1885 EXPORT_SYMBOL(rproc_shutdown);
1886 
1887 /**
1888  * rproc_get_by_phandle() - find a remote processor by phandle
1889  * @phandle: phandle to the rproc
1890  *
1891  * Finds an rproc handle using the remote processor's phandle, and then
1892  * return a handle to the rproc.
1893  *
1894  * This function increments the remote processor's refcount, so always
1895  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1896  *
1897  * Returns the rproc handle on success, and NULL on failure.
1898  */
1899 #ifdef CONFIG_OF
1900 struct rproc *rproc_get_by_phandle(phandle phandle)
1901 {
1902 	struct rproc *rproc = NULL, *r;
1903 	struct device_node *np;
1904 
1905 	np = of_find_node_by_phandle(phandle);
1906 	if (!np)
1907 		return NULL;
1908 
1909 	rcu_read_lock();
1910 	list_for_each_entry_rcu(r, &rproc_list, node) {
1911 		if (r->dev.parent && r->dev.parent->of_node == np) {
1912 			/* prevent underlying implementation from being removed */
1913 			if (!try_module_get(r->dev.parent->driver->owner)) {
1914 				dev_err(&r->dev, "can't get owner\n");
1915 				break;
1916 			}
1917 
1918 			rproc = r;
1919 			get_device(&rproc->dev);
1920 			break;
1921 		}
1922 	}
1923 	rcu_read_unlock();
1924 
1925 	of_node_put(np);
1926 
1927 	return rproc;
1928 }
1929 #else
1930 struct rproc *rproc_get_by_phandle(phandle phandle)
1931 {
1932 	return NULL;
1933 }
1934 #endif
1935 EXPORT_SYMBOL(rproc_get_by_phandle);
1936 
1937 /**
1938  * rproc_set_firmware() - assign a new firmware
1939  * @rproc: rproc handle to which the new firmware is being assigned
1940  * @fw_name: new firmware name to be assigned
1941  *
1942  * This function allows remoteproc drivers or clients to configure a custom
1943  * firmware name that is different from the default name used during remoteproc
1944  * registration. The function does not trigger a remote processor boot,
1945  * only sets the firmware name used for a subsequent boot. This function
1946  * should also be called only when the remote processor is offline.
1947  *
1948  * This allows either the userspace to configure a different name through
1949  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
1950  * a specific firmware when it is controlling the boot and shutdown of the
1951  * remote processor.
1952  *
1953  * Return: 0 on success or a negative value upon failure
1954  */
1955 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
1956 {
1957 	struct device *dev;
1958 	int ret, len;
1959 	char *p;
1960 
1961 	if (!rproc || !fw_name)
1962 		return -EINVAL;
1963 
1964 	dev = rproc->dev.parent;
1965 
1966 	ret = mutex_lock_interruptible(&rproc->lock);
1967 	if (ret) {
1968 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1969 		return -EINVAL;
1970 	}
1971 
1972 	if (rproc->state != RPROC_OFFLINE) {
1973 		dev_err(dev, "can't change firmware while running\n");
1974 		ret = -EBUSY;
1975 		goto out;
1976 	}
1977 
1978 	len = strcspn(fw_name, "\n");
1979 	if (!len) {
1980 		dev_err(dev, "can't provide empty string for firmware name\n");
1981 		ret = -EINVAL;
1982 		goto out;
1983 	}
1984 
1985 	p = kstrndup(fw_name, len, GFP_KERNEL);
1986 	if (!p) {
1987 		ret = -ENOMEM;
1988 		goto out;
1989 	}
1990 
1991 	kfree_const(rproc->firmware);
1992 	rproc->firmware = p;
1993 
1994 out:
1995 	mutex_unlock(&rproc->lock);
1996 	return ret;
1997 }
1998 EXPORT_SYMBOL(rproc_set_firmware);
1999 
2000 static int rproc_validate(struct rproc *rproc)
2001 {
2002 	switch (rproc->state) {
2003 	case RPROC_OFFLINE:
2004 		/*
2005 		 * An offline processor without a start()
2006 		 * function makes no sense.
2007 		 */
2008 		if (!rproc->ops->start)
2009 			return -EINVAL;
2010 		break;
2011 	case RPROC_DETACHED:
2012 		/*
2013 		 * A remote processor in a detached state without an
2014 		 * attach() function makes not sense.
2015 		 */
2016 		if (!rproc->ops->attach)
2017 			return -EINVAL;
2018 		/*
2019 		 * When attaching to a remote processor the device memory
2020 		 * is already available and as such there is no need to have a
2021 		 * cached table.
2022 		 */
2023 		if (rproc->cached_table)
2024 			return -EINVAL;
2025 		break;
2026 	default:
2027 		/*
2028 		 * When adding a remote processor, the state of the device
2029 		 * can be offline or detached, nothing else.
2030 		 */
2031 		return -EINVAL;
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 /**
2038  * rproc_add() - register a remote processor
2039  * @rproc: the remote processor handle to register
2040  *
2041  * Registers @rproc with the remoteproc framework, after it has been
2042  * allocated with rproc_alloc().
2043  *
2044  * This is called by the platform-specific rproc implementation, whenever
2045  * a new remote processor device is probed.
2046  *
2047  * Returns 0 on success and an appropriate error code otherwise.
2048  *
2049  * Note: this function initiates an asynchronous firmware loading
2050  * context, which will look for virtio devices supported by the rproc's
2051  * firmware.
2052  *
2053  * If found, those virtio devices will be created and added, so as a result
2054  * of registering this remote processor, additional virtio drivers might be
2055  * probed.
2056  */
2057 int rproc_add(struct rproc *rproc)
2058 {
2059 	struct device *dev = &rproc->dev;
2060 	int ret;
2061 
2062 	ret = device_add(dev);
2063 	if (ret < 0)
2064 		return ret;
2065 
2066 	ret = rproc_validate(rproc);
2067 	if (ret < 0)
2068 		return ret;
2069 
2070 	dev_info(dev, "%s is available\n", rproc->name);
2071 
2072 	/* create debugfs entries */
2073 	rproc_create_debug_dir(rproc);
2074 
2075 	/* add char device for this remoteproc */
2076 	ret = rproc_char_device_add(rproc);
2077 	if (ret < 0)
2078 		return ret;
2079 
2080 	/*
2081 	 * Remind ourselves the remote processor has been attached to rather
2082 	 * than booted by the remoteproc core.  This is important because the
2083 	 * RPROC_DETACHED state will be lost as soon as the remote processor
2084 	 * has been attached to.  Used in firmware_show() and reset in
2085 	 * rproc_stop().
2086 	 */
2087 	if (rproc->state == RPROC_DETACHED)
2088 		rproc->autonomous = true;
2089 
2090 	/* if rproc is marked always-on, request it to boot */
2091 	if (rproc->auto_boot) {
2092 		ret = rproc_trigger_auto_boot(rproc);
2093 		if (ret < 0)
2094 			return ret;
2095 	}
2096 
2097 	/* expose to rproc_get_by_phandle users */
2098 	mutex_lock(&rproc_list_mutex);
2099 	list_add_rcu(&rproc->node, &rproc_list);
2100 	mutex_unlock(&rproc_list_mutex);
2101 
2102 	return 0;
2103 }
2104 EXPORT_SYMBOL(rproc_add);
2105 
2106 static void devm_rproc_remove(void *rproc)
2107 {
2108 	rproc_del(rproc);
2109 }
2110 
2111 /**
2112  * devm_rproc_add() - resource managed rproc_add()
2113  * @dev: the underlying device
2114  * @rproc: the remote processor handle to register
2115  *
2116  * This function performs like rproc_add() but the registered rproc device will
2117  * automatically be removed on driver detach.
2118  *
2119  * Returns: 0 on success, negative errno on failure
2120  */
2121 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2122 {
2123 	int err;
2124 
2125 	err = rproc_add(rproc);
2126 	if (err)
2127 		return err;
2128 
2129 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2130 }
2131 EXPORT_SYMBOL(devm_rproc_add);
2132 
2133 /**
2134  * rproc_type_release() - release a remote processor instance
2135  * @dev: the rproc's device
2136  *
2137  * This function should _never_ be called directly.
2138  *
2139  * It will be called by the driver core when no one holds a valid pointer
2140  * to @dev anymore.
2141  */
2142 static void rproc_type_release(struct device *dev)
2143 {
2144 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2145 
2146 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2147 
2148 	idr_destroy(&rproc->notifyids);
2149 
2150 	if (rproc->index >= 0)
2151 		ida_simple_remove(&rproc_dev_index, rproc->index);
2152 
2153 	kfree_const(rproc->firmware);
2154 	kfree_const(rproc->name);
2155 	kfree(rproc->ops);
2156 	kfree(rproc);
2157 }
2158 
2159 static const struct device_type rproc_type = {
2160 	.name		= "remoteproc",
2161 	.release	= rproc_type_release,
2162 };
2163 
2164 static int rproc_alloc_firmware(struct rproc *rproc,
2165 				const char *name, const char *firmware)
2166 {
2167 	const char *p;
2168 
2169 	/*
2170 	 * Allocate a firmware name if the caller gave us one to work
2171 	 * with.  Otherwise construct a new one using a default pattern.
2172 	 */
2173 	if (firmware)
2174 		p = kstrdup_const(firmware, GFP_KERNEL);
2175 	else
2176 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2177 
2178 	if (!p)
2179 		return -ENOMEM;
2180 
2181 	rproc->firmware = p;
2182 
2183 	return 0;
2184 }
2185 
2186 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2187 {
2188 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2189 	if (!rproc->ops)
2190 		return -ENOMEM;
2191 
2192 	/* Default to rproc_coredump if no coredump function is specified */
2193 	if (!rproc->ops->coredump)
2194 		rproc->ops->coredump = rproc_coredump;
2195 
2196 	if (rproc->ops->load)
2197 		return 0;
2198 
2199 	/* Default to ELF loader if no load function is specified */
2200 	rproc->ops->load = rproc_elf_load_segments;
2201 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2202 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2203 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2204 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2205 
2206 	return 0;
2207 }
2208 
2209 /**
2210  * rproc_alloc() - allocate a remote processor handle
2211  * @dev: the underlying device
2212  * @name: name of this remote processor
2213  * @ops: platform-specific handlers (mainly start/stop)
2214  * @firmware: name of firmware file to load, can be NULL
2215  * @len: length of private data needed by the rproc driver (in bytes)
2216  *
2217  * Allocates a new remote processor handle, but does not register
2218  * it yet. if @firmware is NULL, a default name is used.
2219  *
2220  * This function should be used by rproc implementations during initialization
2221  * of the remote processor.
2222  *
2223  * After creating an rproc handle using this function, and when ready,
2224  * implementations should then call rproc_add() to complete
2225  * the registration of the remote processor.
2226  *
2227  * On success the new rproc is returned, and on failure, NULL.
2228  *
2229  * Note: _never_ directly deallocate @rproc, even if it was not registered
2230  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2231  */
2232 struct rproc *rproc_alloc(struct device *dev, const char *name,
2233 			  const struct rproc_ops *ops,
2234 			  const char *firmware, int len)
2235 {
2236 	struct rproc *rproc;
2237 
2238 	if (!dev || !name || !ops)
2239 		return NULL;
2240 
2241 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2242 	if (!rproc)
2243 		return NULL;
2244 
2245 	rproc->priv = &rproc[1];
2246 	rproc->auto_boot = true;
2247 	rproc->elf_class = ELFCLASSNONE;
2248 	rproc->elf_machine = EM_NONE;
2249 
2250 	device_initialize(&rproc->dev);
2251 	rproc->dev.parent = dev;
2252 	rproc->dev.type = &rproc_type;
2253 	rproc->dev.class = &rproc_class;
2254 	rproc->dev.driver_data = rproc;
2255 	idr_init(&rproc->notifyids);
2256 
2257 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2258 	if (!rproc->name)
2259 		goto put_device;
2260 
2261 	if (rproc_alloc_firmware(rproc, name, firmware))
2262 		goto put_device;
2263 
2264 	if (rproc_alloc_ops(rproc, ops))
2265 		goto put_device;
2266 
2267 	/* Assign a unique device index and name */
2268 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2269 	if (rproc->index < 0) {
2270 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2271 		goto put_device;
2272 	}
2273 
2274 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2275 
2276 	atomic_set(&rproc->power, 0);
2277 
2278 	mutex_init(&rproc->lock);
2279 
2280 	INIT_LIST_HEAD(&rproc->carveouts);
2281 	INIT_LIST_HEAD(&rproc->mappings);
2282 	INIT_LIST_HEAD(&rproc->traces);
2283 	INIT_LIST_HEAD(&rproc->rvdevs);
2284 	INIT_LIST_HEAD(&rproc->subdevs);
2285 	INIT_LIST_HEAD(&rproc->dump_segments);
2286 
2287 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2288 
2289 	rproc->state = RPROC_OFFLINE;
2290 
2291 	return rproc;
2292 
2293 put_device:
2294 	put_device(&rproc->dev);
2295 	return NULL;
2296 }
2297 EXPORT_SYMBOL(rproc_alloc);
2298 
2299 /**
2300  * rproc_free() - unroll rproc_alloc()
2301  * @rproc: the remote processor handle
2302  *
2303  * This function decrements the rproc dev refcount.
2304  *
2305  * If no one holds any reference to rproc anymore, then its refcount would
2306  * now drop to zero, and it would be freed.
2307  */
2308 void rproc_free(struct rproc *rproc)
2309 {
2310 	put_device(&rproc->dev);
2311 }
2312 EXPORT_SYMBOL(rproc_free);
2313 
2314 /**
2315  * rproc_put() - release rproc reference
2316  * @rproc: the remote processor handle
2317  *
2318  * This function decrements the rproc dev refcount.
2319  *
2320  * If no one holds any reference to rproc anymore, then its refcount would
2321  * now drop to zero, and it would be freed.
2322  */
2323 void rproc_put(struct rproc *rproc)
2324 {
2325 	module_put(rproc->dev.parent->driver->owner);
2326 	put_device(&rproc->dev);
2327 }
2328 EXPORT_SYMBOL(rproc_put);
2329 
2330 /**
2331  * rproc_del() - unregister a remote processor
2332  * @rproc: rproc handle to unregister
2333  *
2334  * This function should be called when the platform specific rproc
2335  * implementation decides to remove the rproc device. it should
2336  * _only_ be called if a previous invocation of rproc_add()
2337  * has completed successfully.
2338  *
2339  * After rproc_del() returns, @rproc isn't freed yet, because
2340  * of the outstanding reference created by rproc_alloc. To decrement that
2341  * one last refcount, one still needs to call rproc_free().
2342  *
2343  * Returns 0 on success and -EINVAL if @rproc isn't valid.
2344  */
2345 int rproc_del(struct rproc *rproc)
2346 {
2347 	if (!rproc)
2348 		return -EINVAL;
2349 
2350 	/* if rproc is marked always-on, rproc_add() booted it */
2351 	/* TODO: make sure this works with rproc->power > 1 */
2352 	if (rproc->auto_boot)
2353 		rproc_shutdown(rproc);
2354 
2355 	mutex_lock(&rproc->lock);
2356 	rproc->state = RPROC_DELETED;
2357 	mutex_unlock(&rproc->lock);
2358 
2359 	rproc_delete_debug_dir(rproc);
2360 	rproc_char_device_remove(rproc);
2361 
2362 	/* the rproc is downref'ed as soon as it's removed from the klist */
2363 	mutex_lock(&rproc_list_mutex);
2364 	list_del_rcu(&rproc->node);
2365 	mutex_unlock(&rproc_list_mutex);
2366 
2367 	/* Ensure that no readers of rproc_list are still active */
2368 	synchronize_rcu();
2369 
2370 	device_del(&rproc->dev);
2371 
2372 	return 0;
2373 }
2374 EXPORT_SYMBOL(rproc_del);
2375 
2376 static void devm_rproc_free(struct device *dev, void *res)
2377 {
2378 	rproc_free(*(struct rproc **)res);
2379 }
2380 
2381 /**
2382  * devm_rproc_alloc() - resource managed rproc_alloc()
2383  * @dev: the underlying device
2384  * @name: name of this remote processor
2385  * @ops: platform-specific handlers (mainly start/stop)
2386  * @firmware: name of firmware file to load, can be NULL
2387  * @len: length of private data needed by the rproc driver (in bytes)
2388  *
2389  * This function performs like rproc_alloc() but the acquired rproc device will
2390  * automatically be released on driver detach.
2391  *
2392  * Returns: new rproc instance, or NULL on failure
2393  */
2394 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2395 			       const struct rproc_ops *ops,
2396 			       const char *firmware, int len)
2397 {
2398 	struct rproc **ptr, *rproc;
2399 
2400 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2401 	if (!ptr)
2402 		return NULL;
2403 
2404 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2405 	if (rproc) {
2406 		*ptr = rproc;
2407 		devres_add(dev, ptr);
2408 	} else {
2409 		devres_free(ptr);
2410 	}
2411 
2412 	return rproc;
2413 }
2414 EXPORT_SYMBOL(devm_rproc_alloc);
2415 
2416 /**
2417  * rproc_add_subdev() - add a subdevice to a remoteproc
2418  * @rproc: rproc handle to add the subdevice to
2419  * @subdev: subdev handle to register
2420  *
2421  * Caller is responsible for populating optional subdevice function pointers.
2422  */
2423 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2424 {
2425 	list_add_tail(&subdev->node, &rproc->subdevs);
2426 }
2427 EXPORT_SYMBOL(rproc_add_subdev);
2428 
2429 /**
2430  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2431  * @rproc: rproc handle to remove the subdevice from
2432  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2433  */
2434 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2435 {
2436 	list_del(&subdev->node);
2437 }
2438 EXPORT_SYMBOL(rproc_remove_subdev);
2439 
2440 /**
2441  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2442  * @dev:	child device to find ancestor of
2443  *
2444  * Returns the ancestor rproc instance, or NULL if not found.
2445  */
2446 struct rproc *rproc_get_by_child(struct device *dev)
2447 {
2448 	for (dev = dev->parent; dev; dev = dev->parent) {
2449 		if (dev->type == &rproc_type)
2450 			return dev->driver_data;
2451 	}
2452 
2453 	return NULL;
2454 }
2455 EXPORT_SYMBOL(rproc_get_by_child);
2456 
2457 /**
2458  * rproc_report_crash() - rproc crash reporter function
2459  * @rproc: remote processor
2460  * @type: crash type
2461  *
2462  * This function must be called every time a crash is detected by the low-level
2463  * drivers implementing a specific remoteproc. This should not be called from a
2464  * non-remoteproc driver.
2465  *
2466  * This function can be called from atomic/interrupt context.
2467  */
2468 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2469 {
2470 	if (!rproc) {
2471 		pr_err("NULL rproc pointer\n");
2472 		return;
2473 	}
2474 
2475 	/* Prevent suspend while the remoteproc is being recovered */
2476 	pm_stay_awake(rproc->dev.parent);
2477 
2478 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2479 		rproc->name, rproc_crash_to_string(type));
2480 
2481 	/* create a new task to handle the error */
2482 	schedule_work(&rproc->crash_handler);
2483 }
2484 EXPORT_SYMBOL(rproc_report_crash);
2485 
2486 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2487 			       void *ptr)
2488 {
2489 	unsigned int longest = 0;
2490 	struct rproc *rproc;
2491 	unsigned int d;
2492 
2493 	rcu_read_lock();
2494 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2495 		if (!rproc->ops->panic || rproc->state != RPROC_RUNNING)
2496 			continue;
2497 
2498 		d = rproc->ops->panic(rproc);
2499 		longest = max(longest, d);
2500 	}
2501 	rcu_read_unlock();
2502 
2503 	/*
2504 	 * Delay for the longest requested duration before returning. This can
2505 	 * be used by the remoteproc drivers to give the remote processor time
2506 	 * to perform any requested operations (such as flush caches), when
2507 	 * it's not possible to signal the Linux side due to the panic.
2508 	 */
2509 	mdelay(longest);
2510 
2511 	return NOTIFY_DONE;
2512 }
2513 
2514 static void __init rproc_init_panic(void)
2515 {
2516 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2517 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2518 }
2519 
2520 static void __exit rproc_exit_panic(void)
2521 {
2522 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2523 }
2524 
2525 static int __init remoteproc_init(void)
2526 {
2527 	rproc_init_sysfs();
2528 	rproc_init_debugfs();
2529 	rproc_init_cdev();
2530 	rproc_init_panic();
2531 
2532 	return 0;
2533 }
2534 subsys_initcall(remoteproc_init);
2535 
2536 static void __exit remoteproc_exit(void)
2537 {
2538 	ida_destroy(&rproc_dev_index);
2539 
2540 	rproc_exit_panic();
2541 	rproc_exit_debugfs();
2542 	rproc_exit_sysfs();
2543 }
2544 module_exit(remoteproc_exit);
2545 
2546 MODULE_LICENSE("GPL v2");
2547 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2548