xref: /linux/drivers/remoteproc/remoteproc_core.c (revision 82c298100a2db7e4241e0fee73d94dc5ee573837)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firmware.h>
26 #include <linux/string.h>
27 #include <linux/debugfs.h>
28 #include <linux/devcoredump.h>
29 #include <linux/remoteproc.h>
30 #include <linux/iommu.h>
31 #include <linux/idr.h>
32 #include <linux/elf.h>
33 #include <linux/crc32.h>
34 #include <linux/of_reserved_mem.h>
35 #include <linux/virtio_ids.h>
36 #include <linux/virtio_ring.h>
37 #include <asm/byteorder.h>
38 #include <linux/platform_device.h>
39 
40 #include "remoteproc_internal.h"
41 
42 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
43 
44 static DEFINE_MUTEX(rproc_list_mutex);
45 static LIST_HEAD(rproc_list);
46 
47 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
48 				struct resource_table *table, int len);
49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50 				 void *, int offset, int avail);
51 
52 static int rproc_alloc_carveout(struct rproc *rproc,
53 				struct rproc_mem_entry *mem);
54 static int rproc_release_carveout(struct rproc *rproc,
55 				  struct rproc_mem_entry *mem);
56 
57 /* Unique indices for remoteproc devices */
58 static DEFINE_IDA(rproc_dev_index);
59 
60 static const char * const rproc_crash_names[] = {
61 	[RPROC_MMUFAULT]	= "mmufault",
62 	[RPROC_WATCHDOG]	= "watchdog",
63 	[RPROC_FATAL_ERROR]	= "fatal error",
64 };
65 
66 /* translate rproc_crash_type to string */
67 static const char *rproc_crash_to_string(enum rproc_crash_type type)
68 {
69 	if (type < ARRAY_SIZE(rproc_crash_names))
70 		return rproc_crash_names[type];
71 	return "unknown";
72 }
73 
74 /*
75  * This is the IOMMU fault handler we register with the IOMMU API
76  * (when relevant; not all remote processors access memory through
77  * an IOMMU).
78  *
79  * IOMMU core will invoke this handler whenever the remote processor
80  * will try to access an unmapped device address.
81  */
82 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
83 			     unsigned long iova, int flags, void *token)
84 {
85 	struct rproc *rproc = token;
86 
87 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
88 
89 	rproc_report_crash(rproc, RPROC_MMUFAULT);
90 
91 	/*
92 	 * Let the iommu core know we're not really handling this fault;
93 	 * we just used it as a recovery trigger.
94 	 */
95 	return -ENOSYS;
96 }
97 
98 static int rproc_enable_iommu(struct rproc *rproc)
99 {
100 	struct iommu_domain *domain;
101 	struct device *dev = rproc->dev.parent;
102 	int ret;
103 
104 	if (!rproc->has_iommu) {
105 		dev_dbg(dev, "iommu not present\n");
106 		return 0;
107 	}
108 
109 	domain = iommu_domain_alloc(dev->bus);
110 	if (!domain) {
111 		dev_err(dev, "can't alloc iommu domain\n");
112 		return -ENOMEM;
113 	}
114 
115 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
116 
117 	ret = iommu_attach_device(domain, dev);
118 	if (ret) {
119 		dev_err(dev, "can't attach iommu device: %d\n", ret);
120 		goto free_domain;
121 	}
122 
123 	rproc->domain = domain;
124 
125 	return 0;
126 
127 free_domain:
128 	iommu_domain_free(domain);
129 	return ret;
130 }
131 
132 static void rproc_disable_iommu(struct rproc *rproc)
133 {
134 	struct iommu_domain *domain = rproc->domain;
135 	struct device *dev = rproc->dev.parent;
136 
137 	if (!domain)
138 		return;
139 
140 	iommu_detach_device(domain, dev);
141 	iommu_domain_free(domain);
142 }
143 
144 phys_addr_t rproc_va_to_pa(void *cpu_addr)
145 {
146 	/*
147 	 * Return physical address according to virtual address location
148 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
149 	 * - in kernel: if region allocated in generic dma memory pool
150 	 */
151 	if (is_vmalloc_addr(cpu_addr)) {
152 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
153 				    offset_in_page(cpu_addr);
154 	}
155 
156 	WARN_ON(!virt_addr_valid(cpu_addr));
157 	return virt_to_phys(cpu_addr);
158 }
159 EXPORT_SYMBOL(rproc_va_to_pa);
160 
161 /**
162  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
163  * @rproc: handle of a remote processor
164  * @da: remoteproc device address to translate
165  * @len: length of the memory region @da is pointing to
166  *
167  * Some remote processors will ask us to allocate them physically contiguous
168  * memory regions (which we call "carveouts"), and map them to specific
169  * device addresses (which are hardcoded in the firmware). They may also have
170  * dedicated memory regions internal to the processors, and use them either
171  * exclusively or alongside carveouts.
172  *
173  * They may then ask us to copy objects into specific device addresses (e.g.
174  * code/data sections) or expose us certain symbols in other device address
175  * (e.g. their trace buffer).
176  *
177  * This function is a helper function with which we can go over the allocated
178  * carveouts and translate specific device addresses to kernel virtual addresses
179  * so we can access the referenced memory. This function also allows to perform
180  * translations on the internal remoteproc memory regions through a platform
181  * implementation specific da_to_va ops, if present.
182  *
183  * The function returns a valid kernel address on success or NULL on failure.
184  *
185  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
186  * but only on kernel direct mapped RAM memory. Instead, we're just using
187  * here the output of the DMA API for the carveouts, which should be more
188  * correct.
189  */
190 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
191 {
192 	struct rproc_mem_entry *carveout;
193 	void *ptr = NULL;
194 
195 	if (rproc->ops->da_to_va) {
196 		ptr = rproc->ops->da_to_va(rproc, da, len);
197 		if (ptr)
198 			goto out;
199 	}
200 
201 	list_for_each_entry(carveout, &rproc->carveouts, node) {
202 		int offset = da - carveout->da;
203 
204 		/*  Verify that carveout is allocated */
205 		if (!carveout->va)
206 			continue;
207 
208 		/* try next carveout if da is too small */
209 		if (offset < 0)
210 			continue;
211 
212 		/* try next carveout if da is too large */
213 		if (offset + len > carveout->len)
214 			continue;
215 
216 		ptr = carveout->va + offset;
217 
218 		break;
219 	}
220 
221 out:
222 	return ptr;
223 }
224 EXPORT_SYMBOL(rproc_da_to_va);
225 
226 /**
227  * rproc_find_carveout_by_name() - lookup the carveout region by a name
228  * @rproc: handle of a remote processor
229  * @name,..: carveout name to find (standard printf format)
230  *
231  * Platform driver has the capability to register some pre-allacoted carveout
232  * (physically contiguous memory regions) before rproc firmware loading and
233  * associated resource table analysis. These regions may be dedicated memory
234  * regions internal to the coprocessor or specified DDR region with specific
235  * attributes
236  *
237  * This function is a helper function with which we can go over the
238  * allocated carveouts and return associated region characteristics like
239  * coprocessor address, length or processor virtual address.
240  *
241  * Return: a valid pointer on carveout entry on success or NULL on failure.
242  */
243 struct rproc_mem_entry *
244 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
245 {
246 	va_list args;
247 	char _name[32];
248 	struct rproc_mem_entry *carveout, *mem = NULL;
249 
250 	if (!name)
251 		return NULL;
252 
253 	va_start(args, name);
254 	vsnprintf(_name, sizeof(_name), name, args);
255 	va_end(args);
256 
257 	list_for_each_entry(carveout, &rproc->carveouts, node) {
258 		/* Compare carveout and requested names */
259 		if (!strcmp(carveout->name, _name)) {
260 			mem = carveout;
261 			break;
262 		}
263 	}
264 
265 	return mem;
266 }
267 
268 /**
269  * rproc_check_carveout_da() - Check specified carveout da configuration
270  * @rproc: handle of a remote processor
271  * @mem: pointer on carveout to check
272  * @da: area device address
273  * @len: associated area size
274  *
275  * This function is a helper function to verify requested device area (couple
276  * da, len) is part of specified carveout.
277  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
278  * checked.
279  *
280  * Return: 0 if carveout matches request else error
281  */
282 static int rproc_check_carveout_da(struct rproc *rproc,
283 				   struct rproc_mem_entry *mem, u32 da, u32 len)
284 {
285 	struct device *dev = &rproc->dev;
286 	int delta;
287 
288 	/* Check requested resource length */
289 	if (len > mem->len) {
290 		dev_err(dev, "Registered carveout doesn't fit len request\n");
291 		return -EINVAL;
292 	}
293 
294 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
295 		/* Address doesn't match registered carveout configuration */
296 		return -EINVAL;
297 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
298 		delta = da - mem->da;
299 
300 		/* Check requested resource belongs to registered carveout */
301 		if (delta < 0) {
302 			dev_err(dev,
303 				"Registered carveout doesn't fit da request\n");
304 			return -EINVAL;
305 		}
306 
307 		if (delta + len > mem->len) {
308 			dev_err(dev,
309 				"Registered carveout doesn't fit len request\n");
310 			return -EINVAL;
311 		}
312 	}
313 
314 	return 0;
315 }
316 
317 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
318 {
319 	struct rproc *rproc = rvdev->rproc;
320 	struct device *dev = &rproc->dev;
321 	struct rproc_vring *rvring = &rvdev->vring[i];
322 	struct fw_rsc_vdev *rsc;
323 	int ret, size, notifyid;
324 	struct rproc_mem_entry *mem;
325 
326 	/* actual size of vring (in bytes) */
327 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
328 
329 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
330 
331 	/* Search for pre-registered carveout */
332 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
333 					  i);
334 	if (mem) {
335 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
336 			return -ENOMEM;
337 	} else {
338 		/* Register carveout in in list */
339 		mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
340 					   rproc_alloc_carveout,
341 					   rproc_release_carveout,
342 					   "vdev%dvring%d",
343 					   rvdev->index, i);
344 		if (!mem) {
345 			dev_err(dev, "Can't allocate memory entry structure\n");
346 			return -ENOMEM;
347 		}
348 
349 		rproc_add_carveout(rproc, mem);
350 	}
351 
352 	/*
353 	 * Assign an rproc-wide unique index for this vring
354 	 * TODO: assign a notifyid for rvdev updates as well
355 	 * TODO: support predefined notifyids (via resource table)
356 	 */
357 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
358 	if (ret < 0) {
359 		dev_err(dev, "idr_alloc failed: %d\n", ret);
360 		return ret;
361 	}
362 	notifyid = ret;
363 
364 	/* Potentially bump max_notifyid */
365 	if (notifyid > rproc->max_notifyid)
366 		rproc->max_notifyid = notifyid;
367 
368 	rvring->notifyid = notifyid;
369 
370 	/* Let the rproc know the notifyid of this vring.*/
371 	rsc->vring[i].notifyid = notifyid;
372 	return 0;
373 }
374 
375 static int
376 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
377 {
378 	struct rproc *rproc = rvdev->rproc;
379 	struct device *dev = &rproc->dev;
380 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
381 	struct rproc_vring *rvring = &rvdev->vring[i];
382 
383 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
384 		i, vring->da, vring->num, vring->align);
385 
386 	/* verify queue size and vring alignment are sane */
387 	if (!vring->num || !vring->align) {
388 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
389 			vring->num, vring->align);
390 		return -EINVAL;
391 	}
392 
393 	rvring->len = vring->num;
394 	rvring->align = vring->align;
395 	rvring->rvdev = rvdev;
396 
397 	return 0;
398 }
399 
400 void rproc_free_vring(struct rproc_vring *rvring)
401 {
402 	struct rproc *rproc = rvring->rvdev->rproc;
403 	int idx = rvring->rvdev->vring - rvring;
404 	struct fw_rsc_vdev *rsc;
405 
406 	idr_remove(&rproc->notifyids, rvring->notifyid);
407 
408 	/* reset resource entry info */
409 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
410 	rsc->vring[idx].da = 0;
411 	rsc->vring[idx].notifyid = -1;
412 }
413 
414 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
415 {
416 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
417 
418 	return rproc_add_virtio_dev(rvdev, rvdev->id);
419 }
420 
421 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
422 {
423 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
424 	int ret;
425 
426 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
427 	if (ret)
428 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
429 }
430 
431 /**
432  * rproc_rvdev_release() - release the existence of a rvdev
433  *
434  * @dev: the subdevice's dev
435  */
436 static void rproc_rvdev_release(struct device *dev)
437 {
438 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
439 
440 	of_reserved_mem_device_release(dev);
441 
442 	kfree(rvdev);
443 }
444 
445 /**
446  * rproc_handle_vdev() - handle a vdev fw resource
447  * @rproc: the remote processor
448  * @rsc: the vring resource descriptor
449  * @avail: size of available data (for sanity checking the image)
450  *
451  * This resource entry requests the host to statically register a virtio
452  * device (vdev), and setup everything needed to support it. It contains
453  * everything needed to make it possible: the virtio device id, virtio
454  * device features, vrings information, virtio config space, etc...
455  *
456  * Before registering the vdev, the vrings are allocated from non-cacheable
457  * physically contiguous memory. Currently we only support two vrings per
458  * remote processor (temporary limitation). We might also want to consider
459  * doing the vring allocation only later when ->find_vqs() is invoked, and
460  * then release them upon ->del_vqs().
461  *
462  * Note: @da is currently not really handled correctly: we dynamically
463  * allocate it using the DMA API, ignoring requested hard coded addresses,
464  * and we don't take care of any required IOMMU programming. This is all
465  * going to be taken care of when the generic iommu-based DMA API will be
466  * merged. Meanwhile, statically-addressed iommu-based firmware images should
467  * use RSC_DEVMEM resource entries to map their required @da to the physical
468  * address of their base CMA region (ouch, hacky!).
469  *
470  * Returns 0 on success, or an appropriate error code otherwise
471  */
472 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
473 			     int offset, int avail)
474 {
475 	struct device *dev = &rproc->dev;
476 	struct rproc_vdev *rvdev;
477 	int i, ret;
478 	char name[16];
479 
480 	/* make sure resource isn't truncated */
481 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
482 			+ rsc->config_len > avail) {
483 		dev_err(dev, "vdev rsc is truncated\n");
484 		return -EINVAL;
485 	}
486 
487 	/* make sure reserved bytes are zeroes */
488 	if (rsc->reserved[0] || rsc->reserved[1]) {
489 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
490 		return -EINVAL;
491 	}
492 
493 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
494 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
495 
496 	/* we currently support only two vrings per rvdev */
497 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
498 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
499 		return -EINVAL;
500 	}
501 
502 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
503 	if (!rvdev)
504 		return -ENOMEM;
505 
506 	kref_init(&rvdev->refcount);
507 
508 	rvdev->id = rsc->id;
509 	rvdev->rproc = rproc;
510 	rvdev->index = rproc->nb_vdev++;
511 
512 	/* Initialise vdev subdevice */
513 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
514 	rvdev->dev.parent = rproc->dev.parent;
515 	rvdev->dev.release = rproc_rvdev_release;
516 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
517 	dev_set_drvdata(&rvdev->dev, rvdev);
518 
519 	ret = device_register(&rvdev->dev);
520 	if (ret) {
521 		put_device(&rvdev->dev);
522 		return ret;
523 	}
524 	/* Make device dma capable by inheriting from parent's capabilities */
525 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
526 
527 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
528 					   dma_get_mask(rproc->dev.parent));
529 	if (ret) {
530 		dev_warn(dev,
531 			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
532 			 dma_get_mask(rproc->dev.parent), ret);
533 	}
534 
535 	/* parse the vrings */
536 	for (i = 0; i < rsc->num_of_vrings; i++) {
537 		ret = rproc_parse_vring(rvdev, rsc, i);
538 		if (ret)
539 			goto free_rvdev;
540 	}
541 
542 	/* remember the resource offset*/
543 	rvdev->rsc_offset = offset;
544 
545 	/* allocate the vring resources */
546 	for (i = 0; i < rsc->num_of_vrings; i++) {
547 		ret = rproc_alloc_vring(rvdev, i);
548 		if (ret)
549 			goto unwind_vring_allocations;
550 	}
551 
552 	list_add_tail(&rvdev->node, &rproc->rvdevs);
553 
554 	rvdev->subdev.start = rproc_vdev_do_start;
555 	rvdev->subdev.stop = rproc_vdev_do_stop;
556 
557 	rproc_add_subdev(rproc, &rvdev->subdev);
558 
559 	return 0;
560 
561 unwind_vring_allocations:
562 	for (i--; i >= 0; i--)
563 		rproc_free_vring(&rvdev->vring[i]);
564 free_rvdev:
565 	device_unregister(&rvdev->dev);
566 	return ret;
567 }
568 
569 void rproc_vdev_release(struct kref *ref)
570 {
571 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
572 	struct rproc_vring *rvring;
573 	struct rproc *rproc = rvdev->rproc;
574 	int id;
575 
576 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
577 		rvring = &rvdev->vring[id];
578 		rproc_free_vring(rvring);
579 	}
580 
581 	rproc_remove_subdev(rproc, &rvdev->subdev);
582 	list_del(&rvdev->node);
583 	device_unregister(&rvdev->dev);
584 }
585 
586 /**
587  * rproc_handle_trace() - handle a shared trace buffer resource
588  * @rproc: the remote processor
589  * @rsc: the trace resource descriptor
590  * @avail: size of available data (for sanity checking the image)
591  *
592  * In case the remote processor dumps trace logs into memory,
593  * export it via debugfs.
594  *
595  * Currently, the 'da' member of @rsc should contain the device address
596  * where the remote processor is dumping the traces. Later we could also
597  * support dynamically allocating this address using the generic
598  * DMA API (but currently there isn't a use case for that).
599  *
600  * Returns 0 on success, or an appropriate error code otherwise
601  */
602 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
603 			      int offset, int avail)
604 {
605 	struct rproc_debug_trace *trace;
606 	struct device *dev = &rproc->dev;
607 	char name[15];
608 
609 	if (sizeof(*rsc) > avail) {
610 		dev_err(dev, "trace rsc is truncated\n");
611 		return -EINVAL;
612 	}
613 
614 	/* make sure reserved bytes are zeroes */
615 	if (rsc->reserved) {
616 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
617 		return -EINVAL;
618 	}
619 
620 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
621 	if (!trace)
622 		return -ENOMEM;
623 
624 	/* set the trace buffer dma properties */
625 	trace->trace_mem.len = rsc->len;
626 	trace->trace_mem.da = rsc->da;
627 
628 	/* set pointer on rproc device */
629 	trace->rproc = rproc;
630 
631 	/* make sure snprintf always null terminates, even if truncating */
632 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
633 
634 	/* create the debugfs entry */
635 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
636 	if (!trace->tfile) {
637 		kfree(trace);
638 		return -EINVAL;
639 	}
640 
641 	list_add_tail(&trace->node, &rproc->traces);
642 
643 	rproc->num_traces++;
644 
645 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
646 		name, rsc->da, rsc->len);
647 
648 	return 0;
649 }
650 
651 /**
652  * rproc_handle_devmem() - handle devmem resource entry
653  * @rproc: remote processor handle
654  * @rsc: the devmem resource entry
655  * @avail: size of available data (for sanity checking the image)
656  *
657  * Remote processors commonly need to access certain on-chip peripherals.
658  *
659  * Some of these remote processors access memory via an iommu device,
660  * and might require us to configure their iommu before they can access
661  * the on-chip peripherals they need.
662  *
663  * This resource entry is a request to map such a peripheral device.
664  *
665  * These devmem entries will contain the physical address of the device in
666  * the 'pa' member. If a specific device address is expected, then 'da' will
667  * contain it (currently this is the only use case supported). 'len' will
668  * contain the size of the physical region we need to map.
669  *
670  * Currently we just "trust" those devmem entries to contain valid physical
671  * addresses, but this is going to change: we want the implementations to
672  * tell us ranges of physical addresses the firmware is allowed to request,
673  * and not allow firmwares to request access to physical addresses that
674  * are outside those ranges.
675  */
676 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
677 			       int offset, int avail)
678 {
679 	struct rproc_mem_entry *mapping;
680 	struct device *dev = &rproc->dev;
681 	int ret;
682 
683 	/* no point in handling this resource without a valid iommu domain */
684 	if (!rproc->domain)
685 		return -EINVAL;
686 
687 	if (sizeof(*rsc) > avail) {
688 		dev_err(dev, "devmem rsc is truncated\n");
689 		return -EINVAL;
690 	}
691 
692 	/* make sure reserved bytes are zeroes */
693 	if (rsc->reserved) {
694 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
695 		return -EINVAL;
696 	}
697 
698 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
699 	if (!mapping)
700 		return -ENOMEM;
701 
702 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
703 	if (ret) {
704 		dev_err(dev, "failed to map devmem: %d\n", ret);
705 		goto out;
706 	}
707 
708 	/*
709 	 * We'll need this info later when we'll want to unmap everything
710 	 * (e.g. on shutdown).
711 	 *
712 	 * We can't trust the remote processor not to change the resource
713 	 * table, so we must maintain this info independently.
714 	 */
715 	mapping->da = rsc->da;
716 	mapping->len = rsc->len;
717 	list_add_tail(&mapping->node, &rproc->mappings);
718 
719 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
720 		rsc->pa, rsc->da, rsc->len);
721 
722 	return 0;
723 
724 out:
725 	kfree(mapping);
726 	return ret;
727 }
728 
729 /**
730  * rproc_alloc_carveout() - allocated specified carveout
731  * @rproc: rproc handle
732  * @mem: the memory entry to allocate
733  *
734  * This function allocate specified memory entry @mem using
735  * dma_alloc_coherent() as default allocator
736  */
737 static int rproc_alloc_carveout(struct rproc *rproc,
738 				struct rproc_mem_entry *mem)
739 {
740 	struct rproc_mem_entry *mapping = NULL;
741 	struct device *dev = &rproc->dev;
742 	dma_addr_t dma;
743 	void *va;
744 	int ret;
745 
746 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
747 	if (!va) {
748 		dev_err(dev->parent,
749 			"failed to allocate dma memory: len 0x%x\n", mem->len);
750 		return -ENOMEM;
751 	}
752 
753 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
754 		va, &dma, mem->len);
755 
756 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
757 		/*
758 		 * Check requested da is equal to dma address
759 		 * and print a warn message in case of missalignment.
760 		 * Don't stop rproc_start sequence as coprocessor may
761 		 * build pa to da translation on its side.
762 		 */
763 		if (mem->da != (u32)dma)
764 			dev_warn(dev->parent,
765 				 "Allocated carveout doesn't fit device address request\n");
766 	}
767 
768 	/*
769 	 * Ok, this is non-standard.
770 	 *
771 	 * Sometimes we can't rely on the generic iommu-based DMA API
772 	 * to dynamically allocate the device address and then set the IOMMU
773 	 * tables accordingly, because some remote processors might
774 	 * _require_ us to use hard coded device addresses that their
775 	 * firmware was compiled with.
776 	 *
777 	 * In this case, we must use the IOMMU API directly and map
778 	 * the memory to the device address as expected by the remote
779 	 * processor.
780 	 *
781 	 * Obviously such remote processor devices should not be configured
782 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
783 	 * physical address in this case.
784 	 */
785 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
786 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
787 		if (!mapping) {
788 			ret = -ENOMEM;
789 			goto dma_free;
790 		}
791 
792 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
793 				mem->flags);
794 		if (ret) {
795 			dev_err(dev, "iommu_map failed: %d\n", ret);
796 			goto free_mapping;
797 		}
798 
799 		/*
800 		 * We'll need this info later when we'll want to unmap
801 		 * everything (e.g. on shutdown).
802 		 *
803 		 * We can't trust the remote processor not to change the
804 		 * resource table, so we must maintain this info independently.
805 		 */
806 		mapping->da = mem->da;
807 		mapping->len = mem->len;
808 		list_add_tail(&mapping->node, &rproc->mappings);
809 
810 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
811 			mem->da, &dma);
812 	}
813 
814 	if (mem->da == FW_RSC_ADDR_ANY) {
815 		/* Update device address as undefined by requester */
816 		if ((u64)dma & HIGH_BITS_MASK)
817 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
818 
819 		mem->da = (u32)dma;
820 	}
821 
822 	mem->dma = dma;
823 	mem->va = va;
824 
825 	return 0;
826 
827 free_mapping:
828 	kfree(mapping);
829 dma_free:
830 	dma_free_coherent(dev->parent, mem->len, va, dma);
831 	return ret;
832 }
833 
834 /**
835  * rproc_release_carveout() - release acquired carveout
836  * @rproc: rproc handle
837  * @mem: the memory entry to release
838  *
839  * This function releases specified memory entry @mem allocated via
840  * rproc_alloc_carveout() function by @rproc.
841  */
842 static int rproc_release_carveout(struct rproc *rproc,
843 				  struct rproc_mem_entry *mem)
844 {
845 	struct device *dev = &rproc->dev;
846 
847 	/* clean up carveout allocations */
848 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
849 	return 0;
850 }
851 
852 /**
853  * rproc_handle_carveout() - handle phys contig memory allocation requests
854  * @rproc: rproc handle
855  * @rsc: the resource entry
856  * @avail: size of available data (for image validation)
857  *
858  * This function will handle firmware requests for allocation of physically
859  * contiguous memory regions.
860  *
861  * These request entries should come first in the firmware's resource table,
862  * as other firmware entries might request placing other data objects inside
863  * these memory regions (e.g. data/code segments, trace resource entries, ...).
864  *
865  * Allocating memory this way helps utilizing the reserved physical memory
866  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
867  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
868  * pressure is important; it may have a substantial impact on performance.
869  */
870 static int rproc_handle_carveout(struct rproc *rproc,
871 				 struct fw_rsc_carveout *rsc,
872 				 int offset, int avail)
873 {
874 	struct rproc_mem_entry *carveout;
875 	struct device *dev = &rproc->dev;
876 
877 	if (sizeof(*rsc) > avail) {
878 		dev_err(dev, "carveout rsc is truncated\n");
879 		return -EINVAL;
880 	}
881 
882 	/* make sure reserved bytes are zeroes */
883 	if (rsc->reserved) {
884 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
885 		return -EINVAL;
886 	}
887 
888 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
889 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
890 
891 	/*
892 	 * Check carveout rsc already part of a registered carveout,
893 	 * Search by name, then check the da and length
894 	 */
895 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
896 
897 	if (carveout) {
898 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
899 			dev_err(dev,
900 				"Carveout already associated to resource table\n");
901 			return -ENOMEM;
902 		}
903 
904 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
905 			return -ENOMEM;
906 
907 		/* Update memory carveout with resource table info */
908 		carveout->rsc_offset = offset;
909 		carveout->flags = rsc->flags;
910 
911 		return 0;
912 	}
913 
914 	/* Register carveout in in list */
915 	carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
916 					rproc_alloc_carveout,
917 					rproc_release_carveout, rsc->name);
918 	if (!carveout) {
919 		dev_err(dev, "Can't allocate memory entry structure\n");
920 		return -ENOMEM;
921 	}
922 
923 	carveout->flags = rsc->flags;
924 	carveout->rsc_offset = offset;
925 	rproc_add_carveout(rproc, carveout);
926 
927 	return 0;
928 }
929 
930 /**
931  * rproc_add_carveout() - register an allocated carveout region
932  * @rproc: rproc handle
933  * @mem: memory entry to register
934  *
935  * This function registers specified memory entry in @rproc carveouts list.
936  * Specified carveout should have been allocated before registering.
937  */
938 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
939 {
940 	list_add_tail(&mem->node, &rproc->carveouts);
941 }
942 EXPORT_SYMBOL(rproc_add_carveout);
943 
944 /**
945  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
946  * @dev: pointer on device struct
947  * @va: virtual address
948  * @dma: dma address
949  * @len: memory carveout length
950  * @da: device address
951  * @alloc: memory carveout allocation function
952  * @release: memory carveout release function
953  * @name: carveout name
954  *
955  * This function allocates a rproc_mem_entry struct and fill it with parameters
956  * provided by client.
957  */
958 struct rproc_mem_entry *
959 rproc_mem_entry_init(struct device *dev,
960 		     void *va, dma_addr_t dma, int len, u32 da,
961 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
962 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
963 		     const char *name, ...)
964 {
965 	struct rproc_mem_entry *mem;
966 	va_list args;
967 
968 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
969 	if (!mem)
970 		return mem;
971 
972 	mem->va = va;
973 	mem->dma = dma;
974 	mem->da = da;
975 	mem->len = len;
976 	mem->alloc = alloc;
977 	mem->release = release;
978 	mem->rsc_offset = FW_RSC_ADDR_ANY;
979 	mem->of_resm_idx = -1;
980 
981 	va_start(args, name);
982 	vsnprintf(mem->name, sizeof(mem->name), name, args);
983 	va_end(args);
984 
985 	return mem;
986 }
987 EXPORT_SYMBOL(rproc_mem_entry_init);
988 
989 /**
990  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
991  * from a reserved memory phandle
992  * @dev: pointer on device struct
993  * @of_resm_idx: reserved memory phandle index in "memory-region"
994  * @len: memory carveout length
995  * @da: device address
996  * @name: carveout name
997  *
998  * This function allocates a rproc_mem_entry struct and fill it with parameters
999  * provided by client.
1000  */
1001 struct rproc_mem_entry *
1002 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1003 			     u32 da, const char *name, ...)
1004 {
1005 	struct rproc_mem_entry *mem;
1006 	va_list args;
1007 
1008 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1009 	if (!mem)
1010 		return mem;
1011 
1012 	mem->da = da;
1013 	mem->len = len;
1014 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1015 	mem->of_resm_idx = of_resm_idx;
1016 
1017 	va_start(args, name);
1018 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1019 	va_end(args);
1020 
1021 	return mem;
1022 }
1023 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1024 
1025 /**
1026  * A lookup table for resource handlers. The indices are defined in
1027  * enum fw_resource_type.
1028  */
1029 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1030 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1031 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1032 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1033 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1034 };
1035 
1036 /* handle firmware resource entries before booting the remote processor */
1037 static int rproc_handle_resources(struct rproc *rproc,
1038 				  rproc_handle_resource_t handlers[RSC_LAST])
1039 {
1040 	struct device *dev = &rproc->dev;
1041 	rproc_handle_resource_t handler;
1042 	int ret = 0, i;
1043 
1044 	if (!rproc->table_ptr)
1045 		return 0;
1046 
1047 	for (i = 0; i < rproc->table_ptr->num; i++) {
1048 		int offset = rproc->table_ptr->offset[i];
1049 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1050 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1051 		void *rsc = (void *)hdr + sizeof(*hdr);
1052 
1053 		/* make sure table isn't truncated */
1054 		if (avail < 0) {
1055 			dev_err(dev, "rsc table is truncated\n");
1056 			return -EINVAL;
1057 		}
1058 
1059 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1060 
1061 		if (hdr->type >= RSC_LAST) {
1062 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1063 			continue;
1064 		}
1065 
1066 		handler = handlers[hdr->type];
1067 		if (!handler)
1068 			continue;
1069 
1070 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1071 		if (ret)
1072 			break;
1073 	}
1074 
1075 	return ret;
1076 }
1077 
1078 static int rproc_prepare_subdevices(struct rproc *rproc)
1079 {
1080 	struct rproc_subdev *subdev;
1081 	int ret;
1082 
1083 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1084 		if (subdev->prepare) {
1085 			ret = subdev->prepare(subdev);
1086 			if (ret)
1087 				goto unroll_preparation;
1088 		}
1089 	}
1090 
1091 	return 0;
1092 
1093 unroll_preparation:
1094 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1095 		if (subdev->unprepare)
1096 			subdev->unprepare(subdev);
1097 	}
1098 
1099 	return ret;
1100 }
1101 
1102 static int rproc_start_subdevices(struct rproc *rproc)
1103 {
1104 	struct rproc_subdev *subdev;
1105 	int ret;
1106 
1107 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1108 		if (subdev->start) {
1109 			ret = subdev->start(subdev);
1110 			if (ret)
1111 				goto unroll_registration;
1112 		}
1113 	}
1114 
1115 	return 0;
1116 
1117 unroll_registration:
1118 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1119 		if (subdev->stop)
1120 			subdev->stop(subdev, true);
1121 	}
1122 
1123 	return ret;
1124 }
1125 
1126 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1127 {
1128 	struct rproc_subdev *subdev;
1129 
1130 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1131 		if (subdev->stop)
1132 			subdev->stop(subdev, crashed);
1133 	}
1134 }
1135 
1136 static void rproc_unprepare_subdevices(struct rproc *rproc)
1137 {
1138 	struct rproc_subdev *subdev;
1139 
1140 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1141 		if (subdev->unprepare)
1142 			subdev->unprepare(subdev);
1143 	}
1144 }
1145 
1146 /**
1147  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1148  * in the list
1149  * @rproc: the remote processor handle
1150  *
1151  * This function parses registered carveout list, performs allocation
1152  * if alloc() ops registered and updates resource table information
1153  * if rsc_offset set.
1154  *
1155  * Return: 0 on success
1156  */
1157 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1158 {
1159 	struct rproc_mem_entry *entry, *tmp;
1160 	struct fw_rsc_carveout *rsc;
1161 	struct device *dev = &rproc->dev;
1162 	u64 pa;
1163 	int ret;
1164 
1165 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1166 		if (entry->alloc) {
1167 			ret = entry->alloc(rproc, entry);
1168 			if (ret) {
1169 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1170 					entry->name, ret);
1171 				return -ENOMEM;
1172 			}
1173 		}
1174 
1175 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1176 			/* update resource table */
1177 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1178 
1179 			/*
1180 			 * Some remote processors might need to know the pa
1181 			 * even though they are behind an IOMMU. E.g., OMAP4's
1182 			 * remote M3 processor needs this so it can control
1183 			 * on-chip hardware accelerators that are not behind
1184 			 * the IOMMU, and therefor must know the pa.
1185 			 *
1186 			 * Generally we don't want to expose physical addresses
1187 			 * if we don't have to (remote processors are generally
1188 			 * _not_ trusted), so we might want to do this only for
1189 			 * remote processor that _must_ have this (e.g. OMAP4's
1190 			 * dual M3 subsystem).
1191 			 *
1192 			 * Non-IOMMU processors might also want to have this info.
1193 			 * In this case, the device address and the physical address
1194 			 * are the same.
1195 			 */
1196 
1197 			/* Use va if defined else dma to generate pa */
1198 			if (entry->va)
1199 				pa = (u64)rproc_va_to_pa(entry->va);
1200 			else
1201 				pa = (u64)entry->dma;
1202 
1203 			if (((u64)pa) & HIGH_BITS_MASK)
1204 				dev_warn(dev,
1205 					 "Physical address cast in 32bit to fit resource table format\n");
1206 
1207 			rsc->pa = (u32)pa;
1208 			rsc->da = entry->da;
1209 			rsc->len = entry->len;
1210 		}
1211 	}
1212 
1213 	return 0;
1214 }
1215 
1216 /**
1217  * rproc_coredump_cleanup() - clean up dump_segments list
1218  * @rproc: the remote processor handle
1219  */
1220 static void rproc_coredump_cleanup(struct rproc *rproc)
1221 {
1222 	struct rproc_dump_segment *entry, *tmp;
1223 
1224 	list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1225 		list_del(&entry->node);
1226 		kfree(entry);
1227 	}
1228 }
1229 
1230 /**
1231  * rproc_resource_cleanup() - clean up and free all acquired resources
1232  * @rproc: rproc handle
1233  *
1234  * This function will free all resources acquired for @rproc, and it
1235  * is called whenever @rproc either shuts down or fails to boot.
1236  */
1237 static void rproc_resource_cleanup(struct rproc *rproc)
1238 {
1239 	struct rproc_mem_entry *entry, *tmp;
1240 	struct rproc_debug_trace *trace, *ttmp;
1241 	struct rproc_vdev *rvdev, *rvtmp;
1242 	struct device *dev = &rproc->dev;
1243 
1244 	/* clean up debugfs trace entries */
1245 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1246 		rproc_remove_trace_file(trace->tfile);
1247 		rproc->num_traces--;
1248 		list_del(&trace->node);
1249 		kfree(trace);
1250 	}
1251 
1252 	/* clean up iommu mapping entries */
1253 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1254 		size_t unmapped;
1255 
1256 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1257 		if (unmapped != entry->len) {
1258 			/* nothing much to do besides complaining */
1259 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1260 				unmapped);
1261 		}
1262 
1263 		list_del(&entry->node);
1264 		kfree(entry);
1265 	}
1266 
1267 	/* clean up carveout allocations */
1268 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1269 		if (entry->release)
1270 			entry->release(rproc, entry);
1271 		list_del(&entry->node);
1272 		kfree(entry);
1273 	}
1274 
1275 	/* clean up remote vdev entries */
1276 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1277 		kref_put(&rvdev->refcount, rproc_vdev_release);
1278 
1279 	rproc_coredump_cleanup(rproc);
1280 }
1281 
1282 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1283 {
1284 	struct resource_table *loaded_table;
1285 	struct device *dev = &rproc->dev;
1286 	int ret;
1287 
1288 	/* load the ELF segments to memory */
1289 	ret = rproc_load_segments(rproc, fw);
1290 	if (ret) {
1291 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1292 		return ret;
1293 	}
1294 
1295 	/*
1296 	 * The starting device has been given the rproc->cached_table as the
1297 	 * resource table. The address of the vring along with the other
1298 	 * allocated resources (carveouts etc) is stored in cached_table.
1299 	 * In order to pass this information to the remote device we must copy
1300 	 * this information to device memory. We also update the table_ptr so
1301 	 * that any subsequent changes will be applied to the loaded version.
1302 	 */
1303 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1304 	if (loaded_table) {
1305 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1306 		rproc->table_ptr = loaded_table;
1307 	}
1308 
1309 	ret = rproc_prepare_subdevices(rproc);
1310 	if (ret) {
1311 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1312 			rproc->name, ret);
1313 		goto reset_table_ptr;
1314 	}
1315 
1316 	/* power up the remote processor */
1317 	ret = rproc->ops->start(rproc);
1318 	if (ret) {
1319 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1320 		goto unprepare_subdevices;
1321 	}
1322 
1323 	/* Start any subdevices for the remote processor */
1324 	ret = rproc_start_subdevices(rproc);
1325 	if (ret) {
1326 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1327 			rproc->name, ret);
1328 		goto stop_rproc;
1329 	}
1330 
1331 	rproc->state = RPROC_RUNNING;
1332 
1333 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1334 
1335 	return 0;
1336 
1337 stop_rproc:
1338 	rproc->ops->stop(rproc);
1339 unprepare_subdevices:
1340 	rproc_unprepare_subdevices(rproc);
1341 reset_table_ptr:
1342 	rproc->table_ptr = rproc->cached_table;
1343 
1344 	return ret;
1345 }
1346 
1347 /*
1348  * take a firmware and boot a remote processor with it.
1349  */
1350 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1351 {
1352 	struct device *dev = &rproc->dev;
1353 	const char *name = rproc->firmware;
1354 	int ret;
1355 
1356 	ret = rproc_fw_sanity_check(rproc, fw);
1357 	if (ret)
1358 		return ret;
1359 
1360 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1361 
1362 	/*
1363 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1364 	 * just a nop
1365 	 */
1366 	ret = rproc_enable_iommu(rproc);
1367 	if (ret) {
1368 		dev_err(dev, "can't enable iommu: %d\n", ret);
1369 		return ret;
1370 	}
1371 
1372 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1373 
1374 	/* Load resource table, core dump segment list etc from the firmware */
1375 	ret = rproc_parse_fw(rproc, fw);
1376 	if (ret)
1377 		goto disable_iommu;
1378 
1379 	/* reset max_notifyid */
1380 	rproc->max_notifyid = -1;
1381 
1382 	/* reset handled vdev */
1383 	rproc->nb_vdev = 0;
1384 
1385 	/* handle fw resources which are required to boot rproc */
1386 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1387 	if (ret) {
1388 		dev_err(dev, "Failed to process resources: %d\n", ret);
1389 		goto clean_up_resources;
1390 	}
1391 
1392 	/* Allocate carveout resources associated to rproc */
1393 	ret = rproc_alloc_registered_carveouts(rproc);
1394 	if (ret) {
1395 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1396 			ret);
1397 		goto clean_up_resources;
1398 	}
1399 
1400 	ret = rproc_start(rproc, fw);
1401 	if (ret)
1402 		goto clean_up_resources;
1403 
1404 	return 0;
1405 
1406 clean_up_resources:
1407 	rproc_resource_cleanup(rproc);
1408 	kfree(rproc->cached_table);
1409 	rproc->cached_table = NULL;
1410 	rproc->table_ptr = NULL;
1411 disable_iommu:
1412 	rproc_disable_iommu(rproc);
1413 	return ret;
1414 }
1415 
1416 /*
1417  * take a firmware and boot it up.
1418  *
1419  * Note: this function is called asynchronously upon registration of the
1420  * remote processor (so we must wait until it completes before we try
1421  * to unregister the device. one other option is just to use kref here,
1422  * that might be cleaner).
1423  */
1424 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1425 {
1426 	struct rproc *rproc = context;
1427 
1428 	rproc_boot(rproc);
1429 
1430 	release_firmware(fw);
1431 }
1432 
1433 static int rproc_trigger_auto_boot(struct rproc *rproc)
1434 {
1435 	int ret;
1436 
1437 	/*
1438 	 * We're initiating an asynchronous firmware loading, so we can
1439 	 * be built-in kernel code, without hanging the boot process.
1440 	 */
1441 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1442 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1443 				      rproc, rproc_auto_boot_callback);
1444 	if (ret < 0)
1445 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1446 
1447 	return ret;
1448 }
1449 
1450 static int rproc_stop(struct rproc *rproc, bool crashed)
1451 {
1452 	struct device *dev = &rproc->dev;
1453 	int ret;
1454 
1455 	/* Stop any subdevices for the remote processor */
1456 	rproc_stop_subdevices(rproc, crashed);
1457 
1458 	/* the installed resource table is no longer accessible */
1459 	rproc->table_ptr = rproc->cached_table;
1460 
1461 	/* power off the remote processor */
1462 	ret = rproc->ops->stop(rproc);
1463 	if (ret) {
1464 		dev_err(dev, "can't stop rproc: %d\n", ret);
1465 		return ret;
1466 	}
1467 
1468 	rproc_unprepare_subdevices(rproc);
1469 
1470 	rproc->state = RPROC_OFFLINE;
1471 
1472 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1473 
1474 	return 0;
1475 }
1476 
1477 /**
1478  * rproc_coredump_add_segment() - add segment of device memory to coredump
1479  * @rproc:	handle of a remote processor
1480  * @da:		device address
1481  * @size:	size of segment
1482  *
1483  * Add device memory to the list of segments to be included in a coredump for
1484  * the remoteproc.
1485  *
1486  * Return: 0 on success, negative errno on error.
1487  */
1488 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1489 {
1490 	struct rproc_dump_segment *segment;
1491 
1492 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1493 	if (!segment)
1494 		return -ENOMEM;
1495 
1496 	segment->da = da;
1497 	segment->size = size;
1498 
1499 	list_add_tail(&segment->node, &rproc->dump_segments);
1500 
1501 	return 0;
1502 }
1503 EXPORT_SYMBOL(rproc_coredump_add_segment);
1504 
1505 /**
1506  * rproc_coredump_add_custom_segment() - add custom coredump segment
1507  * @rproc:	handle of a remote processor
1508  * @da:		device address
1509  * @size:	size of segment
1510  * @dumpfn:	custom dump function called for each segment during coredump
1511  * @priv:	private data
1512  *
1513  * Add device memory to the list of segments to be included in the coredump
1514  * and associate the segment with the given custom dump function and private
1515  * data.
1516  *
1517  * Return: 0 on success, negative errno on error.
1518  */
1519 int rproc_coredump_add_custom_segment(struct rproc *rproc,
1520 				      dma_addr_t da, size_t size,
1521 				      void (*dumpfn)(struct rproc *rproc,
1522 						     struct rproc_dump_segment *segment,
1523 						     void *dest),
1524 				      void *priv)
1525 {
1526 	struct rproc_dump_segment *segment;
1527 
1528 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1529 	if (!segment)
1530 		return -ENOMEM;
1531 
1532 	segment->da = da;
1533 	segment->size = size;
1534 	segment->priv = priv;
1535 	segment->dump = dumpfn;
1536 
1537 	list_add_tail(&segment->node, &rproc->dump_segments);
1538 
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1542 
1543 /**
1544  * rproc_coredump() - perform coredump
1545  * @rproc:	rproc handle
1546  *
1547  * This function will generate an ELF header for the registered segments
1548  * and create a devcoredump device associated with rproc.
1549  */
1550 static void rproc_coredump(struct rproc *rproc)
1551 {
1552 	struct rproc_dump_segment *segment;
1553 	struct elf32_phdr *phdr;
1554 	struct elf32_hdr *ehdr;
1555 	size_t data_size;
1556 	size_t offset;
1557 	void *data;
1558 	void *ptr;
1559 	int phnum = 0;
1560 
1561 	if (list_empty(&rproc->dump_segments))
1562 		return;
1563 
1564 	data_size = sizeof(*ehdr);
1565 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1566 		data_size += sizeof(*phdr) + segment->size;
1567 
1568 		phnum++;
1569 	}
1570 
1571 	data = vmalloc(data_size);
1572 	if (!data)
1573 		return;
1574 
1575 	ehdr = data;
1576 
1577 	memset(ehdr, 0, sizeof(*ehdr));
1578 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1579 	ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1580 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1581 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1582 	ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1583 	ehdr->e_type = ET_CORE;
1584 	ehdr->e_machine = EM_NONE;
1585 	ehdr->e_version = EV_CURRENT;
1586 	ehdr->e_entry = rproc->bootaddr;
1587 	ehdr->e_phoff = sizeof(*ehdr);
1588 	ehdr->e_ehsize = sizeof(*ehdr);
1589 	ehdr->e_phentsize = sizeof(*phdr);
1590 	ehdr->e_phnum = phnum;
1591 
1592 	phdr = data + ehdr->e_phoff;
1593 	offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1594 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1595 		memset(phdr, 0, sizeof(*phdr));
1596 		phdr->p_type = PT_LOAD;
1597 		phdr->p_offset = offset;
1598 		phdr->p_vaddr = segment->da;
1599 		phdr->p_paddr = segment->da;
1600 		phdr->p_filesz = segment->size;
1601 		phdr->p_memsz = segment->size;
1602 		phdr->p_flags = PF_R | PF_W | PF_X;
1603 		phdr->p_align = 0;
1604 
1605 		if (segment->dump) {
1606 			segment->dump(rproc, segment, data + offset);
1607 		} else {
1608 			ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1609 			if (!ptr) {
1610 				dev_err(&rproc->dev,
1611 					"invalid coredump segment (%pad, %zu)\n",
1612 					&segment->da, segment->size);
1613 				memset(data + offset, 0xff, segment->size);
1614 			} else {
1615 				memcpy(data + offset, ptr, segment->size);
1616 			}
1617 		}
1618 
1619 		offset += phdr->p_filesz;
1620 		phdr++;
1621 	}
1622 
1623 	dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1624 }
1625 
1626 /**
1627  * rproc_trigger_recovery() - recover a remoteproc
1628  * @rproc: the remote processor
1629  *
1630  * The recovery is done by resetting all the virtio devices, that way all the
1631  * rpmsg drivers will be reseted along with the remote processor making the
1632  * remoteproc functional again.
1633  *
1634  * This function can sleep, so it cannot be called from atomic context.
1635  */
1636 int rproc_trigger_recovery(struct rproc *rproc)
1637 {
1638 	const struct firmware *firmware_p;
1639 	struct device *dev = &rproc->dev;
1640 	int ret;
1641 
1642 	dev_err(dev, "recovering %s\n", rproc->name);
1643 
1644 	ret = mutex_lock_interruptible(&rproc->lock);
1645 	if (ret)
1646 		return ret;
1647 
1648 	ret = rproc_stop(rproc, true);
1649 	if (ret)
1650 		goto unlock_mutex;
1651 
1652 	/* generate coredump */
1653 	rproc_coredump(rproc);
1654 
1655 	/* load firmware */
1656 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1657 	if (ret < 0) {
1658 		dev_err(dev, "request_firmware failed: %d\n", ret);
1659 		goto unlock_mutex;
1660 	}
1661 
1662 	/* boot the remote processor up again */
1663 	ret = rproc_start(rproc, firmware_p);
1664 
1665 	release_firmware(firmware_p);
1666 
1667 unlock_mutex:
1668 	mutex_unlock(&rproc->lock);
1669 	return ret;
1670 }
1671 
1672 /**
1673  * rproc_crash_handler_work() - handle a crash
1674  *
1675  * This function needs to handle everything related to a crash, like cpu
1676  * registers and stack dump, information to help to debug the fatal error, etc.
1677  */
1678 static void rproc_crash_handler_work(struct work_struct *work)
1679 {
1680 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1681 	struct device *dev = &rproc->dev;
1682 
1683 	dev_dbg(dev, "enter %s\n", __func__);
1684 
1685 	mutex_lock(&rproc->lock);
1686 
1687 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1688 		/* handle only the first crash detected */
1689 		mutex_unlock(&rproc->lock);
1690 		return;
1691 	}
1692 
1693 	rproc->state = RPROC_CRASHED;
1694 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1695 		rproc->name);
1696 
1697 	mutex_unlock(&rproc->lock);
1698 
1699 	if (!rproc->recovery_disabled)
1700 		rproc_trigger_recovery(rproc);
1701 }
1702 
1703 /**
1704  * rproc_boot() - boot a remote processor
1705  * @rproc: handle of a remote processor
1706  *
1707  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1708  *
1709  * If the remote processor is already powered on, this function immediately
1710  * returns (successfully).
1711  *
1712  * Returns 0 on success, and an appropriate error value otherwise.
1713  */
1714 int rproc_boot(struct rproc *rproc)
1715 {
1716 	const struct firmware *firmware_p;
1717 	struct device *dev;
1718 	int ret;
1719 
1720 	if (!rproc) {
1721 		pr_err("invalid rproc handle\n");
1722 		return -EINVAL;
1723 	}
1724 
1725 	dev = &rproc->dev;
1726 
1727 	ret = mutex_lock_interruptible(&rproc->lock);
1728 	if (ret) {
1729 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1730 		return ret;
1731 	}
1732 
1733 	if (rproc->state == RPROC_DELETED) {
1734 		ret = -ENODEV;
1735 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1736 		goto unlock_mutex;
1737 	}
1738 
1739 	/* skip the boot process if rproc is already powered up */
1740 	if (atomic_inc_return(&rproc->power) > 1) {
1741 		ret = 0;
1742 		goto unlock_mutex;
1743 	}
1744 
1745 	dev_info(dev, "powering up %s\n", rproc->name);
1746 
1747 	/* load firmware */
1748 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1749 	if (ret < 0) {
1750 		dev_err(dev, "request_firmware failed: %d\n", ret);
1751 		goto downref_rproc;
1752 	}
1753 
1754 	ret = rproc_fw_boot(rproc, firmware_p);
1755 
1756 	release_firmware(firmware_p);
1757 
1758 downref_rproc:
1759 	if (ret)
1760 		atomic_dec(&rproc->power);
1761 unlock_mutex:
1762 	mutex_unlock(&rproc->lock);
1763 	return ret;
1764 }
1765 EXPORT_SYMBOL(rproc_boot);
1766 
1767 /**
1768  * rproc_shutdown() - power off the remote processor
1769  * @rproc: the remote processor
1770  *
1771  * Power off a remote processor (previously booted with rproc_boot()).
1772  *
1773  * In case @rproc is still being used by an additional user(s), then
1774  * this function will just decrement the power refcount and exit,
1775  * without really powering off the device.
1776  *
1777  * Every call to rproc_boot() must (eventually) be accompanied by a call
1778  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1779  *
1780  * Notes:
1781  * - we're not decrementing the rproc's refcount, only the power refcount.
1782  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1783  *   returns, and users can still use it with a subsequent rproc_boot(), if
1784  *   needed.
1785  */
1786 void rproc_shutdown(struct rproc *rproc)
1787 {
1788 	struct device *dev = &rproc->dev;
1789 	int ret;
1790 
1791 	ret = mutex_lock_interruptible(&rproc->lock);
1792 	if (ret) {
1793 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1794 		return;
1795 	}
1796 
1797 	/* if the remote proc is still needed, bail out */
1798 	if (!atomic_dec_and_test(&rproc->power))
1799 		goto out;
1800 
1801 	ret = rproc_stop(rproc, false);
1802 	if (ret) {
1803 		atomic_inc(&rproc->power);
1804 		goto out;
1805 	}
1806 
1807 	/* clean up all acquired resources */
1808 	rproc_resource_cleanup(rproc);
1809 
1810 	rproc_disable_iommu(rproc);
1811 
1812 	/* Free the copy of the resource table */
1813 	kfree(rproc->cached_table);
1814 	rproc->cached_table = NULL;
1815 	rproc->table_ptr = NULL;
1816 out:
1817 	mutex_unlock(&rproc->lock);
1818 }
1819 EXPORT_SYMBOL(rproc_shutdown);
1820 
1821 /**
1822  * rproc_get_by_phandle() - find a remote processor by phandle
1823  * @phandle: phandle to the rproc
1824  *
1825  * Finds an rproc handle using the remote processor's phandle, and then
1826  * return a handle to the rproc.
1827  *
1828  * This function increments the remote processor's refcount, so always
1829  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1830  *
1831  * Returns the rproc handle on success, and NULL on failure.
1832  */
1833 #ifdef CONFIG_OF
1834 struct rproc *rproc_get_by_phandle(phandle phandle)
1835 {
1836 	struct rproc *rproc = NULL, *r;
1837 	struct device_node *np;
1838 
1839 	np = of_find_node_by_phandle(phandle);
1840 	if (!np)
1841 		return NULL;
1842 
1843 	mutex_lock(&rproc_list_mutex);
1844 	list_for_each_entry(r, &rproc_list, node) {
1845 		if (r->dev.parent && r->dev.parent->of_node == np) {
1846 			/* prevent underlying implementation from being removed */
1847 			if (!try_module_get(r->dev.parent->driver->owner)) {
1848 				dev_err(&r->dev, "can't get owner\n");
1849 				break;
1850 			}
1851 
1852 			rproc = r;
1853 			get_device(&rproc->dev);
1854 			break;
1855 		}
1856 	}
1857 	mutex_unlock(&rproc_list_mutex);
1858 
1859 	of_node_put(np);
1860 
1861 	return rproc;
1862 }
1863 #else
1864 struct rproc *rproc_get_by_phandle(phandle phandle)
1865 {
1866 	return NULL;
1867 }
1868 #endif
1869 EXPORT_SYMBOL(rproc_get_by_phandle);
1870 
1871 /**
1872  * rproc_add() - register a remote processor
1873  * @rproc: the remote processor handle to register
1874  *
1875  * Registers @rproc with the remoteproc framework, after it has been
1876  * allocated with rproc_alloc().
1877  *
1878  * This is called by the platform-specific rproc implementation, whenever
1879  * a new remote processor device is probed.
1880  *
1881  * Returns 0 on success and an appropriate error code otherwise.
1882  *
1883  * Note: this function initiates an asynchronous firmware loading
1884  * context, which will look for virtio devices supported by the rproc's
1885  * firmware.
1886  *
1887  * If found, those virtio devices will be created and added, so as a result
1888  * of registering this remote processor, additional virtio drivers might be
1889  * probed.
1890  */
1891 int rproc_add(struct rproc *rproc)
1892 {
1893 	struct device *dev = &rproc->dev;
1894 	int ret;
1895 
1896 	ret = device_add(dev);
1897 	if (ret < 0)
1898 		return ret;
1899 
1900 	dev_info(dev, "%s is available\n", rproc->name);
1901 
1902 	/* create debugfs entries */
1903 	rproc_create_debug_dir(rproc);
1904 
1905 	/* if rproc is marked always-on, request it to boot */
1906 	if (rproc->auto_boot) {
1907 		ret = rproc_trigger_auto_boot(rproc);
1908 		if (ret < 0)
1909 			return ret;
1910 	}
1911 
1912 	/* expose to rproc_get_by_phandle users */
1913 	mutex_lock(&rproc_list_mutex);
1914 	list_add(&rproc->node, &rproc_list);
1915 	mutex_unlock(&rproc_list_mutex);
1916 
1917 	return 0;
1918 }
1919 EXPORT_SYMBOL(rproc_add);
1920 
1921 /**
1922  * rproc_type_release() - release a remote processor instance
1923  * @dev: the rproc's device
1924  *
1925  * This function should _never_ be called directly.
1926  *
1927  * It will be called by the driver core when no one holds a valid pointer
1928  * to @dev anymore.
1929  */
1930 static void rproc_type_release(struct device *dev)
1931 {
1932 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1933 
1934 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1935 
1936 	idr_destroy(&rproc->notifyids);
1937 
1938 	if (rproc->index >= 0)
1939 		ida_simple_remove(&rproc_dev_index, rproc->index);
1940 
1941 	kfree(rproc->firmware);
1942 	kfree(rproc->ops);
1943 	kfree(rproc);
1944 }
1945 
1946 static const struct device_type rproc_type = {
1947 	.name		= "remoteproc",
1948 	.release	= rproc_type_release,
1949 };
1950 
1951 /**
1952  * rproc_alloc() - allocate a remote processor handle
1953  * @dev: the underlying device
1954  * @name: name of this remote processor
1955  * @ops: platform-specific handlers (mainly start/stop)
1956  * @firmware: name of firmware file to load, can be NULL
1957  * @len: length of private data needed by the rproc driver (in bytes)
1958  *
1959  * Allocates a new remote processor handle, but does not register
1960  * it yet. if @firmware is NULL, a default name is used.
1961  *
1962  * This function should be used by rproc implementations during initialization
1963  * of the remote processor.
1964  *
1965  * After creating an rproc handle using this function, and when ready,
1966  * implementations should then call rproc_add() to complete
1967  * the registration of the remote processor.
1968  *
1969  * On success the new rproc is returned, and on failure, NULL.
1970  *
1971  * Note: _never_ directly deallocate @rproc, even if it was not registered
1972  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1973  */
1974 struct rproc *rproc_alloc(struct device *dev, const char *name,
1975 			  const struct rproc_ops *ops,
1976 			  const char *firmware, int len)
1977 {
1978 	struct rproc *rproc;
1979 	char *p, *template = "rproc-%s-fw";
1980 	int name_len;
1981 
1982 	if (!dev || !name || !ops)
1983 		return NULL;
1984 
1985 	if (!firmware) {
1986 		/*
1987 		 * If the caller didn't pass in a firmware name then
1988 		 * construct a default name.
1989 		 */
1990 		name_len = strlen(name) + strlen(template) - 2 + 1;
1991 		p = kmalloc(name_len, GFP_KERNEL);
1992 		if (!p)
1993 			return NULL;
1994 		snprintf(p, name_len, template, name);
1995 	} else {
1996 		p = kstrdup(firmware, GFP_KERNEL);
1997 		if (!p)
1998 			return NULL;
1999 	}
2000 
2001 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2002 	if (!rproc) {
2003 		kfree(p);
2004 		return NULL;
2005 	}
2006 
2007 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2008 	if (!rproc->ops) {
2009 		kfree(p);
2010 		kfree(rproc);
2011 		return NULL;
2012 	}
2013 
2014 	rproc->firmware = p;
2015 	rproc->name = name;
2016 	rproc->priv = &rproc[1];
2017 	rproc->auto_boot = true;
2018 
2019 	device_initialize(&rproc->dev);
2020 	rproc->dev.parent = dev;
2021 	rproc->dev.type = &rproc_type;
2022 	rproc->dev.class = &rproc_class;
2023 	rproc->dev.driver_data = rproc;
2024 
2025 	/* Assign a unique device index and name */
2026 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2027 	if (rproc->index < 0) {
2028 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2029 		put_device(&rproc->dev);
2030 		return NULL;
2031 	}
2032 
2033 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2034 
2035 	atomic_set(&rproc->power, 0);
2036 
2037 	/* Default to ELF loader if no load function is specified */
2038 	if (!rproc->ops->load) {
2039 		rproc->ops->load = rproc_elf_load_segments;
2040 		rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2041 		rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2042 		rproc->ops->sanity_check = rproc_elf_sanity_check;
2043 		rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2044 	}
2045 
2046 	mutex_init(&rproc->lock);
2047 
2048 	idr_init(&rproc->notifyids);
2049 
2050 	INIT_LIST_HEAD(&rproc->carveouts);
2051 	INIT_LIST_HEAD(&rproc->mappings);
2052 	INIT_LIST_HEAD(&rproc->traces);
2053 	INIT_LIST_HEAD(&rproc->rvdevs);
2054 	INIT_LIST_HEAD(&rproc->subdevs);
2055 	INIT_LIST_HEAD(&rproc->dump_segments);
2056 
2057 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2058 
2059 	rproc->state = RPROC_OFFLINE;
2060 
2061 	return rproc;
2062 }
2063 EXPORT_SYMBOL(rproc_alloc);
2064 
2065 /**
2066  * rproc_free() - unroll rproc_alloc()
2067  * @rproc: the remote processor handle
2068  *
2069  * This function decrements the rproc dev refcount.
2070  *
2071  * If no one holds any reference to rproc anymore, then its refcount would
2072  * now drop to zero, and it would be freed.
2073  */
2074 void rproc_free(struct rproc *rproc)
2075 {
2076 	put_device(&rproc->dev);
2077 }
2078 EXPORT_SYMBOL(rproc_free);
2079 
2080 /**
2081  * rproc_put() - release rproc reference
2082  * @rproc: the remote processor handle
2083  *
2084  * This function decrements the rproc dev refcount.
2085  *
2086  * If no one holds any reference to rproc anymore, then its refcount would
2087  * now drop to zero, and it would be freed.
2088  */
2089 void rproc_put(struct rproc *rproc)
2090 {
2091 	module_put(rproc->dev.parent->driver->owner);
2092 	put_device(&rproc->dev);
2093 }
2094 EXPORT_SYMBOL(rproc_put);
2095 
2096 /**
2097  * rproc_del() - unregister a remote processor
2098  * @rproc: rproc handle to unregister
2099  *
2100  * This function should be called when the platform specific rproc
2101  * implementation decides to remove the rproc device. it should
2102  * _only_ be called if a previous invocation of rproc_add()
2103  * has completed successfully.
2104  *
2105  * After rproc_del() returns, @rproc isn't freed yet, because
2106  * of the outstanding reference created by rproc_alloc. To decrement that
2107  * one last refcount, one still needs to call rproc_free().
2108  *
2109  * Returns 0 on success and -EINVAL if @rproc isn't valid.
2110  */
2111 int rproc_del(struct rproc *rproc)
2112 {
2113 	if (!rproc)
2114 		return -EINVAL;
2115 
2116 	/* if rproc is marked always-on, rproc_add() booted it */
2117 	/* TODO: make sure this works with rproc->power > 1 */
2118 	if (rproc->auto_boot)
2119 		rproc_shutdown(rproc);
2120 
2121 	mutex_lock(&rproc->lock);
2122 	rproc->state = RPROC_DELETED;
2123 	mutex_unlock(&rproc->lock);
2124 
2125 	rproc_delete_debug_dir(rproc);
2126 
2127 	/* the rproc is downref'ed as soon as it's removed from the klist */
2128 	mutex_lock(&rproc_list_mutex);
2129 	list_del(&rproc->node);
2130 	mutex_unlock(&rproc_list_mutex);
2131 
2132 	device_del(&rproc->dev);
2133 
2134 	return 0;
2135 }
2136 EXPORT_SYMBOL(rproc_del);
2137 
2138 /**
2139  * rproc_add_subdev() - add a subdevice to a remoteproc
2140  * @rproc: rproc handle to add the subdevice to
2141  * @subdev: subdev handle to register
2142  *
2143  * Caller is responsible for populating optional subdevice function pointers.
2144  */
2145 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2146 {
2147 	list_add_tail(&subdev->node, &rproc->subdevs);
2148 }
2149 EXPORT_SYMBOL(rproc_add_subdev);
2150 
2151 /**
2152  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2153  * @rproc: rproc handle to remove the subdevice from
2154  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2155  */
2156 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2157 {
2158 	list_del(&subdev->node);
2159 }
2160 EXPORT_SYMBOL(rproc_remove_subdev);
2161 
2162 /**
2163  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2164  * @dev:	child device to find ancestor of
2165  *
2166  * Returns the ancestor rproc instance, or NULL if not found.
2167  */
2168 struct rproc *rproc_get_by_child(struct device *dev)
2169 {
2170 	for (dev = dev->parent; dev; dev = dev->parent) {
2171 		if (dev->type == &rproc_type)
2172 			return dev->driver_data;
2173 	}
2174 
2175 	return NULL;
2176 }
2177 EXPORT_SYMBOL(rproc_get_by_child);
2178 
2179 /**
2180  * rproc_report_crash() - rproc crash reporter function
2181  * @rproc: remote processor
2182  * @type: crash type
2183  *
2184  * This function must be called every time a crash is detected by the low-level
2185  * drivers implementing a specific remoteproc. This should not be called from a
2186  * non-remoteproc driver.
2187  *
2188  * This function can be called from atomic/interrupt context.
2189  */
2190 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2191 {
2192 	if (!rproc) {
2193 		pr_err("NULL rproc pointer\n");
2194 		return;
2195 	}
2196 
2197 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2198 		rproc->name, rproc_crash_to_string(type));
2199 
2200 	/* create a new task to handle the error */
2201 	schedule_work(&rproc->crash_handler);
2202 }
2203 EXPORT_SYMBOL(rproc_report_crash);
2204 
2205 static int __init remoteproc_init(void)
2206 {
2207 	rproc_init_sysfs();
2208 	rproc_init_debugfs();
2209 
2210 	return 0;
2211 }
2212 module_init(remoteproc_init);
2213 
2214 static void __exit remoteproc_exit(void)
2215 {
2216 	ida_destroy(&rproc_dev_index);
2217 
2218 	rproc_exit_debugfs();
2219 	rproc_exit_sysfs();
2220 }
2221 module_exit(remoteproc_exit);
2222 
2223 MODULE_LICENSE("GPL v2");
2224 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2225