xref: /linux/drivers/remoteproc/remoteproc_core.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Remote Processor Framework
3  *
4  * Copyright (C) 2011 Texas Instruments, Inc.
5  * Copyright (C) 2011 Google, Inc.
6  *
7  * Ohad Ben-Cohen <ohad@wizery.com>
8  * Brian Swetland <swetland@google.com>
9  * Mark Grosen <mgrosen@ti.com>
10  * Fernando Guzman Lugo <fernando.lugo@ti.com>
11  * Suman Anna <s-anna@ti.com>
12  * Robert Tivy <rtivy@ti.com>
13  * Armando Uribe De Leon <x0095078@ti.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * version 2 as published by the Free Software Foundation.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  */
24 
25 #define pr_fmt(fmt)    "%s: " fmt, __func__
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/crc32.h>
41 #include <linux/virtio_ids.h>
42 #include <linux/virtio_ring.h>
43 #include <asm/byteorder.h>
44 
45 #include "remoteproc_internal.h"
46 
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 
50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51 				struct resource_table *table, int len);
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 				 void *, int offset, int avail);
54 
55 /* Unique indices for remoteproc devices */
56 static DEFINE_IDA(rproc_dev_index);
57 
58 static const char * const rproc_crash_names[] = {
59 	[RPROC_MMUFAULT]	= "mmufault",
60 	[RPROC_WATCHDOG]	= "watchdog",
61 	[RPROC_FATAL_ERROR]	= "fatal error",
62 };
63 
64 /* translate rproc_crash_type to string */
65 static const char *rproc_crash_to_string(enum rproc_crash_type type)
66 {
67 	if (type < ARRAY_SIZE(rproc_crash_names))
68 		return rproc_crash_names[type];
69 	return "unknown";
70 }
71 
72 /*
73  * This is the IOMMU fault handler we register with the IOMMU API
74  * (when relevant; not all remote processors access memory through
75  * an IOMMU).
76  *
77  * IOMMU core will invoke this handler whenever the remote processor
78  * will try to access an unmapped device address.
79  */
80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 		unsigned long iova, int flags, void *token)
82 {
83 	struct rproc *rproc = token;
84 
85 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
86 
87 	rproc_report_crash(rproc, RPROC_MMUFAULT);
88 
89 	/*
90 	 * Let the iommu core know we're not really handling this fault;
91 	 * we just used it as a recovery trigger.
92 	 */
93 	return -ENOSYS;
94 }
95 
96 static int rproc_enable_iommu(struct rproc *rproc)
97 {
98 	struct iommu_domain *domain;
99 	struct device *dev = rproc->dev.parent;
100 	int ret;
101 
102 	if (!rproc->has_iommu) {
103 		dev_dbg(dev, "iommu not present\n");
104 		return 0;
105 	}
106 
107 	domain = iommu_domain_alloc(dev->bus);
108 	if (!domain) {
109 		dev_err(dev, "can't alloc iommu domain\n");
110 		return -ENOMEM;
111 	}
112 
113 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
114 
115 	ret = iommu_attach_device(domain, dev);
116 	if (ret) {
117 		dev_err(dev, "can't attach iommu device: %d\n", ret);
118 		goto free_domain;
119 	}
120 
121 	rproc->domain = domain;
122 
123 	return 0;
124 
125 free_domain:
126 	iommu_domain_free(domain);
127 	return ret;
128 }
129 
130 static void rproc_disable_iommu(struct rproc *rproc)
131 {
132 	struct iommu_domain *domain = rproc->domain;
133 	struct device *dev = rproc->dev.parent;
134 
135 	if (!domain)
136 		return;
137 
138 	iommu_detach_device(domain, dev);
139 	iommu_domain_free(domain);
140 }
141 
142 /**
143  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
144  * @rproc: handle of a remote processor
145  * @da: remoteproc device address to translate
146  * @len: length of the memory region @da is pointing to
147  *
148  * Some remote processors will ask us to allocate them physically contiguous
149  * memory regions (which we call "carveouts"), and map them to specific
150  * device addresses (which are hardcoded in the firmware). They may also have
151  * dedicated memory regions internal to the processors, and use them either
152  * exclusively or alongside carveouts.
153  *
154  * They may then ask us to copy objects into specific device addresses (e.g.
155  * code/data sections) or expose us certain symbols in other device address
156  * (e.g. their trace buffer).
157  *
158  * This function is a helper function with which we can go over the allocated
159  * carveouts and translate specific device addresses to kernel virtual addresses
160  * so we can access the referenced memory. This function also allows to perform
161  * translations on the internal remoteproc memory regions through a platform
162  * implementation specific da_to_va ops, if present.
163  *
164  * The function returns a valid kernel address on success or NULL on failure.
165  *
166  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
167  * but only on kernel direct mapped RAM memory. Instead, we're just using
168  * here the output of the DMA API for the carveouts, which should be more
169  * correct.
170  */
171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
172 {
173 	struct rproc_mem_entry *carveout;
174 	void *ptr = NULL;
175 
176 	if (rproc->ops->da_to_va) {
177 		ptr = rproc->ops->da_to_va(rproc, da, len);
178 		if (ptr)
179 			goto out;
180 	}
181 
182 	list_for_each_entry(carveout, &rproc->carveouts, node) {
183 		int offset = da - carveout->da;
184 
185 		/* try next carveout if da is too small */
186 		if (offset < 0)
187 			continue;
188 
189 		/* try next carveout if da is too large */
190 		if (offset + len > carveout->len)
191 			continue;
192 
193 		ptr = carveout->va + offset;
194 
195 		break;
196 	}
197 
198 out:
199 	return ptr;
200 }
201 EXPORT_SYMBOL(rproc_da_to_va);
202 
203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
204 {
205 	struct rproc *rproc = rvdev->rproc;
206 	struct device *dev = &rproc->dev;
207 	struct rproc_vring *rvring = &rvdev->vring[i];
208 	struct fw_rsc_vdev *rsc;
209 	dma_addr_t dma;
210 	void *va;
211 	int ret, size, notifyid;
212 
213 	/* actual size of vring (in bytes) */
214 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
215 
216 	/*
217 	 * Allocate non-cacheable memory for the vring. In the future
218 	 * this call will also configure the IOMMU for us
219 	 */
220 	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
221 	if (!va) {
222 		dev_err(dev->parent, "dma_alloc_coherent failed\n");
223 		return -EINVAL;
224 	}
225 
226 	/*
227 	 * Assign an rproc-wide unique index for this vring
228 	 * TODO: assign a notifyid for rvdev updates as well
229 	 * TODO: support predefined notifyids (via resource table)
230 	 */
231 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
232 	if (ret < 0) {
233 		dev_err(dev, "idr_alloc failed: %d\n", ret);
234 		dma_free_coherent(dev->parent, size, va, dma);
235 		return ret;
236 	}
237 	notifyid = ret;
238 
239 	dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
240 				(unsigned long long)dma, size, notifyid);
241 
242 	rvring->va = va;
243 	rvring->dma = dma;
244 	rvring->notifyid = notifyid;
245 
246 	/*
247 	 * Let the rproc know the notifyid and da of this vring.
248 	 * Not all platforms use dma_alloc_coherent to automatically
249 	 * set up the iommu. In this case the device address (da) will
250 	 * hold the physical address and not the device address.
251 	 */
252 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
253 	rsc->vring[i].da = dma;
254 	rsc->vring[i].notifyid = notifyid;
255 	return 0;
256 }
257 
258 static int
259 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
260 {
261 	struct rproc *rproc = rvdev->rproc;
262 	struct device *dev = &rproc->dev;
263 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
264 	struct rproc_vring *rvring = &rvdev->vring[i];
265 
266 	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
267 				i, vring->da, vring->num, vring->align);
268 
269 	/* make sure reserved bytes are zeroes */
270 	if (vring->reserved) {
271 		dev_err(dev, "vring rsc has non zero reserved bytes\n");
272 		return -EINVAL;
273 	}
274 
275 	/* verify queue size and vring alignment are sane */
276 	if (!vring->num || !vring->align) {
277 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
278 						vring->num, vring->align);
279 		return -EINVAL;
280 	}
281 
282 	rvring->len = vring->num;
283 	rvring->align = vring->align;
284 	rvring->rvdev = rvdev;
285 
286 	return 0;
287 }
288 
289 void rproc_free_vring(struct rproc_vring *rvring)
290 {
291 	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
292 	struct rproc *rproc = rvring->rvdev->rproc;
293 	int idx = rvring->rvdev->vring - rvring;
294 	struct fw_rsc_vdev *rsc;
295 
296 	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
297 	idr_remove(&rproc->notifyids, rvring->notifyid);
298 
299 	/* reset resource entry info */
300 	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
301 	rsc->vring[idx].da = 0;
302 	rsc->vring[idx].notifyid = -1;
303 }
304 
305 /**
306  * rproc_handle_vdev() - handle a vdev fw resource
307  * @rproc: the remote processor
308  * @rsc: the vring resource descriptor
309  * @avail: size of available data (for sanity checking the image)
310  *
311  * This resource entry requests the host to statically register a virtio
312  * device (vdev), and setup everything needed to support it. It contains
313  * everything needed to make it possible: the virtio device id, virtio
314  * device features, vrings information, virtio config space, etc...
315  *
316  * Before registering the vdev, the vrings are allocated from non-cacheable
317  * physically contiguous memory. Currently we only support two vrings per
318  * remote processor (temporary limitation). We might also want to consider
319  * doing the vring allocation only later when ->find_vqs() is invoked, and
320  * then release them upon ->del_vqs().
321  *
322  * Note: @da is currently not really handled correctly: we dynamically
323  * allocate it using the DMA API, ignoring requested hard coded addresses,
324  * and we don't take care of any required IOMMU programming. This is all
325  * going to be taken care of when the generic iommu-based DMA API will be
326  * merged. Meanwhile, statically-addressed iommu-based firmware images should
327  * use RSC_DEVMEM resource entries to map their required @da to the physical
328  * address of their base CMA region (ouch, hacky!).
329  *
330  * Returns 0 on success, or an appropriate error code otherwise
331  */
332 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
333 							int offset, int avail)
334 {
335 	struct device *dev = &rproc->dev;
336 	struct rproc_vdev *rvdev;
337 	int i, ret;
338 
339 	/* make sure resource isn't truncated */
340 	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
341 			+ rsc->config_len > avail) {
342 		dev_err(dev, "vdev rsc is truncated\n");
343 		return -EINVAL;
344 	}
345 
346 	/* make sure reserved bytes are zeroes */
347 	if (rsc->reserved[0] || rsc->reserved[1]) {
348 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
349 		return -EINVAL;
350 	}
351 
352 	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
353 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
354 
355 	/* we currently support only two vrings per rvdev */
356 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
357 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
358 		return -EINVAL;
359 	}
360 
361 	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
362 	if (!rvdev)
363 		return -ENOMEM;
364 
365 	rvdev->rproc = rproc;
366 
367 	/* parse the vrings */
368 	for (i = 0; i < rsc->num_of_vrings; i++) {
369 		ret = rproc_parse_vring(rvdev, rsc, i);
370 		if (ret)
371 			goto free_rvdev;
372 	}
373 
374 	/* remember the resource offset*/
375 	rvdev->rsc_offset = offset;
376 
377 	list_add_tail(&rvdev->node, &rproc->rvdevs);
378 
379 	/* it is now safe to add the virtio device */
380 	ret = rproc_add_virtio_dev(rvdev, rsc->id);
381 	if (ret)
382 		goto remove_rvdev;
383 
384 	return 0;
385 
386 remove_rvdev:
387 	list_del(&rvdev->node);
388 free_rvdev:
389 	kfree(rvdev);
390 	return ret;
391 }
392 
393 /**
394  * rproc_handle_trace() - handle a shared trace buffer resource
395  * @rproc: the remote processor
396  * @rsc: the trace resource descriptor
397  * @avail: size of available data (for sanity checking the image)
398  *
399  * In case the remote processor dumps trace logs into memory,
400  * export it via debugfs.
401  *
402  * Currently, the 'da' member of @rsc should contain the device address
403  * where the remote processor is dumping the traces. Later we could also
404  * support dynamically allocating this address using the generic
405  * DMA API (but currently there isn't a use case for that).
406  *
407  * Returns 0 on success, or an appropriate error code otherwise
408  */
409 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
410 							int offset, int avail)
411 {
412 	struct rproc_mem_entry *trace;
413 	struct device *dev = &rproc->dev;
414 	void *ptr;
415 	char name[15];
416 
417 	if (sizeof(*rsc) > avail) {
418 		dev_err(dev, "trace rsc is truncated\n");
419 		return -EINVAL;
420 	}
421 
422 	/* make sure reserved bytes are zeroes */
423 	if (rsc->reserved) {
424 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
425 		return -EINVAL;
426 	}
427 
428 	/* what's the kernel address of this resource ? */
429 	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
430 	if (!ptr) {
431 		dev_err(dev, "erroneous trace resource entry\n");
432 		return -EINVAL;
433 	}
434 
435 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
436 	if (!trace)
437 		return -ENOMEM;
438 
439 	/* set the trace buffer dma properties */
440 	trace->len = rsc->len;
441 	trace->va = ptr;
442 
443 	/* make sure snprintf always null terminates, even if truncating */
444 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
445 
446 	/* create the debugfs entry */
447 	trace->priv = rproc_create_trace_file(name, rproc, trace);
448 	if (!trace->priv) {
449 		trace->va = NULL;
450 		kfree(trace);
451 		return -EINVAL;
452 	}
453 
454 	list_add_tail(&trace->node, &rproc->traces);
455 
456 	rproc->num_traces++;
457 
458 	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
459 						rsc->da, rsc->len);
460 
461 	return 0;
462 }
463 
464 /**
465  * rproc_handle_devmem() - handle devmem resource entry
466  * @rproc: remote processor handle
467  * @rsc: the devmem resource entry
468  * @avail: size of available data (for sanity checking the image)
469  *
470  * Remote processors commonly need to access certain on-chip peripherals.
471  *
472  * Some of these remote processors access memory via an iommu device,
473  * and might require us to configure their iommu before they can access
474  * the on-chip peripherals they need.
475  *
476  * This resource entry is a request to map such a peripheral device.
477  *
478  * These devmem entries will contain the physical address of the device in
479  * the 'pa' member. If a specific device address is expected, then 'da' will
480  * contain it (currently this is the only use case supported). 'len' will
481  * contain the size of the physical region we need to map.
482  *
483  * Currently we just "trust" those devmem entries to contain valid physical
484  * addresses, but this is going to change: we want the implementations to
485  * tell us ranges of physical addresses the firmware is allowed to request,
486  * and not allow firmwares to request access to physical addresses that
487  * are outside those ranges.
488  */
489 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
490 							int offset, int avail)
491 {
492 	struct rproc_mem_entry *mapping;
493 	struct device *dev = &rproc->dev;
494 	int ret;
495 
496 	/* no point in handling this resource without a valid iommu domain */
497 	if (!rproc->domain)
498 		return -EINVAL;
499 
500 	if (sizeof(*rsc) > avail) {
501 		dev_err(dev, "devmem rsc is truncated\n");
502 		return -EINVAL;
503 	}
504 
505 	/* make sure reserved bytes are zeroes */
506 	if (rsc->reserved) {
507 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
508 		return -EINVAL;
509 	}
510 
511 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
512 	if (!mapping)
513 		return -ENOMEM;
514 
515 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
516 	if (ret) {
517 		dev_err(dev, "failed to map devmem: %d\n", ret);
518 		goto out;
519 	}
520 
521 	/*
522 	 * We'll need this info later when we'll want to unmap everything
523 	 * (e.g. on shutdown).
524 	 *
525 	 * We can't trust the remote processor not to change the resource
526 	 * table, so we must maintain this info independently.
527 	 */
528 	mapping->da = rsc->da;
529 	mapping->len = rsc->len;
530 	list_add_tail(&mapping->node, &rproc->mappings);
531 
532 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
533 					rsc->pa, rsc->da, rsc->len);
534 
535 	return 0;
536 
537 out:
538 	kfree(mapping);
539 	return ret;
540 }
541 
542 /**
543  * rproc_handle_carveout() - handle phys contig memory allocation requests
544  * @rproc: rproc handle
545  * @rsc: the resource entry
546  * @avail: size of available data (for image validation)
547  *
548  * This function will handle firmware requests for allocation of physically
549  * contiguous memory regions.
550  *
551  * These request entries should come first in the firmware's resource table,
552  * as other firmware entries might request placing other data objects inside
553  * these memory regions (e.g. data/code segments, trace resource entries, ...).
554  *
555  * Allocating memory this way helps utilizing the reserved physical memory
556  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
557  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
558  * pressure is important; it may have a substantial impact on performance.
559  */
560 static int rproc_handle_carveout(struct rproc *rproc,
561 						struct fw_rsc_carveout *rsc,
562 						int offset, int avail)
563 
564 {
565 	struct rproc_mem_entry *carveout, *mapping;
566 	struct device *dev = &rproc->dev;
567 	dma_addr_t dma;
568 	void *va;
569 	int ret;
570 
571 	if (sizeof(*rsc) > avail) {
572 		dev_err(dev, "carveout rsc is truncated\n");
573 		return -EINVAL;
574 	}
575 
576 	/* make sure reserved bytes are zeroes */
577 	if (rsc->reserved) {
578 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
579 		return -EINVAL;
580 	}
581 
582 	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
583 			rsc->da, rsc->pa, rsc->len, rsc->flags);
584 
585 	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
586 	if (!carveout)
587 		return -ENOMEM;
588 
589 	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
590 	if (!va) {
591 		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
592 		ret = -ENOMEM;
593 		goto free_carv;
594 	}
595 
596 	dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
597 					(unsigned long long)dma, rsc->len);
598 
599 	/*
600 	 * Ok, this is non-standard.
601 	 *
602 	 * Sometimes we can't rely on the generic iommu-based DMA API
603 	 * to dynamically allocate the device address and then set the IOMMU
604 	 * tables accordingly, because some remote processors might
605 	 * _require_ us to use hard coded device addresses that their
606 	 * firmware was compiled with.
607 	 *
608 	 * In this case, we must use the IOMMU API directly and map
609 	 * the memory to the device address as expected by the remote
610 	 * processor.
611 	 *
612 	 * Obviously such remote processor devices should not be configured
613 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
614 	 * physical address in this case.
615 	 */
616 	if (rproc->domain) {
617 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
618 		if (!mapping) {
619 			dev_err(dev, "kzalloc mapping failed\n");
620 			ret = -ENOMEM;
621 			goto dma_free;
622 		}
623 
624 		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
625 								rsc->flags);
626 		if (ret) {
627 			dev_err(dev, "iommu_map failed: %d\n", ret);
628 			goto free_mapping;
629 		}
630 
631 		/*
632 		 * We'll need this info later when we'll want to unmap
633 		 * everything (e.g. on shutdown).
634 		 *
635 		 * We can't trust the remote processor not to change the
636 		 * resource table, so we must maintain this info independently.
637 		 */
638 		mapping->da = rsc->da;
639 		mapping->len = rsc->len;
640 		list_add_tail(&mapping->node, &rproc->mappings);
641 
642 		dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
643 					rsc->da, (unsigned long long)dma);
644 	}
645 
646 	/*
647 	 * Some remote processors might need to know the pa
648 	 * even though they are behind an IOMMU. E.g., OMAP4's
649 	 * remote M3 processor needs this so it can control
650 	 * on-chip hardware accelerators that are not behind
651 	 * the IOMMU, and therefor must know the pa.
652 	 *
653 	 * Generally we don't want to expose physical addresses
654 	 * if we don't have to (remote processors are generally
655 	 * _not_ trusted), so we might want to do this only for
656 	 * remote processor that _must_ have this (e.g. OMAP4's
657 	 * dual M3 subsystem).
658 	 *
659 	 * Non-IOMMU processors might also want to have this info.
660 	 * In this case, the device address and the physical address
661 	 * are the same.
662 	 */
663 	rsc->pa = dma;
664 
665 	carveout->va = va;
666 	carveout->len = rsc->len;
667 	carveout->dma = dma;
668 	carveout->da = rsc->da;
669 
670 	list_add_tail(&carveout->node, &rproc->carveouts);
671 
672 	return 0;
673 
674 free_mapping:
675 	kfree(mapping);
676 dma_free:
677 	dma_free_coherent(dev->parent, rsc->len, va, dma);
678 free_carv:
679 	kfree(carveout);
680 	return ret;
681 }
682 
683 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
684 			      int offset, int avail)
685 {
686 	/* Summarize the number of notification IDs */
687 	rproc->max_notifyid += rsc->num_of_vrings;
688 
689 	return 0;
690 }
691 
692 /*
693  * A lookup table for resource handlers. The indices are defined in
694  * enum fw_resource_type.
695  */
696 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
697 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
698 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
699 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
700 	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
701 };
702 
703 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
704 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
705 };
706 
707 static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
708 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
709 };
710 
711 /* handle firmware resource entries before booting the remote processor */
712 static int rproc_handle_resources(struct rproc *rproc, int len,
713 				  rproc_handle_resource_t handlers[RSC_LAST])
714 {
715 	struct device *dev = &rproc->dev;
716 	rproc_handle_resource_t handler;
717 	int ret = 0, i;
718 
719 	for (i = 0; i < rproc->table_ptr->num; i++) {
720 		int offset = rproc->table_ptr->offset[i];
721 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
722 		int avail = len - offset - sizeof(*hdr);
723 		void *rsc = (void *)hdr + sizeof(*hdr);
724 
725 		/* make sure table isn't truncated */
726 		if (avail < 0) {
727 			dev_err(dev, "rsc table is truncated\n");
728 			return -EINVAL;
729 		}
730 
731 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
732 
733 		if (hdr->type >= RSC_LAST) {
734 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
735 			continue;
736 		}
737 
738 		handler = handlers[hdr->type];
739 		if (!handler)
740 			continue;
741 
742 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
743 		if (ret)
744 			break;
745 	}
746 
747 	return ret;
748 }
749 
750 /**
751  * rproc_resource_cleanup() - clean up and free all acquired resources
752  * @rproc: rproc handle
753  *
754  * This function will free all resources acquired for @rproc, and it
755  * is called whenever @rproc either shuts down or fails to boot.
756  */
757 static void rproc_resource_cleanup(struct rproc *rproc)
758 {
759 	struct rproc_mem_entry *entry, *tmp;
760 	struct device *dev = &rproc->dev;
761 
762 	/* clean up debugfs trace entries */
763 	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
764 		rproc_remove_trace_file(entry->priv);
765 		rproc->num_traces--;
766 		list_del(&entry->node);
767 		kfree(entry);
768 	}
769 
770 	/* clean up iommu mapping entries */
771 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
772 		size_t unmapped;
773 
774 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
775 		if (unmapped != entry->len) {
776 			/* nothing much to do besides complaining */
777 			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
778 								unmapped);
779 		}
780 
781 		list_del(&entry->node);
782 		kfree(entry);
783 	}
784 
785 	/* clean up carveout allocations */
786 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
787 		dma_free_coherent(dev->parent, entry->len, entry->va,
788 				  entry->dma);
789 		list_del(&entry->node);
790 		kfree(entry);
791 	}
792 }
793 
794 /*
795  * take a firmware and boot a remote processor with it.
796  */
797 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
798 {
799 	struct device *dev = &rproc->dev;
800 	const char *name = rproc->firmware;
801 	struct resource_table *table, *loaded_table;
802 	int ret, tablesz;
803 
804 	if (!rproc->table_ptr)
805 		return -ENOMEM;
806 
807 	ret = rproc_fw_sanity_check(rproc, fw);
808 	if (ret)
809 		return ret;
810 
811 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
812 
813 	/*
814 	 * if enabling an IOMMU isn't relevant for this rproc, this is
815 	 * just a nop
816 	 */
817 	ret = rproc_enable_iommu(rproc);
818 	if (ret) {
819 		dev_err(dev, "can't enable iommu: %d\n", ret);
820 		return ret;
821 	}
822 
823 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
824 	ret = -EINVAL;
825 
826 	/* look for the resource table */
827 	table = rproc_find_rsc_table(rproc, fw, &tablesz);
828 	if (!table) {
829 		dev_err(dev, "Failed to find resource table\n");
830 		goto clean_up;
831 	}
832 
833 	/* Verify that resource table in loaded fw is unchanged */
834 	if (rproc->table_csum != crc32(0, table, tablesz)) {
835 		dev_err(dev, "resource checksum failed, fw changed?\n");
836 		goto clean_up;
837 	}
838 
839 	/* handle fw resources which are required to boot rproc */
840 	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
841 	if (ret) {
842 		dev_err(dev, "Failed to process resources: %d\n", ret);
843 		goto clean_up;
844 	}
845 
846 	/* load the ELF segments to memory */
847 	ret = rproc_load_segments(rproc, fw);
848 	if (ret) {
849 		dev_err(dev, "Failed to load program segments: %d\n", ret);
850 		goto clean_up;
851 	}
852 
853 	/*
854 	 * The starting device has been given the rproc->cached_table as the
855 	 * resource table. The address of the vring along with the other
856 	 * allocated resources (carveouts etc) is stored in cached_table.
857 	 * In order to pass this information to the remote device we must
858 	 * copy this information to device memory.
859 	 */
860 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
861 	if (loaded_table)
862 		memcpy(loaded_table, rproc->cached_table, tablesz);
863 
864 	/* power up the remote processor */
865 	ret = rproc->ops->start(rproc);
866 	if (ret) {
867 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
868 		goto clean_up;
869 	}
870 
871 	/*
872 	 * Update table_ptr so that all subsequent vring allocations and
873 	 * virtio fields manipulation update the actual loaded resource table
874 	 * in device memory.
875 	 */
876 	rproc->table_ptr = loaded_table;
877 
878 	rproc->state = RPROC_RUNNING;
879 
880 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
881 
882 	return 0;
883 
884 clean_up:
885 	rproc_resource_cleanup(rproc);
886 	rproc_disable_iommu(rproc);
887 	return ret;
888 }
889 
890 /*
891  * take a firmware and look for virtio devices to register.
892  *
893  * Note: this function is called asynchronously upon registration of the
894  * remote processor (so we must wait until it completes before we try
895  * to unregister the device. one other option is just to use kref here,
896  * that might be cleaner).
897  */
898 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
899 {
900 	struct rproc *rproc = context;
901 	struct resource_table *table;
902 	int ret, tablesz;
903 
904 	if (rproc_fw_sanity_check(rproc, fw) < 0)
905 		goto out;
906 
907 	/* look for the resource table */
908 	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
909 	if (!table)
910 		goto out;
911 
912 	rproc->table_csum = crc32(0, table, tablesz);
913 
914 	/*
915 	 * Create a copy of the resource table. When a virtio device starts
916 	 * and calls vring_new_virtqueue() the address of the allocated vring
917 	 * will be stored in the cached_table. Before the device is started,
918 	 * cached_table will be copied into devic memory.
919 	 */
920 	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
921 	if (!rproc->cached_table)
922 		goto out;
923 
924 	rproc->table_ptr = rproc->cached_table;
925 
926 	/* count the number of notify-ids */
927 	rproc->max_notifyid = -1;
928 	ret = rproc_handle_resources(rproc, tablesz,
929 				     rproc_count_vrings_handler);
930 	if (ret)
931 		goto out;
932 
933 	/* look for virtio devices and register them */
934 	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
935 
936 out:
937 	release_firmware(fw);
938 	/* allow rproc_del() contexts, if any, to proceed */
939 	complete_all(&rproc->firmware_loading_complete);
940 }
941 
942 static int rproc_add_virtio_devices(struct rproc *rproc)
943 {
944 	int ret;
945 
946 	/* rproc_del() calls must wait until async loader completes */
947 	init_completion(&rproc->firmware_loading_complete);
948 
949 	/*
950 	 * We must retrieve early virtio configuration info from
951 	 * the firmware (e.g. whether to register a virtio device,
952 	 * what virtio features does it support, ...).
953 	 *
954 	 * We're initiating an asynchronous firmware loading, so we can
955 	 * be built-in kernel code, without hanging the boot process.
956 	 */
957 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
958 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
959 				      rproc, rproc_fw_config_virtio);
960 	if (ret < 0) {
961 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
962 		complete_all(&rproc->firmware_loading_complete);
963 	}
964 
965 	return ret;
966 }
967 
968 /**
969  * rproc_trigger_recovery() - recover a remoteproc
970  * @rproc: the remote processor
971  *
972  * The recovery is done by reseting all the virtio devices, that way all the
973  * rpmsg drivers will be reseted along with the remote processor making the
974  * remoteproc functional again.
975  *
976  * This function can sleep, so it cannot be called from atomic context.
977  */
978 int rproc_trigger_recovery(struct rproc *rproc)
979 {
980 	struct rproc_vdev *rvdev, *rvtmp;
981 
982 	dev_err(&rproc->dev, "recovering %s\n", rproc->name);
983 
984 	init_completion(&rproc->crash_comp);
985 
986 	/* clean up remote vdev entries */
987 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
988 		rproc_remove_virtio_dev(rvdev);
989 
990 	/* wait until there is no more rproc users */
991 	wait_for_completion(&rproc->crash_comp);
992 
993 	/* Free the copy of the resource table */
994 	kfree(rproc->cached_table);
995 
996 	return rproc_add_virtio_devices(rproc);
997 }
998 
999 /**
1000  * rproc_crash_handler_work() - handle a crash
1001  *
1002  * This function needs to handle everything related to a crash, like cpu
1003  * registers and stack dump, information to help to debug the fatal error, etc.
1004  */
1005 static void rproc_crash_handler_work(struct work_struct *work)
1006 {
1007 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1008 	struct device *dev = &rproc->dev;
1009 
1010 	dev_dbg(dev, "enter %s\n", __func__);
1011 
1012 	mutex_lock(&rproc->lock);
1013 
1014 	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1015 		/* handle only the first crash detected */
1016 		mutex_unlock(&rproc->lock);
1017 		return;
1018 	}
1019 
1020 	rproc->state = RPROC_CRASHED;
1021 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1022 		rproc->name);
1023 
1024 	mutex_unlock(&rproc->lock);
1025 
1026 	if (!rproc->recovery_disabled)
1027 		rproc_trigger_recovery(rproc);
1028 }
1029 
1030 /**
1031  * __rproc_boot() - boot a remote processor
1032  * @rproc: handle of a remote processor
1033  * @wait: wait for rproc registration completion
1034  *
1035  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1036  *
1037  * If the remote processor is already powered on, this function immediately
1038  * returns (successfully).
1039  *
1040  * Returns 0 on success, and an appropriate error value otherwise.
1041  */
1042 static int __rproc_boot(struct rproc *rproc, bool wait)
1043 {
1044 	const struct firmware *firmware_p;
1045 	struct device *dev;
1046 	int ret;
1047 
1048 	if (!rproc) {
1049 		pr_err("invalid rproc handle\n");
1050 		return -EINVAL;
1051 	}
1052 
1053 	dev = &rproc->dev;
1054 
1055 	ret = mutex_lock_interruptible(&rproc->lock);
1056 	if (ret) {
1057 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1058 		return ret;
1059 	}
1060 
1061 	/* loading a firmware is required */
1062 	if (!rproc->firmware) {
1063 		dev_err(dev, "%s: no firmware to load\n", __func__);
1064 		ret = -EINVAL;
1065 		goto unlock_mutex;
1066 	}
1067 
1068 	/* prevent underlying implementation from being removed */
1069 	if (!try_module_get(dev->parent->driver->owner)) {
1070 		dev_err(dev, "%s: can't get owner\n", __func__);
1071 		ret = -EINVAL;
1072 		goto unlock_mutex;
1073 	}
1074 
1075 	/* skip the boot process if rproc is already powered up */
1076 	if (atomic_inc_return(&rproc->power) > 1) {
1077 		ret = 0;
1078 		goto unlock_mutex;
1079 	}
1080 
1081 	dev_info(dev, "powering up %s\n", rproc->name);
1082 
1083 	/* load firmware */
1084 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1085 	if (ret < 0) {
1086 		dev_err(dev, "request_firmware failed: %d\n", ret);
1087 		goto downref_rproc;
1088 	}
1089 
1090 	/* if rproc virtio is not yet configured, wait */
1091 	if (wait)
1092 		wait_for_completion(&rproc->firmware_loading_complete);
1093 
1094 	ret = rproc_fw_boot(rproc, firmware_p);
1095 
1096 	release_firmware(firmware_p);
1097 
1098 downref_rproc:
1099 	if (ret) {
1100 		module_put(dev->parent->driver->owner);
1101 		atomic_dec(&rproc->power);
1102 	}
1103 unlock_mutex:
1104 	mutex_unlock(&rproc->lock);
1105 	return ret;
1106 }
1107 
1108 /**
1109  * rproc_boot() - boot a remote processor
1110  * @rproc: handle of a remote processor
1111  */
1112 int rproc_boot(struct rproc *rproc)
1113 {
1114 	return __rproc_boot(rproc, true);
1115 }
1116 EXPORT_SYMBOL(rproc_boot);
1117 
1118 /**
1119  * rproc_boot_nowait() - boot a remote processor
1120  * @rproc: handle of a remote processor
1121  *
1122  * Same as rproc_boot() but don't wait for rproc registration completion
1123  */
1124 int rproc_boot_nowait(struct rproc *rproc)
1125 {
1126 	return __rproc_boot(rproc, false);
1127 }
1128 
1129 /**
1130  * rproc_shutdown() - power off the remote processor
1131  * @rproc: the remote processor
1132  *
1133  * Power off a remote processor (previously booted with rproc_boot()).
1134  *
1135  * In case @rproc is still being used by an additional user(s), then
1136  * this function will just decrement the power refcount and exit,
1137  * without really powering off the device.
1138  *
1139  * Every call to rproc_boot() must (eventually) be accompanied by a call
1140  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1141  *
1142  * Notes:
1143  * - we're not decrementing the rproc's refcount, only the power refcount.
1144  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1145  *   returns, and users can still use it with a subsequent rproc_boot(), if
1146  *   needed.
1147  */
1148 void rproc_shutdown(struct rproc *rproc)
1149 {
1150 	struct device *dev = &rproc->dev;
1151 	int ret;
1152 
1153 	ret = mutex_lock_interruptible(&rproc->lock);
1154 	if (ret) {
1155 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1156 		return;
1157 	}
1158 
1159 	/* if the remote proc is still needed, bail out */
1160 	if (!atomic_dec_and_test(&rproc->power))
1161 		goto out;
1162 
1163 	/* power off the remote processor */
1164 	ret = rproc->ops->stop(rproc);
1165 	if (ret) {
1166 		atomic_inc(&rproc->power);
1167 		dev_err(dev, "can't stop rproc: %d\n", ret);
1168 		goto out;
1169 	}
1170 
1171 	/* clean up all acquired resources */
1172 	rproc_resource_cleanup(rproc);
1173 
1174 	rproc_disable_iommu(rproc);
1175 
1176 	/* Give the next start a clean resource table */
1177 	rproc->table_ptr = rproc->cached_table;
1178 
1179 	/* if in crash state, unlock crash handler */
1180 	if (rproc->state == RPROC_CRASHED)
1181 		complete_all(&rproc->crash_comp);
1182 
1183 	rproc->state = RPROC_OFFLINE;
1184 
1185 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1186 
1187 out:
1188 	mutex_unlock(&rproc->lock);
1189 	if (!ret)
1190 		module_put(dev->parent->driver->owner);
1191 }
1192 EXPORT_SYMBOL(rproc_shutdown);
1193 
1194 /**
1195  * rproc_get_by_phandle() - find a remote processor by phandle
1196  * @phandle: phandle to the rproc
1197  *
1198  * Finds an rproc handle using the remote processor's phandle, and then
1199  * return a handle to the rproc.
1200  *
1201  * This function increments the remote processor's refcount, so always
1202  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1203  *
1204  * Returns the rproc handle on success, and NULL on failure.
1205  */
1206 #ifdef CONFIG_OF
1207 struct rproc *rproc_get_by_phandle(phandle phandle)
1208 {
1209 	struct rproc *rproc = NULL, *r;
1210 	struct device_node *np;
1211 
1212 	np = of_find_node_by_phandle(phandle);
1213 	if (!np)
1214 		return NULL;
1215 
1216 	mutex_lock(&rproc_list_mutex);
1217 	list_for_each_entry(r, &rproc_list, node) {
1218 		if (r->dev.parent && r->dev.parent->of_node == np) {
1219 			rproc = r;
1220 			get_device(&rproc->dev);
1221 			break;
1222 		}
1223 	}
1224 	mutex_unlock(&rproc_list_mutex);
1225 
1226 	of_node_put(np);
1227 
1228 	return rproc;
1229 }
1230 #else
1231 struct rproc *rproc_get_by_phandle(phandle phandle)
1232 {
1233 	return NULL;
1234 }
1235 #endif
1236 EXPORT_SYMBOL(rproc_get_by_phandle);
1237 
1238 /**
1239  * rproc_add() - register a remote processor
1240  * @rproc: the remote processor handle to register
1241  *
1242  * Registers @rproc with the remoteproc framework, after it has been
1243  * allocated with rproc_alloc().
1244  *
1245  * This is called by the platform-specific rproc implementation, whenever
1246  * a new remote processor device is probed.
1247  *
1248  * Returns 0 on success and an appropriate error code otherwise.
1249  *
1250  * Note: this function initiates an asynchronous firmware loading
1251  * context, which will look for virtio devices supported by the rproc's
1252  * firmware.
1253  *
1254  * If found, those virtio devices will be created and added, so as a result
1255  * of registering this remote processor, additional virtio drivers might be
1256  * probed.
1257  */
1258 int rproc_add(struct rproc *rproc)
1259 {
1260 	struct device *dev = &rproc->dev;
1261 	int ret;
1262 
1263 	ret = device_add(dev);
1264 	if (ret < 0)
1265 		return ret;
1266 
1267 	dev_info(dev, "%s is available\n", rproc->name);
1268 
1269 	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1270 	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1271 
1272 	/* create debugfs entries */
1273 	rproc_create_debug_dir(rproc);
1274 	ret = rproc_add_virtio_devices(rproc);
1275 	if (ret < 0)
1276 		return ret;
1277 
1278 	/* expose to rproc_get_by_phandle users */
1279 	mutex_lock(&rproc_list_mutex);
1280 	list_add(&rproc->node, &rproc_list);
1281 	mutex_unlock(&rproc_list_mutex);
1282 
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL(rproc_add);
1286 
1287 /**
1288  * rproc_type_release() - release a remote processor instance
1289  * @dev: the rproc's device
1290  *
1291  * This function should _never_ be called directly.
1292  *
1293  * It will be called by the driver core when no one holds a valid pointer
1294  * to @dev anymore.
1295  */
1296 static void rproc_type_release(struct device *dev)
1297 {
1298 	struct rproc *rproc = container_of(dev, struct rproc, dev);
1299 
1300 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1301 
1302 	rproc_delete_debug_dir(rproc);
1303 
1304 	idr_destroy(&rproc->notifyids);
1305 
1306 	if (rproc->index >= 0)
1307 		ida_simple_remove(&rproc_dev_index, rproc->index);
1308 
1309 	kfree(rproc);
1310 }
1311 
1312 static struct device_type rproc_type = {
1313 	.name		= "remoteproc",
1314 	.release	= rproc_type_release,
1315 };
1316 
1317 /**
1318  * rproc_alloc() - allocate a remote processor handle
1319  * @dev: the underlying device
1320  * @name: name of this remote processor
1321  * @ops: platform-specific handlers (mainly start/stop)
1322  * @firmware: name of firmware file to load, can be NULL
1323  * @len: length of private data needed by the rproc driver (in bytes)
1324  *
1325  * Allocates a new remote processor handle, but does not register
1326  * it yet. if @firmware is NULL, a default name is used.
1327  *
1328  * This function should be used by rproc implementations during initialization
1329  * of the remote processor.
1330  *
1331  * After creating an rproc handle using this function, and when ready,
1332  * implementations should then call rproc_add() to complete
1333  * the registration of the remote processor.
1334  *
1335  * On success the new rproc is returned, and on failure, NULL.
1336  *
1337  * Note: _never_ directly deallocate @rproc, even if it was not registered
1338  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1339  */
1340 struct rproc *rproc_alloc(struct device *dev, const char *name,
1341 				const struct rproc_ops *ops,
1342 				const char *firmware, int len)
1343 {
1344 	struct rproc *rproc;
1345 	char *p, *template = "rproc-%s-fw";
1346 	int name_len = 0;
1347 
1348 	if (!dev || !name || !ops)
1349 		return NULL;
1350 
1351 	if (!firmware)
1352 		/*
1353 		 * Make room for default firmware name (minus %s plus '\0').
1354 		 * If the caller didn't pass in a firmware name then
1355 		 * construct a default name.  We're already glomming 'len'
1356 		 * bytes onto the end of the struct rproc allocation, so do
1357 		 * a few more for the default firmware name (but only if
1358 		 * the caller doesn't pass one).
1359 		 */
1360 		name_len = strlen(name) + strlen(template) - 2 + 1;
1361 
1362 	rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1363 	if (!rproc)
1364 		return NULL;
1365 
1366 	if (!firmware) {
1367 		p = (char *)rproc + sizeof(struct rproc) + len;
1368 		snprintf(p, name_len, template, name);
1369 	} else {
1370 		p = (char *)firmware;
1371 	}
1372 
1373 	rproc->firmware = p;
1374 	rproc->name = name;
1375 	rproc->ops = ops;
1376 	rproc->priv = &rproc[1];
1377 
1378 	device_initialize(&rproc->dev);
1379 	rproc->dev.parent = dev;
1380 	rproc->dev.type = &rproc_type;
1381 
1382 	/* Assign a unique device index and name */
1383 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1384 	if (rproc->index < 0) {
1385 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1386 		put_device(&rproc->dev);
1387 		return NULL;
1388 	}
1389 
1390 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1391 
1392 	atomic_set(&rproc->power, 0);
1393 
1394 	/* Set ELF as the default fw_ops handler */
1395 	rproc->fw_ops = &rproc_elf_fw_ops;
1396 
1397 	mutex_init(&rproc->lock);
1398 
1399 	idr_init(&rproc->notifyids);
1400 
1401 	INIT_LIST_HEAD(&rproc->carveouts);
1402 	INIT_LIST_HEAD(&rproc->mappings);
1403 	INIT_LIST_HEAD(&rproc->traces);
1404 	INIT_LIST_HEAD(&rproc->rvdevs);
1405 
1406 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1407 	init_completion(&rproc->crash_comp);
1408 
1409 	rproc->state = RPROC_OFFLINE;
1410 
1411 	return rproc;
1412 }
1413 EXPORT_SYMBOL(rproc_alloc);
1414 
1415 /**
1416  * rproc_put() - unroll rproc_alloc()
1417  * @rproc: the remote processor handle
1418  *
1419  * This function decrements the rproc dev refcount.
1420  *
1421  * If no one holds any reference to rproc anymore, then its refcount would
1422  * now drop to zero, and it would be freed.
1423  */
1424 void rproc_put(struct rproc *rproc)
1425 {
1426 	put_device(&rproc->dev);
1427 }
1428 EXPORT_SYMBOL(rproc_put);
1429 
1430 /**
1431  * rproc_del() - unregister a remote processor
1432  * @rproc: rproc handle to unregister
1433  *
1434  * This function should be called when the platform specific rproc
1435  * implementation decides to remove the rproc device. it should
1436  * _only_ be called if a previous invocation of rproc_add()
1437  * has completed successfully.
1438  *
1439  * After rproc_del() returns, @rproc isn't freed yet, because
1440  * of the outstanding reference created by rproc_alloc. To decrement that
1441  * one last refcount, one still needs to call rproc_put().
1442  *
1443  * Returns 0 on success and -EINVAL if @rproc isn't valid.
1444  */
1445 int rproc_del(struct rproc *rproc)
1446 {
1447 	struct rproc_vdev *rvdev, *tmp;
1448 
1449 	if (!rproc)
1450 		return -EINVAL;
1451 
1452 	/* if rproc is just being registered, wait */
1453 	wait_for_completion(&rproc->firmware_loading_complete);
1454 
1455 	/* clean up remote vdev entries */
1456 	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1457 		rproc_remove_virtio_dev(rvdev);
1458 
1459 	/* Free the copy of the resource table */
1460 	kfree(rproc->cached_table);
1461 
1462 	/* the rproc is downref'ed as soon as it's removed from the klist */
1463 	mutex_lock(&rproc_list_mutex);
1464 	list_del(&rproc->node);
1465 	mutex_unlock(&rproc_list_mutex);
1466 
1467 	device_del(&rproc->dev);
1468 
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL(rproc_del);
1472 
1473 /**
1474  * rproc_report_crash() - rproc crash reporter function
1475  * @rproc: remote processor
1476  * @type: crash type
1477  *
1478  * This function must be called every time a crash is detected by the low-level
1479  * drivers implementing a specific remoteproc. This should not be called from a
1480  * non-remoteproc driver.
1481  *
1482  * This function can be called from atomic/interrupt context.
1483  */
1484 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1485 {
1486 	if (!rproc) {
1487 		pr_err("NULL rproc pointer\n");
1488 		return;
1489 	}
1490 
1491 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1492 		rproc->name, rproc_crash_to_string(type));
1493 
1494 	/* create a new task to handle the error */
1495 	schedule_work(&rproc->crash_handler);
1496 }
1497 EXPORT_SYMBOL(rproc_report_crash);
1498 
1499 static int __init remoteproc_init(void)
1500 {
1501 	rproc_init_debugfs();
1502 
1503 	return 0;
1504 }
1505 module_init(remoteproc_init);
1506 
1507 static void __exit remoteproc_exit(void)
1508 {
1509 	ida_destroy(&rproc_dev_index);
1510 
1511 	rproc_exit_debugfs();
1512 }
1513 module_exit(remoteproc_exit);
1514 
1515 MODULE_LICENSE("GPL v2");
1516 MODULE_DESCRIPTION("Generic Remote Processor Framework");
1517