xref: /linux/drivers/remoteproc/remoteproc_core.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/mutex.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firmware.h>
26 #include <linux/string.h>
27 #include <linux/debugfs.h>
28 #include <linux/devcoredump.h>
29 #include <linux/remoteproc.h>
30 #include <linux/iommu.h>
31 #include <linux/idr.h>
32 #include <linux/elf.h>
33 #include <linux/crc32.h>
34 #include <linux/of_reserved_mem.h>
35 #include <linux/virtio_ids.h>
36 #include <linux/virtio_ring.h>
37 #include <asm/byteorder.h>
38 #include <linux/platform_device.h>
39 
40 #include "remoteproc_internal.h"
41 
42 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
43 
44 static DEFINE_MUTEX(rproc_list_mutex);
45 static LIST_HEAD(rproc_list);
46 
47 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
48 				struct resource_table *table, int len);
49 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50 				 void *, int offset, int avail);
51 
52 static int rproc_alloc_carveout(struct rproc *rproc,
53 				struct rproc_mem_entry *mem);
54 static int rproc_release_carveout(struct rproc *rproc,
55 				  struct rproc_mem_entry *mem);
56 
57 /* Unique indices for remoteproc devices */
58 static DEFINE_IDA(rproc_dev_index);
59 
60 static const char * const rproc_crash_names[] = {
61 	[RPROC_MMUFAULT]	= "mmufault",
62 	[RPROC_WATCHDOG]	= "watchdog",
63 	[RPROC_FATAL_ERROR]	= "fatal error",
64 };
65 
66 /* translate rproc_crash_type to string */
67 static const char *rproc_crash_to_string(enum rproc_crash_type type)
68 {
69 	if (type < ARRAY_SIZE(rproc_crash_names))
70 		return rproc_crash_names[type];
71 	return "unknown";
72 }
73 
74 /*
75  * This is the IOMMU fault handler we register with the IOMMU API
76  * (when relevant; not all remote processors access memory through
77  * an IOMMU).
78  *
79  * IOMMU core will invoke this handler whenever the remote processor
80  * will try to access an unmapped device address.
81  */
82 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
83 			     unsigned long iova, int flags, void *token)
84 {
85 	struct rproc *rproc = token;
86 
87 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
88 
89 	rproc_report_crash(rproc, RPROC_MMUFAULT);
90 
91 	/*
92 	 * Let the iommu core know we're not really handling this fault;
93 	 * we just used it as a recovery trigger.
94 	 */
95 	return -ENOSYS;
96 }
97 
98 static int rproc_enable_iommu(struct rproc *rproc)
99 {
100 	struct iommu_domain *domain;
101 	struct device *dev = rproc->dev.parent;
102 	int ret;
103 
104 	if (!rproc->has_iommu) {
105 		dev_dbg(dev, "iommu not present\n");
106 		return 0;
107 	}
108 
109 	domain = iommu_domain_alloc(dev->bus);
110 	if (!domain) {
111 		dev_err(dev, "can't alloc iommu domain\n");
112 		return -ENOMEM;
113 	}
114 
115 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
116 
117 	ret = iommu_attach_device(domain, dev);
118 	if (ret) {
119 		dev_err(dev, "can't attach iommu device: %d\n", ret);
120 		goto free_domain;
121 	}
122 
123 	rproc->domain = domain;
124 
125 	return 0;
126 
127 free_domain:
128 	iommu_domain_free(domain);
129 	return ret;
130 }
131 
132 static void rproc_disable_iommu(struct rproc *rproc)
133 {
134 	struct iommu_domain *domain = rproc->domain;
135 	struct device *dev = rproc->dev.parent;
136 
137 	if (!domain)
138 		return;
139 
140 	iommu_detach_device(domain, dev);
141 	iommu_domain_free(domain);
142 }
143 
144 phys_addr_t rproc_va_to_pa(void *cpu_addr)
145 {
146 	/*
147 	 * Return physical address according to virtual address location
148 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
149 	 * - in kernel: if region allocated in generic dma memory pool
150 	 */
151 	if (is_vmalloc_addr(cpu_addr)) {
152 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
153 				    offset_in_page(cpu_addr);
154 	}
155 
156 	WARN_ON(!virt_addr_valid(cpu_addr));
157 	return virt_to_phys(cpu_addr);
158 }
159 EXPORT_SYMBOL(rproc_va_to_pa);
160 
161 /**
162  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
163  * @rproc: handle of a remote processor
164  * @da: remoteproc device address to translate
165  * @len: length of the memory region @da is pointing to
166  *
167  * Some remote processors will ask us to allocate them physically contiguous
168  * memory regions (which we call "carveouts"), and map them to specific
169  * device addresses (which are hardcoded in the firmware). They may also have
170  * dedicated memory regions internal to the processors, and use them either
171  * exclusively or alongside carveouts.
172  *
173  * They may then ask us to copy objects into specific device addresses (e.g.
174  * code/data sections) or expose us certain symbols in other device address
175  * (e.g. their trace buffer).
176  *
177  * This function is a helper function with which we can go over the allocated
178  * carveouts and translate specific device addresses to kernel virtual addresses
179  * so we can access the referenced memory. This function also allows to perform
180  * translations on the internal remoteproc memory regions through a platform
181  * implementation specific da_to_va ops, if present.
182  *
183  * The function returns a valid kernel address on success or NULL on failure.
184  *
185  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
186  * but only on kernel direct mapped RAM memory. Instead, we're just using
187  * here the output of the DMA API for the carveouts, which should be more
188  * correct.
189  */
190 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
191 {
192 	struct rproc_mem_entry *carveout;
193 	void *ptr = NULL;
194 
195 	if (rproc->ops->da_to_va) {
196 		ptr = rproc->ops->da_to_va(rproc, da, len);
197 		if (ptr)
198 			goto out;
199 	}
200 
201 	list_for_each_entry(carveout, &rproc->carveouts, node) {
202 		int offset = da - carveout->da;
203 
204 		/*  Verify that carveout is allocated */
205 		if (!carveout->va)
206 			continue;
207 
208 		/* try next carveout if da is too small */
209 		if (offset < 0)
210 			continue;
211 
212 		/* try next carveout if da is too large */
213 		if (offset + len > carveout->len)
214 			continue;
215 
216 		ptr = carveout->va + offset;
217 
218 		break;
219 	}
220 
221 out:
222 	return ptr;
223 }
224 EXPORT_SYMBOL(rproc_da_to_va);
225 
226 /**
227  * rproc_find_carveout_by_name() - lookup the carveout region by a name
228  * @rproc: handle of a remote processor
229  * @name,..: carveout name to find (standard printf format)
230  *
231  * Platform driver has the capability to register some pre-allacoted carveout
232  * (physically contiguous memory regions) before rproc firmware loading and
233  * associated resource table analysis. These regions may be dedicated memory
234  * regions internal to the coprocessor or specified DDR region with specific
235  * attributes
236  *
237  * This function is a helper function with which we can go over the
238  * allocated carveouts and return associated region characteristics like
239  * coprocessor address, length or processor virtual address.
240  *
241  * Return: a valid pointer on carveout entry on success or NULL on failure.
242  */
243 struct rproc_mem_entry *
244 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
245 {
246 	va_list args;
247 	char _name[32];
248 	struct rproc_mem_entry *carveout, *mem = NULL;
249 
250 	if (!name)
251 		return NULL;
252 
253 	va_start(args, name);
254 	vsnprintf(_name, sizeof(_name), name, args);
255 	va_end(args);
256 
257 	list_for_each_entry(carveout, &rproc->carveouts, node) {
258 		/* Compare carveout and requested names */
259 		if (!strcmp(carveout->name, _name)) {
260 			mem = carveout;
261 			break;
262 		}
263 	}
264 
265 	return mem;
266 }
267 
268 /**
269  * rproc_check_carveout_da() - Check specified carveout da configuration
270  * @rproc: handle of a remote processor
271  * @mem: pointer on carveout to check
272  * @da: area device address
273  * @len: associated area size
274  *
275  * This function is a helper function to verify requested device area (couple
276  * da, len) is part of specified carveout.
277  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
278  * checked.
279  *
280  * Return: 0 if carveout matches request else error
281  */
282 static int rproc_check_carveout_da(struct rproc *rproc,
283 				   struct rproc_mem_entry *mem, u32 da, u32 len)
284 {
285 	struct device *dev = &rproc->dev;
286 	int delta;
287 
288 	/* Check requested resource length */
289 	if (len > mem->len) {
290 		dev_err(dev, "Registered carveout doesn't fit len request\n");
291 		return -EINVAL;
292 	}
293 
294 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
295 		/* Address doesn't match registered carveout configuration */
296 		return -EINVAL;
297 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
298 		delta = da - mem->da;
299 
300 		/* Check requested resource belongs to registered carveout */
301 		if (delta < 0) {
302 			dev_err(dev,
303 				"Registered carveout doesn't fit da request\n");
304 			return -EINVAL;
305 		}
306 
307 		if (delta + len > mem->len) {
308 			dev_err(dev,
309 				"Registered carveout doesn't fit len request\n");
310 			return -EINVAL;
311 		}
312 	}
313 
314 	return 0;
315 }
316 
317 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
318 {
319 	struct rproc *rproc = rvdev->rproc;
320 	struct device *dev = &rproc->dev;
321 	struct rproc_vring *rvring = &rvdev->vring[i];
322 	struct fw_rsc_vdev *rsc;
323 	int ret, size, notifyid;
324 	struct rproc_mem_entry *mem;
325 
326 	/* actual size of vring (in bytes) */
327 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
328 
329 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
330 
331 	/* Search for pre-registered carveout */
332 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
333 					  i);
334 	if (mem) {
335 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
336 			return -ENOMEM;
337 	} else {
338 		/* Register carveout in in list */
339 		mem = rproc_mem_entry_init(dev, 0, 0, size, rsc->vring[i].da,
340 					   rproc_alloc_carveout,
341 					   rproc_release_carveout,
342 					   "vdev%dvring%d",
343 					   rvdev->index, i);
344 		if (!mem) {
345 			dev_err(dev, "Can't allocate memory entry structure\n");
346 			return -ENOMEM;
347 		}
348 
349 		rproc_add_carveout(rproc, mem);
350 	}
351 
352 	/*
353 	 * Assign an rproc-wide unique index for this vring
354 	 * TODO: assign a notifyid for rvdev updates as well
355 	 * TODO: support predefined notifyids (via resource table)
356 	 */
357 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
358 	if (ret < 0) {
359 		dev_err(dev, "idr_alloc failed: %d\n", ret);
360 		return ret;
361 	}
362 	notifyid = ret;
363 
364 	/* Potentially bump max_notifyid */
365 	if (notifyid > rproc->max_notifyid)
366 		rproc->max_notifyid = notifyid;
367 
368 	rvring->notifyid = notifyid;
369 
370 	/* Let the rproc know the notifyid of this vring.*/
371 	rsc->vring[i].notifyid = notifyid;
372 	return 0;
373 }
374 
375 static int
376 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
377 {
378 	struct rproc *rproc = rvdev->rproc;
379 	struct device *dev = &rproc->dev;
380 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
381 	struct rproc_vring *rvring = &rvdev->vring[i];
382 
383 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
384 		i, vring->da, vring->num, vring->align);
385 
386 	/* verify queue size and vring alignment are sane */
387 	if (!vring->num || !vring->align) {
388 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
389 			vring->num, vring->align);
390 		return -EINVAL;
391 	}
392 
393 	rvring->len = vring->num;
394 	rvring->align = vring->align;
395 	rvring->rvdev = rvdev;
396 
397 	return 0;
398 }
399 
400 void rproc_free_vring(struct rproc_vring *rvring)
401 {
402 	struct rproc *rproc = rvring->rvdev->rproc;
403 	int idx = rvring->rvdev->vring - rvring;
404 	struct fw_rsc_vdev *rsc;
405 
406 	idr_remove(&rproc->notifyids, rvring->notifyid);
407 
408 	/* reset resource entry info */
409 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
410 	rsc->vring[idx].da = 0;
411 	rsc->vring[idx].notifyid = -1;
412 }
413 
414 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
415 {
416 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
417 
418 	return rproc_add_virtio_dev(rvdev, rvdev->id);
419 }
420 
421 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
422 {
423 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
424 	int ret;
425 
426 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
427 	if (ret)
428 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
429 }
430 
431 /**
432  * rproc_rvdev_release() - release the existence of a rvdev
433  *
434  * @dev: the subdevice's dev
435  */
436 static void rproc_rvdev_release(struct device *dev)
437 {
438 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
439 
440 	of_reserved_mem_device_release(dev);
441 
442 	kfree(rvdev);
443 }
444 
445 /**
446  * rproc_handle_vdev() - handle a vdev fw resource
447  * @rproc: the remote processor
448  * @rsc: the vring resource descriptor
449  * @avail: size of available data (for sanity checking the image)
450  *
451  * This resource entry requests the host to statically register a virtio
452  * device (vdev), and setup everything needed to support it. It contains
453  * everything needed to make it possible: the virtio device id, virtio
454  * device features, vrings information, virtio config space, etc...
455  *
456  * Before registering the vdev, the vrings are allocated from non-cacheable
457  * physically contiguous memory. Currently we only support two vrings per
458  * remote processor (temporary limitation). We might also want to consider
459  * doing the vring allocation only later when ->find_vqs() is invoked, and
460  * then release them upon ->del_vqs().
461  *
462  * Note: @da is currently not really handled correctly: we dynamically
463  * allocate it using the DMA API, ignoring requested hard coded addresses,
464  * and we don't take care of any required IOMMU programming. This is all
465  * going to be taken care of when the generic iommu-based DMA API will be
466  * merged. Meanwhile, statically-addressed iommu-based firmware images should
467  * use RSC_DEVMEM resource entries to map their required @da to the physical
468  * address of their base CMA region (ouch, hacky!).
469  *
470  * Returns 0 on success, or an appropriate error code otherwise
471  */
472 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
473 			     int offset, int avail)
474 {
475 	struct device *dev = &rproc->dev;
476 	struct rproc_vdev *rvdev;
477 	int i, ret;
478 	char name[16];
479 
480 	/* make sure resource isn't truncated */
481 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
482 			+ rsc->config_len > avail) {
483 		dev_err(dev, "vdev rsc is truncated\n");
484 		return -EINVAL;
485 	}
486 
487 	/* make sure reserved bytes are zeroes */
488 	if (rsc->reserved[0] || rsc->reserved[1]) {
489 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
490 		return -EINVAL;
491 	}
492 
493 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
494 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
495 
496 	/* we currently support only two vrings per rvdev */
497 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
498 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
499 		return -EINVAL;
500 	}
501 
502 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
503 	if (!rvdev)
504 		return -ENOMEM;
505 
506 	kref_init(&rvdev->refcount);
507 
508 	rvdev->id = rsc->id;
509 	rvdev->rproc = rproc;
510 	rvdev->index = rproc->nb_vdev++;
511 
512 	/* Initialise vdev subdevice */
513 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
514 	rvdev->dev.parent = rproc->dev.parent;
515 	rvdev->dev.dma_pfn_offset = rproc->dev.parent->dma_pfn_offset;
516 	rvdev->dev.release = rproc_rvdev_release;
517 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
518 	dev_set_drvdata(&rvdev->dev, rvdev);
519 
520 	ret = device_register(&rvdev->dev);
521 	if (ret) {
522 		put_device(&rvdev->dev);
523 		return ret;
524 	}
525 	/* Make device dma capable by inheriting from parent's capabilities */
526 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
527 
528 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
529 					   dma_get_mask(rproc->dev.parent));
530 	if (ret) {
531 		dev_warn(dev,
532 			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
533 			 dma_get_mask(rproc->dev.parent), ret);
534 	}
535 
536 	/* parse the vrings */
537 	for (i = 0; i < rsc->num_of_vrings; i++) {
538 		ret = rproc_parse_vring(rvdev, rsc, i);
539 		if (ret)
540 			goto free_rvdev;
541 	}
542 
543 	/* remember the resource offset*/
544 	rvdev->rsc_offset = offset;
545 
546 	/* allocate the vring resources */
547 	for (i = 0; i < rsc->num_of_vrings; i++) {
548 		ret = rproc_alloc_vring(rvdev, i);
549 		if (ret)
550 			goto unwind_vring_allocations;
551 	}
552 
553 	list_add_tail(&rvdev->node, &rproc->rvdevs);
554 
555 	rvdev->subdev.start = rproc_vdev_do_start;
556 	rvdev->subdev.stop = rproc_vdev_do_stop;
557 
558 	rproc_add_subdev(rproc, &rvdev->subdev);
559 
560 	return 0;
561 
562 unwind_vring_allocations:
563 	for (i--; i >= 0; i--)
564 		rproc_free_vring(&rvdev->vring[i]);
565 free_rvdev:
566 	device_unregister(&rvdev->dev);
567 	return ret;
568 }
569 
570 void rproc_vdev_release(struct kref *ref)
571 {
572 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
573 	struct rproc_vring *rvring;
574 	struct rproc *rproc = rvdev->rproc;
575 	int id;
576 
577 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
578 		rvring = &rvdev->vring[id];
579 		rproc_free_vring(rvring);
580 	}
581 
582 	rproc_remove_subdev(rproc, &rvdev->subdev);
583 	list_del(&rvdev->node);
584 	device_unregister(&rvdev->dev);
585 }
586 
587 /**
588  * rproc_handle_trace() - handle a shared trace buffer resource
589  * @rproc: the remote processor
590  * @rsc: the trace resource descriptor
591  * @avail: size of available data (for sanity checking the image)
592  *
593  * In case the remote processor dumps trace logs into memory,
594  * export it via debugfs.
595  *
596  * Currently, the 'da' member of @rsc should contain the device address
597  * where the remote processor is dumping the traces. Later we could also
598  * support dynamically allocating this address using the generic
599  * DMA API (but currently there isn't a use case for that).
600  *
601  * Returns 0 on success, or an appropriate error code otherwise
602  */
603 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
604 			      int offset, int avail)
605 {
606 	struct rproc_debug_trace *trace;
607 	struct device *dev = &rproc->dev;
608 	char name[15];
609 
610 	if (sizeof(*rsc) > avail) {
611 		dev_err(dev, "trace rsc is truncated\n");
612 		return -EINVAL;
613 	}
614 
615 	/* make sure reserved bytes are zeroes */
616 	if (rsc->reserved) {
617 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
618 		return -EINVAL;
619 	}
620 
621 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
622 	if (!trace)
623 		return -ENOMEM;
624 
625 	/* set the trace buffer dma properties */
626 	trace->trace_mem.len = rsc->len;
627 	trace->trace_mem.da = rsc->da;
628 
629 	/* set pointer on rproc device */
630 	trace->rproc = rproc;
631 
632 	/* make sure snprintf always null terminates, even if truncating */
633 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
634 
635 	/* create the debugfs entry */
636 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
637 	if (!trace->tfile) {
638 		kfree(trace);
639 		return -EINVAL;
640 	}
641 
642 	list_add_tail(&trace->node, &rproc->traces);
643 
644 	rproc->num_traces++;
645 
646 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
647 		name, rsc->da, rsc->len);
648 
649 	return 0;
650 }
651 
652 /**
653  * rproc_handle_devmem() - handle devmem resource entry
654  * @rproc: remote processor handle
655  * @rsc: the devmem resource entry
656  * @avail: size of available data (for sanity checking the image)
657  *
658  * Remote processors commonly need to access certain on-chip peripherals.
659  *
660  * Some of these remote processors access memory via an iommu device,
661  * and might require us to configure their iommu before they can access
662  * the on-chip peripherals they need.
663  *
664  * This resource entry is a request to map such a peripheral device.
665  *
666  * These devmem entries will contain the physical address of the device in
667  * the 'pa' member. If a specific device address is expected, then 'da' will
668  * contain it (currently this is the only use case supported). 'len' will
669  * contain the size of the physical region we need to map.
670  *
671  * Currently we just "trust" those devmem entries to contain valid physical
672  * addresses, but this is going to change: we want the implementations to
673  * tell us ranges of physical addresses the firmware is allowed to request,
674  * and not allow firmwares to request access to physical addresses that
675  * are outside those ranges.
676  */
677 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
678 			       int offset, int avail)
679 {
680 	struct rproc_mem_entry *mapping;
681 	struct device *dev = &rproc->dev;
682 	int ret;
683 
684 	/* no point in handling this resource without a valid iommu domain */
685 	if (!rproc->domain)
686 		return -EINVAL;
687 
688 	if (sizeof(*rsc) > avail) {
689 		dev_err(dev, "devmem rsc is truncated\n");
690 		return -EINVAL;
691 	}
692 
693 	/* make sure reserved bytes are zeroes */
694 	if (rsc->reserved) {
695 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
696 		return -EINVAL;
697 	}
698 
699 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
700 	if (!mapping)
701 		return -ENOMEM;
702 
703 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
704 	if (ret) {
705 		dev_err(dev, "failed to map devmem: %d\n", ret);
706 		goto out;
707 	}
708 
709 	/*
710 	 * We'll need this info later when we'll want to unmap everything
711 	 * (e.g. on shutdown).
712 	 *
713 	 * We can't trust the remote processor not to change the resource
714 	 * table, so we must maintain this info independently.
715 	 */
716 	mapping->da = rsc->da;
717 	mapping->len = rsc->len;
718 	list_add_tail(&mapping->node, &rproc->mappings);
719 
720 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
721 		rsc->pa, rsc->da, rsc->len);
722 
723 	return 0;
724 
725 out:
726 	kfree(mapping);
727 	return ret;
728 }
729 
730 /**
731  * rproc_alloc_carveout() - allocated specified carveout
732  * @rproc: rproc handle
733  * @mem: the memory entry to allocate
734  *
735  * This function allocate specified memory entry @mem using
736  * dma_alloc_coherent() as default allocator
737  */
738 static int rproc_alloc_carveout(struct rproc *rproc,
739 				struct rproc_mem_entry *mem)
740 {
741 	struct rproc_mem_entry *mapping = NULL;
742 	struct device *dev = &rproc->dev;
743 	dma_addr_t dma;
744 	void *va;
745 	int ret;
746 
747 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
748 	if (!va) {
749 		dev_err(dev->parent,
750 			"failed to allocate dma memory: len 0x%x\n", mem->len);
751 		return -ENOMEM;
752 	}
753 
754 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%x\n",
755 		va, &dma, mem->len);
756 
757 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
758 		/*
759 		 * Check requested da is equal to dma address
760 		 * and print a warn message in case of missalignment.
761 		 * Don't stop rproc_start sequence as coprocessor may
762 		 * build pa to da translation on its side.
763 		 */
764 		if (mem->da != (u32)dma)
765 			dev_warn(dev->parent,
766 				 "Allocated carveout doesn't fit device address request\n");
767 	}
768 
769 	/*
770 	 * Ok, this is non-standard.
771 	 *
772 	 * Sometimes we can't rely on the generic iommu-based DMA API
773 	 * to dynamically allocate the device address and then set the IOMMU
774 	 * tables accordingly, because some remote processors might
775 	 * _require_ us to use hard coded device addresses that their
776 	 * firmware was compiled with.
777 	 *
778 	 * In this case, we must use the IOMMU API directly and map
779 	 * the memory to the device address as expected by the remote
780 	 * processor.
781 	 *
782 	 * Obviously such remote processor devices should not be configured
783 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
784 	 * physical address in this case.
785 	 */
786 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
787 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
788 		if (!mapping) {
789 			ret = -ENOMEM;
790 			goto dma_free;
791 		}
792 
793 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
794 				mem->flags);
795 		if (ret) {
796 			dev_err(dev, "iommu_map failed: %d\n", ret);
797 			goto free_mapping;
798 		}
799 
800 		/*
801 		 * We'll need this info later when we'll want to unmap
802 		 * everything (e.g. on shutdown).
803 		 *
804 		 * We can't trust the remote processor not to change the
805 		 * resource table, so we must maintain this info independently.
806 		 */
807 		mapping->da = mem->da;
808 		mapping->len = mem->len;
809 		list_add_tail(&mapping->node, &rproc->mappings);
810 
811 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
812 			mem->da, &dma);
813 	}
814 
815 	if (mem->da == FW_RSC_ADDR_ANY) {
816 		/* Update device address as undefined by requester */
817 		if ((u64)dma & HIGH_BITS_MASK)
818 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
819 
820 		mem->da = (u32)dma;
821 	}
822 
823 	mem->dma = dma;
824 	mem->va = va;
825 
826 	return 0;
827 
828 free_mapping:
829 	kfree(mapping);
830 dma_free:
831 	dma_free_coherent(dev->parent, mem->len, va, dma);
832 	return ret;
833 }
834 
835 /**
836  * rproc_release_carveout() - release acquired carveout
837  * @rproc: rproc handle
838  * @mem: the memory entry to release
839  *
840  * This function releases specified memory entry @mem allocated via
841  * rproc_alloc_carveout() function by @rproc.
842  */
843 static int rproc_release_carveout(struct rproc *rproc,
844 				  struct rproc_mem_entry *mem)
845 {
846 	struct device *dev = &rproc->dev;
847 
848 	/* clean up carveout allocations */
849 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
850 	return 0;
851 }
852 
853 /**
854  * rproc_handle_carveout() - handle phys contig memory allocation requests
855  * @rproc: rproc handle
856  * @rsc: the resource entry
857  * @avail: size of available data (for image validation)
858  *
859  * This function will handle firmware requests for allocation of physically
860  * contiguous memory regions.
861  *
862  * These request entries should come first in the firmware's resource table,
863  * as other firmware entries might request placing other data objects inside
864  * these memory regions (e.g. data/code segments, trace resource entries, ...).
865  *
866  * Allocating memory this way helps utilizing the reserved physical memory
867  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
868  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
869  * pressure is important; it may have a substantial impact on performance.
870  */
871 static int rproc_handle_carveout(struct rproc *rproc,
872 				 struct fw_rsc_carveout *rsc,
873 				 int offset, int avail)
874 {
875 	struct rproc_mem_entry *carveout;
876 	struct device *dev = &rproc->dev;
877 
878 	if (sizeof(*rsc) > avail) {
879 		dev_err(dev, "carveout rsc is truncated\n");
880 		return -EINVAL;
881 	}
882 
883 	/* make sure reserved bytes are zeroes */
884 	if (rsc->reserved) {
885 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
886 		return -EINVAL;
887 	}
888 
889 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
890 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
891 
892 	/*
893 	 * Check carveout rsc already part of a registered carveout,
894 	 * Search by name, then check the da and length
895 	 */
896 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
897 
898 	if (carveout) {
899 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
900 			dev_err(dev,
901 				"Carveout already associated to resource table\n");
902 			return -ENOMEM;
903 		}
904 
905 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
906 			return -ENOMEM;
907 
908 		/* Update memory carveout with resource table info */
909 		carveout->rsc_offset = offset;
910 		carveout->flags = rsc->flags;
911 
912 		return 0;
913 	}
914 
915 	/* Register carveout in in list */
916 	carveout = rproc_mem_entry_init(dev, 0, 0, rsc->len, rsc->da,
917 					rproc_alloc_carveout,
918 					rproc_release_carveout, rsc->name);
919 	if (!carveout) {
920 		dev_err(dev, "Can't allocate memory entry structure\n");
921 		return -ENOMEM;
922 	}
923 
924 	carveout->flags = rsc->flags;
925 	carveout->rsc_offset = offset;
926 	rproc_add_carveout(rproc, carveout);
927 
928 	return 0;
929 }
930 
931 /**
932  * rproc_add_carveout() - register an allocated carveout region
933  * @rproc: rproc handle
934  * @mem: memory entry to register
935  *
936  * This function registers specified memory entry in @rproc carveouts list.
937  * Specified carveout should have been allocated before registering.
938  */
939 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
940 {
941 	list_add_tail(&mem->node, &rproc->carveouts);
942 }
943 EXPORT_SYMBOL(rproc_add_carveout);
944 
945 /**
946  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
947  * @dev: pointer on device struct
948  * @va: virtual address
949  * @dma: dma address
950  * @len: memory carveout length
951  * @da: device address
952  * @alloc: memory carveout allocation function
953  * @release: memory carveout release function
954  * @name: carveout name
955  *
956  * This function allocates a rproc_mem_entry struct and fill it with parameters
957  * provided by client.
958  */
959 struct rproc_mem_entry *
960 rproc_mem_entry_init(struct device *dev,
961 		     void *va, dma_addr_t dma, int len, u32 da,
962 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
963 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
964 		     const char *name, ...)
965 {
966 	struct rproc_mem_entry *mem;
967 	va_list args;
968 
969 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
970 	if (!mem)
971 		return mem;
972 
973 	mem->va = va;
974 	mem->dma = dma;
975 	mem->da = da;
976 	mem->len = len;
977 	mem->alloc = alloc;
978 	mem->release = release;
979 	mem->rsc_offset = FW_RSC_ADDR_ANY;
980 	mem->of_resm_idx = -1;
981 
982 	va_start(args, name);
983 	vsnprintf(mem->name, sizeof(mem->name), name, args);
984 	va_end(args);
985 
986 	return mem;
987 }
988 EXPORT_SYMBOL(rproc_mem_entry_init);
989 
990 /**
991  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
992  * from a reserved memory phandle
993  * @dev: pointer on device struct
994  * @of_resm_idx: reserved memory phandle index in "memory-region"
995  * @len: memory carveout length
996  * @da: device address
997  * @name: carveout name
998  *
999  * This function allocates a rproc_mem_entry struct and fill it with parameters
1000  * provided by client.
1001  */
1002 struct rproc_mem_entry *
1003 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, int len,
1004 			     u32 da, const char *name, ...)
1005 {
1006 	struct rproc_mem_entry *mem;
1007 	va_list args;
1008 
1009 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1010 	if (!mem)
1011 		return mem;
1012 
1013 	mem->da = da;
1014 	mem->len = len;
1015 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1016 	mem->of_resm_idx = of_resm_idx;
1017 
1018 	va_start(args, name);
1019 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1020 	va_end(args);
1021 
1022 	return mem;
1023 }
1024 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1025 
1026 /**
1027  * A lookup table for resource handlers. The indices are defined in
1028  * enum fw_resource_type.
1029  */
1030 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1031 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1032 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1033 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1034 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1035 };
1036 
1037 /* handle firmware resource entries before booting the remote processor */
1038 static int rproc_handle_resources(struct rproc *rproc,
1039 				  rproc_handle_resource_t handlers[RSC_LAST])
1040 {
1041 	struct device *dev = &rproc->dev;
1042 	rproc_handle_resource_t handler;
1043 	int ret = 0, i;
1044 
1045 	if (!rproc->table_ptr)
1046 		return 0;
1047 
1048 	for (i = 0; i < rproc->table_ptr->num; i++) {
1049 		int offset = rproc->table_ptr->offset[i];
1050 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1051 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1052 		void *rsc = (void *)hdr + sizeof(*hdr);
1053 
1054 		/* make sure table isn't truncated */
1055 		if (avail < 0) {
1056 			dev_err(dev, "rsc table is truncated\n");
1057 			return -EINVAL;
1058 		}
1059 
1060 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1061 
1062 		if (hdr->type >= RSC_VENDOR_START &&
1063 		    hdr->type <= RSC_VENDOR_END) {
1064 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1065 					       offset + sizeof(*hdr), avail);
1066 			if (ret == RSC_HANDLED)
1067 				continue;
1068 			else if (ret < 0)
1069 				break;
1070 
1071 			dev_warn(dev, "unsupported vendor resource %d\n",
1072 				 hdr->type);
1073 			continue;
1074 		}
1075 
1076 		if (hdr->type >= RSC_LAST) {
1077 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1078 			continue;
1079 		}
1080 
1081 		handler = handlers[hdr->type];
1082 		if (!handler)
1083 			continue;
1084 
1085 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1086 		if (ret)
1087 			break;
1088 	}
1089 
1090 	return ret;
1091 }
1092 
1093 static int rproc_prepare_subdevices(struct rproc *rproc)
1094 {
1095 	struct rproc_subdev *subdev;
1096 	int ret;
1097 
1098 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1099 		if (subdev->prepare) {
1100 			ret = subdev->prepare(subdev);
1101 			if (ret)
1102 				goto unroll_preparation;
1103 		}
1104 	}
1105 
1106 	return 0;
1107 
1108 unroll_preparation:
1109 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1110 		if (subdev->unprepare)
1111 			subdev->unprepare(subdev);
1112 	}
1113 
1114 	return ret;
1115 }
1116 
1117 static int rproc_start_subdevices(struct rproc *rproc)
1118 {
1119 	struct rproc_subdev *subdev;
1120 	int ret;
1121 
1122 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1123 		if (subdev->start) {
1124 			ret = subdev->start(subdev);
1125 			if (ret)
1126 				goto unroll_registration;
1127 		}
1128 	}
1129 
1130 	return 0;
1131 
1132 unroll_registration:
1133 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1134 		if (subdev->stop)
1135 			subdev->stop(subdev, true);
1136 	}
1137 
1138 	return ret;
1139 }
1140 
1141 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1142 {
1143 	struct rproc_subdev *subdev;
1144 
1145 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1146 		if (subdev->stop)
1147 			subdev->stop(subdev, crashed);
1148 	}
1149 }
1150 
1151 static void rproc_unprepare_subdevices(struct rproc *rproc)
1152 {
1153 	struct rproc_subdev *subdev;
1154 
1155 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1156 		if (subdev->unprepare)
1157 			subdev->unprepare(subdev);
1158 	}
1159 }
1160 
1161 /**
1162  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1163  * in the list
1164  * @rproc: the remote processor handle
1165  *
1166  * This function parses registered carveout list, performs allocation
1167  * if alloc() ops registered and updates resource table information
1168  * if rsc_offset set.
1169  *
1170  * Return: 0 on success
1171  */
1172 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1173 {
1174 	struct rproc_mem_entry *entry, *tmp;
1175 	struct fw_rsc_carveout *rsc;
1176 	struct device *dev = &rproc->dev;
1177 	u64 pa;
1178 	int ret;
1179 
1180 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1181 		if (entry->alloc) {
1182 			ret = entry->alloc(rproc, entry);
1183 			if (ret) {
1184 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1185 					entry->name, ret);
1186 				return -ENOMEM;
1187 			}
1188 		}
1189 
1190 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1191 			/* update resource table */
1192 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1193 
1194 			/*
1195 			 * Some remote processors might need to know the pa
1196 			 * even though they are behind an IOMMU. E.g., OMAP4's
1197 			 * remote M3 processor needs this so it can control
1198 			 * on-chip hardware accelerators that are not behind
1199 			 * the IOMMU, and therefor must know the pa.
1200 			 *
1201 			 * Generally we don't want to expose physical addresses
1202 			 * if we don't have to (remote processors are generally
1203 			 * _not_ trusted), so we might want to do this only for
1204 			 * remote processor that _must_ have this (e.g. OMAP4's
1205 			 * dual M3 subsystem).
1206 			 *
1207 			 * Non-IOMMU processors might also want to have this info.
1208 			 * In this case, the device address and the physical address
1209 			 * are the same.
1210 			 */
1211 
1212 			/* Use va if defined else dma to generate pa */
1213 			if (entry->va)
1214 				pa = (u64)rproc_va_to_pa(entry->va);
1215 			else
1216 				pa = (u64)entry->dma;
1217 
1218 			if (((u64)pa) & HIGH_BITS_MASK)
1219 				dev_warn(dev,
1220 					 "Physical address cast in 32bit to fit resource table format\n");
1221 
1222 			rsc->pa = (u32)pa;
1223 			rsc->da = entry->da;
1224 			rsc->len = entry->len;
1225 		}
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 /**
1232  * rproc_coredump_cleanup() - clean up dump_segments list
1233  * @rproc: the remote processor handle
1234  */
1235 static void rproc_coredump_cleanup(struct rproc *rproc)
1236 {
1237 	struct rproc_dump_segment *entry, *tmp;
1238 
1239 	list_for_each_entry_safe(entry, tmp, &rproc->dump_segments, node) {
1240 		list_del(&entry->node);
1241 		kfree(entry);
1242 	}
1243 }
1244 
1245 /**
1246  * rproc_resource_cleanup() - clean up and free all acquired resources
1247  * @rproc: rproc handle
1248  *
1249  * This function will free all resources acquired for @rproc, and it
1250  * is called whenever @rproc either shuts down or fails to boot.
1251  */
1252 static void rproc_resource_cleanup(struct rproc *rproc)
1253 {
1254 	struct rproc_mem_entry *entry, *tmp;
1255 	struct rproc_debug_trace *trace, *ttmp;
1256 	struct rproc_vdev *rvdev, *rvtmp;
1257 	struct device *dev = &rproc->dev;
1258 
1259 	/* clean up debugfs trace entries */
1260 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1261 		rproc_remove_trace_file(trace->tfile);
1262 		rproc->num_traces--;
1263 		list_del(&trace->node);
1264 		kfree(trace);
1265 	}
1266 
1267 	/* clean up iommu mapping entries */
1268 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1269 		size_t unmapped;
1270 
1271 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1272 		if (unmapped != entry->len) {
1273 			/* nothing much to do besides complaining */
1274 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
1275 				unmapped);
1276 		}
1277 
1278 		list_del(&entry->node);
1279 		kfree(entry);
1280 	}
1281 
1282 	/* clean up carveout allocations */
1283 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1284 		if (entry->release)
1285 			entry->release(rproc, entry);
1286 		list_del(&entry->node);
1287 		kfree(entry);
1288 	}
1289 
1290 	/* clean up remote vdev entries */
1291 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1292 		kref_put(&rvdev->refcount, rproc_vdev_release);
1293 
1294 	rproc_coredump_cleanup(rproc);
1295 }
1296 
1297 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1298 {
1299 	struct resource_table *loaded_table;
1300 	struct device *dev = &rproc->dev;
1301 	int ret;
1302 
1303 	/* load the ELF segments to memory */
1304 	ret = rproc_load_segments(rproc, fw);
1305 	if (ret) {
1306 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1307 		return ret;
1308 	}
1309 
1310 	/*
1311 	 * The starting device has been given the rproc->cached_table as the
1312 	 * resource table. The address of the vring along with the other
1313 	 * allocated resources (carveouts etc) is stored in cached_table.
1314 	 * In order to pass this information to the remote device we must copy
1315 	 * this information to device memory. We also update the table_ptr so
1316 	 * that any subsequent changes will be applied to the loaded version.
1317 	 */
1318 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1319 	if (loaded_table) {
1320 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1321 		rproc->table_ptr = loaded_table;
1322 	}
1323 
1324 	ret = rproc_prepare_subdevices(rproc);
1325 	if (ret) {
1326 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1327 			rproc->name, ret);
1328 		goto reset_table_ptr;
1329 	}
1330 
1331 	/* power up the remote processor */
1332 	ret = rproc->ops->start(rproc);
1333 	if (ret) {
1334 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1335 		goto unprepare_subdevices;
1336 	}
1337 
1338 	/* Start any subdevices for the remote processor */
1339 	ret = rproc_start_subdevices(rproc);
1340 	if (ret) {
1341 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1342 			rproc->name, ret);
1343 		goto stop_rproc;
1344 	}
1345 
1346 	rproc->state = RPROC_RUNNING;
1347 
1348 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1349 
1350 	return 0;
1351 
1352 stop_rproc:
1353 	rproc->ops->stop(rproc);
1354 unprepare_subdevices:
1355 	rproc_unprepare_subdevices(rproc);
1356 reset_table_ptr:
1357 	rproc->table_ptr = rproc->cached_table;
1358 
1359 	return ret;
1360 }
1361 
1362 /*
1363  * take a firmware and boot a remote processor with it.
1364  */
1365 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1366 {
1367 	struct device *dev = &rproc->dev;
1368 	const char *name = rproc->firmware;
1369 	int ret;
1370 
1371 	ret = rproc_fw_sanity_check(rproc, fw);
1372 	if (ret)
1373 		return ret;
1374 
1375 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1376 
1377 	/*
1378 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1379 	 * just a nop
1380 	 */
1381 	ret = rproc_enable_iommu(rproc);
1382 	if (ret) {
1383 		dev_err(dev, "can't enable iommu: %d\n", ret);
1384 		return ret;
1385 	}
1386 
1387 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1388 
1389 	/* Load resource table, core dump segment list etc from the firmware */
1390 	ret = rproc_parse_fw(rproc, fw);
1391 	if (ret)
1392 		goto disable_iommu;
1393 
1394 	/* reset max_notifyid */
1395 	rproc->max_notifyid = -1;
1396 
1397 	/* reset handled vdev */
1398 	rproc->nb_vdev = 0;
1399 
1400 	/* handle fw resources which are required to boot rproc */
1401 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1402 	if (ret) {
1403 		dev_err(dev, "Failed to process resources: %d\n", ret);
1404 		goto clean_up_resources;
1405 	}
1406 
1407 	/* Allocate carveout resources associated to rproc */
1408 	ret = rproc_alloc_registered_carveouts(rproc);
1409 	if (ret) {
1410 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1411 			ret);
1412 		goto clean_up_resources;
1413 	}
1414 
1415 	ret = rproc_start(rproc, fw);
1416 	if (ret)
1417 		goto clean_up_resources;
1418 
1419 	return 0;
1420 
1421 clean_up_resources:
1422 	rproc_resource_cleanup(rproc);
1423 	kfree(rproc->cached_table);
1424 	rproc->cached_table = NULL;
1425 	rproc->table_ptr = NULL;
1426 disable_iommu:
1427 	rproc_disable_iommu(rproc);
1428 	return ret;
1429 }
1430 
1431 /*
1432  * take a firmware and boot it up.
1433  *
1434  * Note: this function is called asynchronously upon registration of the
1435  * remote processor (so we must wait until it completes before we try
1436  * to unregister the device. one other option is just to use kref here,
1437  * that might be cleaner).
1438  */
1439 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1440 {
1441 	struct rproc *rproc = context;
1442 
1443 	rproc_boot(rproc);
1444 
1445 	release_firmware(fw);
1446 }
1447 
1448 static int rproc_trigger_auto_boot(struct rproc *rproc)
1449 {
1450 	int ret;
1451 
1452 	/*
1453 	 * We're initiating an asynchronous firmware loading, so we can
1454 	 * be built-in kernel code, without hanging the boot process.
1455 	 */
1456 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1457 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1458 				      rproc, rproc_auto_boot_callback);
1459 	if (ret < 0)
1460 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1461 
1462 	return ret;
1463 }
1464 
1465 static int rproc_stop(struct rproc *rproc, bool crashed)
1466 {
1467 	struct device *dev = &rproc->dev;
1468 	int ret;
1469 
1470 	/* Stop any subdevices for the remote processor */
1471 	rproc_stop_subdevices(rproc, crashed);
1472 
1473 	/* the installed resource table is no longer accessible */
1474 	rproc->table_ptr = rproc->cached_table;
1475 
1476 	/* power off the remote processor */
1477 	ret = rproc->ops->stop(rproc);
1478 	if (ret) {
1479 		dev_err(dev, "can't stop rproc: %d\n", ret);
1480 		return ret;
1481 	}
1482 
1483 	rproc_unprepare_subdevices(rproc);
1484 
1485 	rproc->state = RPROC_OFFLINE;
1486 
1487 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1488 
1489 	return 0;
1490 }
1491 
1492 /**
1493  * rproc_coredump_add_segment() - add segment of device memory to coredump
1494  * @rproc:	handle of a remote processor
1495  * @da:		device address
1496  * @size:	size of segment
1497  *
1498  * Add device memory to the list of segments to be included in a coredump for
1499  * the remoteproc.
1500  *
1501  * Return: 0 on success, negative errno on error.
1502  */
1503 int rproc_coredump_add_segment(struct rproc *rproc, dma_addr_t da, size_t size)
1504 {
1505 	struct rproc_dump_segment *segment;
1506 
1507 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1508 	if (!segment)
1509 		return -ENOMEM;
1510 
1511 	segment->da = da;
1512 	segment->size = size;
1513 
1514 	list_add_tail(&segment->node, &rproc->dump_segments);
1515 
1516 	return 0;
1517 }
1518 EXPORT_SYMBOL(rproc_coredump_add_segment);
1519 
1520 /**
1521  * rproc_coredump_add_custom_segment() - add custom coredump segment
1522  * @rproc:	handle of a remote processor
1523  * @da:		device address
1524  * @size:	size of segment
1525  * @dumpfn:	custom dump function called for each segment during coredump
1526  * @priv:	private data
1527  *
1528  * Add device memory to the list of segments to be included in the coredump
1529  * and associate the segment with the given custom dump function and private
1530  * data.
1531  *
1532  * Return: 0 on success, negative errno on error.
1533  */
1534 int rproc_coredump_add_custom_segment(struct rproc *rproc,
1535 				      dma_addr_t da, size_t size,
1536 				      void (*dumpfn)(struct rproc *rproc,
1537 						     struct rproc_dump_segment *segment,
1538 						     void *dest),
1539 				      void *priv)
1540 {
1541 	struct rproc_dump_segment *segment;
1542 
1543 	segment = kzalloc(sizeof(*segment), GFP_KERNEL);
1544 	if (!segment)
1545 		return -ENOMEM;
1546 
1547 	segment->da = da;
1548 	segment->size = size;
1549 	segment->priv = priv;
1550 	segment->dump = dumpfn;
1551 
1552 	list_add_tail(&segment->node, &rproc->dump_segments);
1553 
1554 	return 0;
1555 }
1556 EXPORT_SYMBOL(rproc_coredump_add_custom_segment);
1557 
1558 /**
1559  * rproc_coredump() - perform coredump
1560  * @rproc:	rproc handle
1561  *
1562  * This function will generate an ELF header for the registered segments
1563  * and create a devcoredump device associated with rproc.
1564  */
1565 static void rproc_coredump(struct rproc *rproc)
1566 {
1567 	struct rproc_dump_segment *segment;
1568 	struct elf32_phdr *phdr;
1569 	struct elf32_hdr *ehdr;
1570 	size_t data_size;
1571 	size_t offset;
1572 	void *data;
1573 	void *ptr;
1574 	int phnum = 0;
1575 
1576 	if (list_empty(&rproc->dump_segments))
1577 		return;
1578 
1579 	data_size = sizeof(*ehdr);
1580 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1581 		data_size += sizeof(*phdr) + segment->size;
1582 
1583 		phnum++;
1584 	}
1585 
1586 	data = vmalloc(data_size);
1587 	if (!data)
1588 		return;
1589 
1590 	ehdr = data;
1591 
1592 	memset(ehdr, 0, sizeof(*ehdr));
1593 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1594 	ehdr->e_ident[EI_CLASS] = ELFCLASS32;
1595 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1596 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1597 	ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1598 	ehdr->e_type = ET_CORE;
1599 	ehdr->e_machine = EM_NONE;
1600 	ehdr->e_version = EV_CURRENT;
1601 	ehdr->e_entry = rproc->bootaddr;
1602 	ehdr->e_phoff = sizeof(*ehdr);
1603 	ehdr->e_ehsize = sizeof(*ehdr);
1604 	ehdr->e_phentsize = sizeof(*phdr);
1605 	ehdr->e_phnum = phnum;
1606 
1607 	phdr = data + ehdr->e_phoff;
1608 	offset = ehdr->e_phoff + sizeof(*phdr) * ehdr->e_phnum;
1609 	list_for_each_entry(segment, &rproc->dump_segments, node) {
1610 		memset(phdr, 0, sizeof(*phdr));
1611 		phdr->p_type = PT_LOAD;
1612 		phdr->p_offset = offset;
1613 		phdr->p_vaddr = segment->da;
1614 		phdr->p_paddr = segment->da;
1615 		phdr->p_filesz = segment->size;
1616 		phdr->p_memsz = segment->size;
1617 		phdr->p_flags = PF_R | PF_W | PF_X;
1618 		phdr->p_align = 0;
1619 
1620 		if (segment->dump) {
1621 			segment->dump(rproc, segment, data + offset);
1622 		} else {
1623 			ptr = rproc_da_to_va(rproc, segment->da, segment->size);
1624 			if (!ptr) {
1625 				dev_err(&rproc->dev,
1626 					"invalid coredump segment (%pad, %zu)\n",
1627 					&segment->da, segment->size);
1628 				memset(data + offset, 0xff, segment->size);
1629 			} else {
1630 				memcpy(data + offset, ptr, segment->size);
1631 			}
1632 		}
1633 
1634 		offset += phdr->p_filesz;
1635 		phdr++;
1636 	}
1637 
1638 	dev_coredumpv(&rproc->dev, data, data_size, GFP_KERNEL);
1639 }
1640 
1641 /**
1642  * rproc_trigger_recovery() - recover a remoteproc
1643  * @rproc: the remote processor
1644  *
1645  * The recovery is done by resetting all the virtio devices, that way all the
1646  * rpmsg drivers will be reseted along with the remote processor making the
1647  * remoteproc functional again.
1648  *
1649  * This function can sleep, so it cannot be called from atomic context.
1650  */
1651 int rproc_trigger_recovery(struct rproc *rproc)
1652 {
1653 	const struct firmware *firmware_p;
1654 	struct device *dev = &rproc->dev;
1655 	int ret;
1656 
1657 	dev_err(dev, "recovering %s\n", rproc->name);
1658 
1659 	ret = mutex_lock_interruptible(&rproc->lock);
1660 	if (ret)
1661 		return ret;
1662 
1663 	ret = rproc_stop(rproc, true);
1664 	if (ret)
1665 		goto unlock_mutex;
1666 
1667 	/* generate coredump */
1668 	rproc_coredump(rproc);
1669 
1670 	/* load firmware */
1671 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1672 	if (ret < 0) {
1673 		dev_err(dev, "request_firmware failed: %d\n", ret);
1674 		goto unlock_mutex;
1675 	}
1676 
1677 	/* boot the remote processor up again */
1678 	ret = rproc_start(rproc, firmware_p);
1679 
1680 	release_firmware(firmware_p);
1681 
1682 unlock_mutex:
1683 	mutex_unlock(&rproc->lock);
1684 	return ret;
1685 }
1686 
1687 /**
1688  * rproc_crash_handler_work() - handle a crash
1689  *
1690  * This function needs to handle everything related to a crash, like cpu
1691  * registers and stack dump, information to help to debug the fatal error, etc.
1692  */
1693 static void rproc_crash_handler_work(struct work_struct *work)
1694 {
1695 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1696 	struct device *dev = &rproc->dev;
1697 
1698 	dev_dbg(dev, "enter %s\n", __func__);
1699 
1700 	mutex_lock(&rproc->lock);
1701 
1702 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1703 		/* handle only the first crash detected */
1704 		mutex_unlock(&rproc->lock);
1705 		return;
1706 	}
1707 
1708 	rproc->state = RPROC_CRASHED;
1709 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1710 		rproc->name);
1711 
1712 	mutex_unlock(&rproc->lock);
1713 
1714 	if (!rproc->recovery_disabled)
1715 		rproc_trigger_recovery(rproc);
1716 }
1717 
1718 /**
1719  * rproc_boot() - boot a remote processor
1720  * @rproc: handle of a remote processor
1721  *
1722  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1723  *
1724  * If the remote processor is already powered on, this function immediately
1725  * returns (successfully).
1726  *
1727  * Returns 0 on success, and an appropriate error value otherwise.
1728  */
1729 int rproc_boot(struct rproc *rproc)
1730 {
1731 	const struct firmware *firmware_p;
1732 	struct device *dev;
1733 	int ret;
1734 
1735 	if (!rproc) {
1736 		pr_err("invalid rproc handle\n");
1737 		return -EINVAL;
1738 	}
1739 
1740 	dev = &rproc->dev;
1741 
1742 	ret = mutex_lock_interruptible(&rproc->lock);
1743 	if (ret) {
1744 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1745 		return ret;
1746 	}
1747 
1748 	if (rproc->state == RPROC_DELETED) {
1749 		ret = -ENODEV;
1750 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1751 		goto unlock_mutex;
1752 	}
1753 
1754 	/* skip the boot process if rproc is already powered up */
1755 	if (atomic_inc_return(&rproc->power) > 1) {
1756 		ret = 0;
1757 		goto unlock_mutex;
1758 	}
1759 
1760 	dev_info(dev, "powering up %s\n", rproc->name);
1761 
1762 	/* load firmware */
1763 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1764 	if (ret < 0) {
1765 		dev_err(dev, "request_firmware failed: %d\n", ret);
1766 		goto downref_rproc;
1767 	}
1768 
1769 	ret = rproc_fw_boot(rproc, firmware_p);
1770 
1771 	release_firmware(firmware_p);
1772 
1773 downref_rproc:
1774 	if (ret)
1775 		atomic_dec(&rproc->power);
1776 unlock_mutex:
1777 	mutex_unlock(&rproc->lock);
1778 	return ret;
1779 }
1780 EXPORT_SYMBOL(rproc_boot);
1781 
1782 /**
1783  * rproc_shutdown() - power off the remote processor
1784  * @rproc: the remote processor
1785  *
1786  * Power off a remote processor (previously booted with rproc_boot()).
1787  *
1788  * In case @rproc is still being used by an additional user(s), then
1789  * this function will just decrement the power refcount and exit,
1790  * without really powering off the device.
1791  *
1792  * Every call to rproc_boot() must (eventually) be accompanied by a call
1793  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1794  *
1795  * Notes:
1796  * - we're not decrementing the rproc's refcount, only the power refcount.
1797  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1798  *   returns, and users can still use it with a subsequent rproc_boot(), if
1799  *   needed.
1800  */
1801 void rproc_shutdown(struct rproc *rproc)
1802 {
1803 	struct device *dev = &rproc->dev;
1804 	int ret;
1805 
1806 	ret = mutex_lock_interruptible(&rproc->lock);
1807 	if (ret) {
1808 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1809 		return;
1810 	}
1811 
1812 	/* if the remote proc is still needed, bail out */
1813 	if (!atomic_dec_and_test(&rproc->power))
1814 		goto out;
1815 
1816 	ret = rproc_stop(rproc, false);
1817 	if (ret) {
1818 		atomic_inc(&rproc->power);
1819 		goto out;
1820 	}
1821 
1822 	/* clean up all acquired resources */
1823 	rproc_resource_cleanup(rproc);
1824 
1825 	rproc_disable_iommu(rproc);
1826 
1827 	/* Free the copy of the resource table */
1828 	kfree(rproc->cached_table);
1829 	rproc->cached_table = NULL;
1830 	rproc->table_ptr = NULL;
1831 out:
1832 	mutex_unlock(&rproc->lock);
1833 }
1834 EXPORT_SYMBOL(rproc_shutdown);
1835 
1836 /**
1837  * rproc_get_by_phandle() - find a remote processor by phandle
1838  * @phandle: phandle to the rproc
1839  *
1840  * Finds an rproc handle using the remote processor's phandle, and then
1841  * return a handle to the rproc.
1842  *
1843  * This function increments the remote processor's refcount, so always
1844  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1845  *
1846  * Returns the rproc handle on success, and NULL on failure.
1847  */
1848 #ifdef CONFIG_OF
1849 struct rproc *rproc_get_by_phandle(phandle phandle)
1850 {
1851 	struct rproc *rproc = NULL, *r;
1852 	struct device_node *np;
1853 
1854 	np = of_find_node_by_phandle(phandle);
1855 	if (!np)
1856 		return NULL;
1857 
1858 	mutex_lock(&rproc_list_mutex);
1859 	list_for_each_entry(r, &rproc_list, node) {
1860 		if (r->dev.parent && r->dev.parent->of_node == np) {
1861 			/* prevent underlying implementation from being removed */
1862 			if (!try_module_get(r->dev.parent->driver->owner)) {
1863 				dev_err(&r->dev, "can't get owner\n");
1864 				break;
1865 			}
1866 
1867 			rproc = r;
1868 			get_device(&rproc->dev);
1869 			break;
1870 		}
1871 	}
1872 	mutex_unlock(&rproc_list_mutex);
1873 
1874 	of_node_put(np);
1875 
1876 	return rproc;
1877 }
1878 #else
1879 struct rproc *rproc_get_by_phandle(phandle phandle)
1880 {
1881 	return NULL;
1882 }
1883 #endif
1884 EXPORT_SYMBOL(rproc_get_by_phandle);
1885 
1886 /**
1887  * rproc_add() - register a remote processor
1888  * @rproc: the remote processor handle to register
1889  *
1890  * Registers @rproc with the remoteproc framework, after it has been
1891  * allocated with rproc_alloc().
1892  *
1893  * This is called by the platform-specific rproc implementation, whenever
1894  * a new remote processor device is probed.
1895  *
1896  * Returns 0 on success and an appropriate error code otherwise.
1897  *
1898  * Note: this function initiates an asynchronous firmware loading
1899  * context, which will look for virtio devices supported by the rproc's
1900  * firmware.
1901  *
1902  * If found, those virtio devices will be created and added, so as a result
1903  * of registering this remote processor, additional virtio drivers might be
1904  * probed.
1905  */
1906 int rproc_add(struct rproc *rproc)
1907 {
1908 	struct device *dev = &rproc->dev;
1909 	int ret;
1910 
1911 	ret = device_add(dev);
1912 	if (ret < 0)
1913 		return ret;
1914 
1915 	dev_info(dev, "%s is available\n", rproc->name);
1916 
1917 	/* create debugfs entries */
1918 	rproc_create_debug_dir(rproc);
1919 
1920 	/* if rproc is marked always-on, request it to boot */
1921 	if (rproc->auto_boot) {
1922 		ret = rproc_trigger_auto_boot(rproc);
1923 		if (ret < 0)
1924 			return ret;
1925 	}
1926 
1927 	/* expose to rproc_get_by_phandle users */
1928 	mutex_lock(&rproc_list_mutex);
1929 	list_add(&rproc->node, &rproc_list);
1930 	mutex_unlock(&rproc_list_mutex);
1931 
1932 	return 0;
1933 }
1934 EXPORT_SYMBOL(rproc_add);
1935 
1936 /**
1937  * rproc_type_release() - release a remote processor instance
1938  * @dev: the rproc's device
1939  *
1940  * This function should _never_ be called directly.
1941  *
1942  * It will be called by the driver core when no one holds a valid pointer
1943  * to @dev anymore.
1944  */
1945 static void rproc_type_release(struct device *dev)
1946 {
1947 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1948 
1949 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1950 
1951 	idr_destroy(&rproc->notifyids);
1952 
1953 	if (rproc->index >= 0)
1954 		ida_simple_remove(&rproc_dev_index, rproc->index);
1955 
1956 	kfree(rproc->firmware);
1957 	kfree(rproc->ops);
1958 	kfree(rproc);
1959 }
1960 
1961 static const struct device_type rproc_type = {
1962 	.name		= "remoteproc",
1963 	.release	= rproc_type_release,
1964 };
1965 
1966 /**
1967  * rproc_alloc() - allocate a remote processor handle
1968  * @dev: the underlying device
1969  * @name: name of this remote processor
1970  * @ops: platform-specific handlers (mainly start/stop)
1971  * @firmware: name of firmware file to load, can be NULL
1972  * @len: length of private data needed by the rproc driver (in bytes)
1973  *
1974  * Allocates a new remote processor handle, but does not register
1975  * it yet. if @firmware is NULL, a default name is used.
1976  *
1977  * This function should be used by rproc implementations during initialization
1978  * of the remote processor.
1979  *
1980  * After creating an rproc handle using this function, and when ready,
1981  * implementations should then call rproc_add() to complete
1982  * the registration of the remote processor.
1983  *
1984  * On success the new rproc is returned, and on failure, NULL.
1985  *
1986  * Note: _never_ directly deallocate @rproc, even if it was not registered
1987  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1988  */
1989 struct rproc *rproc_alloc(struct device *dev, const char *name,
1990 			  const struct rproc_ops *ops,
1991 			  const char *firmware, int len)
1992 {
1993 	struct rproc *rproc;
1994 	char *p, *template = "rproc-%s-fw";
1995 	int name_len;
1996 
1997 	if (!dev || !name || !ops)
1998 		return NULL;
1999 
2000 	if (!firmware) {
2001 		/*
2002 		 * If the caller didn't pass in a firmware name then
2003 		 * construct a default name.
2004 		 */
2005 		name_len = strlen(name) + strlen(template) - 2 + 1;
2006 		p = kmalloc(name_len, GFP_KERNEL);
2007 		if (!p)
2008 			return NULL;
2009 		snprintf(p, name_len, template, name);
2010 	} else {
2011 		p = kstrdup(firmware, GFP_KERNEL);
2012 		if (!p)
2013 			return NULL;
2014 	}
2015 
2016 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2017 	if (!rproc) {
2018 		kfree(p);
2019 		return NULL;
2020 	}
2021 
2022 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2023 	if (!rproc->ops) {
2024 		kfree(p);
2025 		kfree(rproc);
2026 		return NULL;
2027 	}
2028 
2029 	rproc->firmware = p;
2030 	rproc->name = name;
2031 	rproc->priv = &rproc[1];
2032 	rproc->auto_boot = true;
2033 
2034 	device_initialize(&rproc->dev);
2035 	rproc->dev.parent = dev;
2036 	rproc->dev.type = &rproc_type;
2037 	rproc->dev.class = &rproc_class;
2038 	rproc->dev.driver_data = rproc;
2039 
2040 	/* Assign a unique device index and name */
2041 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2042 	if (rproc->index < 0) {
2043 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2044 		put_device(&rproc->dev);
2045 		return NULL;
2046 	}
2047 
2048 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2049 
2050 	atomic_set(&rproc->power, 0);
2051 
2052 	/* Default to ELF loader if no load function is specified */
2053 	if (!rproc->ops->load) {
2054 		rproc->ops->load = rproc_elf_load_segments;
2055 		rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2056 		rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2057 		rproc->ops->sanity_check = rproc_elf_sanity_check;
2058 		rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2059 	}
2060 
2061 	mutex_init(&rproc->lock);
2062 
2063 	idr_init(&rproc->notifyids);
2064 
2065 	INIT_LIST_HEAD(&rproc->carveouts);
2066 	INIT_LIST_HEAD(&rproc->mappings);
2067 	INIT_LIST_HEAD(&rproc->traces);
2068 	INIT_LIST_HEAD(&rproc->rvdevs);
2069 	INIT_LIST_HEAD(&rproc->subdevs);
2070 	INIT_LIST_HEAD(&rproc->dump_segments);
2071 
2072 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2073 
2074 	rproc->state = RPROC_OFFLINE;
2075 
2076 	return rproc;
2077 }
2078 EXPORT_SYMBOL(rproc_alloc);
2079 
2080 /**
2081  * rproc_free() - unroll rproc_alloc()
2082  * @rproc: the remote processor handle
2083  *
2084  * This function decrements the rproc dev refcount.
2085  *
2086  * If no one holds any reference to rproc anymore, then its refcount would
2087  * now drop to zero, and it would be freed.
2088  */
2089 void rproc_free(struct rproc *rproc)
2090 {
2091 	put_device(&rproc->dev);
2092 }
2093 EXPORT_SYMBOL(rproc_free);
2094 
2095 /**
2096  * rproc_put() - release rproc reference
2097  * @rproc: the remote processor handle
2098  *
2099  * This function decrements the rproc dev refcount.
2100  *
2101  * If no one holds any reference to rproc anymore, then its refcount would
2102  * now drop to zero, and it would be freed.
2103  */
2104 void rproc_put(struct rproc *rproc)
2105 {
2106 	module_put(rproc->dev.parent->driver->owner);
2107 	put_device(&rproc->dev);
2108 }
2109 EXPORT_SYMBOL(rproc_put);
2110 
2111 /**
2112  * rproc_del() - unregister a remote processor
2113  * @rproc: rproc handle to unregister
2114  *
2115  * This function should be called when the platform specific rproc
2116  * implementation decides to remove the rproc device. it should
2117  * _only_ be called if a previous invocation of rproc_add()
2118  * has completed successfully.
2119  *
2120  * After rproc_del() returns, @rproc isn't freed yet, because
2121  * of the outstanding reference created by rproc_alloc. To decrement that
2122  * one last refcount, one still needs to call rproc_free().
2123  *
2124  * Returns 0 on success and -EINVAL if @rproc isn't valid.
2125  */
2126 int rproc_del(struct rproc *rproc)
2127 {
2128 	if (!rproc)
2129 		return -EINVAL;
2130 
2131 	/* if rproc is marked always-on, rproc_add() booted it */
2132 	/* TODO: make sure this works with rproc->power > 1 */
2133 	if (rproc->auto_boot)
2134 		rproc_shutdown(rproc);
2135 
2136 	mutex_lock(&rproc->lock);
2137 	rproc->state = RPROC_DELETED;
2138 	mutex_unlock(&rproc->lock);
2139 
2140 	rproc_delete_debug_dir(rproc);
2141 
2142 	/* the rproc is downref'ed as soon as it's removed from the klist */
2143 	mutex_lock(&rproc_list_mutex);
2144 	list_del(&rproc->node);
2145 	mutex_unlock(&rproc_list_mutex);
2146 
2147 	device_del(&rproc->dev);
2148 
2149 	return 0;
2150 }
2151 EXPORT_SYMBOL(rproc_del);
2152 
2153 /**
2154  * rproc_add_subdev() - add a subdevice to a remoteproc
2155  * @rproc: rproc handle to add the subdevice to
2156  * @subdev: subdev handle to register
2157  *
2158  * Caller is responsible for populating optional subdevice function pointers.
2159  */
2160 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2161 {
2162 	list_add_tail(&subdev->node, &rproc->subdevs);
2163 }
2164 EXPORT_SYMBOL(rproc_add_subdev);
2165 
2166 /**
2167  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2168  * @rproc: rproc handle to remove the subdevice from
2169  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2170  */
2171 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2172 {
2173 	list_del(&subdev->node);
2174 }
2175 EXPORT_SYMBOL(rproc_remove_subdev);
2176 
2177 /**
2178  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2179  * @dev:	child device to find ancestor of
2180  *
2181  * Returns the ancestor rproc instance, or NULL if not found.
2182  */
2183 struct rproc *rproc_get_by_child(struct device *dev)
2184 {
2185 	for (dev = dev->parent; dev; dev = dev->parent) {
2186 		if (dev->type == &rproc_type)
2187 			return dev->driver_data;
2188 	}
2189 
2190 	return NULL;
2191 }
2192 EXPORT_SYMBOL(rproc_get_by_child);
2193 
2194 /**
2195  * rproc_report_crash() - rproc crash reporter function
2196  * @rproc: remote processor
2197  * @type: crash type
2198  *
2199  * This function must be called every time a crash is detected by the low-level
2200  * drivers implementing a specific remoteproc. This should not be called from a
2201  * non-remoteproc driver.
2202  *
2203  * This function can be called from atomic/interrupt context.
2204  */
2205 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2206 {
2207 	if (!rproc) {
2208 		pr_err("NULL rproc pointer\n");
2209 		return;
2210 	}
2211 
2212 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2213 		rproc->name, rproc_crash_to_string(type));
2214 
2215 	/* create a new task to handle the error */
2216 	schedule_work(&rproc->crash_handler);
2217 }
2218 EXPORT_SYMBOL(rproc_report_crash);
2219 
2220 static int __init remoteproc_init(void)
2221 {
2222 	rproc_init_sysfs();
2223 	rproc_init_debugfs();
2224 
2225 	return 0;
2226 }
2227 module_init(remoteproc_init);
2228 
2229 static void __exit remoteproc_exit(void)
2230 {
2231 	ida_destroy(&rproc_dev_index);
2232 
2233 	rproc_exit_debugfs();
2234 	rproc_exit_sysfs();
2235 }
2236 module_exit(remoteproc_exit);
2237 
2238 MODULE_LICENSE("GPL v2");
2239 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2240