1 /* 2 * Remote Processor Framework 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * Mark Grosen <mgrosen@ti.com> 10 * Fernando Guzman Lugo <fernando.lugo@ti.com> 11 * Suman Anna <s-anna@ti.com> 12 * Robert Tivy <rtivy@ti.com> 13 * Armando Uribe De Leon <x0095078@ti.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * version 2 as published by the Free Software Foundation. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 */ 24 25 #define pr_fmt(fmt) "%s: " fmt, __func__ 26 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/device.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/firmware.h> 34 #include <linux/string.h> 35 #include <linux/debugfs.h> 36 #include <linux/remoteproc.h> 37 #include <linux/iommu.h> 38 #include <linux/idr.h> 39 #include <linux/elf.h> 40 #include <linux/crc32.h> 41 #include <linux/virtio_ids.h> 42 #include <linux/virtio_ring.h> 43 #include <asm/byteorder.h> 44 45 #include "remoteproc_internal.h" 46 47 static DEFINE_MUTEX(rproc_list_mutex); 48 static LIST_HEAD(rproc_list); 49 50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc, 51 struct resource_table *table, int len); 52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 53 void *, int offset, int avail); 54 55 /* Unique indices for remoteproc devices */ 56 static DEFINE_IDA(rproc_dev_index); 57 58 static const char * const rproc_crash_names[] = { 59 [RPROC_MMUFAULT] = "mmufault", 60 [RPROC_WATCHDOG] = "watchdog", 61 [RPROC_FATAL_ERROR] = "fatal error", 62 }; 63 64 /* translate rproc_crash_type to string */ 65 static const char *rproc_crash_to_string(enum rproc_crash_type type) 66 { 67 if (type < ARRAY_SIZE(rproc_crash_names)) 68 return rproc_crash_names[type]; 69 return "unknown"; 70 } 71 72 /* 73 * This is the IOMMU fault handler we register with the IOMMU API 74 * (when relevant; not all remote processors access memory through 75 * an IOMMU). 76 * 77 * IOMMU core will invoke this handler whenever the remote processor 78 * will try to access an unmapped device address. 79 */ 80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 81 unsigned long iova, int flags, void *token) 82 { 83 struct rproc *rproc = token; 84 85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 86 87 rproc_report_crash(rproc, RPROC_MMUFAULT); 88 89 /* 90 * Let the iommu core know we're not really handling this fault; 91 * we just used it as a recovery trigger. 92 */ 93 return -ENOSYS; 94 } 95 96 static int rproc_enable_iommu(struct rproc *rproc) 97 { 98 struct iommu_domain *domain; 99 struct device *dev = rproc->dev.parent; 100 int ret; 101 102 if (!rproc->has_iommu) { 103 dev_dbg(dev, "iommu not present\n"); 104 return 0; 105 } 106 107 domain = iommu_domain_alloc(dev->bus); 108 if (!domain) { 109 dev_err(dev, "can't alloc iommu domain\n"); 110 return -ENOMEM; 111 } 112 113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 114 115 ret = iommu_attach_device(domain, dev); 116 if (ret) { 117 dev_err(dev, "can't attach iommu device: %d\n", ret); 118 goto free_domain; 119 } 120 121 rproc->domain = domain; 122 123 return 0; 124 125 free_domain: 126 iommu_domain_free(domain); 127 return ret; 128 } 129 130 static void rproc_disable_iommu(struct rproc *rproc) 131 { 132 struct iommu_domain *domain = rproc->domain; 133 struct device *dev = rproc->dev.parent; 134 135 if (!domain) 136 return; 137 138 iommu_detach_device(domain, dev); 139 iommu_domain_free(domain); 140 } 141 142 /** 143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 144 * @rproc: handle of a remote processor 145 * @da: remoteproc device address to translate 146 * @len: length of the memory region @da is pointing to 147 * 148 * Some remote processors will ask us to allocate them physically contiguous 149 * memory regions (which we call "carveouts"), and map them to specific 150 * device addresses (which are hardcoded in the firmware). They may also have 151 * dedicated memory regions internal to the processors, and use them either 152 * exclusively or alongside carveouts. 153 * 154 * They may then ask us to copy objects into specific device addresses (e.g. 155 * code/data sections) or expose us certain symbols in other device address 156 * (e.g. their trace buffer). 157 * 158 * This function is a helper function with which we can go over the allocated 159 * carveouts and translate specific device addresses to kernel virtual addresses 160 * so we can access the referenced memory. This function also allows to perform 161 * translations on the internal remoteproc memory regions through a platform 162 * implementation specific da_to_va ops, if present. 163 * 164 * The function returns a valid kernel address on success or NULL on failure. 165 * 166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 167 * but only on kernel direct mapped RAM memory. Instead, we're just using 168 * here the output of the DMA API for the carveouts, which should be more 169 * correct. 170 */ 171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 172 { 173 struct rproc_mem_entry *carveout; 174 void *ptr = NULL; 175 176 if (rproc->ops->da_to_va) { 177 ptr = rproc->ops->da_to_va(rproc, da, len); 178 if (ptr) 179 goto out; 180 } 181 182 list_for_each_entry(carveout, &rproc->carveouts, node) { 183 int offset = da - carveout->da; 184 185 /* try next carveout if da is too small */ 186 if (offset < 0) 187 continue; 188 189 /* try next carveout if da is too large */ 190 if (offset + len > carveout->len) 191 continue; 192 193 ptr = carveout->va + offset; 194 195 break; 196 } 197 198 out: 199 return ptr; 200 } 201 EXPORT_SYMBOL(rproc_da_to_va); 202 203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 204 { 205 struct rproc *rproc = rvdev->rproc; 206 struct device *dev = &rproc->dev; 207 struct rproc_vring *rvring = &rvdev->vring[i]; 208 struct fw_rsc_vdev *rsc; 209 dma_addr_t dma; 210 void *va; 211 int ret, size, notifyid; 212 213 /* actual size of vring (in bytes) */ 214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 215 216 /* 217 * Allocate non-cacheable memory for the vring. In the future 218 * this call will also configure the IOMMU for us 219 */ 220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL); 221 if (!va) { 222 dev_err(dev->parent, "dma_alloc_coherent failed\n"); 223 return -EINVAL; 224 } 225 226 /* 227 * Assign an rproc-wide unique index for this vring 228 * TODO: assign a notifyid for rvdev updates as well 229 * TODO: support predefined notifyids (via resource table) 230 */ 231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 232 if (ret < 0) { 233 dev_err(dev, "idr_alloc failed: %d\n", ret); 234 dma_free_coherent(dev->parent, size, va, dma); 235 return ret; 236 } 237 notifyid = ret; 238 239 /* Potentially bump max_notifyid */ 240 if (notifyid > rproc->max_notifyid) 241 rproc->max_notifyid = notifyid; 242 243 dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n", 244 i, va, &dma, size, notifyid); 245 246 rvring->va = va; 247 rvring->dma = dma; 248 rvring->notifyid = notifyid; 249 250 /* 251 * Let the rproc know the notifyid and da of this vring. 252 * Not all platforms use dma_alloc_coherent to automatically 253 * set up the iommu. In this case the device address (da) will 254 * hold the physical address and not the device address. 255 */ 256 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 257 rsc->vring[i].da = dma; 258 rsc->vring[i].notifyid = notifyid; 259 return 0; 260 } 261 262 static int 263 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 264 { 265 struct rproc *rproc = rvdev->rproc; 266 struct device *dev = &rproc->dev; 267 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 268 struct rproc_vring *rvring = &rvdev->vring[i]; 269 270 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", 271 i, vring->da, vring->num, vring->align); 272 273 /* verify queue size and vring alignment are sane */ 274 if (!vring->num || !vring->align) { 275 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 276 vring->num, vring->align); 277 return -EINVAL; 278 } 279 280 rvring->len = vring->num; 281 rvring->align = vring->align; 282 rvring->rvdev = rvdev; 283 284 return 0; 285 } 286 287 void rproc_free_vring(struct rproc_vring *rvring) 288 { 289 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 290 struct rproc *rproc = rvring->rvdev->rproc; 291 int idx = rvring->rvdev->vring - rvring; 292 struct fw_rsc_vdev *rsc; 293 294 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma); 295 idr_remove(&rproc->notifyids, rvring->notifyid); 296 297 /* reset resource entry info */ 298 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 299 rsc->vring[idx].da = 0; 300 rsc->vring[idx].notifyid = -1; 301 } 302 303 static int rproc_vdev_do_probe(struct rproc_subdev *subdev) 304 { 305 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 306 307 return rproc_add_virtio_dev(rvdev, rvdev->id); 308 } 309 310 static void rproc_vdev_do_remove(struct rproc_subdev *subdev) 311 { 312 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); 313 314 rproc_remove_virtio_dev(rvdev); 315 } 316 317 /** 318 * rproc_handle_vdev() - handle a vdev fw resource 319 * @rproc: the remote processor 320 * @rsc: the vring resource descriptor 321 * @avail: size of available data (for sanity checking the image) 322 * 323 * This resource entry requests the host to statically register a virtio 324 * device (vdev), and setup everything needed to support it. It contains 325 * everything needed to make it possible: the virtio device id, virtio 326 * device features, vrings information, virtio config space, etc... 327 * 328 * Before registering the vdev, the vrings are allocated from non-cacheable 329 * physically contiguous memory. Currently we only support two vrings per 330 * remote processor (temporary limitation). We might also want to consider 331 * doing the vring allocation only later when ->find_vqs() is invoked, and 332 * then release them upon ->del_vqs(). 333 * 334 * Note: @da is currently not really handled correctly: we dynamically 335 * allocate it using the DMA API, ignoring requested hard coded addresses, 336 * and we don't take care of any required IOMMU programming. This is all 337 * going to be taken care of when the generic iommu-based DMA API will be 338 * merged. Meanwhile, statically-addressed iommu-based firmware images should 339 * use RSC_DEVMEM resource entries to map their required @da to the physical 340 * address of their base CMA region (ouch, hacky!). 341 * 342 * Returns 0 on success, or an appropriate error code otherwise 343 */ 344 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 345 int offset, int avail) 346 { 347 struct device *dev = &rproc->dev; 348 struct rproc_vdev *rvdev; 349 int i, ret; 350 351 /* make sure resource isn't truncated */ 352 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) 353 + rsc->config_len > avail) { 354 dev_err(dev, "vdev rsc is truncated\n"); 355 return -EINVAL; 356 } 357 358 /* make sure reserved bytes are zeroes */ 359 if (rsc->reserved[0] || rsc->reserved[1]) { 360 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 361 return -EINVAL; 362 } 363 364 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", 365 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 366 367 /* we currently support only two vrings per rvdev */ 368 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 369 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 370 return -EINVAL; 371 } 372 373 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); 374 if (!rvdev) 375 return -ENOMEM; 376 377 kref_init(&rvdev->refcount); 378 379 rvdev->id = rsc->id; 380 rvdev->rproc = rproc; 381 382 /* parse the vrings */ 383 for (i = 0; i < rsc->num_of_vrings; i++) { 384 ret = rproc_parse_vring(rvdev, rsc, i); 385 if (ret) 386 goto free_rvdev; 387 } 388 389 /* remember the resource offset*/ 390 rvdev->rsc_offset = offset; 391 392 /* allocate the vring resources */ 393 for (i = 0; i < rsc->num_of_vrings; i++) { 394 ret = rproc_alloc_vring(rvdev, i); 395 if (ret) 396 goto unwind_vring_allocations; 397 } 398 399 /* track the rvdevs list reference */ 400 kref_get(&rvdev->refcount); 401 402 list_add_tail(&rvdev->node, &rproc->rvdevs); 403 404 rproc_add_subdev(rproc, &rvdev->subdev, 405 rproc_vdev_do_probe, rproc_vdev_do_remove); 406 407 return 0; 408 409 unwind_vring_allocations: 410 for (i--; i >= 0; i--) 411 rproc_free_vring(&rvdev->vring[i]); 412 free_rvdev: 413 kfree(rvdev); 414 return ret; 415 } 416 417 void rproc_vdev_release(struct kref *ref) 418 { 419 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); 420 struct rproc_vring *rvring; 421 struct rproc *rproc = rvdev->rproc; 422 int id; 423 424 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { 425 rvring = &rvdev->vring[id]; 426 if (!rvring->va) 427 continue; 428 429 rproc_free_vring(rvring); 430 } 431 432 rproc_remove_subdev(rproc, &rvdev->subdev); 433 list_del(&rvdev->node); 434 kfree(rvdev); 435 } 436 437 /** 438 * rproc_handle_trace() - handle a shared trace buffer resource 439 * @rproc: the remote processor 440 * @rsc: the trace resource descriptor 441 * @avail: size of available data (for sanity checking the image) 442 * 443 * In case the remote processor dumps trace logs into memory, 444 * export it via debugfs. 445 * 446 * Currently, the 'da' member of @rsc should contain the device address 447 * where the remote processor is dumping the traces. Later we could also 448 * support dynamically allocating this address using the generic 449 * DMA API (but currently there isn't a use case for that). 450 * 451 * Returns 0 on success, or an appropriate error code otherwise 452 */ 453 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 454 int offset, int avail) 455 { 456 struct rproc_mem_entry *trace; 457 struct device *dev = &rproc->dev; 458 void *ptr; 459 char name[15]; 460 461 if (sizeof(*rsc) > avail) { 462 dev_err(dev, "trace rsc is truncated\n"); 463 return -EINVAL; 464 } 465 466 /* make sure reserved bytes are zeroes */ 467 if (rsc->reserved) { 468 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 469 return -EINVAL; 470 } 471 472 /* what's the kernel address of this resource ? */ 473 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len); 474 if (!ptr) { 475 dev_err(dev, "erroneous trace resource entry\n"); 476 return -EINVAL; 477 } 478 479 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 480 if (!trace) 481 return -ENOMEM; 482 483 /* set the trace buffer dma properties */ 484 trace->len = rsc->len; 485 trace->va = ptr; 486 487 /* make sure snprintf always null terminates, even if truncating */ 488 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 489 490 /* create the debugfs entry */ 491 trace->priv = rproc_create_trace_file(name, rproc, trace); 492 if (!trace->priv) { 493 trace->va = NULL; 494 kfree(trace); 495 return -EINVAL; 496 } 497 498 list_add_tail(&trace->node, &rproc->traces); 499 500 rproc->num_traces++; 501 502 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", 503 name, ptr, rsc->da, rsc->len); 504 505 return 0; 506 } 507 508 /** 509 * rproc_handle_devmem() - handle devmem resource entry 510 * @rproc: remote processor handle 511 * @rsc: the devmem resource entry 512 * @avail: size of available data (for sanity checking the image) 513 * 514 * Remote processors commonly need to access certain on-chip peripherals. 515 * 516 * Some of these remote processors access memory via an iommu device, 517 * and might require us to configure their iommu before they can access 518 * the on-chip peripherals they need. 519 * 520 * This resource entry is a request to map such a peripheral device. 521 * 522 * These devmem entries will contain the physical address of the device in 523 * the 'pa' member. If a specific device address is expected, then 'da' will 524 * contain it (currently this is the only use case supported). 'len' will 525 * contain the size of the physical region we need to map. 526 * 527 * Currently we just "trust" those devmem entries to contain valid physical 528 * addresses, but this is going to change: we want the implementations to 529 * tell us ranges of physical addresses the firmware is allowed to request, 530 * and not allow firmwares to request access to physical addresses that 531 * are outside those ranges. 532 */ 533 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 534 int offset, int avail) 535 { 536 struct rproc_mem_entry *mapping; 537 struct device *dev = &rproc->dev; 538 int ret; 539 540 /* no point in handling this resource without a valid iommu domain */ 541 if (!rproc->domain) 542 return -EINVAL; 543 544 if (sizeof(*rsc) > avail) { 545 dev_err(dev, "devmem rsc is truncated\n"); 546 return -EINVAL; 547 } 548 549 /* make sure reserved bytes are zeroes */ 550 if (rsc->reserved) { 551 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 552 return -EINVAL; 553 } 554 555 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 556 if (!mapping) 557 return -ENOMEM; 558 559 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 560 if (ret) { 561 dev_err(dev, "failed to map devmem: %d\n", ret); 562 goto out; 563 } 564 565 /* 566 * We'll need this info later when we'll want to unmap everything 567 * (e.g. on shutdown). 568 * 569 * We can't trust the remote processor not to change the resource 570 * table, so we must maintain this info independently. 571 */ 572 mapping->da = rsc->da; 573 mapping->len = rsc->len; 574 list_add_tail(&mapping->node, &rproc->mappings); 575 576 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 577 rsc->pa, rsc->da, rsc->len); 578 579 return 0; 580 581 out: 582 kfree(mapping); 583 return ret; 584 } 585 586 /** 587 * rproc_handle_carveout() - handle phys contig memory allocation requests 588 * @rproc: rproc handle 589 * @rsc: the resource entry 590 * @avail: size of available data (for image validation) 591 * 592 * This function will handle firmware requests for allocation of physically 593 * contiguous memory regions. 594 * 595 * These request entries should come first in the firmware's resource table, 596 * as other firmware entries might request placing other data objects inside 597 * these memory regions (e.g. data/code segments, trace resource entries, ...). 598 * 599 * Allocating memory this way helps utilizing the reserved physical memory 600 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 601 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 602 * pressure is important; it may have a substantial impact on performance. 603 */ 604 static int rproc_handle_carveout(struct rproc *rproc, 605 struct fw_rsc_carveout *rsc, 606 int offset, int avail) 607 { 608 struct rproc_mem_entry *carveout, *mapping; 609 struct device *dev = &rproc->dev; 610 dma_addr_t dma; 611 void *va; 612 int ret; 613 614 if (sizeof(*rsc) > avail) { 615 dev_err(dev, "carveout rsc is truncated\n"); 616 return -EINVAL; 617 } 618 619 /* make sure reserved bytes are zeroes */ 620 if (rsc->reserved) { 621 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 622 return -EINVAL; 623 } 624 625 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", 626 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); 627 628 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL); 629 if (!carveout) 630 return -ENOMEM; 631 632 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL); 633 if (!va) { 634 dev_err(dev->parent, 635 "failed to allocate dma memory: len 0x%x\n", rsc->len); 636 ret = -ENOMEM; 637 goto free_carv; 638 } 639 640 dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n", 641 va, &dma, rsc->len); 642 643 /* 644 * Ok, this is non-standard. 645 * 646 * Sometimes we can't rely on the generic iommu-based DMA API 647 * to dynamically allocate the device address and then set the IOMMU 648 * tables accordingly, because some remote processors might 649 * _require_ us to use hard coded device addresses that their 650 * firmware was compiled with. 651 * 652 * In this case, we must use the IOMMU API directly and map 653 * the memory to the device address as expected by the remote 654 * processor. 655 * 656 * Obviously such remote processor devices should not be configured 657 * to use the iommu-based DMA API: we expect 'dma' to contain the 658 * physical address in this case. 659 */ 660 if (rproc->domain) { 661 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 662 if (!mapping) { 663 ret = -ENOMEM; 664 goto dma_free; 665 } 666 667 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len, 668 rsc->flags); 669 if (ret) { 670 dev_err(dev, "iommu_map failed: %d\n", ret); 671 goto free_mapping; 672 } 673 674 /* 675 * We'll need this info later when we'll want to unmap 676 * everything (e.g. on shutdown). 677 * 678 * We can't trust the remote processor not to change the 679 * resource table, so we must maintain this info independently. 680 */ 681 mapping->da = rsc->da; 682 mapping->len = rsc->len; 683 list_add_tail(&mapping->node, &rproc->mappings); 684 685 dev_dbg(dev, "carveout mapped 0x%x to %pad\n", 686 rsc->da, &dma); 687 } 688 689 /* 690 * Some remote processors might need to know the pa 691 * even though they are behind an IOMMU. E.g., OMAP4's 692 * remote M3 processor needs this so it can control 693 * on-chip hardware accelerators that are not behind 694 * the IOMMU, and therefor must know the pa. 695 * 696 * Generally we don't want to expose physical addresses 697 * if we don't have to (remote processors are generally 698 * _not_ trusted), so we might want to do this only for 699 * remote processor that _must_ have this (e.g. OMAP4's 700 * dual M3 subsystem). 701 * 702 * Non-IOMMU processors might also want to have this info. 703 * In this case, the device address and the physical address 704 * are the same. 705 */ 706 rsc->pa = dma; 707 708 carveout->va = va; 709 carveout->len = rsc->len; 710 carveout->dma = dma; 711 carveout->da = rsc->da; 712 713 list_add_tail(&carveout->node, &rproc->carveouts); 714 715 return 0; 716 717 free_mapping: 718 kfree(mapping); 719 dma_free: 720 dma_free_coherent(dev->parent, rsc->len, va, dma); 721 free_carv: 722 kfree(carveout); 723 return ret; 724 } 725 726 /* 727 * A lookup table for resource handlers. The indices are defined in 728 * enum fw_resource_type. 729 */ 730 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 731 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 732 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 733 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 734 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 735 }; 736 737 /* handle firmware resource entries before booting the remote processor */ 738 static int rproc_handle_resources(struct rproc *rproc, int len, 739 rproc_handle_resource_t handlers[RSC_LAST]) 740 { 741 struct device *dev = &rproc->dev; 742 rproc_handle_resource_t handler; 743 int ret = 0, i; 744 745 for (i = 0; i < rproc->table_ptr->num; i++) { 746 int offset = rproc->table_ptr->offset[i]; 747 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 748 int avail = len - offset - sizeof(*hdr); 749 void *rsc = (void *)hdr + sizeof(*hdr); 750 751 /* make sure table isn't truncated */ 752 if (avail < 0) { 753 dev_err(dev, "rsc table is truncated\n"); 754 return -EINVAL; 755 } 756 757 dev_dbg(dev, "rsc: type %d\n", hdr->type); 758 759 if (hdr->type >= RSC_LAST) { 760 dev_warn(dev, "unsupported resource %d\n", hdr->type); 761 continue; 762 } 763 764 handler = handlers[hdr->type]; 765 if (!handler) 766 continue; 767 768 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 769 if (ret) 770 break; 771 } 772 773 return ret; 774 } 775 776 static int rproc_probe_subdevices(struct rproc *rproc) 777 { 778 struct rproc_subdev *subdev; 779 int ret; 780 781 list_for_each_entry(subdev, &rproc->subdevs, node) { 782 ret = subdev->probe(subdev); 783 if (ret) 784 goto unroll_registration; 785 } 786 787 return 0; 788 789 unroll_registration: 790 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) 791 subdev->remove(subdev); 792 793 return ret; 794 } 795 796 static void rproc_remove_subdevices(struct rproc *rproc) 797 { 798 struct rproc_subdev *subdev; 799 800 list_for_each_entry(subdev, &rproc->subdevs, node) 801 subdev->remove(subdev); 802 } 803 804 /** 805 * rproc_resource_cleanup() - clean up and free all acquired resources 806 * @rproc: rproc handle 807 * 808 * This function will free all resources acquired for @rproc, and it 809 * is called whenever @rproc either shuts down or fails to boot. 810 */ 811 static void rproc_resource_cleanup(struct rproc *rproc) 812 { 813 struct rproc_mem_entry *entry, *tmp; 814 struct rproc_vdev *rvdev, *rvtmp; 815 struct device *dev = &rproc->dev; 816 817 /* clean up debugfs trace entries */ 818 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) { 819 rproc_remove_trace_file(entry->priv); 820 rproc->num_traces--; 821 list_del(&entry->node); 822 kfree(entry); 823 } 824 825 /* clean up iommu mapping entries */ 826 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 827 size_t unmapped; 828 829 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 830 if (unmapped != entry->len) { 831 /* nothing much to do besides complaining */ 832 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 833 unmapped); 834 } 835 836 list_del(&entry->node); 837 kfree(entry); 838 } 839 840 /* clean up carveout allocations */ 841 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 842 dma_free_coherent(dev->parent, entry->len, entry->va, 843 entry->dma); 844 list_del(&entry->node); 845 kfree(entry); 846 } 847 848 /* clean up remote vdev entries */ 849 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 850 kref_put(&rvdev->refcount, rproc_vdev_release); 851 } 852 853 /* 854 * take a firmware and boot a remote processor with it. 855 */ 856 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 857 { 858 struct device *dev = &rproc->dev; 859 const char *name = rproc->firmware; 860 struct resource_table *table, *loaded_table; 861 int ret, tablesz; 862 863 ret = rproc_fw_sanity_check(rproc, fw); 864 if (ret) 865 return ret; 866 867 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 868 869 /* 870 * if enabling an IOMMU isn't relevant for this rproc, this is 871 * just a nop 872 */ 873 ret = rproc_enable_iommu(rproc); 874 if (ret) { 875 dev_err(dev, "can't enable iommu: %d\n", ret); 876 return ret; 877 } 878 879 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 880 ret = -EINVAL; 881 882 /* look for the resource table */ 883 table = rproc_find_rsc_table(rproc, fw, &tablesz); 884 if (!table) { 885 dev_err(dev, "Failed to find resource table\n"); 886 goto clean_up; 887 } 888 889 /* 890 * Create a copy of the resource table. When a virtio device starts 891 * and calls vring_new_virtqueue() the address of the allocated vring 892 * will be stored in the table_ptr. Before the device is started, 893 * table_ptr will be copied into device memory. 894 */ 895 rproc->table_ptr = kmemdup(table, tablesz, GFP_KERNEL); 896 if (!rproc->table_ptr) 897 goto clean_up; 898 899 /* reset max_notifyid */ 900 rproc->max_notifyid = -1; 901 902 /* handle fw resources which are required to boot rproc */ 903 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers); 904 if (ret) { 905 dev_err(dev, "Failed to process resources: %d\n", ret); 906 goto clean_up_resources; 907 } 908 909 /* load the ELF segments to memory */ 910 ret = rproc_load_segments(rproc, fw); 911 if (ret) { 912 dev_err(dev, "Failed to load program segments: %d\n", ret); 913 goto clean_up_resources; 914 } 915 916 /* 917 * The starting device has been given the rproc->table_ptr as the 918 * resource table. The address of the vring along with the other 919 * allocated resources (carveouts etc) is stored in table_ptr. 920 * In order to pass this information to the remote device we must copy 921 * this information to device memory. We also update the table_ptr so 922 * that any subsequent changes will be applied to the loaded version. 923 */ 924 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 925 if (loaded_table) 926 memcpy(loaded_table, rproc->table_ptr, tablesz); 927 928 /* power up the remote processor */ 929 ret = rproc->ops->start(rproc); 930 if (ret) { 931 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 932 goto clean_up_resources; 933 } 934 935 /* probe any subdevices for the remote processor */ 936 ret = rproc_probe_subdevices(rproc); 937 if (ret) { 938 dev_err(dev, "failed to probe subdevices for %s: %d\n", 939 rproc->name, ret); 940 goto stop_rproc; 941 } 942 943 rproc->state = RPROC_RUNNING; 944 945 dev_info(dev, "remote processor %s is now up\n", rproc->name); 946 947 return 0; 948 949 stop_rproc: 950 rproc->ops->stop(rproc); 951 clean_up_resources: 952 rproc_resource_cleanup(rproc); 953 clean_up: 954 kfree(rproc->table_ptr); 955 rproc->table_ptr = NULL; 956 957 rproc_disable_iommu(rproc); 958 return ret; 959 } 960 961 /* 962 * take a firmware and look for virtio devices to register. 963 * 964 * Note: this function is called asynchronously upon registration of the 965 * remote processor (so we must wait until it completes before we try 966 * to unregister the device. one other option is just to use kref here, 967 * that might be cleaner). 968 */ 969 static void rproc_fw_config_virtio(const struct firmware *fw, void *context) 970 { 971 struct rproc *rproc = context; 972 973 /* if rproc is marked always-on, request it to boot */ 974 if (rproc->auto_boot) 975 rproc_boot(rproc); 976 977 release_firmware(fw); 978 /* allow rproc_del() contexts, if any, to proceed */ 979 complete_all(&rproc->firmware_loading_complete); 980 } 981 982 static int rproc_add_virtio_devices(struct rproc *rproc) 983 { 984 int ret; 985 986 /* rproc_del() calls must wait until async loader completes */ 987 init_completion(&rproc->firmware_loading_complete); 988 989 /* 990 * We must retrieve early virtio configuration info from 991 * the firmware (e.g. whether to register a virtio device, 992 * what virtio features does it support, ...). 993 * 994 * We're initiating an asynchronous firmware loading, so we can 995 * be built-in kernel code, without hanging the boot process. 996 */ 997 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 998 rproc->firmware, &rproc->dev, GFP_KERNEL, 999 rproc, rproc_fw_config_virtio); 1000 if (ret < 0) { 1001 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 1002 complete_all(&rproc->firmware_loading_complete); 1003 } 1004 1005 return ret; 1006 } 1007 1008 /** 1009 * rproc_trigger_recovery() - recover a remoteproc 1010 * @rproc: the remote processor 1011 * 1012 * The recovery is done by resetting all the virtio devices, that way all the 1013 * rpmsg drivers will be reseted along with the remote processor making the 1014 * remoteproc functional again. 1015 * 1016 * This function can sleep, so it cannot be called from atomic context. 1017 */ 1018 int rproc_trigger_recovery(struct rproc *rproc) 1019 { 1020 dev_err(&rproc->dev, "recovering %s\n", rproc->name); 1021 1022 init_completion(&rproc->crash_comp); 1023 1024 /* shut down the remote */ 1025 /* TODO: make sure this works with rproc->power > 1 */ 1026 rproc_shutdown(rproc); 1027 1028 /* wait until there is no more rproc users */ 1029 wait_for_completion(&rproc->crash_comp); 1030 1031 /* 1032 * boot the remote processor up again 1033 */ 1034 rproc_boot(rproc); 1035 1036 return 0; 1037 } 1038 1039 /** 1040 * rproc_crash_handler_work() - handle a crash 1041 * 1042 * This function needs to handle everything related to a crash, like cpu 1043 * registers and stack dump, information to help to debug the fatal error, etc. 1044 */ 1045 static void rproc_crash_handler_work(struct work_struct *work) 1046 { 1047 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1048 struct device *dev = &rproc->dev; 1049 1050 dev_dbg(dev, "enter %s\n", __func__); 1051 1052 mutex_lock(&rproc->lock); 1053 1054 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1055 /* handle only the first crash detected */ 1056 mutex_unlock(&rproc->lock); 1057 return; 1058 } 1059 1060 rproc->state = RPROC_CRASHED; 1061 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1062 rproc->name); 1063 1064 mutex_unlock(&rproc->lock); 1065 1066 if (!rproc->recovery_disabled) 1067 rproc_trigger_recovery(rproc); 1068 } 1069 1070 /** 1071 * __rproc_boot() - boot a remote processor 1072 * @rproc: handle of a remote processor 1073 * 1074 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1075 * 1076 * If the remote processor is already powered on, this function immediately 1077 * returns (successfully). 1078 * 1079 * Returns 0 on success, and an appropriate error value otherwise. 1080 */ 1081 static int __rproc_boot(struct rproc *rproc) 1082 { 1083 const struct firmware *firmware_p; 1084 struct device *dev; 1085 int ret; 1086 1087 if (!rproc) { 1088 pr_err("invalid rproc handle\n"); 1089 return -EINVAL; 1090 } 1091 1092 dev = &rproc->dev; 1093 1094 ret = mutex_lock_interruptible(&rproc->lock); 1095 if (ret) { 1096 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1097 return ret; 1098 } 1099 1100 /* skip the boot process if rproc is already powered up */ 1101 if (atomic_inc_return(&rproc->power) > 1) { 1102 ret = 0; 1103 goto unlock_mutex; 1104 } 1105 1106 dev_info(dev, "powering up %s\n", rproc->name); 1107 1108 /* load firmware */ 1109 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1110 if (ret < 0) { 1111 dev_err(dev, "request_firmware failed: %d\n", ret); 1112 goto downref_rproc; 1113 } 1114 1115 ret = rproc_fw_boot(rproc, firmware_p); 1116 1117 release_firmware(firmware_p); 1118 1119 downref_rproc: 1120 if (ret) 1121 atomic_dec(&rproc->power); 1122 unlock_mutex: 1123 mutex_unlock(&rproc->lock); 1124 return ret; 1125 } 1126 1127 /** 1128 * rproc_boot() - boot a remote processor 1129 * @rproc: handle of a remote processor 1130 */ 1131 int rproc_boot(struct rproc *rproc) 1132 { 1133 return __rproc_boot(rproc); 1134 } 1135 EXPORT_SYMBOL(rproc_boot); 1136 1137 /** 1138 * rproc_shutdown() - power off the remote processor 1139 * @rproc: the remote processor 1140 * 1141 * Power off a remote processor (previously booted with rproc_boot()). 1142 * 1143 * In case @rproc is still being used by an additional user(s), then 1144 * this function will just decrement the power refcount and exit, 1145 * without really powering off the device. 1146 * 1147 * Every call to rproc_boot() must (eventually) be accompanied by a call 1148 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1149 * 1150 * Notes: 1151 * - we're not decrementing the rproc's refcount, only the power refcount. 1152 * which means that the @rproc handle stays valid even after rproc_shutdown() 1153 * returns, and users can still use it with a subsequent rproc_boot(), if 1154 * needed. 1155 */ 1156 void rproc_shutdown(struct rproc *rproc) 1157 { 1158 struct device *dev = &rproc->dev; 1159 int ret; 1160 1161 ret = mutex_lock_interruptible(&rproc->lock); 1162 if (ret) { 1163 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1164 return; 1165 } 1166 1167 /* if the remote proc is still needed, bail out */ 1168 if (!atomic_dec_and_test(&rproc->power)) 1169 goto out; 1170 1171 /* remove any subdevices for the remote processor */ 1172 rproc_remove_subdevices(rproc); 1173 1174 /* power off the remote processor */ 1175 ret = rproc->ops->stop(rproc); 1176 if (ret) { 1177 atomic_inc(&rproc->power); 1178 dev_err(dev, "can't stop rproc: %d\n", ret); 1179 goto out; 1180 } 1181 1182 /* clean up all acquired resources */ 1183 rproc_resource_cleanup(rproc); 1184 1185 rproc_disable_iommu(rproc); 1186 1187 /* Free the copy of the resource table */ 1188 kfree(rproc->table_ptr); 1189 rproc->table_ptr = NULL; 1190 1191 /* if in crash state, unlock crash handler */ 1192 if (rproc->state == RPROC_CRASHED) 1193 complete_all(&rproc->crash_comp); 1194 1195 rproc->state = RPROC_OFFLINE; 1196 1197 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1198 1199 out: 1200 mutex_unlock(&rproc->lock); 1201 } 1202 EXPORT_SYMBOL(rproc_shutdown); 1203 1204 /** 1205 * rproc_get_by_phandle() - find a remote processor by phandle 1206 * @phandle: phandle to the rproc 1207 * 1208 * Finds an rproc handle using the remote processor's phandle, and then 1209 * return a handle to the rproc. 1210 * 1211 * This function increments the remote processor's refcount, so always 1212 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1213 * 1214 * Returns the rproc handle on success, and NULL on failure. 1215 */ 1216 #ifdef CONFIG_OF 1217 struct rproc *rproc_get_by_phandle(phandle phandle) 1218 { 1219 struct rproc *rproc = NULL, *r; 1220 struct device_node *np; 1221 1222 np = of_find_node_by_phandle(phandle); 1223 if (!np) 1224 return NULL; 1225 1226 mutex_lock(&rproc_list_mutex); 1227 list_for_each_entry(r, &rproc_list, node) { 1228 if (r->dev.parent && r->dev.parent->of_node == np) { 1229 /* prevent underlying implementation from being removed */ 1230 if (!try_module_get(r->dev.parent->driver->owner)) { 1231 dev_err(&r->dev, "can't get owner\n"); 1232 break; 1233 } 1234 1235 rproc = r; 1236 get_device(&rproc->dev); 1237 break; 1238 } 1239 } 1240 mutex_unlock(&rproc_list_mutex); 1241 1242 of_node_put(np); 1243 1244 return rproc; 1245 } 1246 #else 1247 struct rproc *rproc_get_by_phandle(phandle phandle) 1248 { 1249 return NULL; 1250 } 1251 #endif 1252 EXPORT_SYMBOL(rproc_get_by_phandle); 1253 1254 /** 1255 * rproc_add() - register a remote processor 1256 * @rproc: the remote processor handle to register 1257 * 1258 * Registers @rproc with the remoteproc framework, after it has been 1259 * allocated with rproc_alloc(). 1260 * 1261 * This is called by the platform-specific rproc implementation, whenever 1262 * a new remote processor device is probed. 1263 * 1264 * Returns 0 on success and an appropriate error code otherwise. 1265 * 1266 * Note: this function initiates an asynchronous firmware loading 1267 * context, which will look for virtio devices supported by the rproc's 1268 * firmware. 1269 * 1270 * If found, those virtio devices will be created and added, so as a result 1271 * of registering this remote processor, additional virtio drivers might be 1272 * probed. 1273 */ 1274 int rproc_add(struct rproc *rproc) 1275 { 1276 struct device *dev = &rproc->dev; 1277 int ret; 1278 1279 ret = device_add(dev); 1280 if (ret < 0) 1281 return ret; 1282 1283 dev_info(dev, "%s is available\n", rproc->name); 1284 1285 /* create debugfs entries */ 1286 rproc_create_debug_dir(rproc); 1287 ret = rproc_add_virtio_devices(rproc); 1288 if (ret < 0) 1289 return ret; 1290 1291 /* expose to rproc_get_by_phandle users */ 1292 mutex_lock(&rproc_list_mutex); 1293 list_add(&rproc->node, &rproc_list); 1294 mutex_unlock(&rproc_list_mutex); 1295 1296 return 0; 1297 } 1298 EXPORT_SYMBOL(rproc_add); 1299 1300 /** 1301 * rproc_type_release() - release a remote processor instance 1302 * @dev: the rproc's device 1303 * 1304 * This function should _never_ be called directly. 1305 * 1306 * It will be called by the driver core when no one holds a valid pointer 1307 * to @dev anymore. 1308 */ 1309 static void rproc_type_release(struct device *dev) 1310 { 1311 struct rproc *rproc = container_of(dev, struct rproc, dev); 1312 1313 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1314 1315 rproc_delete_debug_dir(rproc); 1316 1317 idr_destroy(&rproc->notifyids); 1318 1319 if (rproc->index >= 0) 1320 ida_simple_remove(&rproc_dev_index, rproc->index); 1321 1322 kfree(rproc->firmware); 1323 kfree(rproc); 1324 } 1325 1326 static struct device_type rproc_type = { 1327 .name = "remoteproc", 1328 .release = rproc_type_release, 1329 }; 1330 1331 /** 1332 * rproc_alloc() - allocate a remote processor handle 1333 * @dev: the underlying device 1334 * @name: name of this remote processor 1335 * @ops: platform-specific handlers (mainly start/stop) 1336 * @firmware: name of firmware file to load, can be NULL 1337 * @len: length of private data needed by the rproc driver (in bytes) 1338 * 1339 * Allocates a new remote processor handle, but does not register 1340 * it yet. if @firmware is NULL, a default name is used. 1341 * 1342 * This function should be used by rproc implementations during initialization 1343 * of the remote processor. 1344 * 1345 * After creating an rproc handle using this function, and when ready, 1346 * implementations should then call rproc_add() to complete 1347 * the registration of the remote processor. 1348 * 1349 * On success the new rproc is returned, and on failure, NULL. 1350 * 1351 * Note: _never_ directly deallocate @rproc, even if it was not registered 1352 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). 1353 */ 1354 struct rproc *rproc_alloc(struct device *dev, const char *name, 1355 const struct rproc_ops *ops, 1356 const char *firmware, int len) 1357 { 1358 struct rproc *rproc; 1359 char *p, *template = "rproc-%s-fw"; 1360 int name_len; 1361 1362 if (!dev || !name || !ops) 1363 return NULL; 1364 1365 if (!firmware) { 1366 /* 1367 * If the caller didn't pass in a firmware name then 1368 * construct a default name. 1369 */ 1370 name_len = strlen(name) + strlen(template) - 2 + 1; 1371 p = kmalloc(name_len, GFP_KERNEL); 1372 if (!p) 1373 return NULL; 1374 snprintf(p, name_len, template, name); 1375 } else { 1376 p = kstrdup(firmware, GFP_KERNEL); 1377 if (!p) 1378 return NULL; 1379 } 1380 1381 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); 1382 if (!rproc) { 1383 kfree(p); 1384 return NULL; 1385 } 1386 1387 rproc->firmware = p; 1388 rproc->name = name; 1389 rproc->ops = ops; 1390 rproc->priv = &rproc[1]; 1391 rproc->auto_boot = true; 1392 1393 device_initialize(&rproc->dev); 1394 rproc->dev.parent = dev; 1395 rproc->dev.type = &rproc_type; 1396 rproc->dev.class = &rproc_class; 1397 1398 /* Assign a unique device index and name */ 1399 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 1400 if (rproc->index < 0) { 1401 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 1402 put_device(&rproc->dev); 1403 return NULL; 1404 } 1405 1406 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 1407 1408 atomic_set(&rproc->power, 0); 1409 1410 /* Set ELF as the default fw_ops handler */ 1411 rproc->fw_ops = &rproc_elf_fw_ops; 1412 1413 mutex_init(&rproc->lock); 1414 1415 idr_init(&rproc->notifyids); 1416 1417 INIT_LIST_HEAD(&rproc->carveouts); 1418 INIT_LIST_HEAD(&rproc->mappings); 1419 INIT_LIST_HEAD(&rproc->traces); 1420 INIT_LIST_HEAD(&rproc->rvdevs); 1421 INIT_LIST_HEAD(&rproc->subdevs); 1422 1423 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 1424 init_completion(&rproc->crash_comp); 1425 1426 rproc->state = RPROC_OFFLINE; 1427 1428 return rproc; 1429 } 1430 EXPORT_SYMBOL(rproc_alloc); 1431 1432 /** 1433 * rproc_free() - unroll rproc_alloc() 1434 * @rproc: the remote processor handle 1435 * 1436 * This function decrements the rproc dev refcount. 1437 * 1438 * If no one holds any reference to rproc anymore, then its refcount would 1439 * now drop to zero, and it would be freed. 1440 */ 1441 void rproc_free(struct rproc *rproc) 1442 { 1443 put_device(&rproc->dev); 1444 } 1445 EXPORT_SYMBOL(rproc_free); 1446 1447 /** 1448 * rproc_put() - release rproc reference 1449 * @rproc: the remote processor handle 1450 * 1451 * This function decrements the rproc dev refcount. 1452 * 1453 * If no one holds any reference to rproc anymore, then its refcount would 1454 * now drop to zero, and it would be freed. 1455 */ 1456 void rproc_put(struct rproc *rproc) 1457 { 1458 module_put(rproc->dev.parent->driver->owner); 1459 put_device(&rproc->dev); 1460 } 1461 EXPORT_SYMBOL(rproc_put); 1462 1463 /** 1464 * rproc_del() - unregister a remote processor 1465 * @rproc: rproc handle to unregister 1466 * 1467 * This function should be called when the platform specific rproc 1468 * implementation decides to remove the rproc device. it should 1469 * _only_ be called if a previous invocation of rproc_add() 1470 * has completed successfully. 1471 * 1472 * After rproc_del() returns, @rproc isn't freed yet, because 1473 * of the outstanding reference created by rproc_alloc. To decrement that 1474 * one last refcount, one still needs to call rproc_free(). 1475 * 1476 * Returns 0 on success and -EINVAL if @rproc isn't valid. 1477 */ 1478 int rproc_del(struct rproc *rproc) 1479 { 1480 if (!rproc) 1481 return -EINVAL; 1482 1483 /* if rproc is just being registered, wait */ 1484 wait_for_completion(&rproc->firmware_loading_complete); 1485 1486 /* if rproc is marked always-on, rproc_add() booted it */ 1487 /* TODO: make sure this works with rproc->power > 1 */ 1488 if (rproc->auto_boot) 1489 rproc_shutdown(rproc); 1490 1491 /* the rproc is downref'ed as soon as it's removed from the klist */ 1492 mutex_lock(&rproc_list_mutex); 1493 list_del(&rproc->node); 1494 mutex_unlock(&rproc_list_mutex); 1495 1496 device_del(&rproc->dev); 1497 1498 return 0; 1499 } 1500 EXPORT_SYMBOL(rproc_del); 1501 1502 /** 1503 * rproc_add_subdev() - add a subdevice to a remoteproc 1504 * @rproc: rproc handle to add the subdevice to 1505 * @subdev: subdev handle to register 1506 * @probe: function to call when the rproc boots 1507 * @remove: function to call when the rproc shuts down 1508 */ 1509 void rproc_add_subdev(struct rproc *rproc, 1510 struct rproc_subdev *subdev, 1511 int (*probe)(struct rproc_subdev *subdev), 1512 void (*remove)(struct rproc_subdev *subdev)) 1513 { 1514 subdev->probe = probe; 1515 subdev->remove = remove; 1516 1517 list_add_tail(&subdev->node, &rproc->subdevs); 1518 } 1519 EXPORT_SYMBOL(rproc_add_subdev); 1520 1521 /** 1522 * rproc_remove_subdev() - remove a subdevice from a remoteproc 1523 * @rproc: rproc handle to remove the subdevice from 1524 * @subdev: subdev handle, previously registered with rproc_add_subdev() 1525 */ 1526 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) 1527 { 1528 list_del(&subdev->node); 1529 } 1530 EXPORT_SYMBOL(rproc_remove_subdev); 1531 1532 /** 1533 * rproc_report_crash() - rproc crash reporter function 1534 * @rproc: remote processor 1535 * @type: crash type 1536 * 1537 * This function must be called every time a crash is detected by the low-level 1538 * drivers implementing a specific remoteproc. This should not be called from a 1539 * non-remoteproc driver. 1540 * 1541 * This function can be called from atomic/interrupt context. 1542 */ 1543 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 1544 { 1545 if (!rproc) { 1546 pr_err("NULL rproc pointer\n"); 1547 return; 1548 } 1549 1550 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 1551 rproc->name, rproc_crash_to_string(type)); 1552 1553 /* create a new task to handle the error */ 1554 schedule_work(&rproc->crash_handler); 1555 } 1556 EXPORT_SYMBOL(rproc_report_crash); 1557 1558 static int __init remoteproc_init(void) 1559 { 1560 rproc_init_sysfs(); 1561 rproc_init_debugfs(); 1562 1563 return 0; 1564 } 1565 module_init(remoteproc_init); 1566 1567 static void __exit remoteproc_exit(void) 1568 { 1569 ida_destroy(&rproc_dev_index); 1570 1571 rproc_exit_debugfs(); 1572 rproc_exit_sysfs(); 1573 } 1574 module_exit(remoteproc_exit); 1575 1576 MODULE_LICENSE("GPL v2"); 1577 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 1578