1 /* 2 * Remote Processor Framework 3 * 4 * Copyright (C) 2011 Texas Instruments, Inc. 5 * Copyright (C) 2011 Google, Inc. 6 * 7 * Ohad Ben-Cohen <ohad@wizery.com> 8 * Brian Swetland <swetland@google.com> 9 * Mark Grosen <mgrosen@ti.com> 10 * Fernando Guzman Lugo <fernando.lugo@ti.com> 11 * Suman Anna <s-anna@ti.com> 12 * Robert Tivy <rtivy@ti.com> 13 * Armando Uribe De Leon <x0095078@ti.com> 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * version 2 as published by the Free Software Foundation. 18 * 19 * This program is distributed in the hope that it will be useful, 20 * but WITHOUT ANY WARRANTY; without even the implied warranty of 21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 * GNU General Public License for more details. 23 */ 24 25 #define pr_fmt(fmt) "%s: " fmt, __func__ 26 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/device.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/firmware.h> 34 #include <linux/string.h> 35 #include <linux/debugfs.h> 36 #include <linux/remoteproc.h> 37 #include <linux/iommu.h> 38 #include <linux/idr.h> 39 #include <linux/elf.h> 40 #include <linux/crc32.h> 41 #include <linux/virtio_ids.h> 42 #include <linux/virtio_ring.h> 43 #include <asm/byteorder.h> 44 45 #include "remoteproc_internal.h" 46 47 static DEFINE_MUTEX(rproc_list_mutex); 48 static LIST_HEAD(rproc_list); 49 50 typedef int (*rproc_handle_resources_t)(struct rproc *rproc, 51 struct resource_table *table, int len); 52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, 53 void *, int offset, int avail); 54 55 /* Unique indices for remoteproc devices */ 56 static DEFINE_IDA(rproc_dev_index); 57 58 static const char * const rproc_crash_names[] = { 59 [RPROC_MMUFAULT] = "mmufault", 60 [RPROC_WATCHDOG] = "watchdog", 61 [RPROC_FATAL_ERROR] = "fatal error", 62 }; 63 64 /* translate rproc_crash_type to string */ 65 static const char *rproc_crash_to_string(enum rproc_crash_type type) 66 { 67 if (type < ARRAY_SIZE(rproc_crash_names)) 68 return rproc_crash_names[type]; 69 return "unknown"; 70 } 71 72 /* 73 * This is the IOMMU fault handler we register with the IOMMU API 74 * (when relevant; not all remote processors access memory through 75 * an IOMMU). 76 * 77 * IOMMU core will invoke this handler whenever the remote processor 78 * will try to access an unmapped device address. 79 */ 80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, 81 unsigned long iova, int flags, void *token) 82 { 83 struct rproc *rproc = token; 84 85 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); 86 87 rproc_report_crash(rproc, RPROC_MMUFAULT); 88 89 /* 90 * Let the iommu core know we're not really handling this fault; 91 * we just used it as a recovery trigger. 92 */ 93 return -ENOSYS; 94 } 95 96 static int rproc_enable_iommu(struct rproc *rproc) 97 { 98 struct iommu_domain *domain; 99 struct device *dev = rproc->dev.parent; 100 int ret; 101 102 if (!rproc->has_iommu) { 103 dev_dbg(dev, "iommu not present\n"); 104 return 0; 105 } 106 107 domain = iommu_domain_alloc(dev->bus); 108 if (!domain) { 109 dev_err(dev, "can't alloc iommu domain\n"); 110 return -ENOMEM; 111 } 112 113 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); 114 115 ret = iommu_attach_device(domain, dev); 116 if (ret) { 117 dev_err(dev, "can't attach iommu device: %d\n", ret); 118 goto free_domain; 119 } 120 121 rproc->domain = domain; 122 123 return 0; 124 125 free_domain: 126 iommu_domain_free(domain); 127 return ret; 128 } 129 130 static void rproc_disable_iommu(struct rproc *rproc) 131 { 132 struct iommu_domain *domain = rproc->domain; 133 struct device *dev = rproc->dev.parent; 134 135 if (!domain) 136 return; 137 138 iommu_detach_device(domain, dev); 139 iommu_domain_free(domain); 140 } 141 142 /** 143 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address 144 * @rproc: handle of a remote processor 145 * @da: remoteproc device address to translate 146 * @len: length of the memory region @da is pointing to 147 * 148 * Some remote processors will ask us to allocate them physically contiguous 149 * memory regions (which we call "carveouts"), and map them to specific 150 * device addresses (which are hardcoded in the firmware). They may also have 151 * dedicated memory regions internal to the processors, and use them either 152 * exclusively or alongside carveouts. 153 * 154 * They may then ask us to copy objects into specific device addresses (e.g. 155 * code/data sections) or expose us certain symbols in other device address 156 * (e.g. their trace buffer). 157 * 158 * This function is a helper function with which we can go over the allocated 159 * carveouts and translate specific device addresses to kernel virtual addresses 160 * so we can access the referenced memory. This function also allows to perform 161 * translations on the internal remoteproc memory regions through a platform 162 * implementation specific da_to_va ops, if present. 163 * 164 * The function returns a valid kernel address on success or NULL on failure. 165 * 166 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, 167 * but only on kernel direct mapped RAM memory. Instead, we're just using 168 * here the output of the DMA API for the carveouts, which should be more 169 * correct. 170 */ 171 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len) 172 { 173 struct rproc_mem_entry *carveout; 174 void *ptr = NULL; 175 176 if (rproc->ops->da_to_va) { 177 ptr = rproc->ops->da_to_va(rproc, da, len); 178 if (ptr) 179 goto out; 180 } 181 182 list_for_each_entry(carveout, &rproc->carveouts, node) { 183 int offset = da - carveout->da; 184 185 /* try next carveout if da is too small */ 186 if (offset < 0) 187 continue; 188 189 /* try next carveout if da is too large */ 190 if (offset + len > carveout->len) 191 continue; 192 193 ptr = carveout->va + offset; 194 195 break; 196 } 197 198 out: 199 return ptr; 200 } 201 EXPORT_SYMBOL(rproc_da_to_va); 202 203 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) 204 { 205 struct rproc *rproc = rvdev->rproc; 206 struct device *dev = &rproc->dev; 207 struct rproc_vring *rvring = &rvdev->vring[i]; 208 struct fw_rsc_vdev *rsc; 209 dma_addr_t dma; 210 void *va; 211 int ret, size, notifyid; 212 213 /* actual size of vring (in bytes) */ 214 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 215 216 /* 217 * Allocate non-cacheable memory for the vring. In the future 218 * this call will also configure the IOMMU for us 219 */ 220 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL); 221 if (!va) { 222 dev_err(dev->parent, "dma_alloc_coherent failed\n"); 223 return -EINVAL; 224 } 225 226 /* 227 * Assign an rproc-wide unique index for this vring 228 * TODO: assign a notifyid for rvdev updates as well 229 * TODO: support predefined notifyids (via resource table) 230 */ 231 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); 232 if (ret < 0) { 233 dev_err(dev, "idr_alloc failed: %d\n", ret); 234 dma_free_coherent(dev->parent, size, va, dma); 235 return ret; 236 } 237 notifyid = ret; 238 239 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va, 240 (unsigned long long)dma, size, notifyid); 241 242 rvring->va = va; 243 rvring->dma = dma; 244 rvring->notifyid = notifyid; 245 246 /* 247 * Let the rproc know the notifyid and da of this vring. 248 * Not all platforms use dma_alloc_coherent to automatically 249 * set up the iommu. In this case the device address (da) will 250 * hold the physical address and not the device address. 251 */ 252 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; 253 rsc->vring[i].da = dma; 254 rsc->vring[i].notifyid = notifyid; 255 return 0; 256 } 257 258 static int 259 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) 260 { 261 struct rproc *rproc = rvdev->rproc; 262 struct device *dev = &rproc->dev; 263 struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; 264 struct rproc_vring *rvring = &rvdev->vring[i]; 265 266 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n", 267 i, vring->da, vring->num, vring->align); 268 269 /* make sure reserved bytes are zeroes */ 270 if (vring->reserved) { 271 dev_err(dev, "vring rsc has non zero reserved bytes\n"); 272 return -EINVAL; 273 } 274 275 /* verify queue size and vring alignment are sane */ 276 if (!vring->num || !vring->align) { 277 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", 278 vring->num, vring->align); 279 return -EINVAL; 280 } 281 282 rvring->len = vring->num; 283 rvring->align = vring->align; 284 rvring->rvdev = rvdev; 285 286 return 0; 287 } 288 289 void rproc_free_vring(struct rproc_vring *rvring) 290 { 291 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); 292 struct rproc *rproc = rvring->rvdev->rproc; 293 int idx = rvring->rvdev->vring - rvring; 294 struct fw_rsc_vdev *rsc; 295 296 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma); 297 idr_remove(&rproc->notifyids, rvring->notifyid); 298 299 /* reset resource entry info */ 300 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; 301 rsc->vring[idx].da = 0; 302 rsc->vring[idx].notifyid = -1; 303 } 304 305 /** 306 * rproc_handle_vdev() - handle a vdev fw resource 307 * @rproc: the remote processor 308 * @rsc: the vring resource descriptor 309 * @avail: size of available data (for sanity checking the image) 310 * 311 * This resource entry requests the host to statically register a virtio 312 * device (vdev), and setup everything needed to support it. It contains 313 * everything needed to make it possible: the virtio device id, virtio 314 * device features, vrings information, virtio config space, etc... 315 * 316 * Before registering the vdev, the vrings are allocated from non-cacheable 317 * physically contiguous memory. Currently we only support two vrings per 318 * remote processor (temporary limitation). We might also want to consider 319 * doing the vring allocation only later when ->find_vqs() is invoked, and 320 * then release them upon ->del_vqs(). 321 * 322 * Note: @da is currently not really handled correctly: we dynamically 323 * allocate it using the DMA API, ignoring requested hard coded addresses, 324 * and we don't take care of any required IOMMU programming. This is all 325 * going to be taken care of when the generic iommu-based DMA API will be 326 * merged. Meanwhile, statically-addressed iommu-based firmware images should 327 * use RSC_DEVMEM resource entries to map their required @da to the physical 328 * address of their base CMA region (ouch, hacky!). 329 * 330 * Returns 0 on success, or an appropriate error code otherwise 331 */ 332 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, 333 int offset, int avail) 334 { 335 struct device *dev = &rproc->dev; 336 struct rproc_vdev *rvdev; 337 int i, ret; 338 339 /* make sure resource isn't truncated */ 340 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring) 341 + rsc->config_len > avail) { 342 dev_err(dev, "vdev rsc is truncated\n"); 343 return -EINVAL; 344 } 345 346 /* make sure reserved bytes are zeroes */ 347 if (rsc->reserved[0] || rsc->reserved[1]) { 348 dev_err(dev, "vdev rsc has non zero reserved bytes\n"); 349 return -EINVAL; 350 } 351 352 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n", 353 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); 354 355 /* we currently support only two vrings per rvdev */ 356 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { 357 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); 358 return -EINVAL; 359 } 360 361 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL); 362 if (!rvdev) 363 return -ENOMEM; 364 365 rvdev->rproc = rproc; 366 367 /* parse the vrings */ 368 for (i = 0; i < rsc->num_of_vrings; i++) { 369 ret = rproc_parse_vring(rvdev, rsc, i); 370 if (ret) 371 goto free_rvdev; 372 } 373 374 /* remember the resource offset*/ 375 rvdev->rsc_offset = offset; 376 377 list_add_tail(&rvdev->node, &rproc->rvdevs); 378 379 /* it is now safe to add the virtio device */ 380 ret = rproc_add_virtio_dev(rvdev, rsc->id); 381 if (ret) 382 goto remove_rvdev; 383 384 return 0; 385 386 remove_rvdev: 387 list_del(&rvdev->node); 388 free_rvdev: 389 kfree(rvdev); 390 return ret; 391 } 392 393 /** 394 * rproc_handle_trace() - handle a shared trace buffer resource 395 * @rproc: the remote processor 396 * @rsc: the trace resource descriptor 397 * @avail: size of available data (for sanity checking the image) 398 * 399 * In case the remote processor dumps trace logs into memory, 400 * export it via debugfs. 401 * 402 * Currently, the 'da' member of @rsc should contain the device address 403 * where the remote processor is dumping the traces. Later we could also 404 * support dynamically allocating this address using the generic 405 * DMA API (but currently there isn't a use case for that). 406 * 407 * Returns 0 on success, or an appropriate error code otherwise 408 */ 409 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, 410 int offset, int avail) 411 { 412 struct rproc_mem_entry *trace; 413 struct device *dev = &rproc->dev; 414 void *ptr; 415 char name[15]; 416 417 if (sizeof(*rsc) > avail) { 418 dev_err(dev, "trace rsc is truncated\n"); 419 return -EINVAL; 420 } 421 422 /* make sure reserved bytes are zeroes */ 423 if (rsc->reserved) { 424 dev_err(dev, "trace rsc has non zero reserved bytes\n"); 425 return -EINVAL; 426 } 427 428 /* what's the kernel address of this resource ? */ 429 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len); 430 if (!ptr) { 431 dev_err(dev, "erroneous trace resource entry\n"); 432 return -EINVAL; 433 } 434 435 trace = kzalloc(sizeof(*trace), GFP_KERNEL); 436 if (!trace) 437 return -ENOMEM; 438 439 /* set the trace buffer dma properties */ 440 trace->len = rsc->len; 441 trace->va = ptr; 442 443 /* make sure snprintf always null terminates, even if truncating */ 444 snprintf(name, sizeof(name), "trace%d", rproc->num_traces); 445 446 /* create the debugfs entry */ 447 trace->priv = rproc_create_trace_file(name, rproc, trace); 448 if (!trace->priv) { 449 trace->va = NULL; 450 kfree(trace); 451 return -EINVAL; 452 } 453 454 list_add_tail(&trace->node, &rproc->traces); 455 456 rproc->num_traces++; 457 458 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr, 459 rsc->da, rsc->len); 460 461 return 0; 462 } 463 464 /** 465 * rproc_handle_devmem() - handle devmem resource entry 466 * @rproc: remote processor handle 467 * @rsc: the devmem resource entry 468 * @avail: size of available data (for sanity checking the image) 469 * 470 * Remote processors commonly need to access certain on-chip peripherals. 471 * 472 * Some of these remote processors access memory via an iommu device, 473 * and might require us to configure their iommu before they can access 474 * the on-chip peripherals they need. 475 * 476 * This resource entry is a request to map such a peripheral device. 477 * 478 * These devmem entries will contain the physical address of the device in 479 * the 'pa' member. If a specific device address is expected, then 'da' will 480 * contain it (currently this is the only use case supported). 'len' will 481 * contain the size of the physical region we need to map. 482 * 483 * Currently we just "trust" those devmem entries to contain valid physical 484 * addresses, but this is going to change: we want the implementations to 485 * tell us ranges of physical addresses the firmware is allowed to request, 486 * and not allow firmwares to request access to physical addresses that 487 * are outside those ranges. 488 */ 489 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, 490 int offset, int avail) 491 { 492 struct rproc_mem_entry *mapping; 493 struct device *dev = &rproc->dev; 494 int ret; 495 496 /* no point in handling this resource without a valid iommu domain */ 497 if (!rproc->domain) 498 return -EINVAL; 499 500 if (sizeof(*rsc) > avail) { 501 dev_err(dev, "devmem rsc is truncated\n"); 502 return -EINVAL; 503 } 504 505 /* make sure reserved bytes are zeroes */ 506 if (rsc->reserved) { 507 dev_err(dev, "devmem rsc has non zero reserved bytes\n"); 508 return -EINVAL; 509 } 510 511 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 512 if (!mapping) 513 return -ENOMEM; 514 515 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); 516 if (ret) { 517 dev_err(dev, "failed to map devmem: %d\n", ret); 518 goto out; 519 } 520 521 /* 522 * We'll need this info later when we'll want to unmap everything 523 * (e.g. on shutdown). 524 * 525 * We can't trust the remote processor not to change the resource 526 * table, so we must maintain this info independently. 527 */ 528 mapping->da = rsc->da; 529 mapping->len = rsc->len; 530 list_add_tail(&mapping->node, &rproc->mappings); 531 532 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", 533 rsc->pa, rsc->da, rsc->len); 534 535 return 0; 536 537 out: 538 kfree(mapping); 539 return ret; 540 } 541 542 /** 543 * rproc_handle_carveout() - handle phys contig memory allocation requests 544 * @rproc: rproc handle 545 * @rsc: the resource entry 546 * @avail: size of available data (for image validation) 547 * 548 * This function will handle firmware requests for allocation of physically 549 * contiguous memory regions. 550 * 551 * These request entries should come first in the firmware's resource table, 552 * as other firmware entries might request placing other data objects inside 553 * these memory regions (e.g. data/code segments, trace resource entries, ...). 554 * 555 * Allocating memory this way helps utilizing the reserved physical memory 556 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries 557 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB 558 * pressure is important; it may have a substantial impact on performance. 559 */ 560 static int rproc_handle_carveout(struct rproc *rproc, 561 struct fw_rsc_carveout *rsc, 562 int offset, int avail) 563 564 { 565 struct rproc_mem_entry *carveout, *mapping; 566 struct device *dev = &rproc->dev; 567 dma_addr_t dma; 568 void *va; 569 int ret; 570 571 if (sizeof(*rsc) > avail) { 572 dev_err(dev, "carveout rsc is truncated\n"); 573 return -EINVAL; 574 } 575 576 /* make sure reserved bytes are zeroes */ 577 if (rsc->reserved) { 578 dev_err(dev, "carveout rsc has non zero reserved bytes\n"); 579 return -EINVAL; 580 } 581 582 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n", 583 rsc->da, rsc->pa, rsc->len, rsc->flags); 584 585 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL); 586 if (!carveout) 587 return -ENOMEM; 588 589 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL); 590 if (!va) { 591 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len); 592 ret = -ENOMEM; 593 goto free_carv; 594 } 595 596 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va, 597 (unsigned long long)dma, rsc->len); 598 599 /* 600 * Ok, this is non-standard. 601 * 602 * Sometimes we can't rely on the generic iommu-based DMA API 603 * to dynamically allocate the device address and then set the IOMMU 604 * tables accordingly, because some remote processors might 605 * _require_ us to use hard coded device addresses that their 606 * firmware was compiled with. 607 * 608 * In this case, we must use the IOMMU API directly and map 609 * the memory to the device address as expected by the remote 610 * processor. 611 * 612 * Obviously such remote processor devices should not be configured 613 * to use the iommu-based DMA API: we expect 'dma' to contain the 614 * physical address in this case. 615 */ 616 if (rproc->domain) { 617 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); 618 if (!mapping) { 619 dev_err(dev, "kzalloc mapping failed\n"); 620 ret = -ENOMEM; 621 goto dma_free; 622 } 623 624 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len, 625 rsc->flags); 626 if (ret) { 627 dev_err(dev, "iommu_map failed: %d\n", ret); 628 goto free_mapping; 629 } 630 631 /* 632 * We'll need this info later when we'll want to unmap 633 * everything (e.g. on shutdown). 634 * 635 * We can't trust the remote processor not to change the 636 * resource table, so we must maintain this info independently. 637 */ 638 mapping->da = rsc->da; 639 mapping->len = rsc->len; 640 list_add_tail(&mapping->node, &rproc->mappings); 641 642 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n", 643 rsc->da, (unsigned long long)dma); 644 } 645 646 /* 647 * Some remote processors might need to know the pa 648 * even though they are behind an IOMMU. E.g., OMAP4's 649 * remote M3 processor needs this so it can control 650 * on-chip hardware accelerators that are not behind 651 * the IOMMU, and therefor must know the pa. 652 * 653 * Generally we don't want to expose physical addresses 654 * if we don't have to (remote processors are generally 655 * _not_ trusted), so we might want to do this only for 656 * remote processor that _must_ have this (e.g. OMAP4's 657 * dual M3 subsystem). 658 * 659 * Non-IOMMU processors might also want to have this info. 660 * In this case, the device address and the physical address 661 * are the same. 662 */ 663 rsc->pa = dma; 664 665 carveout->va = va; 666 carveout->len = rsc->len; 667 carveout->dma = dma; 668 carveout->da = rsc->da; 669 670 list_add_tail(&carveout->node, &rproc->carveouts); 671 672 return 0; 673 674 free_mapping: 675 kfree(mapping); 676 dma_free: 677 dma_free_coherent(dev->parent, rsc->len, va, dma); 678 free_carv: 679 kfree(carveout); 680 return ret; 681 } 682 683 static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc, 684 int offset, int avail) 685 { 686 /* Summarize the number of notification IDs */ 687 rproc->max_notifyid += rsc->num_of_vrings; 688 689 return 0; 690 } 691 692 /* 693 * A lookup table for resource handlers. The indices are defined in 694 * enum fw_resource_type. 695 */ 696 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { 697 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, 698 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, 699 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, 700 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */ 701 }; 702 703 static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = { 704 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, 705 }; 706 707 static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = { 708 [RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings, 709 }; 710 711 /* handle firmware resource entries before booting the remote processor */ 712 static int rproc_handle_resources(struct rproc *rproc, int len, 713 rproc_handle_resource_t handlers[RSC_LAST]) 714 { 715 struct device *dev = &rproc->dev; 716 rproc_handle_resource_t handler; 717 int ret = 0, i; 718 719 for (i = 0; i < rproc->table_ptr->num; i++) { 720 int offset = rproc->table_ptr->offset[i]; 721 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; 722 int avail = len - offset - sizeof(*hdr); 723 void *rsc = (void *)hdr + sizeof(*hdr); 724 725 /* make sure table isn't truncated */ 726 if (avail < 0) { 727 dev_err(dev, "rsc table is truncated\n"); 728 return -EINVAL; 729 } 730 731 dev_dbg(dev, "rsc: type %d\n", hdr->type); 732 733 if (hdr->type >= RSC_LAST) { 734 dev_warn(dev, "unsupported resource %d\n", hdr->type); 735 continue; 736 } 737 738 handler = handlers[hdr->type]; 739 if (!handler) 740 continue; 741 742 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); 743 if (ret) 744 break; 745 } 746 747 return ret; 748 } 749 750 /** 751 * rproc_resource_cleanup() - clean up and free all acquired resources 752 * @rproc: rproc handle 753 * 754 * This function will free all resources acquired for @rproc, and it 755 * is called whenever @rproc either shuts down or fails to boot. 756 */ 757 static void rproc_resource_cleanup(struct rproc *rproc) 758 { 759 struct rproc_mem_entry *entry, *tmp; 760 struct device *dev = &rproc->dev; 761 762 /* clean up debugfs trace entries */ 763 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) { 764 rproc_remove_trace_file(entry->priv); 765 rproc->num_traces--; 766 list_del(&entry->node); 767 kfree(entry); 768 } 769 770 /* clean up iommu mapping entries */ 771 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { 772 size_t unmapped; 773 774 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); 775 if (unmapped != entry->len) { 776 /* nothing much to do besides complaining */ 777 dev_err(dev, "failed to unmap %u/%zu\n", entry->len, 778 unmapped); 779 } 780 781 list_del(&entry->node); 782 kfree(entry); 783 } 784 785 /* clean up carveout allocations */ 786 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { 787 dma_free_coherent(dev->parent, entry->len, entry->va, 788 entry->dma); 789 list_del(&entry->node); 790 kfree(entry); 791 } 792 } 793 794 /* 795 * take a firmware and boot a remote processor with it. 796 */ 797 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) 798 { 799 struct device *dev = &rproc->dev; 800 const char *name = rproc->firmware; 801 struct resource_table *table, *loaded_table; 802 int ret, tablesz; 803 804 if (!rproc->table_ptr) 805 return -ENOMEM; 806 807 ret = rproc_fw_sanity_check(rproc, fw); 808 if (ret) 809 return ret; 810 811 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); 812 813 /* 814 * if enabling an IOMMU isn't relevant for this rproc, this is 815 * just a nop 816 */ 817 ret = rproc_enable_iommu(rproc); 818 if (ret) { 819 dev_err(dev, "can't enable iommu: %d\n", ret); 820 return ret; 821 } 822 823 rproc->bootaddr = rproc_get_boot_addr(rproc, fw); 824 ret = -EINVAL; 825 826 /* look for the resource table */ 827 table = rproc_find_rsc_table(rproc, fw, &tablesz); 828 if (!table) { 829 dev_err(dev, "Failed to find resource table\n"); 830 goto clean_up; 831 } 832 833 /* Verify that resource table in loaded fw is unchanged */ 834 if (rproc->table_csum != crc32(0, table, tablesz)) { 835 dev_err(dev, "resource checksum failed, fw changed?\n"); 836 goto clean_up; 837 } 838 839 /* handle fw resources which are required to boot rproc */ 840 ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers); 841 if (ret) { 842 dev_err(dev, "Failed to process resources: %d\n", ret); 843 goto clean_up; 844 } 845 846 /* load the ELF segments to memory */ 847 ret = rproc_load_segments(rproc, fw); 848 if (ret) { 849 dev_err(dev, "Failed to load program segments: %d\n", ret); 850 goto clean_up; 851 } 852 853 /* 854 * The starting device has been given the rproc->cached_table as the 855 * resource table. The address of the vring along with the other 856 * allocated resources (carveouts etc) is stored in cached_table. 857 * In order to pass this information to the remote device we must 858 * copy this information to device memory. 859 */ 860 loaded_table = rproc_find_loaded_rsc_table(rproc, fw); 861 if (loaded_table) 862 memcpy(loaded_table, rproc->cached_table, tablesz); 863 864 /* power up the remote processor */ 865 ret = rproc->ops->start(rproc); 866 if (ret) { 867 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); 868 goto clean_up; 869 } 870 871 /* 872 * Update table_ptr so that all subsequent vring allocations and 873 * virtio fields manipulation update the actual loaded resource table 874 * in device memory. 875 */ 876 rproc->table_ptr = loaded_table; 877 878 rproc->state = RPROC_RUNNING; 879 880 dev_info(dev, "remote processor %s is now up\n", rproc->name); 881 882 return 0; 883 884 clean_up: 885 rproc_resource_cleanup(rproc); 886 rproc_disable_iommu(rproc); 887 return ret; 888 } 889 890 /* 891 * take a firmware and look for virtio devices to register. 892 * 893 * Note: this function is called asynchronously upon registration of the 894 * remote processor (so we must wait until it completes before we try 895 * to unregister the device. one other option is just to use kref here, 896 * that might be cleaner). 897 */ 898 static void rproc_fw_config_virtio(const struct firmware *fw, void *context) 899 { 900 struct rproc *rproc = context; 901 struct resource_table *table; 902 int ret, tablesz; 903 904 if (rproc_fw_sanity_check(rproc, fw) < 0) 905 goto out; 906 907 /* look for the resource table */ 908 table = rproc_find_rsc_table(rproc, fw, &tablesz); 909 if (!table) 910 goto out; 911 912 rproc->table_csum = crc32(0, table, tablesz); 913 914 /* 915 * Create a copy of the resource table. When a virtio device starts 916 * and calls vring_new_virtqueue() the address of the allocated vring 917 * will be stored in the cached_table. Before the device is started, 918 * cached_table will be copied into devic memory. 919 */ 920 rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL); 921 if (!rproc->cached_table) 922 goto out; 923 924 rproc->table_ptr = rproc->cached_table; 925 926 /* count the number of notify-ids */ 927 rproc->max_notifyid = -1; 928 ret = rproc_handle_resources(rproc, tablesz, 929 rproc_count_vrings_handler); 930 if (ret) 931 goto out; 932 933 /* look for virtio devices and register them */ 934 ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler); 935 936 out: 937 release_firmware(fw); 938 /* allow rproc_del() contexts, if any, to proceed */ 939 complete_all(&rproc->firmware_loading_complete); 940 } 941 942 static int rproc_add_virtio_devices(struct rproc *rproc) 943 { 944 int ret; 945 946 /* rproc_del() calls must wait until async loader completes */ 947 init_completion(&rproc->firmware_loading_complete); 948 949 /* 950 * We must retrieve early virtio configuration info from 951 * the firmware (e.g. whether to register a virtio device, 952 * what virtio features does it support, ...). 953 * 954 * We're initiating an asynchronous firmware loading, so we can 955 * be built-in kernel code, without hanging the boot process. 956 */ 957 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, 958 rproc->firmware, &rproc->dev, GFP_KERNEL, 959 rproc, rproc_fw_config_virtio); 960 if (ret < 0) { 961 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); 962 complete_all(&rproc->firmware_loading_complete); 963 } 964 965 return ret; 966 } 967 968 /** 969 * rproc_trigger_recovery() - recover a remoteproc 970 * @rproc: the remote processor 971 * 972 * The recovery is done by reseting all the virtio devices, that way all the 973 * rpmsg drivers will be reseted along with the remote processor making the 974 * remoteproc functional again. 975 * 976 * This function can sleep, so it cannot be called from atomic context. 977 */ 978 int rproc_trigger_recovery(struct rproc *rproc) 979 { 980 struct rproc_vdev *rvdev, *rvtmp; 981 982 dev_err(&rproc->dev, "recovering %s\n", rproc->name); 983 984 init_completion(&rproc->crash_comp); 985 986 /* clean up remote vdev entries */ 987 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) 988 rproc_remove_virtio_dev(rvdev); 989 990 /* wait until there is no more rproc users */ 991 wait_for_completion(&rproc->crash_comp); 992 993 /* Free the copy of the resource table */ 994 kfree(rproc->cached_table); 995 996 return rproc_add_virtio_devices(rproc); 997 } 998 999 /** 1000 * rproc_crash_handler_work() - handle a crash 1001 * 1002 * This function needs to handle everything related to a crash, like cpu 1003 * registers and stack dump, information to help to debug the fatal error, etc. 1004 */ 1005 static void rproc_crash_handler_work(struct work_struct *work) 1006 { 1007 struct rproc *rproc = container_of(work, struct rproc, crash_handler); 1008 struct device *dev = &rproc->dev; 1009 1010 dev_dbg(dev, "enter %s\n", __func__); 1011 1012 mutex_lock(&rproc->lock); 1013 1014 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) { 1015 /* handle only the first crash detected */ 1016 mutex_unlock(&rproc->lock); 1017 return; 1018 } 1019 1020 rproc->state = RPROC_CRASHED; 1021 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, 1022 rproc->name); 1023 1024 mutex_unlock(&rproc->lock); 1025 1026 if (!rproc->recovery_disabled) 1027 rproc_trigger_recovery(rproc); 1028 } 1029 1030 /** 1031 * __rproc_boot() - boot a remote processor 1032 * @rproc: handle of a remote processor 1033 * @wait: wait for rproc registration completion 1034 * 1035 * Boot a remote processor (i.e. load its firmware, power it on, ...). 1036 * 1037 * If the remote processor is already powered on, this function immediately 1038 * returns (successfully). 1039 * 1040 * Returns 0 on success, and an appropriate error value otherwise. 1041 */ 1042 static int __rproc_boot(struct rproc *rproc, bool wait) 1043 { 1044 const struct firmware *firmware_p; 1045 struct device *dev; 1046 int ret; 1047 1048 if (!rproc) { 1049 pr_err("invalid rproc handle\n"); 1050 return -EINVAL; 1051 } 1052 1053 dev = &rproc->dev; 1054 1055 ret = mutex_lock_interruptible(&rproc->lock); 1056 if (ret) { 1057 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1058 return ret; 1059 } 1060 1061 /* loading a firmware is required */ 1062 if (!rproc->firmware) { 1063 dev_err(dev, "%s: no firmware to load\n", __func__); 1064 ret = -EINVAL; 1065 goto unlock_mutex; 1066 } 1067 1068 /* prevent underlying implementation from being removed */ 1069 if (!try_module_get(dev->parent->driver->owner)) { 1070 dev_err(dev, "%s: can't get owner\n", __func__); 1071 ret = -EINVAL; 1072 goto unlock_mutex; 1073 } 1074 1075 /* skip the boot process if rproc is already powered up */ 1076 if (atomic_inc_return(&rproc->power) > 1) { 1077 ret = 0; 1078 goto unlock_mutex; 1079 } 1080 1081 dev_info(dev, "powering up %s\n", rproc->name); 1082 1083 /* load firmware */ 1084 ret = request_firmware(&firmware_p, rproc->firmware, dev); 1085 if (ret < 0) { 1086 dev_err(dev, "request_firmware failed: %d\n", ret); 1087 goto downref_rproc; 1088 } 1089 1090 /* if rproc virtio is not yet configured, wait */ 1091 if (wait) 1092 wait_for_completion(&rproc->firmware_loading_complete); 1093 1094 ret = rproc_fw_boot(rproc, firmware_p); 1095 1096 release_firmware(firmware_p); 1097 1098 downref_rproc: 1099 if (ret) { 1100 module_put(dev->parent->driver->owner); 1101 atomic_dec(&rproc->power); 1102 } 1103 unlock_mutex: 1104 mutex_unlock(&rproc->lock); 1105 return ret; 1106 } 1107 1108 /** 1109 * rproc_boot() - boot a remote processor 1110 * @rproc: handle of a remote processor 1111 */ 1112 int rproc_boot(struct rproc *rproc) 1113 { 1114 return __rproc_boot(rproc, true); 1115 } 1116 EXPORT_SYMBOL(rproc_boot); 1117 1118 /** 1119 * rproc_boot_nowait() - boot a remote processor 1120 * @rproc: handle of a remote processor 1121 * 1122 * Same as rproc_boot() but don't wait for rproc registration completion 1123 */ 1124 int rproc_boot_nowait(struct rproc *rproc) 1125 { 1126 return __rproc_boot(rproc, false); 1127 } 1128 1129 /** 1130 * rproc_shutdown() - power off the remote processor 1131 * @rproc: the remote processor 1132 * 1133 * Power off a remote processor (previously booted with rproc_boot()). 1134 * 1135 * In case @rproc is still being used by an additional user(s), then 1136 * this function will just decrement the power refcount and exit, 1137 * without really powering off the device. 1138 * 1139 * Every call to rproc_boot() must (eventually) be accompanied by a call 1140 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. 1141 * 1142 * Notes: 1143 * - we're not decrementing the rproc's refcount, only the power refcount. 1144 * which means that the @rproc handle stays valid even after rproc_shutdown() 1145 * returns, and users can still use it with a subsequent rproc_boot(), if 1146 * needed. 1147 */ 1148 void rproc_shutdown(struct rproc *rproc) 1149 { 1150 struct device *dev = &rproc->dev; 1151 int ret; 1152 1153 ret = mutex_lock_interruptible(&rproc->lock); 1154 if (ret) { 1155 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); 1156 return; 1157 } 1158 1159 /* if the remote proc is still needed, bail out */ 1160 if (!atomic_dec_and_test(&rproc->power)) 1161 goto out; 1162 1163 /* power off the remote processor */ 1164 ret = rproc->ops->stop(rproc); 1165 if (ret) { 1166 atomic_inc(&rproc->power); 1167 dev_err(dev, "can't stop rproc: %d\n", ret); 1168 goto out; 1169 } 1170 1171 /* clean up all acquired resources */ 1172 rproc_resource_cleanup(rproc); 1173 1174 rproc_disable_iommu(rproc); 1175 1176 /* Give the next start a clean resource table */ 1177 rproc->table_ptr = rproc->cached_table; 1178 1179 /* if in crash state, unlock crash handler */ 1180 if (rproc->state == RPROC_CRASHED) 1181 complete_all(&rproc->crash_comp); 1182 1183 rproc->state = RPROC_OFFLINE; 1184 1185 dev_info(dev, "stopped remote processor %s\n", rproc->name); 1186 1187 out: 1188 mutex_unlock(&rproc->lock); 1189 if (!ret) 1190 module_put(dev->parent->driver->owner); 1191 } 1192 EXPORT_SYMBOL(rproc_shutdown); 1193 1194 /** 1195 * rproc_get_by_phandle() - find a remote processor by phandle 1196 * @phandle: phandle to the rproc 1197 * 1198 * Finds an rproc handle using the remote processor's phandle, and then 1199 * return a handle to the rproc. 1200 * 1201 * This function increments the remote processor's refcount, so always 1202 * use rproc_put() to decrement it back once rproc isn't needed anymore. 1203 * 1204 * Returns the rproc handle on success, and NULL on failure. 1205 */ 1206 #ifdef CONFIG_OF 1207 struct rproc *rproc_get_by_phandle(phandle phandle) 1208 { 1209 struct rproc *rproc = NULL, *r; 1210 struct device_node *np; 1211 1212 np = of_find_node_by_phandle(phandle); 1213 if (!np) 1214 return NULL; 1215 1216 mutex_lock(&rproc_list_mutex); 1217 list_for_each_entry(r, &rproc_list, node) { 1218 if (r->dev.parent && r->dev.parent->of_node == np) { 1219 rproc = r; 1220 get_device(&rproc->dev); 1221 break; 1222 } 1223 } 1224 mutex_unlock(&rproc_list_mutex); 1225 1226 of_node_put(np); 1227 1228 return rproc; 1229 } 1230 #else 1231 struct rproc *rproc_get_by_phandle(phandle phandle) 1232 { 1233 return NULL; 1234 } 1235 #endif 1236 EXPORT_SYMBOL(rproc_get_by_phandle); 1237 1238 /** 1239 * rproc_add() - register a remote processor 1240 * @rproc: the remote processor handle to register 1241 * 1242 * Registers @rproc with the remoteproc framework, after it has been 1243 * allocated with rproc_alloc(). 1244 * 1245 * This is called by the platform-specific rproc implementation, whenever 1246 * a new remote processor device is probed. 1247 * 1248 * Returns 0 on success and an appropriate error code otherwise. 1249 * 1250 * Note: this function initiates an asynchronous firmware loading 1251 * context, which will look for virtio devices supported by the rproc's 1252 * firmware. 1253 * 1254 * If found, those virtio devices will be created and added, so as a result 1255 * of registering this remote processor, additional virtio drivers might be 1256 * probed. 1257 */ 1258 int rproc_add(struct rproc *rproc) 1259 { 1260 struct device *dev = &rproc->dev; 1261 int ret; 1262 1263 ret = device_add(dev); 1264 if (ret < 0) 1265 return ret; 1266 1267 dev_info(dev, "%s is available\n", rproc->name); 1268 1269 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n"); 1270 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n"); 1271 1272 /* create debugfs entries */ 1273 rproc_create_debug_dir(rproc); 1274 ret = rproc_add_virtio_devices(rproc); 1275 if (ret < 0) 1276 return ret; 1277 1278 /* expose to rproc_get_by_phandle users */ 1279 mutex_lock(&rproc_list_mutex); 1280 list_add(&rproc->node, &rproc_list); 1281 mutex_unlock(&rproc_list_mutex); 1282 1283 return 0; 1284 } 1285 EXPORT_SYMBOL(rproc_add); 1286 1287 /** 1288 * rproc_type_release() - release a remote processor instance 1289 * @dev: the rproc's device 1290 * 1291 * This function should _never_ be called directly. 1292 * 1293 * It will be called by the driver core when no one holds a valid pointer 1294 * to @dev anymore. 1295 */ 1296 static void rproc_type_release(struct device *dev) 1297 { 1298 struct rproc *rproc = container_of(dev, struct rproc, dev); 1299 1300 dev_info(&rproc->dev, "releasing %s\n", rproc->name); 1301 1302 rproc_delete_debug_dir(rproc); 1303 1304 idr_destroy(&rproc->notifyids); 1305 1306 if (rproc->index >= 0) 1307 ida_simple_remove(&rproc_dev_index, rproc->index); 1308 1309 kfree(rproc); 1310 } 1311 1312 static struct device_type rproc_type = { 1313 .name = "remoteproc", 1314 .release = rproc_type_release, 1315 }; 1316 1317 /** 1318 * rproc_alloc() - allocate a remote processor handle 1319 * @dev: the underlying device 1320 * @name: name of this remote processor 1321 * @ops: platform-specific handlers (mainly start/stop) 1322 * @firmware: name of firmware file to load, can be NULL 1323 * @len: length of private data needed by the rproc driver (in bytes) 1324 * 1325 * Allocates a new remote processor handle, but does not register 1326 * it yet. if @firmware is NULL, a default name is used. 1327 * 1328 * This function should be used by rproc implementations during initialization 1329 * of the remote processor. 1330 * 1331 * After creating an rproc handle using this function, and when ready, 1332 * implementations should then call rproc_add() to complete 1333 * the registration of the remote processor. 1334 * 1335 * On success the new rproc is returned, and on failure, NULL. 1336 * 1337 * Note: _never_ directly deallocate @rproc, even if it was not registered 1338 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put(). 1339 */ 1340 struct rproc *rproc_alloc(struct device *dev, const char *name, 1341 const struct rproc_ops *ops, 1342 const char *firmware, int len) 1343 { 1344 struct rproc *rproc; 1345 char *p, *template = "rproc-%s-fw"; 1346 int name_len = 0; 1347 1348 if (!dev || !name || !ops) 1349 return NULL; 1350 1351 if (!firmware) 1352 /* 1353 * Make room for default firmware name (minus %s plus '\0'). 1354 * If the caller didn't pass in a firmware name then 1355 * construct a default name. We're already glomming 'len' 1356 * bytes onto the end of the struct rproc allocation, so do 1357 * a few more for the default firmware name (but only if 1358 * the caller doesn't pass one). 1359 */ 1360 name_len = strlen(name) + strlen(template) - 2 + 1; 1361 1362 rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL); 1363 if (!rproc) 1364 return NULL; 1365 1366 if (!firmware) { 1367 p = (char *)rproc + sizeof(struct rproc) + len; 1368 snprintf(p, name_len, template, name); 1369 } else { 1370 p = (char *)firmware; 1371 } 1372 1373 rproc->firmware = p; 1374 rproc->name = name; 1375 rproc->ops = ops; 1376 rproc->priv = &rproc[1]; 1377 1378 device_initialize(&rproc->dev); 1379 rproc->dev.parent = dev; 1380 rproc->dev.type = &rproc_type; 1381 1382 /* Assign a unique device index and name */ 1383 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); 1384 if (rproc->index < 0) { 1385 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); 1386 put_device(&rproc->dev); 1387 return NULL; 1388 } 1389 1390 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); 1391 1392 atomic_set(&rproc->power, 0); 1393 1394 /* Set ELF as the default fw_ops handler */ 1395 rproc->fw_ops = &rproc_elf_fw_ops; 1396 1397 mutex_init(&rproc->lock); 1398 1399 idr_init(&rproc->notifyids); 1400 1401 INIT_LIST_HEAD(&rproc->carveouts); 1402 INIT_LIST_HEAD(&rproc->mappings); 1403 INIT_LIST_HEAD(&rproc->traces); 1404 INIT_LIST_HEAD(&rproc->rvdevs); 1405 1406 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); 1407 init_completion(&rproc->crash_comp); 1408 1409 rproc->state = RPROC_OFFLINE; 1410 1411 return rproc; 1412 } 1413 EXPORT_SYMBOL(rproc_alloc); 1414 1415 /** 1416 * rproc_put() - unroll rproc_alloc() 1417 * @rproc: the remote processor handle 1418 * 1419 * This function decrements the rproc dev refcount. 1420 * 1421 * If no one holds any reference to rproc anymore, then its refcount would 1422 * now drop to zero, and it would be freed. 1423 */ 1424 void rproc_put(struct rproc *rproc) 1425 { 1426 put_device(&rproc->dev); 1427 } 1428 EXPORT_SYMBOL(rproc_put); 1429 1430 /** 1431 * rproc_del() - unregister a remote processor 1432 * @rproc: rproc handle to unregister 1433 * 1434 * This function should be called when the platform specific rproc 1435 * implementation decides to remove the rproc device. it should 1436 * _only_ be called if a previous invocation of rproc_add() 1437 * has completed successfully. 1438 * 1439 * After rproc_del() returns, @rproc isn't freed yet, because 1440 * of the outstanding reference created by rproc_alloc. To decrement that 1441 * one last refcount, one still needs to call rproc_put(). 1442 * 1443 * Returns 0 on success and -EINVAL if @rproc isn't valid. 1444 */ 1445 int rproc_del(struct rproc *rproc) 1446 { 1447 struct rproc_vdev *rvdev, *tmp; 1448 1449 if (!rproc) 1450 return -EINVAL; 1451 1452 /* if rproc is just being registered, wait */ 1453 wait_for_completion(&rproc->firmware_loading_complete); 1454 1455 /* clean up remote vdev entries */ 1456 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node) 1457 rproc_remove_virtio_dev(rvdev); 1458 1459 /* Free the copy of the resource table */ 1460 kfree(rproc->cached_table); 1461 1462 /* the rproc is downref'ed as soon as it's removed from the klist */ 1463 mutex_lock(&rproc_list_mutex); 1464 list_del(&rproc->node); 1465 mutex_unlock(&rproc_list_mutex); 1466 1467 device_del(&rproc->dev); 1468 1469 return 0; 1470 } 1471 EXPORT_SYMBOL(rproc_del); 1472 1473 /** 1474 * rproc_report_crash() - rproc crash reporter function 1475 * @rproc: remote processor 1476 * @type: crash type 1477 * 1478 * This function must be called every time a crash is detected by the low-level 1479 * drivers implementing a specific remoteproc. This should not be called from a 1480 * non-remoteproc driver. 1481 * 1482 * This function can be called from atomic/interrupt context. 1483 */ 1484 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) 1485 { 1486 if (!rproc) { 1487 pr_err("NULL rproc pointer\n"); 1488 return; 1489 } 1490 1491 dev_err(&rproc->dev, "crash detected in %s: type %s\n", 1492 rproc->name, rproc_crash_to_string(type)); 1493 1494 /* create a new task to handle the error */ 1495 schedule_work(&rproc->crash_handler); 1496 } 1497 EXPORT_SYMBOL(rproc_report_crash); 1498 1499 static int __init remoteproc_init(void) 1500 { 1501 rproc_init_debugfs(); 1502 1503 return 0; 1504 } 1505 module_init(remoteproc_init); 1506 1507 static void __exit remoteproc_exit(void) 1508 { 1509 ida_destroy(&rproc_dev_index); 1510 1511 rproc_exit_debugfs(); 1512 } 1513 module_exit(remoteproc_exit); 1514 1515 MODULE_LICENSE("GPL v2"); 1516 MODULE_DESCRIPTION("Generic Remote Processor Framework"); 1517