1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Remote Processor Framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Copyright (C) 2011 Google, Inc. 7 * 8 * Ohad Ben-Cohen <ohad@wizery.com> 9 * Brian Swetland <swetland@google.com> 10 * Mark Grosen <mgrosen@ti.com> 11 * Fernando Guzman Lugo <fernando.lugo@ti.com> 12 * Suman Anna <s-anna@ti.com> 13 * Robert Tivy <rtivy@ti.com> 14 * Armando Uribe De Leon <x0095078@ti.com> 15 */ 16 17 #define pr_fmt(fmt) "%s: " fmt, __func__ 18 19 #include <linux/delay.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/panic_notifier.h> 24 #include <linux/slab.h> 25 #include <linux/mutex.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/firmware.h> 28 #include <linux/string.h> 29 #include <linux/debugfs.h> 30 #include <linux/rculist.h> 31 #include <linux/remoteproc.h> 32 #include <linux/iommu.h> 33 #include <linux/idr.h> 34 #include <linux/elf.h> 35 #include <linux/crc32.h> 36 #include <linux/of_reserved_mem.h> 37 #include <linux/virtio_ids.h> 38 #include <linux/virtio_ring.h> 39 #include <asm/byteorder.h> 40 #include <linux/platform_device.h> 41 42 #include "remoteproc_internal.h" 43 44 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL 45 46 static DEFINE_MUTEX(rproc_list_mutex); 47 static LIST_HEAD(rproc_list); 48 static struct notifier_block rproc_panic_nb; 49 50 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 51 void *, int offset, int avail); 52 53 static int rproc_alloc_carveout(struct rproc *rproc, 54 struct rproc_mem_entry *mem); 55 static int rproc_release_carveout(struct rproc *rproc, 56 struct rproc_mem_entry *mem); 57 58 /* Unique indices for remoteproc devices */ 59 static DEFINE_IDA(rproc_dev_index); 60 static struct workqueue_struct *rproc_recovery_wq; 61 62 static const char * const rproc_crash_names[] = { 63 [RPROC_MMUFAULT] = "mmufault", 64 [RPROC_WATCHDOG] = "watchdog", 65 [RPROC_FATAL_ERROR] = "fatal error", 66 }; 67 68 /* translate rproc_crash_type to string */ 69 static const char *rproc_crash_to_string(enum rproc_crash_type type) 70 { 71 if (type < ARRAY_SIZE(rproc_crash_names)) 72 return rproc_crash_names[type]; 73 return "unknown"; 74 } 75 76 /* 77 * This is the IOMMU fault handler we register with the IOMMU API 78 * (when relevant; not all remote processors access memory through 79 * an IOMMU). 80 * 81 * IOMMU core will invoke this handler whenever the remote processor 82 * will try to access an unmapped device address. 83 */ 84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 85 unsigned long iova, int flags, void *token) 86 { 87 struct rproc *rproc = token; 88 89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 90 91 rproc_report_crash(rproc, RPROC_MMUFAULT); 92 93 /* 94 * Let the iommu core know we're not really handling this fault; 95 * we just used it as a recovery trigger. 96 */ 97 return -ENOSYS; 98 } 99 100 static int rproc_enable_iommu(struct rproc *rproc) 101 { 102 struct iommu_domain *domain; 103 struct device *dev = rproc->dev.parent; 104 int ret; 105 106 if (!rproc->has_iommu) { 107 dev_dbg(dev, "iommu not present\n"); 108 return 0; 109 } 110 111 domain = iommu_domain_alloc(dev->bus); 112 if (!domain) { 113 dev_err(dev, "can't alloc iommu domain\n"); 114 return -ENOMEM; 115 } 116 117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 118 119 ret = iommu_attach_device(domain, dev); 120 if (ret) { 121 dev_err(dev, "can't attach iommu device: %d\n", ret); 122 goto free_domain; 123 } 124 125 rproc->domain = domain; 126 127 return 0; 128 129 free_domain: 130 iommu_domain_free(domain); 131 return ret; 132 } 133 134 static void rproc_disable_iommu(struct rproc *rproc) 135 { 136 struct iommu_domain *domain = rproc->domain; 137 struct device *dev = rproc->dev.parent; 138 139 if (!domain) 140 return; 141 142 iommu_detach_device(domain, dev); 143 iommu_domain_free(domain); 144 } 145 146 phys_addr_t rproc_va_to_pa(void *cpu_addr) 147 { 148 /* 149 * Return physical address according to virtual address location 150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent 151 * - in kernel: if region allocated in generic dma memory pool 152 */ 153 if (is_vmalloc_addr(cpu_addr)) { 154 return page_to_phys(vmalloc_to_page(cpu_addr)) + 155 offset_in_page(cpu_addr); 156 } 157 158 WARN_ON(!virt_addr_valid(cpu_addr)); 159 return virt_to_phys(cpu_addr); 160 } 161 EXPORT_SYMBOL(rproc_va_to_pa); 162 163 /** 164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 165 * @rproc: handle of a remote processor 166 * @da: remoteproc device address to translate 167 * @len: length of the memory region @da is pointing to 168 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory 169 * 170 * Some remote processors will ask us to allocate them physically contiguous 171 * memory regions (which we call "carveouts"), and map them to specific 172 * device addresses (which are hardcoded in the firmware). They may also have 173 * dedicated memory regions internal to the processors, and use them either 174 * exclusively or alongside carveouts. 175 * 176 * They may then ask us to copy objects into specific device addresses (e.g. 177 * code/data sections) or expose us certain symbols in other device address 178 * (e.g. their trace buffer). 179 * 180 * This function is a helper function with which we can go over the allocated 181 * carveouts and translate specific device addresses to kernel virtual addresses 182 * so we can access the referenced memory. This function also allows to perform 183 * translations on the internal remoteproc memory regions through a platform 184 * implementation specific da_to_va ops, if present. 185 * 186 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 187 * but only on kernel direct mapped RAM memory. Instead, we're just using 188 * here the output of the DMA API for the carveouts, which should be more 189 * correct. 190 * 191 * Return: a valid kernel address on success or NULL on failure 192 */ 193 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 194 { 195 struct rproc_mem_entry *carveout; 196 void *ptr = NULL; 197 198 if (rproc->ops->da_to_va) { 199 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem); 200 if (ptr) 201 goto out; 202 } 203 204 list_for_each_entry(carveout, &rproc->carveouts, node) { 205 int offset = da - carveout->da; 206 207 /* Verify that carveout is allocated */ 208 if (!carveout->va) 209 continue; 210 211 /* try next carveout if da is too small */ 212 if (offset < 0) 213 continue; 214 215 /* try next carveout if da is too large */ 216 if (offset + len > carveout->len) 217 continue; 218 219 ptr = carveout->va + offset; 220 221 if (is_iomem) 222 *is_iomem = carveout->is_iomem; 223 224 break; 225 } 226 227 out: 228 return ptr; 229 } 230 EXPORT_SYMBOL(rproc_da_to_va); 231 232 /** 233 * rproc_find_carveout_by_name() - lookup the carveout region by a name 234 * @rproc: handle of a remote processor 235 * @name: carveout name to find (format string) 236 * @...: optional parameters matching @name string 237 * 238 * Platform driver has the capability to register some pre-allacoted carveout 239 * (physically contiguous memory regions) before rproc firmware loading and 240 * associated resource table analysis. These regions may be dedicated memory 241 * regions internal to the coprocessor or specified DDR region with specific 242 * attributes 243 * 244 * This function is a helper function with which we can go over the 245 * allocated carveouts and return associated region characteristics like 246 * coprocessor address, length or processor virtual address. 247 * 248 * Return: a valid pointer on carveout entry on success or NULL on failure. 249 */ 250 __printf(2, 3) 251 struct rproc_mem_entry * 252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) 253 { 254 va_list args; 255 char _name[32]; 256 struct rproc_mem_entry *carveout, *mem = NULL; 257 258 if (!name) 259 return NULL; 260 261 va_start(args, name); 262 vsnprintf(_name, sizeof(_name), name, args); 263 va_end(args); 264 265 list_for_each_entry(carveout, &rproc->carveouts, node) { 266 /* Compare carveout and requested names */ 267 if (!strcmp(carveout->name, _name)) { 268 mem = carveout; 269 break; 270 } 271 } 272 273 return mem; 274 } 275 276 /** 277 * rproc_check_carveout_da() - Check specified carveout da configuration 278 * @rproc: handle of a remote processor 279 * @mem: pointer on carveout to check 280 * @da: area device address 281 * @len: associated area size 282 * 283 * This function is a helper function to verify requested device area (couple 284 * da, len) is part of specified carveout. 285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is 286 * checked. 287 * 288 * Return: 0 if carveout matches request else error 289 */ 290 static int rproc_check_carveout_da(struct rproc *rproc, 291 struct rproc_mem_entry *mem, u32 da, u32 len) 292 { 293 struct device *dev = &rproc->dev; 294 int delta; 295 296 /* Check requested resource length */ 297 if (len > mem->len) { 298 dev_err(dev, "Registered carveout doesn't fit len request\n"); 299 return -EINVAL; 300 } 301 302 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { 303 /* Address doesn't match registered carveout configuration */ 304 return -EINVAL; 305 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { 306 delta = da - mem->da; 307 308 /* Check requested resource belongs to registered carveout */ 309 if (delta < 0) { 310 dev_err(dev, 311 "Registered carveout doesn't fit da request\n"); 312 return -EINVAL; 313 } 314 315 if (delta + len > mem->len) { 316 dev_err(dev, 317 "Registered carveout doesn't fit len request\n"); 318 return -EINVAL; 319 } 320 } 321 322 return 0; 323 } 324 325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 326 { 327 struct rproc *rproc = rvdev->rproc; 328 struct device *dev = &rproc->dev; 329 struct rproc_vring *rvring = &rvdev->vring[i]; 330 struct fw_rsc_vdev *rsc; 331 int ret, notifyid; 332 struct rproc_mem_entry *mem; 333 size_t size; 334 335 /* actual size of vring (in bytes) */ 336 size = PAGE_ALIGN(vring_size(rvring->num, rvring->align)); 337 338 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 339 340 /* Search for pre-registered carveout */ 341 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, 342 i); 343 if (mem) { 344 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) 345 return -ENOMEM; 346 } else { 347 /* Register carveout in list */ 348 mem = rproc_mem_entry_init(dev, NULL, 0, 349 size, rsc->vring[i].da, 350 rproc_alloc_carveout, 351 rproc_release_carveout, 352 "vdev%dvring%d", 353 rvdev->index, i); 354 if (!mem) { 355 dev_err(dev, "Can't allocate memory entry structure\n"); 356 return -ENOMEM; 357 } 358 359 rproc_add_carveout(rproc, mem); 360 } 361 362 /* 363 * Assign an rproc-wide unique index for this vring 364 * TODO: assign a notifyid for rvdev updates as well 365 * TODO: support predefined notifyids (via resource table) 366 */ 367 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 368 if (ret < 0) { 369 dev_err(dev, "idr_alloc failed: %d\n", ret); 370 return ret; 371 } 372 notifyid = ret; 373 374 /* Potentially bump max_notifyid */ 375 if (notifyid > rproc->max_notifyid) 376 rproc->max_notifyid = notifyid; 377 378 rvring->notifyid = notifyid; 379 380 /* Let the rproc know the notifyid of this vring.*/ 381 rsc->vring[i].notifyid = notifyid; 382 return 0; 383 } 384 385 int 386 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 387 { 388 struct rproc *rproc = rvdev->rproc; 389 struct device *dev = &rproc->dev; 390 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 391 struct rproc_vring *rvring = &rvdev->vring[i]; 392 393 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 394 i, vring->da, vring->num, vring->align); 395 396 /* verify queue size and vring alignment are sane */ 397 if (!vring->num || !vring->align) { 398 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 399 vring->num, vring->align); 400 return -EINVAL; 401 } 402 403 rvring->num = vring->num; 404 rvring->align = vring->align; 405 rvring->rvdev = rvdev; 406 407 return 0; 408 } 409 410 void rproc_free_vring(struct rproc_vring *rvring) 411 { 412 struct rproc *rproc = rvring->rvdev->rproc; 413 int idx = rvring - rvring->rvdev->vring; 414 struct fw_rsc_vdev *rsc; 415 416 idr_remove(&rproc->notifyids, rvring->notifyid); 417 418 /* 419 * At this point rproc_stop() has been called and the installed resource 420 * table in the remote processor memory may no longer be accessible. As 421 * such and as per rproc_stop(), rproc->table_ptr points to the cached 422 * resource table (rproc->cached_table). The cached resource table is 423 * only available when a remote processor has been booted by the 424 * remoteproc core, otherwise it is NULL. 425 * 426 * Based on the above, reset the virtio device section in the cached 427 * resource table only if there is one to work with. 428 */ 429 if (rproc->table_ptr) { 430 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 431 rsc->vring[idx].da = 0; 432 rsc->vring[idx].notifyid = -1; 433 } 434 } 435 436 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev) 437 { 438 if (rvdev && rproc) 439 list_add_tail(&rvdev->node, &rproc->rvdevs); 440 } 441 442 void rproc_remove_rvdev(struct rproc_vdev *rvdev) 443 { 444 if (rvdev) 445 list_del(&rvdev->node); 446 } 447 /** 448 * rproc_handle_vdev() - handle a vdev fw resource 449 * @rproc: the remote processor 450 * @ptr: the vring resource descriptor 451 * @offset: offset of the resource entry 452 * @avail: size of available data (for sanity checking the image) 453 * 454 * This resource entry requests the host to statically register a virtio 455 * device (vdev), and setup everything needed to support it. It contains 456 * everything needed to make it possible: the virtio device id, virtio 457 * device features, vrings information, virtio config space, etc... 458 * 459 * Before registering the vdev, the vrings are allocated from non-cacheable 460 * physically contiguous memory. Currently we only support two vrings per 461 * remote processor (temporary limitation). We might also want to consider 462 * doing the vring allocation only later when ->find_vqs() is invoked, and 463 * then release them upon ->del_vqs(). 464 * 465 * Note: @da is currently not really handled correctly: we dynamically 466 * allocate it using the DMA API, ignoring requested hard coded addresses, 467 * and we don't take care of any required IOMMU programming. This is all 468 * going to be taken care of when the generic iommu-based DMA API will be 469 * merged. Meanwhile, statically-addressed iommu-based firmware images should 470 * use RSC_DEVMEM resource entries to map their required @da to the physical 471 * address of their base CMA region (ouch, hacky!). 472 * 473 * Return: 0 on success, or an appropriate error code otherwise 474 */ 475 static int rproc_handle_vdev(struct rproc *rproc, void *ptr, 476 int offset, int avail) 477 { 478 struct fw_rsc_vdev *rsc = ptr; 479 struct device *dev = &rproc->dev; 480 struct rproc_vdev *rvdev; 481 size_t rsc_size; 482 struct rproc_vdev_data rvdev_data; 483 struct platform_device *pdev; 484 485 /* make sure resource isn't truncated */ 486 rsc_size = struct_size(rsc, vring, rsc->num_of_vrings); 487 if (size_add(rsc_size, rsc->config_len) > avail) { 488 dev_err(dev, "vdev rsc is truncated\n"); 489 return -EINVAL; 490 } 491 492 /* make sure reserved bytes are zeroes */ 493 if (rsc->reserved[0] || rsc->reserved[1]) { 494 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 495 return -EINVAL; 496 } 497 498 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 499 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 500 501 /* we currently support only two vrings per rvdev */ 502 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 503 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 504 return -EINVAL; 505 } 506 507 rvdev_data.id = rsc->id; 508 rvdev_data.index = rproc->nb_vdev++; 509 rvdev_data.rsc_offset = offset; 510 rvdev_data.rsc = rsc; 511 512 /* 513 * When there is more than one remote processor, rproc->nb_vdev number is 514 * same for each separate instances of "rproc". If rvdev_data.index is used 515 * as device id, then we get duplication in sysfs, so need to use 516 * PLATFORM_DEVID_AUTO to auto select device id. 517 */ 518 pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data, 519 sizeof(rvdev_data)); 520 if (IS_ERR(pdev)) { 521 dev_err(dev, "failed to create rproc-virtio device\n"); 522 return PTR_ERR(pdev); 523 } 524 525 return 0; 526 } 527 528 /** 529 * rproc_handle_trace() - handle a shared trace buffer resource 530 * @rproc: the remote processor 531 * @ptr: the trace resource descriptor 532 * @offset: offset of the resource entry 533 * @avail: size of available data (for sanity checking the image) 534 * 535 * In case the remote processor dumps trace logs into memory, 536 * export it via debugfs. 537 * 538 * Currently, the 'da' member of @rsc should contain the device address 539 * where the remote processor is dumping the traces. Later we could also 540 * support dynamically allocating this address using the generic 541 * DMA API (but currently there isn't a use case for that). 542 * 543 * Return: 0 on success, or an appropriate error code otherwise 544 */ 545 static int rproc_handle_trace(struct rproc *rproc, void *ptr, 546 int offset, int avail) 547 { 548 struct fw_rsc_trace *rsc = ptr; 549 struct rproc_debug_trace *trace; 550 struct device *dev = &rproc->dev; 551 char name[15]; 552 553 if (sizeof(*rsc) > avail) { 554 dev_err(dev, "trace rsc is truncated\n"); 555 return -EINVAL; 556 } 557 558 /* make sure reserved bytes are zeroes */ 559 if (rsc->reserved) { 560 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 561 return -EINVAL; 562 } 563 564 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 565 if (!trace) 566 return -ENOMEM; 567 568 /* set the trace buffer dma properties */ 569 trace->trace_mem.len = rsc->len; 570 trace->trace_mem.da = rsc->da; 571 572 /* set pointer on rproc device */ 573 trace->rproc = rproc; 574 575 /* make sure snprintf always null terminates, even if truncating */ 576 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 577 578 /* create the debugfs entry */ 579 trace->tfile = rproc_create_trace_file(name, rproc, trace); 580 581 list_add_tail(&trace->node, &rproc->traces); 582 583 rproc->num_traces++; 584 585 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", 586 name, rsc->da, rsc->len); 587 588 return 0; 589 } 590 591 /** 592 * rproc_handle_devmem() - handle devmem resource entry 593 * @rproc: remote processor handle 594 * @ptr: the devmem resource entry 595 * @offset: offset of the resource entry 596 * @avail: size of available data (for sanity checking the image) 597 * 598 * Remote processors commonly need to access certain on-chip peripherals. 599 * 600 * Some of these remote processors access memory via an iommu device, 601 * and might require us to configure their iommu before they can access 602 * the on-chip peripherals they need. 603 * 604 * This resource entry is a request to map such a peripheral device. 605 * 606 * These devmem entries will contain the physical address of the device in 607 * the 'pa' member. If a specific device address is expected, then 'da' will 608 * contain it (currently this is the only use case supported). 'len' will 609 * contain the size of the physical region we need to map. 610 * 611 * Currently we just "trust" those devmem entries to contain valid physical 612 * addresses, but this is going to change: we want the implementations to 613 * tell us ranges of physical addresses the firmware is allowed to request, 614 * and not allow firmwares to request access to physical addresses that 615 * are outside those ranges. 616 * 617 * Return: 0 on success, or an appropriate error code otherwise 618 */ 619 static int rproc_handle_devmem(struct rproc *rproc, void *ptr, 620 int offset, int avail) 621 { 622 struct fw_rsc_devmem *rsc = ptr; 623 struct rproc_mem_entry *mapping; 624 struct device *dev = &rproc->dev; 625 int ret; 626 627 /* no point in handling this resource without a valid iommu domain */ 628 if (!rproc->domain) 629 return -EINVAL; 630 631 if (sizeof(*rsc) > avail) { 632 dev_err(dev, "devmem rsc is truncated\n"); 633 return -EINVAL; 634 } 635 636 /* make sure reserved bytes are zeroes */ 637 if (rsc->reserved) { 638 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 639 return -EINVAL; 640 } 641 642 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 643 if (!mapping) 644 return -ENOMEM; 645 646 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags, 647 GFP_KERNEL); 648 if (ret) { 649 dev_err(dev, "failed to map devmem: %d\n", ret); 650 goto out; 651 } 652 653 /* 654 * We'll need this info later when we'll want to unmap everything 655 * (e.g. on shutdown). 656 * 657 * We can't trust the remote processor not to change the resource 658 * table, so we must maintain this info independently. 659 */ 660 mapping->da = rsc->da; 661 mapping->len = rsc->len; 662 list_add_tail(&mapping->node, &rproc->mappings); 663 664 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 665 rsc->pa, rsc->da, rsc->len); 666 667 return 0; 668 669 out: 670 kfree(mapping); 671 return ret; 672 } 673 674 /** 675 * rproc_alloc_carveout() - allocated specified carveout 676 * @rproc: rproc handle 677 * @mem: the memory entry to allocate 678 * 679 * This function allocate specified memory entry @mem using 680 * dma_alloc_coherent() as default allocator 681 * 682 * Return: 0 on success, or an appropriate error code otherwise 683 */ 684 static int rproc_alloc_carveout(struct rproc *rproc, 685 struct rproc_mem_entry *mem) 686 { 687 struct rproc_mem_entry *mapping = NULL; 688 struct device *dev = &rproc->dev; 689 dma_addr_t dma; 690 void *va; 691 int ret; 692 693 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); 694 if (!va) { 695 dev_err(dev->parent, 696 "failed to allocate dma memory: len 0x%zx\n", 697 mem->len); 698 return -ENOMEM; 699 } 700 701 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", 702 va, &dma, mem->len); 703 704 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { 705 /* 706 * Check requested da is equal to dma address 707 * and print a warn message in case of missalignment. 708 * Don't stop rproc_start sequence as coprocessor may 709 * build pa to da translation on its side. 710 */ 711 if (mem->da != (u32)dma) 712 dev_warn(dev->parent, 713 "Allocated carveout doesn't fit device address request\n"); 714 } 715 716 /* 717 * Ok, this is non-standard. 718 * 719 * Sometimes we can't rely on the generic iommu-based DMA API 720 * to dynamically allocate the device address and then set the IOMMU 721 * tables accordingly, because some remote processors might 722 * _require_ us to use hard coded device addresses that their 723 * firmware was compiled with. 724 * 725 * In this case, we must use the IOMMU API directly and map 726 * the memory to the device address as expected by the remote 727 * processor. 728 * 729 * Obviously such remote processor devices should not be configured 730 * to use the iommu-based DMA API: we expect 'dma' to contain the 731 * physical address in this case. 732 */ 733 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { 734 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 735 if (!mapping) { 736 ret = -ENOMEM; 737 goto dma_free; 738 } 739 740 ret = iommu_map(rproc->domain, mem->da, dma, mem->len, 741 mem->flags, GFP_KERNEL); 742 if (ret) { 743 dev_err(dev, "iommu_map failed: %d\n", ret); 744 goto free_mapping; 745 } 746 747 /* 748 * We'll need this info later when we'll want to unmap 749 * everything (e.g. on shutdown). 750 * 751 * We can't trust the remote processor not to change the 752 * resource table, so we must maintain this info independently. 753 */ 754 mapping->da = mem->da; 755 mapping->len = mem->len; 756 list_add_tail(&mapping->node, &rproc->mappings); 757 758 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 759 mem->da, &dma); 760 } 761 762 if (mem->da == FW_RSC_ADDR_ANY) { 763 /* Update device address as undefined by requester */ 764 if ((u64)dma & HIGH_BITS_MASK) 765 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); 766 767 mem->da = (u32)dma; 768 } 769 770 mem->dma = dma; 771 mem->va = va; 772 773 return 0; 774 775 free_mapping: 776 kfree(mapping); 777 dma_free: 778 dma_free_coherent(dev->parent, mem->len, va, dma); 779 return ret; 780 } 781 782 /** 783 * rproc_release_carveout() - release acquired carveout 784 * @rproc: rproc handle 785 * @mem: the memory entry to release 786 * 787 * This function releases specified memory entry @mem allocated via 788 * rproc_alloc_carveout() function by @rproc. 789 * 790 * Return: 0 on success, or an appropriate error code otherwise 791 */ 792 static int rproc_release_carveout(struct rproc *rproc, 793 struct rproc_mem_entry *mem) 794 { 795 struct device *dev = &rproc->dev; 796 797 /* clean up carveout allocations */ 798 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); 799 return 0; 800 } 801 802 /** 803 * rproc_handle_carveout() - handle phys contig memory allocation requests 804 * @rproc: rproc handle 805 * @ptr: the resource entry 806 * @offset: offset of the resource entry 807 * @avail: size of available data (for image validation) 808 * 809 * This function will handle firmware requests for allocation of physically 810 * contiguous memory regions. 811 * 812 * These request entries should come first in the firmware's resource table, 813 * as other firmware entries might request placing other data objects inside 814 * these memory regions (e.g. data/code segments, trace resource entries, ...). 815 * 816 * Allocating memory this way helps utilizing the reserved physical memory 817 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 818 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 819 * pressure is important; it may have a substantial impact on performance. 820 * 821 * Return: 0 on success, or an appropriate error code otherwise 822 */ 823 static int rproc_handle_carveout(struct rproc *rproc, 824 void *ptr, int offset, int avail) 825 { 826 struct fw_rsc_carveout *rsc = ptr; 827 struct rproc_mem_entry *carveout; 828 struct device *dev = &rproc->dev; 829 830 if (sizeof(*rsc) > avail) { 831 dev_err(dev, "carveout rsc is truncated\n"); 832 return -EINVAL; 833 } 834 835 /* make sure reserved bytes are zeroes */ 836 if (rsc->reserved) { 837 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 838 return -EINVAL; 839 } 840 841 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 842 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 843 844 /* 845 * Check carveout rsc already part of a registered carveout, 846 * Search by name, then check the da and length 847 */ 848 carveout = rproc_find_carveout_by_name(rproc, rsc->name); 849 850 if (carveout) { 851 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { 852 dev_err(dev, 853 "Carveout already associated to resource table\n"); 854 return -ENOMEM; 855 } 856 857 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) 858 return -ENOMEM; 859 860 /* Update memory carveout with resource table info */ 861 carveout->rsc_offset = offset; 862 carveout->flags = rsc->flags; 863 864 return 0; 865 } 866 867 /* Register carveout in list */ 868 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, 869 rproc_alloc_carveout, 870 rproc_release_carveout, rsc->name); 871 if (!carveout) { 872 dev_err(dev, "Can't allocate memory entry structure\n"); 873 return -ENOMEM; 874 } 875 876 carveout->flags = rsc->flags; 877 carveout->rsc_offset = offset; 878 rproc_add_carveout(rproc, carveout); 879 880 return 0; 881 } 882 883 /** 884 * rproc_add_carveout() - register an allocated carveout region 885 * @rproc: rproc handle 886 * @mem: memory entry to register 887 * 888 * This function registers specified memory entry in @rproc carveouts list. 889 * Specified carveout should have been allocated before registering. 890 */ 891 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) 892 { 893 list_add_tail(&mem->node, &rproc->carveouts); 894 } 895 EXPORT_SYMBOL(rproc_add_carveout); 896 897 /** 898 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct 899 * @dev: pointer on device struct 900 * @va: virtual address 901 * @dma: dma address 902 * @len: memory carveout length 903 * @da: device address 904 * @alloc: memory carveout allocation function 905 * @release: memory carveout release function 906 * @name: carveout name 907 * 908 * This function allocates a rproc_mem_entry struct and fill it with parameters 909 * provided by client. 910 * 911 * Return: a valid pointer on success, or NULL on failure 912 */ 913 __printf(8, 9) 914 struct rproc_mem_entry * 915 rproc_mem_entry_init(struct device *dev, 916 void *va, dma_addr_t dma, size_t len, u32 da, 917 int (*alloc)(struct rproc *, struct rproc_mem_entry *), 918 int (*release)(struct rproc *, struct rproc_mem_entry *), 919 const char *name, ...) 920 { 921 struct rproc_mem_entry *mem; 922 va_list args; 923 924 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 925 if (!mem) 926 return mem; 927 928 mem->va = va; 929 mem->dma = dma; 930 mem->da = da; 931 mem->len = len; 932 mem->alloc = alloc; 933 mem->release = release; 934 mem->rsc_offset = FW_RSC_ADDR_ANY; 935 mem->of_resm_idx = -1; 936 937 va_start(args, name); 938 vsnprintf(mem->name, sizeof(mem->name), name, args); 939 va_end(args); 940 941 return mem; 942 } 943 EXPORT_SYMBOL(rproc_mem_entry_init); 944 945 /** 946 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct 947 * from a reserved memory phandle 948 * @dev: pointer on device struct 949 * @of_resm_idx: reserved memory phandle index in "memory-region" 950 * @len: memory carveout length 951 * @da: device address 952 * @name: carveout name 953 * 954 * This function allocates a rproc_mem_entry struct and fill it with parameters 955 * provided by client. 956 * 957 * Return: a valid pointer on success, or NULL on failure 958 */ 959 __printf(5, 6) 960 struct rproc_mem_entry * 961 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, 962 u32 da, const char *name, ...) 963 { 964 struct rproc_mem_entry *mem; 965 va_list args; 966 967 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 968 if (!mem) 969 return mem; 970 971 mem->da = da; 972 mem->len = len; 973 mem->rsc_offset = FW_RSC_ADDR_ANY; 974 mem->of_resm_idx = of_resm_idx; 975 976 va_start(args, name); 977 vsnprintf(mem->name, sizeof(mem->name), name, args); 978 va_end(args); 979 980 return mem; 981 } 982 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); 983 984 /** 985 * rproc_of_parse_firmware() - parse and return the firmware-name 986 * @dev: pointer on device struct representing a rproc 987 * @index: index to use for the firmware-name retrieval 988 * @fw_name: pointer to a character string, in which the firmware 989 * name is returned on success and unmodified otherwise. 990 * 991 * This is an OF helper function that parses a device's DT node for 992 * the "firmware-name" property and returns the firmware name pointer 993 * in @fw_name on success. 994 * 995 * Return: 0 on success, or an appropriate failure. 996 */ 997 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) 998 { 999 int ret; 1000 1001 ret = of_property_read_string_index(dev->of_node, "firmware-name", 1002 index, fw_name); 1003 return ret ? ret : 0; 1004 } 1005 EXPORT_SYMBOL(rproc_of_parse_firmware); 1006 1007 /* 1008 * A lookup table for resource handlers. The indices are defined in 1009 * enum fw_resource_type. 1010 */ 1011 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 1012 [RSC_CARVEOUT] = rproc_handle_carveout, 1013 [RSC_DEVMEM] = rproc_handle_devmem, 1014 [RSC_TRACE] = rproc_handle_trace, 1015 [RSC_VDEV] = rproc_handle_vdev, 1016 }; 1017 1018 /* handle firmware resource entries before booting the remote processor */ 1019 static int rproc_handle_resources(struct rproc *rproc, 1020 rproc_handle_resource_t handlers[RSC_LAST]) 1021 { 1022 struct device *dev = &rproc->dev; 1023 rproc_handle_resource_t handler; 1024 int ret = 0, i; 1025 1026 if (!rproc->table_ptr) 1027 return 0; 1028 1029 for (i = 0; i < rproc->table_ptr->num; i++) { 1030 int offset = rproc->table_ptr->offset[i]; 1031 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 1032 int avail = rproc->table_sz - offset - sizeof(*hdr); 1033 void *rsc = (void *)hdr + sizeof(*hdr); 1034 1035 /* make sure table isn't truncated */ 1036 if (avail < 0) { 1037 dev_err(dev, "rsc table is truncated\n"); 1038 return -EINVAL; 1039 } 1040 1041 dev_dbg(dev, "rsc: type %d\n", hdr->type); 1042 1043 if (hdr->type >= RSC_VENDOR_START && 1044 hdr->type <= RSC_VENDOR_END) { 1045 ret = rproc_handle_rsc(rproc, hdr->type, rsc, 1046 offset + sizeof(*hdr), avail); 1047 if (ret == RSC_HANDLED) 1048 continue; 1049 else if (ret < 0) 1050 break; 1051 1052 dev_warn(dev, "unsupported vendor resource %d\n", 1053 hdr->type); 1054 continue; 1055 } 1056 1057 if (hdr->type >= RSC_LAST) { 1058 dev_warn(dev, "unsupported resource %d\n", hdr->type); 1059 continue; 1060 } 1061 1062 handler = handlers[hdr->type]; 1063 if (!handler) 1064 continue; 1065 1066 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 1067 if (ret) 1068 break; 1069 } 1070 1071 return ret; 1072 } 1073 1074 static int rproc_prepare_subdevices(struct rproc *rproc) 1075 { 1076 struct rproc_subdev *subdev; 1077 int ret; 1078 1079 list_for_each_entry(subdev, &rproc->subdevs, node) { 1080 if (subdev->prepare) { 1081 ret = subdev->prepare(subdev); 1082 if (ret) 1083 goto unroll_preparation; 1084 } 1085 } 1086 1087 return 0; 1088 1089 unroll_preparation: 1090 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1091 if (subdev->unprepare) 1092 subdev->unprepare(subdev); 1093 } 1094 1095 return ret; 1096 } 1097 1098 static int rproc_start_subdevices(struct rproc *rproc) 1099 { 1100 struct rproc_subdev *subdev; 1101 int ret; 1102 1103 list_for_each_entry(subdev, &rproc->subdevs, node) { 1104 if (subdev->start) { 1105 ret = subdev->start(subdev); 1106 if (ret) 1107 goto unroll_registration; 1108 } 1109 } 1110 1111 return 0; 1112 1113 unroll_registration: 1114 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { 1115 if (subdev->stop) 1116 subdev->stop(subdev, true); 1117 } 1118 1119 return ret; 1120 } 1121 1122 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) 1123 { 1124 struct rproc_subdev *subdev; 1125 1126 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1127 if (subdev->stop) 1128 subdev->stop(subdev, crashed); 1129 } 1130 } 1131 1132 static void rproc_unprepare_subdevices(struct rproc *rproc) 1133 { 1134 struct rproc_subdev *subdev; 1135 1136 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { 1137 if (subdev->unprepare) 1138 subdev->unprepare(subdev); 1139 } 1140 } 1141 1142 /** 1143 * rproc_alloc_registered_carveouts() - allocate all carveouts registered 1144 * in the list 1145 * @rproc: the remote processor handle 1146 * 1147 * This function parses registered carveout list, performs allocation 1148 * if alloc() ops registered and updates resource table information 1149 * if rsc_offset set. 1150 * 1151 * Return: 0 on success 1152 */ 1153 static int rproc_alloc_registered_carveouts(struct rproc *rproc) 1154 { 1155 struct rproc_mem_entry *entry, *tmp; 1156 struct fw_rsc_carveout *rsc; 1157 struct device *dev = &rproc->dev; 1158 u64 pa; 1159 int ret; 1160 1161 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1162 if (entry->alloc) { 1163 ret = entry->alloc(rproc, entry); 1164 if (ret) { 1165 dev_err(dev, "Unable to allocate carveout %s: %d\n", 1166 entry->name, ret); 1167 return -ENOMEM; 1168 } 1169 } 1170 1171 if (entry->rsc_offset != FW_RSC_ADDR_ANY) { 1172 /* update resource table */ 1173 rsc = (void *)rproc->table_ptr + entry->rsc_offset; 1174 1175 /* 1176 * Some remote processors might need to know the pa 1177 * even though they are behind an IOMMU. E.g., OMAP4's 1178 * remote M3 processor needs this so it can control 1179 * on-chip hardware accelerators that are not behind 1180 * the IOMMU, and therefor must know the pa. 1181 * 1182 * Generally we don't want to expose physical addresses 1183 * if we don't have to (remote processors are generally 1184 * _not_ trusted), so we might want to do this only for 1185 * remote processor that _must_ have this (e.g. OMAP4's 1186 * dual M3 subsystem). 1187 * 1188 * Non-IOMMU processors might also want to have this info. 1189 * In this case, the device address and the physical address 1190 * are the same. 1191 */ 1192 1193 /* Use va if defined else dma to generate pa */ 1194 if (entry->va) 1195 pa = (u64)rproc_va_to_pa(entry->va); 1196 else 1197 pa = (u64)entry->dma; 1198 1199 if (((u64)pa) & HIGH_BITS_MASK) 1200 dev_warn(dev, 1201 "Physical address cast in 32bit to fit resource table format\n"); 1202 1203 rsc->pa = (u32)pa; 1204 rsc->da = entry->da; 1205 rsc->len = entry->len; 1206 } 1207 } 1208 1209 return 0; 1210 } 1211 1212 1213 /** 1214 * rproc_resource_cleanup() - clean up and free all acquired resources 1215 * @rproc: rproc handle 1216 * 1217 * This function will free all resources acquired for @rproc, and it 1218 * is called whenever @rproc either shuts down or fails to boot. 1219 */ 1220 void rproc_resource_cleanup(struct rproc *rproc) 1221 { 1222 struct rproc_mem_entry *entry, *tmp; 1223 struct rproc_debug_trace *trace, *ttmp; 1224 struct rproc_vdev *rvdev, *rvtmp; 1225 struct device *dev = &rproc->dev; 1226 1227 /* clean up debugfs trace entries */ 1228 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { 1229 rproc_remove_trace_file(trace->tfile); 1230 rproc->num_traces--; 1231 list_del(&trace->node); 1232 kfree(trace); 1233 } 1234 1235 /* clean up iommu mapping entries */ 1236 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 1237 size_t unmapped; 1238 1239 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 1240 if (unmapped != entry->len) { 1241 /* nothing much to do besides complaining */ 1242 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, 1243 unmapped); 1244 } 1245 1246 list_del(&entry->node); 1247 kfree(entry); 1248 } 1249 1250 /* clean up carveout allocations */ 1251 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 1252 if (entry->release) 1253 entry->release(rproc, entry); 1254 list_del(&entry->node); 1255 kfree(entry); 1256 } 1257 1258 /* clean up remote vdev entries */ 1259 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 1260 platform_device_unregister(rvdev->pdev); 1261 1262 rproc_coredump_cleanup(rproc); 1263 } 1264 EXPORT_SYMBOL(rproc_resource_cleanup); 1265 1266 static int rproc_start(struct rproc *rproc, const struct firmware *fw) 1267 { 1268 struct resource_table *loaded_table; 1269 struct device *dev = &rproc->dev; 1270 int ret; 1271 1272 /* load the ELF segments to memory */ 1273 ret = rproc_load_segments(rproc, fw); 1274 if (ret) { 1275 dev_err(dev, "Failed to load program segments: %d\n", ret); 1276 return ret; 1277 } 1278 1279 /* 1280 * The starting device has been given the rproc->cached_table as the 1281 * resource table. The address of the vring along with the other 1282 * allocated resources (carveouts etc) is stored in cached_table. 1283 * In order to pass this information to the remote device we must copy 1284 * this information to device memory. We also update the table_ptr so 1285 * that any subsequent changes will be applied to the loaded version. 1286 */ 1287 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 1288 if (loaded_table) { 1289 memcpy(loaded_table, rproc->cached_table, rproc->table_sz); 1290 rproc->table_ptr = loaded_table; 1291 } 1292 1293 ret = rproc_prepare_subdevices(rproc); 1294 if (ret) { 1295 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1296 rproc->name, ret); 1297 goto reset_table_ptr; 1298 } 1299 1300 /* power up the remote processor */ 1301 ret = rproc->ops->start(rproc); 1302 if (ret) { 1303 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 1304 goto unprepare_subdevices; 1305 } 1306 1307 /* Start any subdevices for the remote processor */ 1308 ret = rproc_start_subdevices(rproc); 1309 if (ret) { 1310 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1311 rproc->name, ret); 1312 goto stop_rproc; 1313 } 1314 1315 rproc->state = RPROC_RUNNING; 1316 1317 dev_info(dev, "remote processor %s is now up\n", rproc->name); 1318 1319 return 0; 1320 1321 stop_rproc: 1322 rproc->ops->stop(rproc); 1323 unprepare_subdevices: 1324 rproc_unprepare_subdevices(rproc); 1325 reset_table_ptr: 1326 rproc->table_ptr = rproc->cached_table; 1327 1328 return ret; 1329 } 1330 1331 static int __rproc_attach(struct rproc *rproc) 1332 { 1333 struct device *dev = &rproc->dev; 1334 int ret; 1335 1336 ret = rproc_prepare_subdevices(rproc); 1337 if (ret) { 1338 dev_err(dev, "failed to prepare subdevices for %s: %d\n", 1339 rproc->name, ret); 1340 goto out; 1341 } 1342 1343 /* Attach to the remote processor */ 1344 ret = rproc_attach_device(rproc); 1345 if (ret) { 1346 dev_err(dev, "can't attach to rproc %s: %d\n", 1347 rproc->name, ret); 1348 goto unprepare_subdevices; 1349 } 1350 1351 /* Start any subdevices for the remote processor */ 1352 ret = rproc_start_subdevices(rproc); 1353 if (ret) { 1354 dev_err(dev, "failed to probe subdevices for %s: %d\n", 1355 rproc->name, ret); 1356 goto stop_rproc; 1357 } 1358 1359 rproc->state = RPROC_ATTACHED; 1360 1361 dev_info(dev, "remote processor %s is now attached\n", rproc->name); 1362 1363 return 0; 1364 1365 stop_rproc: 1366 rproc->ops->stop(rproc); 1367 unprepare_subdevices: 1368 rproc_unprepare_subdevices(rproc); 1369 out: 1370 return ret; 1371 } 1372 1373 /* 1374 * take a firmware and boot a remote processor with it. 1375 */ 1376 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 1377 { 1378 struct device *dev = &rproc->dev; 1379 const char *name = rproc->firmware; 1380 int ret; 1381 1382 ret = rproc_fw_sanity_check(rproc, fw); 1383 if (ret) 1384 return ret; 1385 1386 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 1387 1388 /* 1389 * if enabling an IOMMU isn't relevant for this rproc, this is 1390 * just a nop 1391 */ 1392 ret = rproc_enable_iommu(rproc); 1393 if (ret) { 1394 dev_err(dev, "can't enable iommu: %d\n", ret); 1395 return ret; 1396 } 1397 1398 /* Prepare rproc for firmware loading if needed */ 1399 ret = rproc_prepare_device(rproc); 1400 if (ret) { 1401 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1402 goto disable_iommu; 1403 } 1404 1405 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 1406 1407 /* Load resource table, core dump segment list etc from the firmware */ 1408 ret = rproc_parse_fw(rproc, fw); 1409 if (ret) 1410 goto unprepare_rproc; 1411 1412 /* reset max_notifyid */ 1413 rproc->max_notifyid = -1; 1414 1415 /* reset handled vdev */ 1416 rproc->nb_vdev = 0; 1417 1418 /* handle fw resources which are required to boot rproc */ 1419 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1420 if (ret) { 1421 dev_err(dev, "Failed to process resources: %d\n", ret); 1422 goto clean_up_resources; 1423 } 1424 1425 /* Allocate carveout resources associated to rproc */ 1426 ret = rproc_alloc_registered_carveouts(rproc); 1427 if (ret) { 1428 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1429 ret); 1430 goto clean_up_resources; 1431 } 1432 1433 ret = rproc_start(rproc, fw); 1434 if (ret) 1435 goto clean_up_resources; 1436 1437 return 0; 1438 1439 clean_up_resources: 1440 rproc_resource_cleanup(rproc); 1441 kfree(rproc->cached_table); 1442 rproc->cached_table = NULL; 1443 rproc->table_ptr = NULL; 1444 unprepare_rproc: 1445 /* release HW resources if needed */ 1446 rproc_unprepare_device(rproc); 1447 disable_iommu: 1448 rproc_disable_iommu(rproc); 1449 return ret; 1450 } 1451 1452 static int rproc_set_rsc_table(struct rproc *rproc) 1453 { 1454 struct resource_table *table_ptr; 1455 struct device *dev = &rproc->dev; 1456 size_t table_sz; 1457 int ret; 1458 1459 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); 1460 if (!table_ptr) { 1461 /* Not having a resource table is acceptable */ 1462 return 0; 1463 } 1464 1465 if (IS_ERR(table_ptr)) { 1466 ret = PTR_ERR(table_ptr); 1467 dev_err(dev, "can't load resource table: %d\n", ret); 1468 return ret; 1469 } 1470 1471 /* 1472 * If it is possible to detach the remote processor, keep an untouched 1473 * copy of the resource table. That way we can start fresh again when 1474 * the remote processor is re-attached, that is: 1475 * 1476 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED 1477 * 1478 * Free'd in rproc_reset_rsc_table_on_detach() and 1479 * rproc_reset_rsc_table_on_stop(). 1480 */ 1481 if (rproc->ops->detach) { 1482 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL); 1483 if (!rproc->clean_table) 1484 return -ENOMEM; 1485 } else { 1486 rproc->clean_table = NULL; 1487 } 1488 1489 rproc->cached_table = NULL; 1490 rproc->table_ptr = table_ptr; 1491 rproc->table_sz = table_sz; 1492 1493 return 0; 1494 } 1495 1496 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc) 1497 { 1498 struct resource_table *table_ptr; 1499 1500 /* A resource table was never retrieved, nothing to do here */ 1501 if (!rproc->table_ptr) 1502 return 0; 1503 1504 /* 1505 * If we made it to this point a clean_table _must_ have been 1506 * allocated in rproc_set_rsc_table(). If one isn't present 1507 * something went really wrong and we must complain. 1508 */ 1509 if (WARN_ON(!rproc->clean_table)) 1510 return -EINVAL; 1511 1512 /* Remember where the external entity installed the resource table */ 1513 table_ptr = rproc->table_ptr; 1514 1515 /* 1516 * If we made it here the remote processor was started by another 1517 * entity and a cache table doesn't exist. As such make a copy of 1518 * the resource table currently used by the remote processor and 1519 * use that for the rest of the shutdown process. The memory 1520 * allocated here is free'd in rproc_detach(). 1521 */ 1522 rproc->cached_table = kmemdup(rproc->table_ptr, 1523 rproc->table_sz, GFP_KERNEL); 1524 if (!rproc->cached_table) 1525 return -ENOMEM; 1526 1527 /* 1528 * Use a copy of the resource table for the remainder of the 1529 * shutdown process. 1530 */ 1531 rproc->table_ptr = rproc->cached_table; 1532 1533 /* 1534 * Reset the memory area where the firmware loaded the resource table 1535 * to its original value. That way when we re-attach the remote 1536 * processor the resource table is clean and ready to be used again. 1537 */ 1538 memcpy(table_ptr, rproc->clean_table, rproc->table_sz); 1539 1540 /* 1541 * The clean resource table is no longer needed. Allocated in 1542 * rproc_set_rsc_table(). 1543 */ 1544 kfree(rproc->clean_table); 1545 1546 return 0; 1547 } 1548 1549 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc) 1550 { 1551 /* A resource table was never retrieved, nothing to do here */ 1552 if (!rproc->table_ptr) 1553 return 0; 1554 1555 /* 1556 * If a cache table exists the remote processor was started by 1557 * the remoteproc core. That cache table should be used for 1558 * the rest of the shutdown process. 1559 */ 1560 if (rproc->cached_table) 1561 goto out; 1562 1563 /* 1564 * If we made it here the remote processor was started by another 1565 * entity and a cache table doesn't exist. As such make a copy of 1566 * the resource table currently used by the remote processor and 1567 * use that for the rest of the shutdown process. The memory 1568 * allocated here is free'd in rproc_shutdown(). 1569 */ 1570 rproc->cached_table = kmemdup(rproc->table_ptr, 1571 rproc->table_sz, GFP_KERNEL); 1572 if (!rproc->cached_table) 1573 return -ENOMEM; 1574 1575 /* 1576 * Since the remote processor is being switched off the clean table 1577 * won't be needed. Allocated in rproc_set_rsc_table(). 1578 */ 1579 kfree(rproc->clean_table); 1580 1581 out: 1582 /* 1583 * Use a copy of the resource table for the remainder of the 1584 * shutdown process. 1585 */ 1586 rproc->table_ptr = rproc->cached_table; 1587 return 0; 1588 } 1589 1590 /* 1591 * Attach to remote processor - similar to rproc_fw_boot() but without 1592 * the steps that deal with the firmware image. 1593 */ 1594 static int rproc_attach(struct rproc *rproc) 1595 { 1596 struct device *dev = &rproc->dev; 1597 int ret; 1598 1599 /* 1600 * if enabling an IOMMU isn't relevant for this rproc, this is 1601 * just a nop 1602 */ 1603 ret = rproc_enable_iommu(rproc); 1604 if (ret) { 1605 dev_err(dev, "can't enable iommu: %d\n", ret); 1606 return ret; 1607 } 1608 1609 /* Do anything that is needed to boot the remote processor */ 1610 ret = rproc_prepare_device(rproc); 1611 if (ret) { 1612 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); 1613 goto disable_iommu; 1614 } 1615 1616 ret = rproc_set_rsc_table(rproc); 1617 if (ret) { 1618 dev_err(dev, "can't load resource table: %d\n", ret); 1619 goto unprepare_device; 1620 } 1621 1622 /* reset max_notifyid */ 1623 rproc->max_notifyid = -1; 1624 1625 /* reset handled vdev */ 1626 rproc->nb_vdev = 0; 1627 1628 /* 1629 * Handle firmware resources required to attach to a remote processor. 1630 * Because we are attaching rather than booting the remote processor, 1631 * we expect the platform driver to properly set rproc->table_ptr. 1632 */ 1633 ret = rproc_handle_resources(rproc, rproc_loading_handlers); 1634 if (ret) { 1635 dev_err(dev, "Failed to process resources: %d\n", ret); 1636 goto unprepare_device; 1637 } 1638 1639 /* Allocate carveout resources associated to rproc */ 1640 ret = rproc_alloc_registered_carveouts(rproc); 1641 if (ret) { 1642 dev_err(dev, "Failed to allocate associated carveouts: %d\n", 1643 ret); 1644 goto clean_up_resources; 1645 } 1646 1647 ret = __rproc_attach(rproc); 1648 if (ret) 1649 goto clean_up_resources; 1650 1651 return 0; 1652 1653 clean_up_resources: 1654 rproc_resource_cleanup(rproc); 1655 unprepare_device: 1656 /* release HW resources if needed */ 1657 rproc_unprepare_device(rproc); 1658 disable_iommu: 1659 rproc_disable_iommu(rproc); 1660 return ret; 1661 } 1662 1663 /* 1664 * take a firmware and boot it up. 1665 * 1666 * Note: this function is called asynchronously upon registration of the 1667 * remote processor (so we must wait until it completes before we try 1668 * to unregister the device. one other option is just to use kref here, 1669 * that might be cleaner). 1670 */ 1671 static void rproc_auto_boot_callback(const struct firmware *fw, void *context) 1672 { 1673 struct rproc *rproc = context; 1674 1675 rproc_boot(rproc); 1676 1677 release_firmware(fw); 1678 } 1679 1680 static int rproc_trigger_auto_boot(struct rproc *rproc) 1681 { 1682 int ret; 1683 1684 /* 1685 * Since the remote processor is in a detached state, it has already 1686 * been booted by another entity. As such there is no point in waiting 1687 * for a firmware image to be loaded, we can simply initiate the process 1688 * of attaching to it immediately. 1689 */ 1690 if (rproc->state == RPROC_DETACHED) 1691 return rproc_boot(rproc); 1692 1693 /* 1694 * We're initiating an asynchronous firmware loading, so we can 1695 * be built-in kernel code, without hanging the boot process. 1696 */ 1697 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, 1698 rproc->firmware, &rproc->dev, GFP_KERNEL, 1699 rproc, rproc_auto_boot_callback); 1700 if (ret < 0) 1701 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1702 1703 return ret; 1704 } 1705 1706 static int rproc_stop(struct rproc *rproc, bool crashed) 1707 { 1708 struct device *dev = &rproc->dev; 1709 int ret; 1710 1711 /* No need to continue if a stop() operation has not been provided */ 1712 if (!rproc->ops->stop) 1713 return -EINVAL; 1714 1715 /* Stop any subdevices for the remote processor */ 1716 rproc_stop_subdevices(rproc, crashed); 1717 1718 /* the installed resource table is no longer accessible */ 1719 ret = rproc_reset_rsc_table_on_stop(rproc); 1720 if (ret) { 1721 dev_err(dev, "can't reset resource table: %d\n", ret); 1722 return ret; 1723 } 1724 1725 1726 /* power off the remote processor */ 1727 ret = rproc->ops->stop(rproc); 1728 if (ret) { 1729 dev_err(dev, "can't stop rproc: %d\n", ret); 1730 return ret; 1731 } 1732 1733 rproc_unprepare_subdevices(rproc); 1734 1735 rproc->state = RPROC_OFFLINE; 1736 1737 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1738 1739 return 0; 1740 } 1741 1742 /* 1743 * __rproc_detach(): Does the opposite of __rproc_attach() 1744 */ 1745 static int __rproc_detach(struct rproc *rproc) 1746 { 1747 struct device *dev = &rproc->dev; 1748 int ret; 1749 1750 /* No need to continue if a detach() operation has not been provided */ 1751 if (!rproc->ops->detach) 1752 return -EINVAL; 1753 1754 /* Stop any subdevices for the remote processor */ 1755 rproc_stop_subdevices(rproc, false); 1756 1757 /* the installed resource table is no longer accessible */ 1758 ret = rproc_reset_rsc_table_on_detach(rproc); 1759 if (ret) { 1760 dev_err(dev, "can't reset resource table: %d\n", ret); 1761 return ret; 1762 } 1763 1764 /* Tell the remote processor the core isn't available anymore */ 1765 ret = rproc->ops->detach(rproc); 1766 if (ret) { 1767 dev_err(dev, "can't detach from rproc: %d\n", ret); 1768 return ret; 1769 } 1770 1771 rproc_unprepare_subdevices(rproc); 1772 1773 rproc->state = RPROC_DETACHED; 1774 1775 dev_info(dev, "detached remote processor %s\n", rproc->name); 1776 1777 return 0; 1778 } 1779 1780 static int rproc_attach_recovery(struct rproc *rproc) 1781 { 1782 int ret; 1783 1784 ret = __rproc_detach(rproc); 1785 if (ret) 1786 return ret; 1787 1788 return __rproc_attach(rproc); 1789 } 1790 1791 static int rproc_boot_recovery(struct rproc *rproc) 1792 { 1793 const struct firmware *firmware_p; 1794 struct device *dev = &rproc->dev; 1795 int ret; 1796 1797 ret = rproc_stop(rproc, true); 1798 if (ret) 1799 return ret; 1800 1801 /* generate coredump */ 1802 rproc->ops->coredump(rproc); 1803 1804 /* load firmware */ 1805 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1806 if (ret < 0) { 1807 dev_err(dev, "request_firmware failed: %d\n", ret); 1808 return ret; 1809 } 1810 1811 /* boot the remote processor up again */ 1812 ret = rproc_start(rproc, firmware_p); 1813 1814 release_firmware(firmware_p); 1815 1816 return ret; 1817 } 1818 1819 /** 1820 * rproc_trigger_recovery() - recover a remoteproc 1821 * @rproc: the remote processor 1822 * 1823 * The recovery is done by resetting all the virtio devices, that way all the 1824 * rpmsg drivers will be reseted along with the remote processor making the 1825 * remoteproc functional again. 1826 * 1827 * This function can sleep, so it cannot be called from atomic context. 1828 * 1829 * Return: 0 on success or a negative value upon failure 1830 */ 1831 int rproc_trigger_recovery(struct rproc *rproc) 1832 { 1833 struct device *dev = &rproc->dev; 1834 int ret; 1835 1836 ret = mutex_lock_interruptible(&rproc->lock); 1837 if (ret) 1838 return ret; 1839 1840 /* State could have changed before we got the mutex */ 1841 if (rproc->state != RPROC_CRASHED) 1842 goto unlock_mutex; 1843 1844 dev_err(dev, "recovering %s\n", rproc->name); 1845 1846 if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY)) 1847 ret = rproc_attach_recovery(rproc); 1848 else 1849 ret = rproc_boot_recovery(rproc); 1850 1851 unlock_mutex: 1852 mutex_unlock(&rproc->lock); 1853 return ret; 1854 } 1855 1856 /** 1857 * rproc_crash_handler_work() - handle a crash 1858 * @work: work treating the crash 1859 * 1860 * This function needs to handle everything related to a crash, like cpu 1861 * registers and stack dump, information to help to debug the fatal error, etc. 1862 */ 1863 static void rproc_crash_handler_work(struct work_struct *work) 1864 { 1865 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1866 struct device *dev = &rproc->dev; 1867 1868 dev_dbg(dev, "enter %s\n", __func__); 1869 1870 mutex_lock(&rproc->lock); 1871 1872 if (rproc->state == RPROC_CRASHED) { 1873 /* handle only the first crash detected */ 1874 mutex_unlock(&rproc->lock); 1875 return; 1876 } 1877 1878 if (rproc->state == RPROC_OFFLINE) { 1879 /* Don't recover if the remote processor was stopped */ 1880 mutex_unlock(&rproc->lock); 1881 goto out; 1882 } 1883 1884 rproc->state = RPROC_CRASHED; 1885 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1886 rproc->name); 1887 1888 mutex_unlock(&rproc->lock); 1889 1890 if (!rproc->recovery_disabled) 1891 rproc_trigger_recovery(rproc); 1892 1893 out: 1894 pm_relax(rproc->dev.parent); 1895 } 1896 1897 /** 1898 * rproc_boot() - boot a remote processor 1899 * @rproc: handle of a remote processor 1900 * 1901 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1902 * 1903 * If the remote processor is already powered on, this function immediately 1904 * returns (successfully). 1905 * 1906 * Return: 0 on success, and an appropriate error value otherwise 1907 */ 1908 int rproc_boot(struct rproc *rproc) 1909 { 1910 const struct firmware *firmware_p; 1911 struct device *dev; 1912 int ret; 1913 1914 if (!rproc) { 1915 pr_err("invalid rproc handle\n"); 1916 return -EINVAL; 1917 } 1918 1919 dev = &rproc->dev; 1920 1921 ret = mutex_lock_interruptible(&rproc->lock); 1922 if (ret) { 1923 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1924 return ret; 1925 } 1926 1927 if (rproc->state == RPROC_DELETED) { 1928 ret = -ENODEV; 1929 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); 1930 goto unlock_mutex; 1931 } 1932 1933 /* skip the boot or attach process if rproc is already powered up */ 1934 if (atomic_inc_return(&rproc->power) > 1) { 1935 ret = 0; 1936 goto unlock_mutex; 1937 } 1938 1939 if (rproc->state == RPROC_DETACHED) { 1940 dev_info(dev, "attaching to %s\n", rproc->name); 1941 1942 ret = rproc_attach(rproc); 1943 } else { 1944 dev_info(dev, "powering up %s\n", rproc->name); 1945 1946 /* load firmware */ 1947 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1948 if (ret < 0) { 1949 dev_err(dev, "request_firmware failed: %d\n", ret); 1950 goto downref_rproc; 1951 } 1952 1953 ret = rproc_fw_boot(rproc, firmware_p); 1954 1955 release_firmware(firmware_p); 1956 } 1957 1958 downref_rproc: 1959 if (ret) 1960 atomic_dec(&rproc->power); 1961 unlock_mutex: 1962 mutex_unlock(&rproc->lock); 1963 return ret; 1964 } 1965 EXPORT_SYMBOL(rproc_boot); 1966 1967 /** 1968 * rproc_shutdown() - power off the remote processor 1969 * @rproc: the remote processor 1970 * 1971 * Power off a remote processor (previously booted with rproc_boot()). 1972 * 1973 * In case @rproc is still being used by an additional user(s), then 1974 * this function will just decrement the power refcount and exit, 1975 * without really powering off the device. 1976 * 1977 * Every call to rproc_boot() must (eventually) be accompanied by a call 1978 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1979 * 1980 * Notes: 1981 * - we're not decrementing the rproc's refcount, only the power refcount. 1982 * which means that the @rproc handle stays valid even after rproc_shutdown() 1983 * returns, and users can still use it with a subsequent rproc_boot(), if 1984 * needed. 1985 * 1986 * Return: 0 on success, and an appropriate error value otherwise 1987 */ 1988 int rproc_shutdown(struct rproc *rproc) 1989 { 1990 struct device *dev = &rproc->dev; 1991 int ret = 0; 1992 1993 ret = mutex_lock_interruptible(&rproc->lock); 1994 if (ret) { 1995 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1996 return ret; 1997 } 1998 1999 if (rproc->state != RPROC_RUNNING && 2000 rproc->state != RPROC_ATTACHED) { 2001 ret = -EINVAL; 2002 goto out; 2003 } 2004 2005 /* if the remote proc is still needed, bail out */ 2006 if (!atomic_dec_and_test(&rproc->power)) 2007 goto out; 2008 2009 ret = rproc_stop(rproc, false); 2010 if (ret) { 2011 atomic_inc(&rproc->power); 2012 goto out; 2013 } 2014 2015 /* clean up all acquired resources */ 2016 rproc_resource_cleanup(rproc); 2017 2018 /* release HW resources if needed */ 2019 rproc_unprepare_device(rproc); 2020 2021 rproc_disable_iommu(rproc); 2022 2023 /* Free the copy of the resource table */ 2024 kfree(rproc->cached_table); 2025 rproc->cached_table = NULL; 2026 rproc->table_ptr = NULL; 2027 out: 2028 mutex_unlock(&rproc->lock); 2029 return ret; 2030 } 2031 EXPORT_SYMBOL(rproc_shutdown); 2032 2033 /** 2034 * rproc_detach() - Detach the remote processor from the 2035 * remoteproc core 2036 * 2037 * @rproc: the remote processor 2038 * 2039 * Detach a remote processor (previously attached to with rproc_attach()). 2040 * 2041 * In case @rproc is still being used by an additional user(s), then 2042 * this function will just decrement the power refcount and exit, 2043 * without disconnecting the device. 2044 * 2045 * Function rproc_detach() calls __rproc_detach() in order to let a remote 2046 * processor know that services provided by the application processor are 2047 * no longer available. From there it should be possible to remove the 2048 * platform driver and even power cycle the application processor (if the HW 2049 * supports it) without needing to switch off the remote processor. 2050 * 2051 * Return: 0 on success, and an appropriate error value otherwise 2052 */ 2053 int rproc_detach(struct rproc *rproc) 2054 { 2055 struct device *dev = &rproc->dev; 2056 int ret; 2057 2058 ret = mutex_lock_interruptible(&rproc->lock); 2059 if (ret) { 2060 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2061 return ret; 2062 } 2063 2064 if (rproc->state != RPROC_ATTACHED) { 2065 ret = -EINVAL; 2066 goto out; 2067 } 2068 2069 /* if the remote proc is still needed, bail out */ 2070 if (!atomic_dec_and_test(&rproc->power)) { 2071 ret = 0; 2072 goto out; 2073 } 2074 2075 ret = __rproc_detach(rproc); 2076 if (ret) { 2077 atomic_inc(&rproc->power); 2078 goto out; 2079 } 2080 2081 /* clean up all acquired resources */ 2082 rproc_resource_cleanup(rproc); 2083 2084 /* release HW resources if needed */ 2085 rproc_unprepare_device(rproc); 2086 2087 rproc_disable_iommu(rproc); 2088 2089 /* Free the copy of the resource table */ 2090 kfree(rproc->cached_table); 2091 rproc->cached_table = NULL; 2092 rproc->table_ptr = NULL; 2093 out: 2094 mutex_unlock(&rproc->lock); 2095 return ret; 2096 } 2097 EXPORT_SYMBOL(rproc_detach); 2098 2099 /** 2100 * rproc_get_by_phandle() - find a remote processor by phandle 2101 * @phandle: phandle to the rproc 2102 * 2103 * Finds an rproc handle using the remote processor's phandle, and then 2104 * return a handle to the rproc. 2105 * 2106 * This function increments the remote processor's refcount, so always 2107 * use rproc_put() to decrement it back once rproc isn't needed anymore. 2108 * 2109 * Return: rproc handle on success, and NULL on failure 2110 */ 2111 #ifdef CONFIG_OF 2112 struct rproc *rproc_get_by_phandle(phandle phandle) 2113 { 2114 struct rproc *rproc = NULL, *r; 2115 struct device_node *np; 2116 2117 np = of_find_node_by_phandle(phandle); 2118 if (!np) 2119 return NULL; 2120 2121 rcu_read_lock(); 2122 list_for_each_entry_rcu(r, &rproc_list, node) { 2123 if (r->dev.parent && device_match_of_node(r->dev.parent, np)) { 2124 /* prevent underlying implementation from being removed */ 2125 if (!try_module_get(r->dev.parent->driver->owner)) { 2126 dev_err(&r->dev, "can't get owner\n"); 2127 break; 2128 } 2129 2130 rproc = r; 2131 get_device(&rproc->dev); 2132 break; 2133 } 2134 } 2135 rcu_read_unlock(); 2136 2137 of_node_put(np); 2138 2139 return rproc; 2140 } 2141 #else 2142 struct rproc *rproc_get_by_phandle(phandle phandle) 2143 { 2144 return NULL; 2145 } 2146 #endif 2147 EXPORT_SYMBOL(rproc_get_by_phandle); 2148 2149 /** 2150 * rproc_set_firmware() - assign a new firmware 2151 * @rproc: rproc handle to which the new firmware is being assigned 2152 * @fw_name: new firmware name to be assigned 2153 * 2154 * This function allows remoteproc drivers or clients to configure a custom 2155 * firmware name that is different from the default name used during remoteproc 2156 * registration. The function does not trigger a remote processor boot, 2157 * only sets the firmware name used for a subsequent boot. This function 2158 * should also be called only when the remote processor is offline. 2159 * 2160 * This allows either the userspace to configure a different name through 2161 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set 2162 * a specific firmware when it is controlling the boot and shutdown of the 2163 * remote processor. 2164 * 2165 * Return: 0 on success or a negative value upon failure 2166 */ 2167 int rproc_set_firmware(struct rproc *rproc, const char *fw_name) 2168 { 2169 struct device *dev; 2170 int ret, len; 2171 char *p; 2172 2173 if (!rproc || !fw_name) 2174 return -EINVAL; 2175 2176 dev = rproc->dev.parent; 2177 2178 ret = mutex_lock_interruptible(&rproc->lock); 2179 if (ret) { 2180 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 2181 return -EINVAL; 2182 } 2183 2184 if (rproc->state != RPROC_OFFLINE) { 2185 dev_err(dev, "can't change firmware while running\n"); 2186 ret = -EBUSY; 2187 goto out; 2188 } 2189 2190 len = strcspn(fw_name, "\n"); 2191 if (!len) { 2192 dev_err(dev, "can't provide empty string for firmware name\n"); 2193 ret = -EINVAL; 2194 goto out; 2195 } 2196 2197 p = kstrndup(fw_name, len, GFP_KERNEL); 2198 if (!p) { 2199 ret = -ENOMEM; 2200 goto out; 2201 } 2202 2203 kfree_const(rproc->firmware); 2204 rproc->firmware = p; 2205 2206 out: 2207 mutex_unlock(&rproc->lock); 2208 return ret; 2209 } 2210 EXPORT_SYMBOL(rproc_set_firmware); 2211 2212 static int rproc_validate(struct rproc *rproc) 2213 { 2214 switch (rproc->state) { 2215 case RPROC_OFFLINE: 2216 /* 2217 * An offline processor without a start() 2218 * function makes no sense. 2219 */ 2220 if (!rproc->ops->start) 2221 return -EINVAL; 2222 break; 2223 case RPROC_DETACHED: 2224 /* 2225 * A remote processor in a detached state without an 2226 * attach() function makes not sense. 2227 */ 2228 if (!rproc->ops->attach) 2229 return -EINVAL; 2230 /* 2231 * When attaching to a remote processor the device memory 2232 * is already available and as such there is no need to have a 2233 * cached table. 2234 */ 2235 if (rproc->cached_table) 2236 return -EINVAL; 2237 break; 2238 default: 2239 /* 2240 * When adding a remote processor, the state of the device 2241 * can be offline or detached, nothing else. 2242 */ 2243 return -EINVAL; 2244 } 2245 2246 return 0; 2247 } 2248 2249 /** 2250 * rproc_add() - register a remote processor 2251 * @rproc: the remote processor handle to register 2252 * 2253 * Registers @rproc with the remoteproc framework, after it has been 2254 * allocated with rproc_alloc(). 2255 * 2256 * This is called by the platform-specific rproc implementation, whenever 2257 * a new remote processor device is probed. 2258 * 2259 * Note: this function initiates an asynchronous firmware loading 2260 * context, which will look for virtio devices supported by the rproc's 2261 * firmware. 2262 * 2263 * If found, those virtio devices will be created and added, so as a result 2264 * of registering this remote processor, additional virtio drivers might be 2265 * probed. 2266 * 2267 * Return: 0 on success and an appropriate error code otherwise 2268 */ 2269 int rproc_add(struct rproc *rproc) 2270 { 2271 struct device *dev = &rproc->dev; 2272 int ret; 2273 2274 ret = rproc_validate(rproc); 2275 if (ret < 0) 2276 return ret; 2277 2278 /* add char device for this remoteproc */ 2279 ret = rproc_char_device_add(rproc); 2280 if (ret < 0) 2281 return ret; 2282 2283 ret = device_add(dev); 2284 if (ret < 0) { 2285 put_device(dev); 2286 goto rproc_remove_cdev; 2287 } 2288 2289 dev_info(dev, "%s is available\n", rproc->name); 2290 2291 /* create debugfs entries */ 2292 rproc_create_debug_dir(rproc); 2293 2294 /* if rproc is marked always-on, request it to boot */ 2295 if (rproc->auto_boot) { 2296 ret = rproc_trigger_auto_boot(rproc); 2297 if (ret < 0) 2298 goto rproc_remove_dev; 2299 } 2300 2301 /* expose to rproc_get_by_phandle users */ 2302 mutex_lock(&rproc_list_mutex); 2303 list_add_rcu(&rproc->node, &rproc_list); 2304 mutex_unlock(&rproc_list_mutex); 2305 2306 return 0; 2307 2308 rproc_remove_dev: 2309 rproc_delete_debug_dir(rproc); 2310 device_del(dev); 2311 rproc_remove_cdev: 2312 rproc_char_device_remove(rproc); 2313 return ret; 2314 } 2315 EXPORT_SYMBOL(rproc_add); 2316 2317 static void devm_rproc_remove(void *rproc) 2318 { 2319 rproc_del(rproc); 2320 } 2321 2322 /** 2323 * devm_rproc_add() - resource managed rproc_add() 2324 * @dev: the underlying device 2325 * @rproc: the remote processor handle to register 2326 * 2327 * This function performs like rproc_add() but the registered rproc device will 2328 * automatically be removed on driver detach. 2329 * 2330 * Return: 0 on success, negative errno on failure 2331 */ 2332 int devm_rproc_add(struct device *dev, struct rproc *rproc) 2333 { 2334 int err; 2335 2336 err = rproc_add(rproc); 2337 if (err) 2338 return err; 2339 2340 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); 2341 } 2342 EXPORT_SYMBOL(devm_rproc_add); 2343 2344 /** 2345 * rproc_type_release() - release a remote processor instance 2346 * @dev: the rproc's device 2347 * 2348 * This function should _never_ be called directly. 2349 * 2350 * It will be called by the driver core when no one holds a valid pointer 2351 * to @dev anymore. 2352 */ 2353 static void rproc_type_release(struct device *dev) 2354 { 2355 struct rproc *rproc = container_of(dev, struct rproc, dev); 2356 2357 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 2358 2359 idr_destroy(&rproc->notifyids); 2360 2361 if (rproc->index >= 0) 2362 ida_free(&rproc_dev_index, rproc->index); 2363 2364 kfree_const(rproc->firmware); 2365 kfree_const(rproc->name); 2366 kfree(rproc->ops); 2367 kfree(rproc); 2368 } 2369 2370 static const struct device_type rproc_type = { 2371 .name = "remoteproc", 2372 .release = rproc_type_release, 2373 }; 2374 2375 static int rproc_alloc_firmware(struct rproc *rproc, 2376 const char *name, const char *firmware) 2377 { 2378 const char *p; 2379 2380 /* 2381 * Allocate a firmware name if the caller gave us one to work 2382 * with. Otherwise construct a new one using a default pattern. 2383 */ 2384 if (firmware) 2385 p = kstrdup_const(firmware, GFP_KERNEL); 2386 else 2387 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); 2388 2389 if (!p) 2390 return -ENOMEM; 2391 2392 rproc->firmware = p; 2393 2394 return 0; 2395 } 2396 2397 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) 2398 { 2399 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); 2400 if (!rproc->ops) 2401 return -ENOMEM; 2402 2403 /* Default to rproc_coredump if no coredump function is specified */ 2404 if (!rproc->ops->coredump) 2405 rproc->ops->coredump = rproc_coredump; 2406 2407 if (rproc->ops->load) 2408 return 0; 2409 2410 /* Default to ELF loader if no load function is specified */ 2411 rproc->ops->load = rproc_elf_load_segments; 2412 rproc->ops->parse_fw = rproc_elf_load_rsc_table; 2413 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; 2414 rproc->ops->sanity_check = rproc_elf_sanity_check; 2415 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; 2416 2417 return 0; 2418 } 2419 2420 /** 2421 * rproc_alloc() - allocate a remote processor handle 2422 * @dev: the underlying device 2423 * @name: name of this remote processor 2424 * @ops: platform-specific handlers (mainly start/stop) 2425 * @firmware: name of firmware file to load, can be NULL 2426 * @len: length of private data needed by the rproc driver (in bytes) 2427 * 2428 * Allocates a new remote processor handle, but does not register 2429 * it yet. if @firmware is NULL, a default name is used. 2430 * 2431 * This function should be used by rproc implementations during initialization 2432 * of the remote processor. 2433 * 2434 * After creating an rproc handle using this function, and when ready, 2435 * implementations should then call rproc_add() to complete 2436 * the registration of the remote processor. 2437 * 2438 * Note: _never_ directly deallocate @rproc, even if it was not registered 2439 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 2440 * 2441 * Return: new rproc pointer on success, and NULL on failure 2442 */ 2443 struct rproc *rproc_alloc(struct device *dev, const char *name, 2444 const struct rproc_ops *ops, 2445 const char *firmware, int len) 2446 { 2447 struct rproc *rproc; 2448 2449 if (!dev || !name || !ops) 2450 return NULL; 2451 2452 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 2453 if (!rproc) 2454 return NULL; 2455 2456 rproc->priv = &rproc[1]; 2457 rproc->auto_boot = true; 2458 rproc->elf_class = ELFCLASSNONE; 2459 rproc->elf_machine = EM_NONE; 2460 2461 device_initialize(&rproc->dev); 2462 rproc->dev.parent = dev; 2463 rproc->dev.type = &rproc_type; 2464 rproc->dev.class = &rproc_class; 2465 rproc->dev.driver_data = rproc; 2466 idr_init(&rproc->notifyids); 2467 2468 rproc->name = kstrdup_const(name, GFP_KERNEL); 2469 if (!rproc->name) 2470 goto put_device; 2471 2472 if (rproc_alloc_firmware(rproc, name, firmware)) 2473 goto put_device; 2474 2475 if (rproc_alloc_ops(rproc, ops)) 2476 goto put_device; 2477 2478 /* Assign a unique device index and name */ 2479 rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL); 2480 if (rproc->index < 0) { 2481 dev_err(dev, "ida_alloc failed: %d\n", rproc->index); 2482 goto put_device; 2483 } 2484 2485 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 2486 2487 atomic_set(&rproc->power, 0); 2488 2489 mutex_init(&rproc->lock); 2490 2491 INIT_LIST_HEAD(&rproc->carveouts); 2492 INIT_LIST_HEAD(&rproc->mappings); 2493 INIT_LIST_HEAD(&rproc->traces); 2494 INIT_LIST_HEAD(&rproc->rvdevs); 2495 INIT_LIST_HEAD(&rproc->subdevs); 2496 INIT_LIST_HEAD(&rproc->dump_segments); 2497 2498 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 2499 2500 rproc->state = RPROC_OFFLINE; 2501 2502 return rproc; 2503 2504 put_device: 2505 put_device(&rproc->dev); 2506 return NULL; 2507 } 2508 EXPORT_SYMBOL(rproc_alloc); 2509 2510 /** 2511 * rproc_free() - unroll rproc_alloc() 2512 * @rproc: the remote processor handle 2513 * 2514 * This function decrements the rproc dev refcount. 2515 * 2516 * If no one holds any reference to rproc anymore, then its refcount would 2517 * now drop to zero, and it would be freed. 2518 */ 2519 void rproc_free(struct rproc *rproc) 2520 { 2521 put_device(&rproc->dev); 2522 } 2523 EXPORT_SYMBOL(rproc_free); 2524 2525 /** 2526 * rproc_put() - release rproc reference 2527 * @rproc: the remote processor handle 2528 * 2529 * This function decrements the rproc dev refcount. 2530 * 2531 * If no one holds any reference to rproc anymore, then its refcount would 2532 * now drop to zero, and it would be freed. 2533 */ 2534 void rproc_put(struct rproc *rproc) 2535 { 2536 module_put(rproc->dev.parent->driver->owner); 2537 put_device(&rproc->dev); 2538 } 2539 EXPORT_SYMBOL(rproc_put); 2540 2541 /** 2542 * rproc_del() - unregister a remote processor 2543 * @rproc: rproc handle to unregister 2544 * 2545 * This function should be called when the platform specific rproc 2546 * implementation decides to remove the rproc device. it should 2547 * _only_ be called if a previous invocation of rproc_add() 2548 * has completed successfully. 2549 * 2550 * After rproc_del() returns, @rproc isn't freed yet, because 2551 * of the outstanding reference created by rproc_alloc. To decrement that 2552 * one last refcount, one still needs to call rproc_free(). 2553 * 2554 * Return: 0 on success and -EINVAL if @rproc isn't valid 2555 */ 2556 int rproc_del(struct rproc *rproc) 2557 { 2558 if (!rproc) 2559 return -EINVAL; 2560 2561 /* TODO: make sure this works with rproc->power > 1 */ 2562 rproc_shutdown(rproc); 2563 2564 mutex_lock(&rproc->lock); 2565 rproc->state = RPROC_DELETED; 2566 mutex_unlock(&rproc->lock); 2567 2568 rproc_delete_debug_dir(rproc); 2569 2570 /* the rproc is downref'ed as soon as it's removed from the klist */ 2571 mutex_lock(&rproc_list_mutex); 2572 list_del_rcu(&rproc->node); 2573 mutex_unlock(&rproc_list_mutex); 2574 2575 /* Ensure that no readers of rproc_list are still active */ 2576 synchronize_rcu(); 2577 2578 device_del(&rproc->dev); 2579 rproc_char_device_remove(rproc); 2580 2581 return 0; 2582 } 2583 EXPORT_SYMBOL(rproc_del); 2584 2585 static void devm_rproc_free(struct device *dev, void *res) 2586 { 2587 rproc_free(*(struct rproc **)res); 2588 } 2589 2590 /** 2591 * devm_rproc_alloc() - resource managed rproc_alloc() 2592 * @dev: the underlying device 2593 * @name: name of this remote processor 2594 * @ops: platform-specific handlers (mainly start/stop) 2595 * @firmware: name of firmware file to load, can be NULL 2596 * @len: length of private data needed by the rproc driver (in bytes) 2597 * 2598 * This function performs like rproc_alloc() but the acquired rproc device will 2599 * automatically be released on driver detach. 2600 * 2601 * Return: new rproc instance, or NULL on failure 2602 */ 2603 struct rproc *devm_rproc_alloc(struct device *dev, const char *name, 2604 const struct rproc_ops *ops, 2605 const char *firmware, int len) 2606 { 2607 struct rproc **ptr, *rproc; 2608 2609 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); 2610 if (!ptr) 2611 return NULL; 2612 2613 rproc = rproc_alloc(dev, name, ops, firmware, len); 2614 if (rproc) { 2615 *ptr = rproc; 2616 devres_add(dev, ptr); 2617 } else { 2618 devres_free(ptr); 2619 } 2620 2621 return rproc; 2622 } 2623 EXPORT_SYMBOL(devm_rproc_alloc); 2624 2625 /** 2626 * rproc_add_subdev() - add a subdevice to a remoteproc 2627 * @rproc: rproc handle to add the subdevice to 2628 * @subdev: subdev handle to register 2629 * 2630 * Caller is responsible for populating optional subdevice function pointers. 2631 */ 2632 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2633 { 2634 list_add_tail(&subdev->node, &rproc->subdevs); 2635 } 2636 EXPORT_SYMBOL(rproc_add_subdev); 2637 2638 /** 2639 * rproc_remove_subdev() - remove a subdevice from a remoteproc 2640 * @rproc: rproc handle to remove the subdevice from 2641 * @subdev: subdev handle, previously registered with rproc_add_subdev() 2642 */ 2643 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 2644 { 2645 list_del(&subdev->node); 2646 } 2647 EXPORT_SYMBOL(rproc_remove_subdev); 2648 2649 /** 2650 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor 2651 * @dev: child device to find ancestor of 2652 * 2653 * Return: the ancestor rproc instance, or NULL if not found 2654 */ 2655 struct rproc *rproc_get_by_child(struct device *dev) 2656 { 2657 for (dev = dev->parent; dev; dev = dev->parent) { 2658 if (dev->type == &rproc_type) 2659 return dev->driver_data; 2660 } 2661 2662 return NULL; 2663 } 2664 EXPORT_SYMBOL(rproc_get_by_child); 2665 2666 /** 2667 * rproc_report_crash() - rproc crash reporter function 2668 * @rproc: remote processor 2669 * @type: crash type 2670 * 2671 * This function must be called every time a crash is detected by the low-level 2672 * drivers implementing a specific remoteproc. This should not be called from a 2673 * non-remoteproc driver. 2674 * 2675 * This function can be called from atomic/interrupt context. 2676 */ 2677 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 2678 { 2679 if (!rproc) { 2680 pr_err("NULL rproc pointer\n"); 2681 return; 2682 } 2683 2684 /* Prevent suspend while the remoteproc is being recovered */ 2685 pm_stay_awake(rproc->dev.parent); 2686 2687 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 2688 rproc->name, rproc_crash_to_string(type)); 2689 2690 queue_work(rproc_recovery_wq, &rproc->crash_handler); 2691 } 2692 EXPORT_SYMBOL(rproc_report_crash); 2693 2694 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, 2695 void *ptr) 2696 { 2697 unsigned int longest = 0; 2698 struct rproc *rproc; 2699 unsigned int d; 2700 2701 rcu_read_lock(); 2702 list_for_each_entry_rcu(rproc, &rproc_list, node) { 2703 if (!rproc->ops->panic) 2704 continue; 2705 2706 if (rproc->state != RPROC_RUNNING && 2707 rproc->state != RPROC_ATTACHED) 2708 continue; 2709 2710 d = rproc->ops->panic(rproc); 2711 longest = max(longest, d); 2712 } 2713 rcu_read_unlock(); 2714 2715 /* 2716 * Delay for the longest requested duration before returning. This can 2717 * be used by the remoteproc drivers to give the remote processor time 2718 * to perform any requested operations (such as flush caches), when 2719 * it's not possible to signal the Linux side due to the panic. 2720 */ 2721 mdelay(longest); 2722 2723 return NOTIFY_DONE; 2724 } 2725 2726 static void __init rproc_init_panic(void) 2727 { 2728 rproc_panic_nb.notifier_call = rproc_panic_handler; 2729 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); 2730 } 2731 2732 static void __exit rproc_exit_panic(void) 2733 { 2734 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); 2735 } 2736 2737 static int __init remoteproc_init(void) 2738 { 2739 rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq", 2740 WQ_UNBOUND | WQ_FREEZABLE, 0); 2741 if (!rproc_recovery_wq) { 2742 pr_err("remoteproc: creation of rproc_recovery_wq failed\n"); 2743 return -ENOMEM; 2744 } 2745 2746 rproc_init_sysfs(); 2747 rproc_init_debugfs(); 2748 rproc_init_cdev(); 2749 rproc_init_panic(); 2750 2751 return 0; 2752 } 2753 subsys_initcall(remoteproc_init); 2754 2755 static void __exit remoteproc_exit(void) 2756 { 2757 ida_destroy(&rproc_dev_index); 2758 2759 if (!rproc_recovery_wq) 2760 return; 2761 2762 rproc_exit_panic(); 2763 rproc_exit_debugfs(); 2764 rproc_exit_sysfs(); 2765 destroy_workqueue(rproc_recovery_wq); 2766 } 2767 module_exit(remoteproc_exit); 2768 2769 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 2770