xref: /linux/drivers/remoteproc/remoteproc_core.c (revision 38fe0e0156c037c060f81fe4e36549fae760322d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-map-ops.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
29 #include <linux/firmware.h>
30 #include <linux/string.h>
31 #include <linux/debugfs.h>
32 #include <linux/rculist.h>
33 #include <linux/remoteproc.h>
34 #include <linux/iommu.h>
35 #include <linux/idr.h>
36 #include <linux/elf.h>
37 #include <linux/crc32.h>
38 #include <linux/of_reserved_mem.h>
39 #include <linux/virtio_ids.h>
40 #include <linux/virtio_ring.h>
41 #include <asm/byteorder.h>
42 #include <linux/platform_device.h>
43 
44 #include "remoteproc_internal.h"
45 
46 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
47 
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
50 static struct notifier_block rproc_panic_nb;
51 
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 				 void *, int offset, int avail);
54 
55 static int rproc_alloc_carveout(struct rproc *rproc,
56 				struct rproc_mem_entry *mem);
57 static int rproc_release_carveout(struct rproc *rproc,
58 				  struct rproc_mem_entry *mem);
59 
60 /* Unique indices for remoteproc devices */
61 static DEFINE_IDA(rproc_dev_index);
62 
63 static const char * const rproc_crash_names[] = {
64 	[RPROC_MMUFAULT]	= "mmufault",
65 	[RPROC_WATCHDOG]	= "watchdog",
66 	[RPROC_FATAL_ERROR]	= "fatal error",
67 };
68 
69 /* translate rproc_crash_type to string */
70 static const char *rproc_crash_to_string(enum rproc_crash_type type)
71 {
72 	if (type < ARRAY_SIZE(rproc_crash_names))
73 		return rproc_crash_names[type];
74 	return "unknown";
75 }
76 
77 /*
78  * This is the IOMMU fault handler we register with the IOMMU API
79  * (when relevant; not all remote processors access memory through
80  * an IOMMU).
81  *
82  * IOMMU core will invoke this handler whenever the remote processor
83  * will try to access an unmapped device address.
84  */
85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
86 			     unsigned long iova, int flags, void *token)
87 {
88 	struct rproc *rproc = token;
89 
90 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91 
92 	rproc_report_crash(rproc, RPROC_MMUFAULT);
93 
94 	/*
95 	 * Let the iommu core know we're not really handling this fault;
96 	 * we just used it as a recovery trigger.
97 	 */
98 	return -ENOSYS;
99 }
100 
101 static int rproc_enable_iommu(struct rproc *rproc)
102 {
103 	struct iommu_domain *domain;
104 	struct device *dev = rproc->dev.parent;
105 	int ret;
106 
107 	if (!rproc->has_iommu) {
108 		dev_dbg(dev, "iommu not present\n");
109 		return 0;
110 	}
111 
112 	domain = iommu_domain_alloc(dev->bus);
113 	if (!domain) {
114 		dev_err(dev, "can't alloc iommu domain\n");
115 		return -ENOMEM;
116 	}
117 
118 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119 
120 	ret = iommu_attach_device(domain, dev);
121 	if (ret) {
122 		dev_err(dev, "can't attach iommu device: %d\n", ret);
123 		goto free_domain;
124 	}
125 
126 	rproc->domain = domain;
127 
128 	return 0;
129 
130 free_domain:
131 	iommu_domain_free(domain);
132 	return ret;
133 }
134 
135 static void rproc_disable_iommu(struct rproc *rproc)
136 {
137 	struct iommu_domain *domain = rproc->domain;
138 	struct device *dev = rproc->dev.parent;
139 
140 	if (!domain)
141 		return;
142 
143 	iommu_detach_device(domain, dev);
144 	iommu_domain_free(domain);
145 }
146 
147 phys_addr_t rproc_va_to_pa(void *cpu_addr)
148 {
149 	/*
150 	 * Return physical address according to virtual address location
151 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152 	 * - in kernel: if region allocated in generic dma memory pool
153 	 */
154 	if (is_vmalloc_addr(cpu_addr)) {
155 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
156 				    offset_in_page(cpu_addr);
157 	}
158 
159 	WARN_ON(!virt_addr_valid(cpu_addr));
160 	return virt_to_phys(cpu_addr);
161 }
162 EXPORT_SYMBOL(rproc_va_to_pa);
163 
164 /**
165  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166  * @rproc: handle of a remote processor
167  * @da: remoteproc device address to translate
168  * @len: length of the memory region @da is pointing to
169  *
170  * Some remote processors will ask us to allocate them physically contiguous
171  * memory regions (which we call "carveouts"), and map them to specific
172  * device addresses (which are hardcoded in the firmware). They may also have
173  * dedicated memory regions internal to the processors, and use them either
174  * exclusively or alongside carveouts.
175  *
176  * They may then ask us to copy objects into specific device addresses (e.g.
177  * code/data sections) or expose us certain symbols in other device address
178  * (e.g. their trace buffer).
179  *
180  * This function is a helper function with which we can go over the allocated
181  * carveouts and translate specific device addresses to kernel virtual addresses
182  * so we can access the referenced memory. This function also allows to perform
183  * translations on the internal remoteproc memory regions through a platform
184  * implementation specific da_to_va ops, if present.
185  *
186  * The function returns a valid kernel address on success or NULL on failure.
187  *
188  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
189  * but only on kernel direct mapped RAM memory. Instead, we're just using
190  * here the output of the DMA API for the carveouts, which should be more
191  * correct.
192  */
193 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
194 {
195 	struct rproc_mem_entry *carveout;
196 	void *ptr = NULL;
197 
198 	if (rproc->ops->da_to_va) {
199 		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
200 		if (ptr)
201 			goto out;
202 	}
203 
204 	list_for_each_entry(carveout, &rproc->carveouts, node) {
205 		int offset = da - carveout->da;
206 
207 		/*  Verify that carveout is allocated */
208 		if (!carveout->va)
209 			continue;
210 
211 		/* try next carveout if da is too small */
212 		if (offset < 0)
213 			continue;
214 
215 		/* try next carveout if da is too large */
216 		if (offset + len > carveout->len)
217 			continue;
218 
219 		ptr = carveout->va + offset;
220 
221 		if (is_iomem)
222 			*is_iomem = carveout->is_iomem;
223 
224 		break;
225 	}
226 
227 out:
228 	return ptr;
229 }
230 EXPORT_SYMBOL(rproc_da_to_va);
231 
232 /**
233  * rproc_find_carveout_by_name() - lookup the carveout region by a name
234  * @rproc: handle of a remote processor
235  * @name: carveout name to find (format string)
236  * @...: optional parameters matching @name string
237  *
238  * Platform driver has the capability to register some pre-allacoted carveout
239  * (physically contiguous memory regions) before rproc firmware loading and
240  * associated resource table analysis. These regions may be dedicated memory
241  * regions internal to the coprocessor or specified DDR region with specific
242  * attributes
243  *
244  * This function is a helper function with which we can go over the
245  * allocated carveouts and return associated region characteristics like
246  * coprocessor address, length or processor virtual address.
247  *
248  * Return: a valid pointer on carveout entry on success or NULL on failure.
249  */
250 __printf(2, 3)
251 struct rproc_mem_entry *
252 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
253 {
254 	va_list args;
255 	char _name[32];
256 	struct rproc_mem_entry *carveout, *mem = NULL;
257 
258 	if (!name)
259 		return NULL;
260 
261 	va_start(args, name);
262 	vsnprintf(_name, sizeof(_name), name, args);
263 	va_end(args);
264 
265 	list_for_each_entry(carveout, &rproc->carveouts, node) {
266 		/* Compare carveout and requested names */
267 		if (!strcmp(carveout->name, _name)) {
268 			mem = carveout;
269 			break;
270 		}
271 	}
272 
273 	return mem;
274 }
275 
276 /**
277  * rproc_check_carveout_da() - Check specified carveout da configuration
278  * @rproc: handle of a remote processor
279  * @mem: pointer on carveout to check
280  * @da: area device address
281  * @len: associated area size
282  *
283  * This function is a helper function to verify requested device area (couple
284  * da, len) is part of specified carveout.
285  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
286  * checked.
287  *
288  * Return: 0 if carveout matches request else error
289  */
290 static int rproc_check_carveout_da(struct rproc *rproc,
291 				   struct rproc_mem_entry *mem, u32 da, u32 len)
292 {
293 	struct device *dev = &rproc->dev;
294 	int delta;
295 
296 	/* Check requested resource length */
297 	if (len > mem->len) {
298 		dev_err(dev, "Registered carveout doesn't fit len request\n");
299 		return -EINVAL;
300 	}
301 
302 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
303 		/* Address doesn't match registered carveout configuration */
304 		return -EINVAL;
305 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
306 		delta = da - mem->da;
307 
308 		/* Check requested resource belongs to registered carveout */
309 		if (delta < 0) {
310 			dev_err(dev,
311 				"Registered carveout doesn't fit da request\n");
312 			return -EINVAL;
313 		}
314 
315 		if (delta + len > mem->len) {
316 			dev_err(dev,
317 				"Registered carveout doesn't fit len request\n");
318 			return -EINVAL;
319 		}
320 	}
321 
322 	return 0;
323 }
324 
325 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
326 {
327 	struct rproc *rproc = rvdev->rproc;
328 	struct device *dev = &rproc->dev;
329 	struct rproc_vring *rvring = &rvdev->vring[i];
330 	struct fw_rsc_vdev *rsc;
331 	int ret, notifyid;
332 	struct rproc_mem_entry *mem;
333 	size_t size;
334 
335 	/* actual size of vring (in bytes) */
336 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
337 
338 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
339 
340 	/* Search for pre-registered carveout */
341 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
342 					  i);
343 	if (mem) {
344 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
345 			return -ENOMEM;
346 	} else {
347 		/* Register carveout in in list */
348 		mem = rproc_mem_entry_init(dev, NULL, 0,
349 					   size, rsc->vring[i].da,
350 					   rproc_alloc_carveout,
351 					   rproc_release_carveout,
352 					   "vdev%dvring%d",
353 					   rvdev->index, i);
354 		if (!mem) {
355 			dev_err(dev, "Can't allocate memory entry structure\n");
356 			return -ENOMEM;
357 		}
358 
359 		rproc_add_carveout(rproc, mem);
360 	}
361 
362 	/*
363 	 * Assign an rproc-wide unique index for this vring
364 	 * TODO: assign a notifyid for rvdev updates as well
365 	 * TODO: support predefined notifyids (via resource table)
366 	 */
367 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
368 	if (ret < 0) {
369 		dev_err(dev, "idr_alloc failed: %d\n", ret);
370 		return ret;
371 	}
372 	notifyid = ret;
373 
374 	/* Potentially bump max_notifyid */
375 	if (notifyid > rproc->max_notifyid)
376 		rproc->max_notifyid = notifyid;
377 
378 	rvring->notifyid = notifyid;
379 
380 	/* Let the rproc know the notifyid of this vring.*/
381 	rsc->vring[i].notifyid = notifyid;
382 	return 0;
383 }
384 
385 static int
386 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
387 {
388 	struct rproc *rproc = rvdev->rproc;
389 	struct device *dev = &rproc->dev;
390 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
391 	struct rproc_vring *rvring = &rvdev->vring[i];
392 
393 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
394 		i, vring->da, vring->num, vring->align);
395 
396 	/* verify queue size and vring alignment are sane */
397 	if (!vring->num || !vring->align) {
398 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
399 			vring->num, vring->align);
400 		return -EINVAL;
401 	}
402 
403 	rvring->len = vring->num;
404 	rvring->align = vring->align;
405 	rvring->rvdev = rvdev;
406 
407 	return 0;
408 }
409 
410 void rproc_free_vring(struct rproc_vring *rvring)
411 {
412 	struct rproc *rproc = rvring->rvdev->rproc;
413 	int idx = rvring - rvring->rvdev->vring;
414 	struct fw_rsc_vdev *rsc;
415 
416 	idr_remove(&rproc->notifyids, rvring->notifyid);
417 
418 	/*
419 	 * At this point rproc_stop() has been called and the installed resource
420 	 * table in the remote processor memory may no longer be accessible. As
421 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
422 	 * resource table (rproc->cached_table).  The cached resource table is
423 	 * only available when a remote processor has been booted by the
424 	 * remoteproc core, otherwise it is NULL.
425 	 *
426 	 * Based on the above, reset the virtio device section in the cached
427 	 * resource table only if there is one to work with.
428 	 */
429 	if (rproc->table_ptr) {
430 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
431 		rsc->vring[idx].da = 0;
432 		rsc->vring[idx].notifyid = -1;
433 	}
434 }
435 
436 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
437 {
438 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
439 
440 	return rproc_add_virtio_dev(rvdev, rvdev->id);
441 }
442 
443 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
444 {
445 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
446 	int ret;
447 
448 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
449 	if (ret)
450 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
451 }
452 
453 /**
454  * rproc_rvdev_release() - release the existence of a rvdev
455  *
456  * @dev: the subdevice's dev
457  */
458 static void rproc_rvdev_release(struct device *dev)
459 {
460 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
461 
462 	of_reserved_mem_device_release(dev);
463 
464 	kfree(rvdev);
465 }
466 
467 static int copy_dma_range_map(struct device *to, struct device *from)
468 {
469 	const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
470 	int num_ranges = 0;
471 
472 	if (!map)
473 		return 0;
474 
475 	for (r = map; r->size; r++)
476 		num_ranges++;
477 
478 	new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
479 			  GFP_KERNEL);
480 	if (!new_map)
481 		return -ENOMEM;
482 	to->dma_range_map = new_map;
483 	return 0;
484 }
485 
486 /**
487  * rproc_handle_vdev() - handle a vdev fw resource
488  * @rproc: the remote processor
489  * @ptr: the vring resource descriptor
490  * @offset: offset of the resource entry
491  * @avail: size of available data (for sanity checking the image)
492  *
493  * This resource entry requests the host to statically register a virtio
494  * device (vdev), and setup everything needed to support it. It contains
495  * everything needed to make it possible: the virtio device id, virtio
496  * device features, vrings information, virtio config space, etc...
497  *
498  * Before registering the vdev, the vrings are allocated from non-cacheable
499  * physically contiguous memory. Currently we only support two vrings per
500  * remote processor (temporary limitation). We might also want to consider
501  * doing the vring allocation only later when ->find_vqs() is invoked, and
502  * then release them upon ->del_vqs().
503  *
504  * Note: @da is currently not really handled correctly: we dynamically
505  * allocate it using the DMA API, ignoring requested hard coded addresses,
506  * and we don't take care of any required IOMMU programming. This is all
507  * going to be taken care of when the generic iommu-based DMA API will be
508  * merged. Meanwhile, statically-addressed iommu-based firmware images should
509  * use RSC_DEVMEM resource entries to map their required @da to the physical
510  * address of their base CMA region (ouch, hacky!).
511  *
512  * Returns 0 on success, or an appropriate error code otherwise
513  */
514 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
515 			     int offset, int avail)
516 {
517 	struct fw_rsc_vdev *rsc = ptr;
518 	struct device *dev = &rproc->dev;
519 	struct rproc_vdev *rvdev;
520 	int i, ret;
521 	char name[16];
522 
523 	/* make sure resource isn't truncated */
524 	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
525 			avail) {
526 		dev_err(dev, "vdev rsc is truncated\n");
527 		return -EINVAL;
528 	}
529 
530 	/* make sure reserved bytes are zeroes */
531 	if (rsc->reserved[0] || rsc->reserved[1]) {
532 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
533 		return -EINVAL;
534 	}
535 
536 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
537 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
538 
539 	/* we currently support only two vrings per rvdev */
540 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
541 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
542 		return -EINVAL;
543 	}
544 
545 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
546 	if (!rvdev)
547 		return -ENOMEM;
548 
549 	kref_init(&rvdev->refcount);
550 
551 	rvdev->id = rsc->id;
552 	rvdev->rproc = rproc;
553 	rvdev->index = rproc->nb_vdev++;
554 
555 	/* Initialise vdev subdevice */
556 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
557 	rvdev->dev.parent = &rproc->dev;
558 	ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
559 	if (ret)
560 		return ret;
561 	rvdev->dev.release = rproc_rvdev_release;
562 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
563 	dev_set_drvdata(&rvdev->dev, rvdev);
564 
565 	ret = device_register(&rvdev->dev);
566 	if (ret) {
567 		put_device(&rvdev->dev);
568 		return ret;
569 	}
570 	/* Make device dma capable by inheriting from parent's capabilities */
571 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
572 
573 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
574 					   dma_get_mask(rproc->dev.parent));
575 	if (ret) {
576 		dev_warn(dev,
577 			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
578 			 dma_get_mask(rproc->dev.parent), ret);
579 	}
580 
581 	/* parse the vrings */
582 	for (i = 0; i < rsc->num_of_vrings; i++) {
583 		ret = rproc_parse_vring(rvdev, rsc, i);
584 		if (ret)
585 			goto free_rvdev;
586 	}
587 
588 	/* remember the resource offset*/
589 	rvdev->rsc_offset = offset;
590 
591 	/* allocate the vring resources */
592 	for (i = 0; i < rsc->num_of_vrings; i++) {
593 		ret = rproc_alloc_vring(rvdev, i);
594 		if (ret)
595 			goto unwind_vring_allocations;
596 	}
597 
598 	list_add_tail(&rvdev->node, &rproc->rvdevs);
599 
600 	rvdev->subdev.start = rproc_vdev_do_start;
601 	rvdev->subdev.stop = rproc_vdev_do_stop;
602 
603 	rproc_add_subdev(rproc, &rvdev->subdev);
604 
605 	return 0;
606 
607 unwind_vring_allocations:
608 	for (i--; i >= 0; i--)
609 		rproc_free_vring(&rvdev->vring[i]);
610 free_rvdev:
611 	device_unregister(&rvdev->dev);
612 	return ret;
613 }
614 
615 void rproc_vdev_release(struct kref *ref)
616 {
617 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
618 	struct rproc_vring *rvring;
619 	struct rproc *rproc = rvdev->rproc;
620 	int id;
621 
622 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
623 		rvring = &rvdev->vring[id];
624 		rproc_free_vring(rvring);
625 	}
626 
627 	rproc_remove_subdev(rproc, &rvdev->subdev);
628 	list_del(&rvdev->node);
629 	device_unregister(&rvdev->dev);
630 }
631 
632 /**
633  * rproc_handle_trace() - handle a shared trace buffer resource
634  * @rproc: the remote processor
635  * @ptr: the trace resource descriptor
636  * @offset: offset of the resource entry
637  * @avail: size of available data (for sanity checking the image)
638  *
639  * In case the remote processor dumps trace logs into memory,
640  * export it via debugfs.
641  *
642  * Currently, the 'da' member of @rsc should contain the device address
643  * where the remote processor is dumping the traces. Later we could also
644  * support dynamically allocating this address using the generic
645  * DMA API (but currently there isn't a use case for that).
646  *
647  * Returns 0 on success, or an appropriate error code otherwise
648  */
649 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
650 			      int offset, int avail)
651 {
652 	struct fw_rsc_trace *rsc = ptr;
653 	struct rproc_debug_trace *trace;
654 	struct device *dev = &rproc->dev;
655 	char name[15];
656 
657 	if (sizeof(*rsc) > avail) {
658 		dev_err(dev, "trace rsc is truncated\n");
659 		return -EINVAL;
660 	}
661 
662 	/* make sure reserved bytes are zeroes */
663 	if (rsc->reserved) {
664 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
665 		return -EINVAL;
666 	}
667 
668 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
669 	if (!trace)
670 		return -ENOMEM;
671 
672 	/* set the trace buffer dma properties */
673 	trace->trace_mem.len = rsc->len;
674 	trace->trace_mem.da = rsc->da;
675 
676 	/* set pointer on rproc device */
677 	trace->rproc = rproc;
678 
679 	/* make sure snprintf always null terminates, even if truncating */
680 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
681 
682 	/* create the debugfs entry */
683 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
684 	if (!trace->tfile) {
685 		kfree(trace);
686 		return -EINVAL;
687 	}
688 
689 	list_add_tail(&trace->node, &rproc->traces);
690 
691 	rproc->num_traces++;
692 
693 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
694 		name, rsc->da, rsc->len);
695 
696 	return 0;
697 }
698 
699 /**
700  * rproc_handle_devmem() - handle devmem resource entry
701  * @rproc: remote processor handle
702  * @ptr: the devmem resource entry
703  * @offset: offset of the resource entry
704  * @avail: size of available data (for sanity checking the image)
705  *
706  * Remote processors commonly need to access certain on-chip peripherals.
707  *
708  * Some of these remote processors access memory via an iommu device,
709  * and might require us to configure their iommu before they can access
710  * the on-chip peripherals they need.
711  *
712  * This resource entry is a request to map such a peripheral device.
713  *
714  * These devmem entries will contain the physical address of the device in
715  * the 'pa' member. If a specific device address is expected, then 'da' will
716  * contain it (currently this is the only use case supported). 'len' will
717  * contain the size of the physical region we need to map.
718  *
719  * Currently we just "trust" those devmem entries to contain valid physical
720  * addresses, but this is going to change: we want the implementations to
721  * tell us ranges of physical addresses the firmware is allowed to request,
722  * and not allow firmwares to request access to physical addresses that
723  * are outside those ranges.
724  */
725 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
726 			       int offset, int avail)
727 {
728 	struct fw_rsc_devmem *rsc = ptr;
729 	struct rproc_mem_entry *mapping;
730 	struct device *dev = &rproc->dev;
731 	int ret;
732 
733 	/* no point in handling this resource without a valid iommu domain */
734 	if (!rproc->domain)
735 		return -EINVAL;
736 
737 	if (sizeof(*rsc) > avail) {
738 		dev_err(dev, "devmem rsc is truncated\n");
739 		return -EINVAL;
740 	}
741 
742 	/* make sure reserved bytes are zeroes */
743 	if (rsc->reserved) {
744 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
745 		return -EINVAL;
746 	}
747 
748 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
749 	if (!mapping)
750 		return -ENOMEM;
751 
752 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
753 	if (ret) {
754 		dev_err(dev, "failed to map devmem: %d\n", ret);
755 		goto out;
756 	}
757 
758 	/*
759 	 * We'll need this info later when we'll want to unmap everything
760 	 * (e.g. on shutdown).
761 	 *
762 	 * We can't trust the remote processor not to change the resource
763 	 * table, so we must maintain this info independently.
764 	 */
765 	mapping->da = rsc->da;
766 	mapping->len = rsc->len;
767 	list_add_tail(&mapping->node, &rproc->mappings);
768 
769 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
770 		rsc->pa, rsc->da, rsc->len);
771 
772 	return 0;
773 
774 out:
775 	kfree(mapping);
776 	return ret;
777 }
778 
779 /**
780  * rproc_alloc_carveout() - allocated specified carveout
781  * @rproc: rproc handle
782  * @mem: the memory entry to allocate
783  *
784  * This function allocate specified memory entry @mem using
785  * dma_alloc_coherent() as default allocator
786  */
787 static int rproc_alloc_carveout(struct rproc *rproc,
788 				struct rproc_mem_entry *mem)
789 {
790 	struct rproc_mem_entry *mapping = NULL;
791 	struct device *dev = &rproc->dev;
792 	dma_addr_t dma;
793 	void *va;
794 	int ret;
795 
796 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
797 	if (!va) {
798 		dev_err(dev->parent,
799 			"failed to allocate dma memory: len 0x%zx\n",
800 			mem->len);
801 		return -ENOMEM;
802 	}
803 
804 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
805 		va, &dma, mem->len);
806 
807 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
808 		/*
809 		 * Check requested da is equal to dma address
810 		 * and print a warn message in case of missalignment.
811 		 * Don't stop rproc_start sequence as coprocessor may
812 		 * build pa to da translation on its side.
813 		 */
814 		if (mem->da != (u32)dma)
815 			dev_warn(dev->parent,
816 				 "Allocated carveout doesn't fit device address request\n");
817 	}
818 
819 	/*
820 	 * Ok, this is non-standard.
821 	 *
822 	 * Sometimes we can't rely on the generic iommu-based DMA API
823 	 * to dynamically allocate the device address and then set the IOMMU
824 	 * tables accordingly, because some remote processors might
825 	 * _require_ us to use hard coded device addresses that their
826 	 * firmware was compiled with.
827 	 *
828 	 * In this case, we must use the IOMMU API directly and map
829 	 * the memory to the device address as expected by the remote
830 	 * processor.
831 	 *
832 	 * Obviously such remote processor devices should not be configured
833 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
834 	 * physical address in this case.
835 	 */
836 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
837 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
838 		if (!mapping) {
839 			ret = -ENOMEM;
840 			goto dma_free;
841 		}
842 
843 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
844 				mem->flags);
845 		if (ret) {
846 			dev_err(dev, "iommu_map failed: %d\n", ret);
847 			goto free_mapping;
848 		}
849 
850 		/*
851 		 * We'll need this info later when we'll want to unmap
852 		 * everything (e.g. on shutdown).
853 		 *
854 		 * We can't trust the remote processor not to change the
855 		 * resource table, so we must maintain this info independently.
856 		 */
857 		mapping->da = mem->da;
858 		mapping->len = mem->len;
859 		list_add_tail(&mapping->node, &rproc->mappings);
860 
861 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
862 			mem->da, &dma);
863 	}
864 
865 	if (mem->da == FW_RSC_ADDR_ANY) {
866 		/* Update device address as undefined by requester */
867 		if ((u64)dma & HIGH_BITS_MASK)
868 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
869 
870 		mem->da = (u32)dma;
871 	}
872 
873 	mem->dma = dma;
874 	mem->va = va;
875 
876 	return 0;
877 
878 free_mapping:
879 	kfree(mapping);
880 dma_free:
881 	dma_free_coherent(dev->parent, mem->len, va, dma);
882 	return ret;
883 }
884 
885 /**
886  * rproc_release_carveout() - release acquired carveout
887  * @rproc: rproc handle
888  * @mem: the memory entry to release
889  *
890  * This function releases specified memory entry @mem allocated via
891  * rproc_alloc_carveout() function by @rproc.
892  */
893 static int rproc_release_carveout(struct rproc *rproc,
894 				  struct rproc_mem_entry *mem)
895 {
896 	struct device *dev = &rproc->dev;
897 
898 	/* clean up carveout allocations */
899 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
900 	return 0;
901 }
902 
903 /**
904  * rproc_handle_carveout() - handle phys contig memory allocation requests
905  * @rproc: rproc handle
906  * @ptr: the resource entry
907  * @offset: offset of the resource entry
908  * @avail: size of available data (for image validation)
909  *
910  * This function will handle firmware requests for allocation of physically
911  * contiguous memory regions.
912  *
913  * These request entries should come first in the firmware's resource table,
914  * as other firmware entries might request placing other data objects inside
915  * these memory regions (e.g. data/code segments, trace resource entries, ...).
916  *
917  * Allocating memory this way helps utilizing the reserved physical memory
918  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
919  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
920  * pressure is important; it may have a substantial impact on performance.
921  */
922 static int rproc_handle_carveout(struct rproc *rproc,
923 				 void *ptr, int offset, int avail)
924 {
925 	struct fw_rsc_carveout *rsc = ptr;
926 	struct rproc_mem_entry *carveout;
927 	struct device *dev = &rproc->dev;
928 
929 	if (sizeof(*rsc) > avail) {
930 		dev_err(dev, "carveout rsc is truncated\n");
931 		return -EINVAL;
932 	}
933 
934 	/* make sure reserved bytes are zeroes */
935 	if (rsc->reserved) {
936 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
937 		return -EINVAL;
938 	}
939 
940 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
941 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
942 
943 	/*
944 	 * Check carveout rsc already part of a registered carveout,
945 	 * Search by name, then check the da and length
946 	 */
947 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
948 
949 	if (carveout) {
950 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
951 			dev_err(dev,
952 				"Carveout already associated to resource table\n");
953 			return -ENOMEM;
954 		}
955 
956 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
957 			return -ENOMEM;
958 
959 		/* Update memory carveout with resource table info */
960 		carveout->rsc_offset = offset;
961 		carveout->flags = rsc->flags;
962 
963 		return 0;
964 	}
965 
966 	/* Register carveout in in list */
967 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
968 					rproc_alloc_carveout,
969 					rproc_release_carveout, rsc->name);
970 	if (!carveout) {
971 		dev_err(dev, "Can't allocate memory entry structure\n");
972 		return -ENOMEM;
973 	}
974 
975 	carveout->flags = rsc->flags;
976 	carveout->rsc_offset = offset;
977 	rproc_add_carveout(rproc, carveout);
978 
979 	return 0;
980 }
981 
982 /**
983  * rproc_add_carveout() - register an allocated carveout region
984  * @rproc: rproc handle
985  * @mem: memory entry to register
986  *
987  * This function registers specified memory entry in @rproc carveouts list.
988  * Specified carveout should have been allocated before registering.
989  */
990 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
991 {
992 	list_add_tail(&mem->node, &rproc->carveouts);
993 }
994 EXPORT_SYMBOL(rproc_add_carveout);
995 
996 /**
997  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
998  * @dev: pointer on device struct
999  * @va: virtual address
1000  * @dma: dma address
1001  * @len: memory carveout length
1002  * @da: device address
1003  * @alloc: memory carveout allocation function
1004  * @release: memory carveout release function
1005  * @name: carveout name
1006  *
1007  * This function allocates a rproc_mem_entry struct and fill it with parameters
1008  * provided by client.
1009  */
1010 __printf(8, 9)
1011 struct rproc_mem_entry *
1012 rproc_mem_entry_init(struct device *dev,
1013 		     void *va, dma_addr_t dma, size_t len, u32 da,
1014 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1015 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
1016 		     const char *name, ...)
1017 {
1018 	struct rproc_mem_entry *mem;
1019 	va_list args;
1020 
1021 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1022 	if (!mem)
1023 		return mem;
1024 
1025 	mem->va = va;
1026 	mem->dma = dma;
1027 	mem->da = da;
1028 	mem->len = len;
1029 	mem->alloc = alloc;
1030 	mem->release = release;
1031 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1032 	mem->of_resm_idx = -1;
1033 
1034 	va_start(args, name);
1035 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1036 	va_end(args);
1037 
1038 	return mem;
1039 }
1040 EXPORT_SYMBOL(rproc_mem_entry_init);
1041 
1042 /**
1043  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1044  * from a reserved memory phandle
1045  * @dev: pointer on device struct
1046  * @of_resm_idx: reserved memory phandle index in "memory-region"
1047  * @len: memory carveout length
1048  * @da: device address
1049  * @name: carveout name
1050  *
1051  * This function allocates a rproc_mem_entry struct and fill it with parameters
1052  * provided by client.
1053  */
1054 __printf(5, 6)
1055 struct rproc_mem_entry *
1056 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1057 			     u32 da, const char *name, ...)
1058 {
1059 	struct rproc_mem_entry *mem;
1060 	va_list args;
1061 
1062 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1063 	if (!mem)
1064 		return mem;
1065 
1066 	mem->da = da;
1067 	mem->len = len;
1068 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1069 	mem->of_resm_idx = of_resm_idx;
1070 
1071 	va_start(args, name);
1072 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1073 	va_end(args);
1074 
1075 	return mem;
1076 }
1077 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1078 
1079 /**
1080  * rproc_of_parse_firmware() - parse and return the firmware-name
1081  * @dev: pointer on device struct representing a rproc
1082  * @index: index to use for the firmware-name retrieval
1083  * @fw_name: pointer to a character string, in which the firmware
1084  *           name is returned on success and unmodified otherwise.
1085  *
1086  * This is an OF helper function that parses a device's DT node for
1087  * the "firmware-name" property and returns the firmware name pointer
1088  * in @fw_name on success.
1089  *
1090  * Return: 0 on success, or an appropriate failure.
1091  */
1092 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1093 {
1094 	int ret;
1095 
1096 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1097 					    index, fw_name);
1098 	return ret ? ret : 0;
1099 }
1100 EXPORT_SYMBOL(rproc_of_parse_firmware);
1101 
1102 /*
1103  * A lookup table for resource handlers. The indices are defined in
1104  * enum fw_resource_type.
1105  */
1106 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1107 	[RSC_CARVEOUT] = rproc_handle_carveout,
1108 	[RSC_DEVMEM] = rproc_handle_devmem,
1109 	[RSC_TRACE] = rproc_handle_trace,
1110 	[RSC_VDEV] = rproc_handle_vdev,
1111 };
1112 
1113 /* handle firmware resource entries before booting the remote processor */
1114 static int rproc_handle_resources(struct rproc *rproc,
1115 				  rproc_handle_resource_t handlers[RSC_LAST])
1116 {
1117 	struct device *dev = &rproc->dev;
1118 	rproc_handle_resource_t handler;
1119 	int ret = 0, i;
1120 
1121 	if (!rproc->table_ptr)
1122 		return 0;
1123 
1124 	for (i = 0; i < rproc->table_ptr->num; i++) {
1125 		int offset = rproc->table_ptr->offset[i];
1126 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1127 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1128 		void *rsc = (void *)hdr + sizeof(*hdr);
1129 
1130 		/* make sure table isn't truncated */
1131 		if (avail < 0) {
1132 			dev_err(dev, "rsc table is truncated\n");
1133 			return -EINVAL;
1134 		}
1135 
1136 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1137 
1138 		if (hdr->type >= RSC_VENDOR_START &&
1139 		    hdr->type <= RSC_VENDOR_END) {
1140 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1141 					       offset + sizeof(*hdr), avail);
1142 			if (ret == RSC_HANDLED)
1143 				continue;
1144 			else if (ret < 0)
1145 				break;
1146 
1147 			dev_warn(dev, "unsupported vendor resource %d\n",
1148 				 hdr->type);
1149 			continue;
1150 		}
1151 
1152 		if (hdr->type >= RSC_LAST) {
1153 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1154 			continue;
1155 		}
1156 
1157 		handler = handlers[hdr->type];
1158 		if (!handler)
1159 			continue;
1160 
1161 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1162 		if (ret)
1163 			break;
1164 	}
1165 
1166 	return ret;
1167 }
1168 
1169 static int rproc_prepare_subdevices(struct rproc *rproc)
1170 {
1171 	struct rproc_subdev *subdev;
1172 	int ret;
1173 
1174 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1175 		if (subdev->prepare) {
1176 			ret = subdev->prepare(subdev);
1177 			if (ret)
1178 				goto unroll_preparation;
1179 		}
1180 	}
1181 
1182 	return 0;
1183 
1184 unroll_preparation:
1185 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1186 		if (subdev->unprepare)
1187 			subdev->unprepare(subdev);
1188 	}
1189 
1190 	return ret;
1191 }
1192 
1193 static int rproc_start_subdevices(struct rproc *rproc)
1194 {
1195 	struct rproc_subdev *subdev;
1196 	int ret;
1197 
1198 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1199 		if (subdev->start) {
1200 			ret = subdev->start(subdev);
1201 			if (ret)
1202 				goto unroll_registration;
1203 		}
1204 	}
1205 
1206 	return 0;
1207 
1208 unroll_registration:
1209 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1210 		if (subdev->stop)
1211 			subdev->stop(subdev, true);
1212 	}
1213 
1214 	return ret;
1215 }
1216 
1217 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1218 {
1219 	struct rproc_subdev *subdev;
1220 
1221 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1222 		if (subdev->stop)
1223 			subdev->stop(subdev, crashed);
1224 	}
1225 }
1226 
1227 static void rproc_unprepare_subdevices(struct rproc *rproc)
1228 {
1229 	struct rproc_subdev *subdev;
1230 
1231 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1232 		if (subdev->unprepare)
1233 			subdev->unprepare(subdev);
1234 	}
1235 }
1236 
1237 /**
1238  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1239  * in the list
1240  * @rproc: the remote processor handle
1241  *
1242  * This function parses registered carveout list, performs allocation
1243  * if alloc() ops registered and updates resource table information
1244  * if rsc_offset set.
1245  *
1246  * Return: 0 on success
1247  */
1248 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1249 {
1250 	struct rproc_mem_entry *entry, *tmp;
1251 	struct fw_rsc_carveout *rsc;
1252 	struct device *dev = &rproc->dev;
1253 	u64 pa;
1254 	int ret;
1255 
1256 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1257 		if (entry->alloc) {
1258 			ret = entry->alloc(rproc, entry);
1259 			if (ret) {
1260 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1261 					entry->name, ret);
1262 				return -ENOMEM;
1263 			}
1264 		}
1265 
1266 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1267 			/* update resource table */
1268 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1269 
1270 			/*
1271 			 * Some remote processors might need to know the pa
1272 			 * even though they are behind an IOMMU. E.g., OMAP4's
1273 			 * remote M3 processor needs this so it can control
1274 			 * on-chip hardware accelerators that are not behind
1275 			 * the IOMMU, and therefor must know the pa.
1276 			 *
1277 			 * Generally we don't want to expose physical addresses
1278 			 * if we don't have to (remote processors are generally
1279 			 * _not_ trusted), so we might want to do this only for
1280 			 * remote processor that _must_ have this (e.g. OMAP4's
1281 			 * dual M3 subsystem).
1282 			 *
1283 			 * Non-IOMMU processors might also want to have this info.
1284 			 * In this case, the device address and the physical address
1285 			 * are the same.
1286 			 */
1287 
1288 			/* Use va if defined else dma to generate pa */
1289 			if (entry->va)
1290 				pa = (u64)rproc_va_to_pa(entry->va);
1291 			else
1292 				pa = (u64)entry->dma;
1293 
1294 			if (((u64)pa) & HIGH_BITS_MASK)
1295 				dev_warn(dev,
1296 					 "Physical address cast in 32bit to fit resource table format\n");
1297 
1298 			rsc->pa = (u32)pa;
1299 			rsc->da = entry->da;
1300 			rsc->len = entry->len;
1301 		}
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 
1308 /**
1309  * rproc_resource_cleanup() - clean up and free all acquired resources
1310  * @rproc: rproc handle
1311  *
1312  * This function will free all resources acquired for @rproc, and it
1313  * is called whenever @rproc either shuts down or fails to boot.
1314  */
1315 void rproc_resource_cleanup(struct rproc *rproc)
1316 {
1317 	struct rproc_mem_entry *entry, *tmp;
1318 	struct rproc_debug_trace *trace, *ttmp;
1319 	struct rproc_vdev *rvdev, *rvtmp;
1320 	struct device *dev = &rproc->dev;
1321 
1322 	/* clean up debugfs trace entries */
1323 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1324 		rproc_remove_trace_file(trace->tfile);
1325 		rproc->num_traces--;
1326 		list_del(&trace->node);
1327 		kfree(trace);
1328 	}
1329 
1330 	/* clean up iommu mapping entries */
1331 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1332 		size_t unmapped;
1333 
1334 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1335 		if (unmapped != entry->len) {
1336 			/* nothing much to do besides complaining */
1337 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1338 				unmapped);
1339 		}
1340 
1341 		list_del(&entry->node);
1342 		kfree(entry);
1343 	}
1344 
1345 	/* clean up carveout allocations */
1346 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1347 		if (entry->release)
1348 			entry->release(rproc, entry);
1349 		list_del(&entry->node);
1350 		kfree(entry);
1351 	}
1352 
1353 	/* clean up remote vdev entries */
1354 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1355 		kref_put(&rvdev->refcount, rproc_vdev_release);
1356 
1357 	rproc_coredump_cleanup(rproc);
1358 }
1359 EXPORT_SYMBOL(rproc_resource_cleanup);
1360 
1361 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1362 {
1363 	struct resource_table *loaded_table;
1364 	struct device *dev = &rproc->dev;
1365 	int ret;
1366 
1367 	/* load the ELF segments to memory */
1368 	ret = rproc_load_segments(rproc, fw);
1369 	if (ret) {
1370 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1371 		return ret;
1372 	}
1373 
1374 	/*
1375 	 * The starting device has been given the rproc->cached_table as the
1376 	 * resource table. The address of the vring along with the other
1377 	 * allocated resources (carveouts etc) is stored in cached_table.
1378 	 * In order to pass this information to the remote device we must copy
1379 	 * this information to device memory. We also update the table_ptr so
1380 	 * that any subsequent changes will be applied to the loaded version.
1381 	 */
1382 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1383 	if (loaded_table) {
1384 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1385 		rproc->table_ptr = loaded_table;
1386 	}
1387 
1388 	ret = rproc_prepare_subdevices(rproc);
1389 	if (ret) {
1390 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1391 			rproc->name, ret);
1392 		goto reset_table_ptr;
1393 	}
1394 
1395 	/* power up the remote processor */
1396 	ret = rproc->ops->start(rproc);
1397 	if (ret) {
1398 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1399 		goto unprepare_subdevices;
1400 	}
1401 
1402 	/* Start any subdevices for the remote processor */
1403 	ret = rproc_start_subdevices(rproc);
1404 	if (ret) {
1405 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1406 			rproc->name, ret);
1407 		goto stop_rproc;
1408 	}
1409 
1410 	rproc->state = RPROC_RUNNING;
1411 
1412 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1413 
1414 	return 0;
1415 
1416 stop_rproc:
1417 	rproc->ops->stop(rproc);
1418 unprepare_subdevices:
1419 	rproc_unprepare_subdevices(rproc);
1420 reset_table_ptr:
1421 	rproc->table_ptr = rproc->cached_table;
1422 
1423 	return ret;
1424 }
1425 
1426 static int __rproc_attach(struct rproc *rproc)
1427 {
1428 	struct device *dev = &rproc->dev;
1429 	int ret;
1430 
1431 	ret = rproc_prepare_subdevices(rproc);
1432 	if (ret) {
1433 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1434 			rproc->name, ret);
1435 		goto out;
1436 	}
1437 
1438 	/* Attach to the remote processor */
1439 	ret = rproc_attach_device(rproc);
1440 	if (ret) {
1441 		dev_err(dev, "can't attach to rproc %s: %d\n",
1442 			rproc->name, ret);
1443 		goto unprepare_subdevices;
1444 	}
1445 
1446 	/* Start any subdevices for the remote processor */
1447 	ret = rproc_start_subdevices(rproc);
1448 	if (ret) {
1449 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1450 			rproc->name, ret);
1451 		goto stop_rproc;
1452 	}
1453 
1454 	rproc->state = RPROC_ATTACHED;
1455 
1456 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1457 
1458 	return 0;
1459 
1460 stop_rproc:
1461 	rproc->ops->stop(rproc);
1462 unprepare_subdevices:
1463 	rproc_unprepare_subdevices(rproc);
1464 out:
1465 	return ret;
1466 }
1467 
1468 /*
1469  * take a firmware and boot a remote processor with it.
1470  */
1471 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1472 {
1473 	struct device *dev = &rproc->dev;
1474 	const char *name = rproc->firmware;
1475 	int ret;
1476 
1477 	ret = rproc_fw_sanity_check(rproc, fw);
1478 	if (ret)
1479 		return ret;
1480 
1481 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1482 
1483 	/*
1484 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1485 	 * just a nop
1486 	 */
1487 	ret = rproc_enable_iommu(rproc);
1488 	if (ret) {
1489 		dev_err(dev, "can't enable iommu: %d\n", ret);
1490 		return ret;
1491 	}
1492 
1493 	/* Prepare rproc for firmware loading if needed */
1494 	ret = rproc_prepare_device(rproc);
1495 	if (ret) {
1496 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1497 		goto disable_iommu;
1498 	}
1499 
1500 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1501 
1502 	/* Load resource table, core dump segment list etc from the firmware */
1503 	ret = rproc_parse_fw(rproc, fw);
1504 	if (ret)
1505 		goto unprepare_rproc;
1506 
1507 	/* reset max_notifyid */
1508 	rproc->max_notifyid = -1;
1509 
1510 	/* reset handled vdev */
1511 	rproc->nb_vdev = 0;
1512 
1513 	/* handle fw resources which are required to boot rproc */
1514 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1515 	if (ret) {
1516 		dev_err(dev, "Failed to process resources: %d\n", ret);
1517 		goto clean_up_resources;
1518 	}
1519 
1520 	/* Allocate carveout resources associated to rproc */
1521 	ret = rproc_alloc_registered_carveouts(rproc);
1522 	if (ret) {
1523 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1524 			ret);
1525 		goto clean_up_resources;
1526 	}
1527 
1528 	ret = rproc_start(rproc, fw);
1529 	if (ret)
1530 		goto clean_up_resources;
1531 
1532 	return 0;
1533 
1534 clean_up_resources:
1535 	rproc_resource_cleanup(rproc);
1536 	kfree(rproc->cached_table);
1537 	rproc->cached_table = NULL;
1538 	rproc->table_ptr = NULL;
1539 unprepare_rproc:
1540 	/* release HW resources if needed */
1541 	rproc_unprepare_device(rproc);
1542 disable_iommu:
1543 	rproc_disable_iommu(rproc);
1544 	return ret;
1545 }
1546 
1547 static int rproc_set_rsc_table(struct rproc *rproc)
1548 {
1549 	struct resource_table *table_ptr;
1550 	struct device *dev = &rproc->dev;
1551 	size_t table_sz;
1552 	int ret;
1553 
1554 	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1555 	if (!table_ptr) {
1556 		/* Not having a resource table is acceptable */
1557 		return 0;
1558 	}
1559 
1560 	if (IS_ERR(table_ptr)) {
1561 		ret = PTR_ERR(table_ptr);
1562 		dev_err(dev, "can't load resource table: %d\n", ret);
1563 		return ret;
1564 	}
1565 
1566 	/*
1567 	 * If it is possible to detach the remote processor, keep an untouched
1568 	 * copy of the resource table.  That way we can start fresh again when
1569 	 * the remote processor is re-attached, that is:
1570 	 *
1571 	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1572 	 *
1573 	 * Free'd in rproc_reset_rsc_table_on_detach() and
1574 	 * rproc_reset_rsc_table_on_stop().
1575 	 */
1576 	if (rproc->ops->detach) {
1577 		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1578 		if (!rproc->clean_table)
1579 			return -ENOMEM;
1580 	} else {
1581 		rproc->clean_table = NULL;
1582 	}
1583 
1584 	rproc->cached_table = NULL;
1585 	rproc->table_ptr = table_ptr;
1586 	rproc->table_sz = table_sz;
1587 
1588 	return 0;
1589 }
1590 
1591 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1592 {
1593 	struct resource_table *table_ptr;
1594 
1595 	/* A resource table was never retrieved, nothing to do here */
1596 	if (!rproc->table_ptr)
1597 		return 0;
1598 
1599 	/*
1600 	 * If we made it to this point a clean_table _must_ have been
1601 	 * allocated in rproc_set_rsc_table().  If one isn't present
1602 	 * something went really wrong and we must complain.
1603 	 */
1604 	if (WARN_ON(!rproc->clean_table))
1605 		return -EINVAL;
1606 
1607 	/* Remember where the external entity installed the resource table */
1608 	table_ptr = rproc->table_ptr;
1609 
1610 	/*
1611 	 * If we made it here the remote processor was started by another
1612 	 * entity and a cache table doesn't exist.  As such make a copy of
1613 	 * the resource table currently used by the remote processor and
1614 	 * use that for the rest of the shutdown process.  The memory
1615 	 * allocated here is free'd in rproc_detach().
1616 	 */
1617 	rproc->cached_table = kmemdup(rproc->table_ptr,
1618 				      rproc->table_sz, GFP_KERNEL);
1619 	if (!rproc->cached_table)
1620 		return -ENOMEM;
1621 
1622 	/*
1623 	 * Use a copy of the resource table for the remainder of the
1624 	 * shutdown process.
1625 	 */
1626 	rproc->table_ptr = rproc->cached_table;
1627 
1628 	/*
1629 	 * Reset the memory area where the firmware loaded the resource table
1630 	 * to its original value.  That way when we re-attach the remote
1631 	 * processor the resource table is clean and ready to be used again.
1632 	 */
1633 	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1634 
1635 	/*
1636 	 * The clean resource table is no longer needed.  Allocated in
1637 	 * rproc_set_rsc_table().
1638 	 */
1639 	kfree(rproc->clean_table);
1640 
1641 	return 0;
1642 }
1643 
1644 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1645 {
1646 	/* A resource table was never retrieved, nothing to do here */
1647 	if (!rproc->table_ptr)
1648 		return 0;
1649 
1650 	/*
1651 	 * If a cache table exists the remote processor was started by
1652 	 * the remoteproc core.  That cache table should be used for
1653 	 * the rest of the shutdown process.
1654 	 */
1655 	if (rproc->cached_table)
1656 		goto out;
1657 
1658 	/*
1659 	 * If we made it here the remote processor was started by another
1660 	 * entity and a cache table doesn't exist.  As such make a copy of
1661 	 * the resource table currently used by the remote processor and
1662 	 * use that for the rest of the shutdown process.  The memory
1663 	 * allocated here is free'd in rproc_shutdown().
1664 	 */
1665 	rproc->cached_table = kmemdup(rproc->table_ptr,
1666 				      rproc->table_sz, GFP_KERNEL);
1667 	if (!rproc->cached_table)
1668 		return -ENOMEM;
1669 
1670 	/*
1671 	 * Since the remote processor is being switched off the clean table
1672 	 * won't be needed.  Allocated in rproc_set_rsc_table().
1673 	 */
1674 	kfree(rproc->clean_table);
1675 
1676 out:
1677 	/*
1678 	 * Use a copy of the resource table for the remainder of the
1679 	 * shutdown process.
1680 	 */
1681 	rproc->table_ptr = rproc->cached_table;
1682 	return 0;
1683 }
1684 
1685 /*
1686  * Attach to remote processor - similar to rproc_fw_boot() but without
1687  * the steps that deal with the firmware image.
1688  */
1689 static int rproc_attach(struct rproc *rproc)
1690 {
1691 	struct device *dev = &rproc->dev;
1692 	int ret;
1693 
1694 	/*
1695 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1696 	 * just a nop
1697 	 */
1698 	ret = rproc_enable_iommu(rproc);
1699 	if (ret) {
1700 		dev_err(dev, "can't enable iommu: %d\n", ret);
1701 		return ret;
1702 	}
1703 
1704 	/* Do anything that is needed to boot the remote processor */
1705 	ret = rproc_prepare_device(rproc);
1706 	if (ret) {
1707 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1708 		goto disable_iommu;
1709 	}
1710 
1711 	ret = rproc_set_rsc_table(rproc);
1712 	if (ret) {
1713 		dev_err(dev, "can't load resource table: %d\n", ret);
1714 		goto unprepare_device;
1715 	}
1716 
1717 	/* reset max_notifyid */
1718 	rproc->max_notifyid = -1;
1719 
1720 	/* reset handled vdev */
1721 	rproc->nb_vdev = 0;
1722 
1723 	/*
1724 	 * Handle firmware resources required to attach to a remote processor.
1725 	 * Because we are attaching rather than booting the remote processor,
1726 	 * we expect the platform driver to properly set rproc->table_ptr.
1727 	 */
1728 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1729 	if (ret) {
1730 		dev_err(dev, "Failed to process resources: %d\n", ret);
1731 		goto unprepare_device;
1732 	}
1733 
1734 	/* Allocate carveout resources associated to rproc */
1735 	ret = rproc_alloc_registered_carveouts(rproc);
1736 	if (ret) {
1737 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1738 			ret);
1739 		goto clean_up_resources;
1740 	}
1741 
1742 	ret = __rproc_attach(rproc);
1743 	if (ret)
1744 		goto clean_up_resources;
1745 
1746 	return 0;
1747 
1748 clean_up_resources:
1749 	rproc_resource_cleanup(rproc);
1750 unprepare_device:
1751 	/* release HW resources if needed */
1752 	rproc_unprepare_device(rproc);
1753 disable_iommu:
1754 	rproc_disable_iommu(rproc);
1755 	return ret;
1756 }
1757 
1758 /*
1759  * take a firmware and boot it up.
1760  *
1761  * Note: this function is called asynchronously upon registration of the
1762  * remote processor (so we must wait until it completes before we try
1763  * to unregister the device. one other option is just to use kref here,
1764  * that might be cleaner).
1765  */
1766 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1767 {
1768 	struct rproc *rproc = context;
1769 
1770 	rproc_boot(rproc);
1771 
1772 	release_firmware(fw);
1773 }
1774 
1775 static int rproc_trigger_auto_boot(struct rproc *rproc)
1776 {
1777 	int ret;
1778 
1779 	/*
1780 	 * Since the remote processor is in a detached state, it has already
1781 	 * been booted by another entity.  As such there is no point in waiting
1782 	 * for a firmware image to be loaded, we can simply initiate the process
1783 	 * of attaching to it immediately.
1784 	 */
1785 	if (rproc->state == RPROC_DETACHED)
1786 		return rproc_boot(rproc);
1787 
1788 	/*
1789 	 * We're initiating an asynchronous firmware loading, so we can
1790 	 * be built-in kernel code, without hanging the boot process.
1791 	 */
1792 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1793 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1794 				      rproc, rproc_auto_boot_callback);
1795 	if (ret < 0)
1796 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1797 
1798 	return ret;
1799 }
1800 
1801 static int rproc_stop(struct rproc *rproc, bool crashed)
1802 {
1803 	struct device *dev = &rproc->dev;
1804 	int ret;
1805 
1806 	/* No need to continue if a stop() operation has not been provided */
1807 	if (!rproc->ops->stop)
1808 		return -EINVAL;
1809 
1810 	/* Stop any subdevices for the remote processor */
1811 	rproc_stop_subdevices(rproc, crashed);
1812 
1813 	/* the installed resource table is no longer accessible */
1814 	ret = rproc_reset_rsc_table_on_stop(rproc);
1815 	if (ret) {
1816 		dev_err(dev, "can't reset resource table: %d\n", ret);
1817 		return ret;
1818 	}
1819 
1820 
1821 	/* power off the remote processor */
1822 	ret = rproc->ops->stop(rproc);
1823 	if (ret) {
1824 		dev_err(dev, "can't stop rproc: %d\n", ret);
1825 		return ret;
1826 	}
1827 
1828 	rproc_unprepare_subdevices(rproc);
1829 
1830 	rproc->state = RPROC_OFFLINE;
1831 
1832 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1833 
1834 	return 0;
1835 }
1836 
1837 /*
1838  * __rproc_detach(): Does the opposite of __rproc_attach()
1839  */
1840 static int __rproc_detach(struct rproc *rproc)
1841 {
1842 	struct device *dev = &rproc->dev;
1843 	int ret;
1844 
1845 	/* No need to continue if a detach() operation has not been provided */
1846 	if (!rproc->ops->detach)
1847 		return -EINVAL;
1848 
1849 	/* Stop any subdevices for the remote processor */
1850 	rproc_stop_subdevices(rproc, false);
1851 
1852 	/* the installed resource table is no longer accessible */
1853 	ret = rproc_reset_rsc_table_on_detach(rproc);
1854 	if (ret) {
1855 		dev_err(dev, "can't reset resource table: %d\n", ret);
1856 		return ret;
1857 	}
1858 
1859 	/* Tell the remote processor the core isn't available anymore */
1860 	ret = rproc->ops->detach(rproc);
1861 	if (ret) {
1862 		dev_err(dev, "can't detach from rproc: %d\n", ret);
1863 		return ret;
1864 	}
1865 
1866 	rproc_unprepare_subdevices(rproc);
1867 
1868 	rproc->state = RPROC_DETACHED;
1869 
1870 	dev_info(dev, "detached remote processor %s\n", rproc->name);
1871 
1872 	return 0;
1873 }
1874 
1875 /**
1876  * rproc_trigger_recovery() - recover a remoteproc
1877  * @rproc: the remote processor
1878  *
1879  * The recovery is done by resetting all the virtio devices, that way all the
1880  * rpmsg drivers will be reseted along with the remote processor making the
1881  * remoteproc functional again.
1882  *
1883  * This function can sleep, so it cannot be called from atomic context.
1884  */
1885 int rproc_trigger_recovery(struct rproc *rproc)
1886 {
1887 	const struct firmware *firmware_p;
1888 	struct device *dev = &rproc->dev;
1889 	int ret;
1890 
1891 	ret = mutex_lock_interruptible(&rproc->lock);
1892 	if (ret)
1893 		return ret;
1894 
1895 	/* State could have changed before we got the mutex */
1896 	if (rproc->state != RPROC_CRASHED)
1897 		goto unlock_mutex;
1898 
1899 	dev_err(dev, "recovering %s\n", rproc->name);
1900 
1901 	ret = rproc_stop(rproc, true);
1902 	if (ret)
1903 		goto unlock_mutex;
1904 
1905 	/* generate coredump */
1906 	rproc->ops->coredump(rproc);
1907 
1908 	/* load firmware */
1909 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1910 	if (ret < 0) {
1911 		dev_err(dev, "request_firmware failed: %d\n", ret);
1912 		goto unlock_mutex;
1913 	}
1914 
1915 	/* boot the remote processor up again */
1916 	ret = rproc_start(rproc, firmware_p);
1917 
1918 	release_firmware(firmware_p);
1919 
1920 unlock_mutex:
1921 	mutex_unlock(&rproc->lock);
1922 	return ret;
1923 }
1924 
1925 /**
1926  * rproc_crash_handler_work() - handle a crash
1927  * @work: work treating the crash
1928  *
1929  * This function needs to handle everything related to a crash, like cpu
1930  * registers and stack dump, information to help to debug the fatal error, etc.
1931  */
1932 static void rproc_crash_handler_work(struct work_struct *work)
1933 {
1934 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1935 	struct device *dev = &rproc->dev;
1936 
1937 	dev_dbg(dev, "enter %s\n", __func__);
1938 
1939 	mutex_lock(&rproc->lock);
1940 
1941 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1942 		/* handle only the first crash detected */
1943 		mutex_unlock(&rproc->lock);
1944 		return;
1945 	}
1946 
1947 	rproc->state = RPROC_CRASHED;
1948 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1949 		rproc->name);
1950 
1951 	mutex_unlock(&rproc->lock);
1952 
1953 	if (!rproc->recovery_disabled)
1954 		rproc_trigger_recovery(rproc);
1955 
1956 	pm_relax(rproc->dev.parent);
1957 }
1958 
1959 /**
1960  * rproc_boot() - boot a remote processor
1961  * @rproc: handle of a remote processor
1962  *
1963  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1964  *
1965  * If the remote processor is already powered on, this function immediately
1966  * returns (successfully).
1967  *
1968  * Returns 0 on success, and an appropriate error value otherwise.
1969  */
1970 int rproc_boot(struct rproc *rproc)
1971 {
1972 	const struct firmware *firmware_p;
1973 	struct device *dev;
1974 	int ret;
1975 
1976 	if (!rproc) {
1977 		pr_err("invalid rproc handle\n");
1978 		return -EINVAL;
1979 	}
1980 
1981 	dev = &rproc->dev;
1982 
1983 	ret = mutex_lock_interruptible(&rproc->lock);
1984 	if (ret) {
1985 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1986 		return ret;
1987 	}
1988 
1989 	if (rproc->state == RPROC_DELETED) {
1990 		ret = -ENODEV;
1991 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1992 		goto unlock_mutex;
1993 	}
1994 
1995 	/* skip the boot or attach process if rproc is already powered up */
1996 	if (atomic_inc_return(&rproc->power) > 1) {
1997 		ret = 0;
1998 		goto unlock_mutex;
1999 	}
2000 
2001 	if (rproc->state == RPROC_DETACHED) {
2002 		dev_info(dev, "attaching to %s\n", rproc->name);
2003 
2004 		ret = rproc_attach(rproc);
2005 	} else {
2006 		dev_info(dev, "powering up %s\n", rproc->name);
2007 
2008 		/* load firmware */
2009 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
2010 		if (ret < 0) {
2011 			dev_err(dev, "request_firmware failed: %d\n", ret);
2012 			goto downref_rproc;
2013 		}
2014 
2015 		ret = rproc_fw_boot(rproc, firmware_p);
2016 
2017 		release_firmware(firmware_p);
2018 	}
2019 
2020 downref_rproc:
2021 	if (ret)
2022 		atomic_dec(&rproc->power);
2023 unlock_mutex:
2024 	mutex_unlock(&rproc->lock);
2025 	return ret;
2026 }
2027 EXPORT_SYMBOL(rproc_boot);
2028 
2029 /**
2030  * rproc_shutdown() - power off the remote processor
2031  * @rproc: the remote processor
2032  *
2033  * Power off a remote processor (previously booted with rproc_boot()).
2034  *
2035  * In case @rproc is still being used by an additional user(s), then
2036  * this function will just decrement the power refcount and exit,
2037  * without really powering off the device.
2038  *
2039  * Every call to rproc_boot() must (eventually) be accompanied by a call
2040  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
2041  *
2042  * Notes:
2043  * - we're not decrementing the rproc's refcount, only the power refcount.
2044  *   which means that the @rproc handle stays valid even after rproc_shutdown()
2045  *   returns, and users can still use it with a subsequent rproc_boot(), if
2046  *   needed.
2047  */
2048 void rproc_shutdown(struct rproc *rproc)
2049 {
2050 	struct device *dev = &rproc->dev;
2051 	int ret;
2052 
2053 	ret = mutex_lock_interruptible(&rproc->lock);
2054 	if (ret) {
2055 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2056 		return;
2057 	}
2058 
2059 	/* if the remote proc is still needed, bail out */
2060 	if (!atomic_dec_and_test(&rproc->power))
2061 		goto out;
2062 
2063 	ret = rproc_stop(rproc, false);
2064 	if (ret) {
2065 		atomic_inc(&rproc->power);
2066 		goto out;
2067 	}
2068 
2069 	/* clean up all acquired resources */
2070 	rproc_resource_cleanup(rproc);
2071 
2072 	/* release HW resources if needed */
2073 	rproc_unprepare_device(rproc);
2074 
2075 	rproc_disable_iommu(rproc);
2076 
2077 	/* Free the copy of the resource table */
2078 	kfree(rproc->cached_table);
2079 	rproc->cached_table = NULL;
2080 	rproc->table_ptr = NULL;
2081 out:
2082 	mutex_unlock(&rproc->lock);
2083 }
2084 EXPORT_SYMBOL(rproc_shutdown);
2085 
2086 /**
2087  * rproc_detach() - Detach the remote processor from the
2088  * remoteproc core
2089  *
2090  * @rproc: the remote processor
2091  *
2092  * Detach a remote processor (previously attached to with rproc_attach()).
2093  *
2094  * In case @rproc is still being used by an additional user(s), then
2095  * this function will just decrement the power refcount and exit,
2096  * without disconnecting the device.
2097  *
2098  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2099  * processor know that services provided by the application processor are
2100  * no longer available.  From there it should be possible to remove the
2101  * platform driver and even power cycle the application processor (if the HW
2102  * supports it) without needing to switch off the remote processor.
2103  */
2104 int rproc_detach(struct rproc *rproc)
2105 {
2106 	struct device *dev = &rproc->dev;
2107 	int ret;
2108 
2109 	ret = mutex_lock_interruptible(&rproc->lock);
2110 	if (ret) {
2111 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2112 		return ret;
2113 	}
2114 
2115 	/* if the remote proc is still needed, bail out */
2116 	if (!atomic_dec_and_test(&rproc->power)) {
2117 		ret = 0;
2118 		goto out;
2119 	}
2120 
2121 	ret = __rproc_detach(rproc);
2122 	if (ret) {
2123 		atomic_inc(&rproc->power);
2124 		goto out;
2125 	}
2126 
2127 	/* clean up all acquired resources */
2128 	rproc_resource_cleanup(rproc);
2129 
2130 	/* release HW resources if needed */
2131 	rproc_unprepare_device(rproc);
2132 
2133 	rproc_disable_iommu(rproc);
2134 
2135 	/* Free the copy of the resource table */
2136 	kfree(rproc->cached_table);
2137 	rproc->cached_table = NULL;
2138 	rproc->table_ptr = NULL;
2139 out:
2140 	mutex_unlock(&rproc->lock);
2141 	return ret;
2142 }
2143 EXPORT_SYMBOL(rproc_detach);
2144 
2145 /**
2146  * rproc_get_by_phandle() - find a remote processor by phandle
2147  * @phandle: phandle to the rproc
2148  *
2149  * Finds an rproc handle using the remote processor's phandle, and then
2150  * return a handle to the rproc.
2151  *
2152  * This function increments the remote processor's refcount, so always
2153  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2154  *
2155  * Returns the rproc handle on success, and NULL on failure.
2156  */
2157 #ifdef CONFIG_OF
2158 struct rproc *rproc_get_by_phandle(phandle phandle)
2159 {
2160 	struct rproc *rproc = NULL, *r;
2161 	struct device_node *np;
2162 
2163 	np = of_find_node_by_phandle(phandle);
2164 	if (!np)
2165 		return NULL;
2166 
2167 	rcu_read_lock();
2168 	list_for_each_entry_rcu(r, &rproc_list, node) {
2169 		if (r->dev.parent && r->dev.parent->of_node == np) {
2170 			/* prevent underlying implementation from being removed */
2171 			if (!try_module_get(r->dev.parent->driver->owner)) {
2172 				dev_err(&r->dev, "can't get owner\n");
2173 				break;
2174 			}
2175 
2176 			rproc = r;
2177 			get_device(&rproc->dev);
2178 			break;
2179 		}
2180 	}
2181 	rcu_read_unlock();
2182 
2183 	of_node_put(np);
2184 
2185 	return rproc;
2186 }
2187 #else
2188 struct rproc *rproc_get_by_phandle(phandle phandle)
2189 {
2190 	return NULL;
2191 }
2192 #endif
2193 EXPORT_SYMBOL(rproc_get_by_phandle);
2194 
2195 /**
2196  * rproc_set_firmware() - assign a new firmware
2197  * @rproc: rproc handle to which the new firmware is being assigned
2198  * @fw_name: new firmware name to be assigned
2199  *
2200  * This function allows remoteproc drivers or clients to configure a custom
2201  * firmware name that is different from the default name used during remoteproc
2202  * registration. The function does not trigger a remote processor boot,
2203  * only sets the firmware name used for a subsequent boot. This function
2204  * should also be called only when the remote processor is offline.
2205  *
2206  * This allows either the userspace to configure a different name through
2207  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2208  * a specific firmware when it is controlling the boot and shutdown of the
2209  * remote processor.
2210  *
2211  * Return: 0 on success or a negative value upon failure
2212  */
2213 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2214 {
2215 	struct device *dev;
2216 	int ret, len;
2217 	char *p;
2218 
2219 	if (!rproc || !fw_name)
2220 		return -EINVAL;
2221 
2222 	dev = rproc->dev.parent;
2223 
2224 	ret = mutex_lock_interruptible(&rproc->lock);
2225 	if (ret) {
2226 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2227 		return -EINVAL;
2228 	}
2229 
2230 	if (rproc->state != RPROC_OFFLINE) {
2231 		dev_err(dev, "can't change firmware while running\n");
2232 		ret = -EBUSY;
2233 		goto out;
2234 	}
2235 
2236 	len = strcspn(fw_name, "\n");
2237 	if (!len) {
2238 		dev_err(dev, "can't provide empty string for firmware name\n");
2239 		ret = -EINVAL;
2240 		goto out;
2241 	}
2242 
2243 	p = kstrndup(fw_name, len, GFP_KERNEL);
2244 	if (!p) {
2245 		ret = -ENOMEM;
2246 		goto out;
2247 	}
2248 
2249 	kfree_const(rproc->firmware);
2250 	rproc->firmware = p;
2251 
2252 out:
2253 	mutex_unlock(&rproc->lock);
2254 	return ret;
2255 }
2256 EXPORT_SYMBOL(rproc_set_firmware);
2257 
2258 static int rproc_validate(struct rproc *rproc)
2259 {
2260 	switch (rproc->state) {
2261 	case RPROC_OFFLINE:
2262 		/*
2263 		 * An offline processor without a start()
2264 		 * function makes no sense.
2265 		 */
2266 		if (!rproc->ops->start)
2267 			return -EINVAL;
2268 		break;
2269 	case RPROC_DETACHED:
2270 		/*
2271 		 * A remote processor in a detached state without an
2272 		 * attach() function makes not sense.
2273 		 */
2274 		if (!rproc->ops->attach)
2275 			return -EINVAL;
2276 		/*
2277 		 * When attaching to a remote processor the device memory
2278 		 * is already available and as such there is no need to have a
2279 		 * cached table.
2280 		 */
2281 		if (rproc->cached_table)
2282 			return -EINVAL;
2283 		break;
2284 	default:
2285 		/*
2286 		 * When adding a remote processor, the state of the device
2287 		 * can be offline or detached, nothing else.
2288 		 */
2289 		return -EINVAL;
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 /**
2296  * rproc_add() - register a remote processor
2297  * @rproc: the remote processor handle to register
2298  *
2299  * Registers @rproc with the remoteproc framework, after it has been
2300  * allocated with rproc_alloc().
2301  *
2302  * This is called by the platform-specific rproc implementation, whenever
2303  * a new remote processor device is probed.
2304  *
2305  * Returns 0 on success and an appropriate error code otherwise.
2306  *
2307  * Note: this function initiates an asynchronous firmware loading
2308  * context, which will look for virtio devices supported by the rproc's
2309  * firmware.
2310  *
2311  * If found, those virtio devices will be created and added, so as a result
2312  * of registering this remote processor, additional virtio drivers might be
2313  * probed.
2314  */
2315 int rproc_add(struct rproc *rproc)
2316 {
2317 	struct device *dev = &rproc->dev;
2318 	int ret;
2319 
2320 	ret = device_add(dev);
2321 	if (ret < 0)
2322 		return ret;
2323 
2324 	ret = rproc_validate(rproc);
2325 	if (ret < 0)
2326 		return ret;
2327 
2328 	dev_info(dev, "%s is available\n", rproc->name);
2329 
2330 	/* create debugfs entries */
2331 	rproc_create_debug_dir(rproc);
2332 
2333 	/* add char device for this remoteproc */
2334 	ret = rproc_char_device_add(rproc);
2335 	if (ret < 0)
2336 		return ret;
2337 
2338 	/* if rproc is marked always-on, request it to boot */
2339 	if (rproc->auto_boot) {
2340 		ret = rproc_trigger_auto_boot(rproc);
2341 		if (ret < 0)
2342 			return ret;
2343 	}
2344 
2345 	/* expose to rproc_get_by_phandle users */
2346 	mutex_lock(&rproc_list_mutex);
2347 	list_add_rcu(&rproc->node, &rproc_list);
2348 	mutex_unlock(&rproc_list_mutex);
2349 
2350 	return 0;
2351 }
2352 EXPORT_SYMBOL(rproc_add);
2353 
2354 static void devm_rproc_remove(void *rproc)
2355 {
2356 	rproc_del(rproc);
2357 }
2358 
2359 /**
2360  * devm_rproc_add() - resource managed rproc_add()
2361  * @dev: the underlying device
2362  * @rproc: the remote processor handle to register
2363  *
2364  * This function performs like rproc_add() but the registered rproc device will
2365  * automatically be removed on driver detach.
2366  *
2367  * Returns: 0 on success, negative errno on failure
2368  */
2369 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2370 {
2371 	int err;
2372 
2373 	err = rproc_add(rproc);
2374 	if (err)
2375 		return err;
2376 
2377 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2378 }
2379 EXPORT_SYMBOL(devm_rproc_add);
2380 
2381 /**
2382  * rproc_type_release() - release a remote processor instance
2383  * @dev: the rproc's device
2384  *
2385  * This function should _never_ be called directly.
2386  *
2387  * It will be called by the driver core when no one holds a valid pointer
2388  * to @dev anymore.
2389  */
2390 static void rproc_type_release(struct device *dev)
2391 {
2392 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2393 
2394 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2395 
2396 	idr_destroy(&rproc->notifyids);
2397 
2398 	if (rproc->index >= 0)
2399 		ida_simple_remove(&rproc_dev_index, rproc->index);
2400 
2401 	kfree_const(rproc->firmware);
2402 	kfree_const(rproc->name);
2403 	kfree(rproc->ops);
2404 	kfree(rproc);
2405 }
2406 
2407 static const struct device_type rproc_type = {
2408 	.name		= "remoteproc",
2409 	.release	= rproc_type_release,
2410 };
2411 
2412 static int rproc_alloc_firmware(struct rproc *rproc,
2413 				const char *name, const char *firmware)
2414 {
2415 	const char *p;
2416 
2417 	/*
2418 	 * Allocate a firmware name if the caller gave us one to work
2419 	 * with.  Otherwise construct a new one using a default pattern.
2420 	 */
2421 	if (firmware)
2422 		p = kstrdup_const(firmware, GFP_KERNEL);
2423 	else
2424 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2425 
2426 	if (!p)
2427 		return -ENOMEM;
2428 
2429 	rproc->firmware = p;
2430 
2431 	return 0;
2432 }
2433 
2434 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2435 {
2436 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2437 	if (!rproc->ops)
2438 		return -ENOMEM;
2439 
2440 	/* Default to rproc_coredump if no coredump function is specified */
2441 	if (!rproc->ops->coredump)
2442 		rproc->ops->coredump = rproc_coredump;
2443 
2444 	if (rproc->ops->load)
2445 		return 0;
2446 
2447 	/* Default to ELF loader if no load function is specified */
2448 	rproc->ops->load = rproc_elf_load_segments;
2449 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2450 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2451 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2452 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2453 
2454 	return 0;
2455 }
2456 
2457 /**
2458  * rproc_alloc() - allocate a remote processor handle
2459  * @dev: the underlying device
2460  * @name: name of this remote processor
2461  * @ops: platform-specific handlers (mainly start/stop)
2462  * @firmware: name of firmware file to load, can be NULL
2463  * @len: length of private data needed by the rproc driver (in bytes)
2464  *
2465  * Allocates a new remote processor handle, but does not register
2466  * it yet. if @firmware is NULL, a default name is used.
2467  *
2468  * This function should be used by rproc implementations during initialization
2469  * of the remote processor.
2470  *
2471  * After creating an rproc handle using this function, and when ready,
2472  * implementations should then call rproc_add() to complete
2473  * the registration of the remote processor.
2474  *
2475  * On success the new rproc is returned, and on failure, NULL.
2476  *
2477  * Note: _never_ directly deallocate @rproc, even if it was not registered
2478  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2479  */
2480 struct rproc *rproc_alloc(struct device *dev, const char *name,
2481 			  const struct rproc_ops *ops,
2482 			  const char *firmware, int len)
2483 {
2484 	struct rproc *rproc;
2485 
2486 	if (!dev || !name || !ops)
2487 		return NULL;
2488 
2489 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2490 	if (!rproc)
2491 		return NULL;
2492 
2493 	rproc->priv = &rproc[1];
2494 	rproc->auto_boot = true;
2495 	rproc->elf_class = ELFCLASSNONE;
2496 	rproc->elf_machine = EM_NONE;
2497 
2498 	device_initialize(&rproc->dev);
2499 	rproc->dev.parent = dev;
2500 	rproc->dev.type = &rproc_type;
2501 	rproc->dev.class = &rproc_class;
2502 	rproc->dev.driver_data = rproc;
2503 	idr_init(&rproc->notifyids);
2504 
2505 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2506 	if (!rproc->name)
2507 		goto put_device;
2508 
2509 	if (rproc_alloc_firmware(rproc, name, firmware))
2510 		goto put_device;
2511 
2512 	if (rproc_alloc_ops(rproc, ops))
2513 		goto put_device;
2514 
2515 	/* Assign a unique device index and name */
2516 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2517 	if (rproc->index < 0) {
2518 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2519 		goto put_device;
2520 	}
2521 
2522 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2523 
2524 	atomic_set(&rproc->power, 0);
2525 
2526 	mutex_init(&rproc->lock);
2527 
2528 	INIT_LIST_HEAD(&rproc->carveouts);
2529 	INIT_LIST_HEAD(&rproc->mappings);
2530 	INIT_LIST_HEAD(&rproc->traces);
2531 	INIT_LIST_HEAD(&rproc->rvdevs);
2532 	INIT_LIST_HEAD(&rproc->subdevs);
2533 	INIT_LIST_HEAD(&rproc->dump_segments);
2534 
2535 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2536 
2537 	rproc->state = RPROC_OFFLINE;
2538 
2539 	return rproc;
2540 
2541 put_device:
2542 	put_device(&rproc->dev);
2543 	return NULL;
2544 }
2545 EXPORT_SYMBOL(rproc_alloc);
2546 
2547 /**
2548  * rproc_free() - unroll rproc_alloc()
2549  * @rproc: the remote processor handle
2550  *
2551  * This function decrements the rproc dev refcount.
2552  *
2553  * If no one holds any reference to rproc anymore, then its refcount would
2554  * now drop to zero, and it would be freed.
2555  */
2556 void rproc_free(struct rproc *rproc)
2557 {
2558 	put_device(&rproc->dev);
2559 }
2560 EXPORT_SYMBOL(rproc_free);
2561 
2562 /**
2563  * rproc_put() - release rproc reference
2564  * @rproc: the remote processor handle
2565  *
2566  * This function decrements the rproc dev refcount.
2567  *
2568  * If no one holds any reference to rproc anymore, then its refcount would
2569  * now drop to zero, and it would be freed.
2570  */
2571 void rproc_put(struct rproc *rproc)
2572 {
2573 	module_put(rproc->dev.parent->driver->owner);
2574 	put_device(&rproc->dev);
2575 }
2576 EXPORT_SYMBOL(rproc_put);
2577 
2578 /**
2579  * rproc_del() - unregister a remote processor
2580  * @rproc: rproc handle to unregister
2581  *
2582  * This function should be called when the platform specific rproc
2583  * implementation decides to remove the rproc device. it should
2584  * _only_ be called if a previous invocation of rproc_add()
2585  * has completed successfully.
2586  *
2587  * After rproc_del() returns, @rproc isn't freed yet, because
2588  * of the outstanding reference created by rproc_alloc. To decrement that
2589  * one last refcount, one still needs to call rproc_free().
2590  *
2591  * Returns 0 on success and -EINVAL if @rproc isn't valid.
2592  */
2593 int rproc_del(struct rproc *rproc)
2594 {
2595 	if (!rproc)
2596 		return -EINVAL;
2597 
2598 	/* TODO: make sure this works with rproc->power > 1 */
2599 	rproc_shutdown(rproc);
2600 
2601 	mutex_lock(&rproc->lock);
2602 	rproc->state = RPROC_DELETED;
2603 	mutex_unlock(&rproc->lock);
2604 
2605 	rproc_delete_debug_dir(rproc);
2606 	rproc_char_device_remove(rproc);
2607 
2608 	/* the rproc is downref'ed as soon as it's removed from the klist */
2609 	mutex_lock(&rproc_list_mutex);
2610 	list_del_rcu(&rproc->node);
2611 	mutex_unlock(&rproc_list_mutex);
2612 
2613 	/* Ensure that no readers of rproc_list are still active */
2614 	synchronize_rcu();
2615 
2616 	device_del(&rproc->dev);
2617 
2618 	return 0;
2619 }
2620 EXPORT_SYMBOL(rproc_del);
2621 
2622 static void devm_rproc_free(struct device *dev, void *res)
2623 {
2624 	rproc_free(*(struct rproc **)res);
2625 }
2626 
2627 /**
2628  * devm_rproc_alloc() - resource managed rproc_alloc()
2629  * @dev: the underlying device
2630  * @name: name of this remote processor
2631  * @ops: platform-specific handlers (mainly start/stop)
2632  * @firmware: name of firmware file to load, can be NULL
2633  * @len: length of private data needed by the rproc driver (in bytes)
2634  *
2635  * This function performs like rproc_alloc() but the acquired rproc device will
2636  * automatically be released on driver detach.
2637  *
2638  * Returns: new rproc instance, or NULL on failure
2639  */
2640 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2641 			       const struct rproc_ops *ops,
2642 			       const char *firmware, int len)
2643 {
2644 	struct rproc **ptr, *rproc;
2645 
2646 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2647 	if (!ptr)
2648 		return NULL;
2649 
2650 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2651 	if (rproc) {
2652 		*ptr = rproc;
2653 		devres_add(dev, ptr);
2654 	} else {
2655 		devres_free(ptr);
2656 	}
2657 
2658 	return rproc;
2659 }
2660 EXPORT_SYMBOL(devm_rproc_alloc);
2661 
2662 /**
2663  * rproc_add_subdev() - add a subdevice to a remoteproc
2664  * @rproc: rproc handle to add the subdevice to
2665  * @subdev: subdev handle to register
2666  *
2667  * Caller is responsible for populating optional subdevice function pointers.
2668  */
2669 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2670 {
2671 	list_add_tail(&subdev->node, &rproc->subdevs);
2672 }
2673 EXPORT_SYMBOL(rproc_add_subdev);
2674 
2675 /**
2676  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2677  * @rproc: rproc handle to remove the subdevice from
2678  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2679  */
2680 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2681 {
2682 	list_del(&subdev->node);
2683 }
2684 EXPORT_SYMBOL(rproc_remove_subdev);
2685 
2686 /**
2687  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2688  * @dev:	child device to find ancestor of
2689  *
2690  * Returns the ancestor rproc instance, or NULL if not found.
2691  */
2692 struct rproc *rproc_get_by_child(struct device *dev)
2693 {
2694 	for (dev = dev->parent; dev; dev = dev->parent) {
2695 		if (dev->type == &rproc_type)
2696 			return dev->driver_data;
2697 	}
2698 
2699 	return NULL;
2700 }
2701 EXPORT_SYMBOL(rproc_get_by_child);
2702 
2703 /**
2704  * rproc_report_crash() - rproc crash reporter function
2705  * @rproc: remote processor
2706  * @type: crash type
2707  *
2708  * This function must be called every time a crash is detected by the low-level
2709  * drivers implementing a specific remoteproc. This should not be called from a
2710  * non-remoteproc driver.
2711  *
2712  * This function can be called from atomic/interrupt context.
2713  */
2714 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2715 {
2716 	if (!rproc) {
2717 		pr_err("NULL rproc pointer\n");
2718 		return;
2719 	}
2720 
2721 	/* Prevent suspend while the remoteproc is being recovered */
2722 	pm_stay_awake(rproc->dev.parent);
2723 
2724 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2725 		rproc->name, rproc_crash_to_string(type));
2726 
2727 	/* create a new task to handle the error */
2728 	schedule_work(&rproc->crash_handler);
2729 }
2730 EXPORT_SYMBOL(rproc_report_crash);
2731 
2732 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2733 			       void *ptr)
2734 {
2735 	unsigned int longest = 0;
2736 	struct rproc *rproc;
2737 	unsigned int d;
2738 
2739 	rcu_read_lock();
2740 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2741 		if (!rproc->ops->panic)
2742 			continue;
2743 
2744 		if (rproc->state != RPROC_RUNNING &&
2745 		    rproc->state != RPROC_ATTACHED)
2746 			continue;
2747 
2748 		d = rproc->ops->panic(rproc);
2749 		longest = max(longest, d);
2750 	}
2751 	rcu_read_unlock();
2752 
2753 	/*
2754 	 * Delay for the longest requested duration before returning. This can
2755 	 * be used by the remoteproc drivers to give the remote processor time
2756 	 * to perform any requested operations (such as flush caches), when
2757 	 * it's not possible to signal the Linux side due to the panic.
2758 	 */
2759 	mdelay(longest);
2760 
2761 	return NOTIFY_DONE;
2762 }
2763 
2764 static void __init rproc_init_panic(void)
2765 {
2766 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2767 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2768 }
2769 
2770 static void __exit rproc_exit_panic(void)
2771 {
2772 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2773 }
2774 
2775 static int __init remoteproc_init(void)
2776 {
2777 	rproc_init_sysfs();
2778 	rproc_init_debugfs();
2779 	rproc_init_cdev();
2780 	rproc_init_panic();
2781 
2782 	return 0;
2783 }
2784 subsys_initcall(remoteproc_init);
2785 
2786 static void __exit remoteproc_exit(void)
2787 {
2788 	ida_destroy(&rproc_dev_index);
2789 
2790 	rproc_exit_panic();
2791 	rproc_exit_debugfs();
2792 	rproc_exit_sysfs();
2793 }
2794 module_exit(remoteproc_exit);
2795 
2796 MODULE_LICENSE("GPL v2");
2797 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2798