1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * PRU-ICSS remoteproc driver for various TI SoCs 4 * 5 * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/ 6 * 7 * Author(s): 8 * Suman Anna <s-anna@ti.com> 9 * Andrew F. Davis <afd@ti.com> 10 * Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments 11 */ 12 13 #include <linux/bitops.h> 14 #include <linux/debugfs.h> 15 #include <linux/irqdomain.h> 16 #include <linux/module.h> 17 #include <linux/of_device.h> 18 #include <linux/of_irq.h> 19 #include <linux/pruss_driver.h> 20 #include <linux/remoteproc.h> 21 22 #include "remoteproc_internal.h" 23 #include "remoteproc_elf_helpers.h" 24 #include "pru_rproc.h" 25 26 /* PRU_ICSS_PRU_CTRL registers */ 27 #define PRU_CTRL_CTRL 0x0000 28 #define PRU_CTRL_STS 0x0004 29 #define PRU_CTRL_WAKEUP_EN 0x0008 30 #define PRU_CTRL_CYCLE 0x000C 31 #define PRU_CTRL_STALL 0x0010 32 #define PRU_CTRL_CTBIR0 0x0020 33 #define PRU_CTRL_CTBIR1 0x0024 34 #define PRU_CTRL_CTPPR0 0x0028 35 #define PRU_CTRL_CTPPR1 0x002C 36 37 /* CTRL register bit-fields */ 38 #define CTRL_CTRL_SOFT_RST_N BIT(0) 39 #define CTRL_CTRL_EN BIT(1) 40 #define CTRL_CTRL_SLEEPING BIT(2) 41 #define CTRL_CTRL_CTR_EN BIT(3) 42 #define CTRL_CTRL_SINGLE_STEP BIT(8) 43 #define CTRL_CTRL_RUNSTATE BIT(15) 44 45 /* PRU_ICSS_PRU_DEBUG registers */ 46 #define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4) 47 #define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4) 48 49 /* PRU/RTU/Tx_PRU Core IRAM address masks */ 50 #define PRU_IRAM_ADDR_MASK 0x3ffff 51 #define PRU0_IRAM_ADDR_MASK 0x34000 52 #define PRU1_IRAM_ADDR_MASK 0x38000 53 #define RTU0_IRAM_ADDR_MASK 0x4000 54 #define RTU1_IRAM_ADDR_MASK 0x6000 55 #define TX_PRU0_IRAM_ADDR_MASK 0xa000 56 #define TX_PRU1_IRAM_ADDR_MASK 0xc000 57 58 /* PRU device addresses for various type of PRU RAMs */ 59 #define PRU_IRAM_DA 0 /* Instruction RAM */ 60 #define PRU_PDRAM_DA 0 /* Primary Data RAM */ 61 #define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */ 62 #define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */ 63 64 #define MAX_PRU_SYS_EVENTS 160 65 66 /** 67 * enum pru_iomem - PRU core memory/register range identifiers 68 * 69 * @PRU_IOMEM_IRAM: PRU Instruction RAM range 70 * @PRU_IOMEM_CTRL: PRU Control register range 71 * @PRU_IOMEM_DEBUG: PRU Debug register range 72 * @PRU_IOMEM_MAX: just keep this one at the end 73 */ 74 enum pru_iomem { 75 PRU_IOMEM_IRAM = 0, 76 PRU_IOMEM_CTRL, 77 PRU_IOMEM_DEBUG, 78 PRU_IOMEM_MAX, 79 }; 80 81 /** 82 * enum pru_type - PRU core type identifier 83 * 84 * @PRU_TYPE_PRU: Programmable Real-time Unit 85 * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit 86 * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit 87 * @PRU_TYPE_MAX: just keep this one at the end 88 */ 89 enum pru_type { 90 PRU_TYPE_PRU = 0, 91 PRU_TYPE_RTU, 92 PRU_TYPE_TX_PRU, 93 PRU_TYPE_MAX, 94 }; 95 96 /** 97 * struct pru_private_data - device data for a PRU core 98 * @type: type of the PRU core (PRU, RTU, Tx_PRU) 99 * @is_k3: flag used to identify the need for special load handling 100 */ 101 struct pru_private_data { 102 enum pru_type type; 103 unsigned int is_k3 : 1; 104 }; 105 106 /** 107 * struct pru_rproc - PRU remoteproc structure 108 * @id: id of the PRU core within the PRUSS 109 * @dev: PRU core device pointer 110 * @pruss: back-reference to parent PRUSS structure 111 * @rproc: remoteproc pointer for this PRU core 112 * @data: PRU core specific data 113 * @mem_regions: data for each of the PRU memory regions 114 * @fw_name: name of firmware image used during loading 115 * @mapped_irq: virtual interrupt numbers of created fw specific mapping 116 * @pru_interrupt_map: pointer to interrupt mapping description (firmware) 117 * @pru_interrupt_map_sz: pru_interrupt_map size 118 * @dbg_single_step: debug state variable to set PRU into single step mode 119 * @dbg_continuous: debug state variable to restore PRU execution mode 120 * @evt_count: number of mapped events 121 */ 122 struct pru_rproc { 123 int id; 124 struct device *dev; 125 struct pruss *pruss; 126 struct rproc *rproc; 127 const struct pru_private_data *data; 128 struct pruss_mem_region mem_regions[PRU_IOMEM_MAX]; 129 const char *fw_name; 130 unsigned int *mapped_irq; 131 struct pru_irq_rsc *pru_interrupt_map; 132 size_t pru_interrupt_map_sz; 133 u32 dbg_single_step; 134 u32 dbg_continuous; 135 u8 evt_count; 136 }; 137 138 static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg) 139 { 140 return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg); 141 } 142 143 static inline 144 void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val) 145 { 146 writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg); 147 } 148 149 static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg) 150 { 151 return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg); 152 } 153 154 static int regs_show(struct seq_file *s, void *data) 155 { 156 struct rproc *rproc = s->private; 157 struct pru_rproc *pru = rproc->priv; 158 int i, nregs = 32; 159 u32 pru_sts; 160 int pru_is_running; 161 162 seq_puts(s, "============== Control Registers ==============\n"); 163 seq_printf(s, "CTRL := 0x%08x\n", 164 pru_control_read_reg(pru, PRU_CTRL_CTRL)); 165 pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS); 166 seq_printf(s, "STS (PC) := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2); 167 seq_printf(s, "WAKEUP_EN := 0x%08x\n", 168 pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN)); 169 seq_printf(s, "CYCLE := 0x%08x\n", 170 pru_control_read_reg(pru, PRU_CTRL_CYCLE)); 171 seq_printf(s, "STALL := 0x%08x\n", 172 pru_control_read_reg(pru, PRU_CTRL_STALL)); 173 seq_printf(s, "CTBIR0 := 0x%08x\n", 174 pru_control_read_reg(pru, PRU_CTRL_CTBIR0)); 175 seq_printf(s, "CTBIR1 := 0x%08x\n", 176 pru_control_read_reg(pru, PRU_CTRL_CTBIR1)); 177 seq_printf(s, "CTPPR0 := 0x%08x\n", 178 pru_control_read_reg(pru, PRU_CTRL_CTPPR0)); 179 seq_printf(s, "CTPPR1 := 0x%08x\n", 180 pru_control_read_reg(pru, PRU_CTRL_CTPPR1)); 181 182 seq_puts(s, "=============== Debug Registers ===============\n"); 183 pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) & 184 CTRL_CTRL_RUNSTATE; 185 if (pru_is_running) { 186 seq_puts(s, "PRU is executing, cannot print/access debug registers.\n"); 187 return 0; 188 } 189 190 for (i = 0; i < nregs; i++) { 191 seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n", 192 i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)), 193 i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i))); 194 } 195 196 return 0; 197 } 198 DEFINE_SHOW_ATTRIBUTE(regs); 199 200 /* 201 * Control PRU single-step mode 202 * 203 * This is a debug helper function used for controlling the single-step 204 * mode of the PRU. The PRU Debug registers are not accessible when the 205 * PRU is in RUNNING state. 206 * 207 * Writing a non-zero value sets the PRU into single-step mode irrespective 208 * of its previous state. The PRU mode is saved only on the first set into 209 * a single-step mode. Writing a zero value will restore the PRU into its 210 * original mode. 211 */ 212 static int pru_rproc_debug_ss_set(void *data, u64 val) 213 { 214 struct rproc *rproc = data; 215 struct pru_rproc *pru = rproc->priv; 216 u32 reg_val; 217 218 val = val ? 1 : 0; 219 if (!val && !pru->dbg_single_step) 220 return 0; 221 222 reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL); 223 224 if (val && !pru->dbg_single_step) 225 pru->dbg_continuous = reg_val; 226 227 if (val) 228 reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN; 229 else 230 reg_val = pru->dbg_continuous; 231 232 pru->dbg_single_step = val; 233 pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val); 234 235 return 0; 236 } 237 238 static int pru_rproc_debug_ss_get(void *data, u64 *val) 239 { 240 struct rproc *rproc = data; 241 struct pru_rproc *pru = rproc->priv; 242 243 *val = pru->dbg_single_step; 244 245 return 0; 246 } 247 DEFINE_SIMPLE_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get, 248 pru_rproc_debug_ss_set, "%llu\n"); 249 250 /* 251 * Create PRU-specific debugfs entries 252 * 253 * The entries are created only if the parent remoteproc debugfs directory 254 * exists, and will be cleaned up by the remoteproc core. 255 */ 256 static void pru_rproc_create_debug_entries(struct rproc *rproc) 257 { 258 if (!rproc->dbg_dir) 259 return; 260 261 debugfs_create_file("regs", 0400, rproc->dbg_dir, 262 rproc, ®s_fops); 263 debugfs_create_file("single_step", 0600, rproc->dbg_dir, 264 rproc, &pru_rproc_debug_ss_fops); 265 } 266 267 static void pru_dispose_irq_mapping(struct pru_rproc *pru) 268 { 269 while (pru->evt_count--) { 270 if (pru->mapped_irq[pru->evt_count] > 0) 271 irq_dispose_mapping(pru->mapped_irq[pru->evt_count]); 272 } 273 274 kfree(pru->mapped_irq); 275 } 276 277 /* 278 * Parse the custom PRU interrupt map resource and configure the INTC 279 * appropriately. 280 */ 281 static int pru_handle_intrmap(struct rproc *rproc) 282 { 283 struct device *dev = rproc->dev.parent; 284 struct pru_rproc *pru = rproc->priv; 285 struct pru_irq_rsc *rsc = pru->pru_interrupt_map; 286 struct irq_fwspec fwspec; 287 struct device_node *irq_parent; 288 int i, ret = 0; 289 290 /* not having pru_interrupt_map is not an error */ 291 if (!rsc) 292 return 0; 293 294 /* currently supporting only type 0 */ 295 if (rsc->type != 0) { 296 dev_err(dev, "unsupported rsc type: %d\n", rsc->type); 297 return -EINVAL; 298 } 299 300 if (rsc->num_evts > MAX_PRU_SYS_EVENTS) 301 return -EINVAL; 302 303 if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) != 304 pru->pru_interrupt_map_sz) 305 return -EINVAL; 306 307 pru->evt_count = rsc->num_evts; 308 pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int), 309 GFP_KERNEL); 310 if (!pru->mapped_irq) 311 return -ENOMEM; 312 313 /* 314 * parse and fill in system event to interrupt channel and 315 * channel-to-host mapping 316 */ 317 irq_parent = of_irq_find_parent(pru->dev->of_node); 318 if (!irq_parent) { 319 kfree(pru->mapped_irq); 320 return -ENODEV; 321 } 322 323 fwspec.fwnode = of_node_to_fwnode(irq_parent); 324 fwspec.param_count = 3; 325 for (i = 0; i < pru->evt_count; i++) { 326 fwspec.param[0] = rsc->pru_intc_map[i].event; 327 fwspec.param[1] = rsc->pru_intc_map[i].chnl; 328 fwspec.param[2] = rsc->pru_intc_map[i].host; 329 330 dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n", 331 i, fwspec.param[0], fwspec.param[1], fwspec.param[2]); 332 333 pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec); 334 if (!pru->mapped_irq[i]) { 335 dev_err(dev, "failed to get virq\n"); 336 ret = pru->mapped_irq[i]; 337 goto map_fail; 338 } 339 } 340 341 return ret; 342 343 map_fail: 344 pru_dispose_irq_mapping(pru); 345 346 return ret; 347 } 348 349 static int pru_rproc_start(struct rproc *rproc) 350 { 351 struct device *dev = &rproc->dev; 352 struct pru_rproc *pru = rproc->priv; 353 const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; 354 u32 val; 355 int ret; 356 357 dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n", 358 names[pru->data->type], pru->id, (rproc->bootaddr >> 2)); 359 360 ret = pru_handle_intrmap(rproc); 361 /* 362 * reset references to pru interrupt map - they will stop being valid 363 * after rproc_start returns 364 */ 365 pru->pru_interrupt_map = NULL; 366 pru->pru_interrupt_map_sz = 0; 367 if (ret) 368 return ret; 369 370 val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16); 371 pru_control_write_reg(pru, PRU_CTRL_CTRL, val); 372 373 return 0; 374 } 375 376 static int pru_rproc_stop(struct rproc *rproc) 377 { 378 struct device *dev = &rproc->dev; 379 struct pru_rproc *pru = rproc->priv; 380 const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; 381 u32 val; 382 383 dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id); 384 385 val = pru_control_read_reg(pru, PRU_CTRL_CTRL); 386 val &= ~CTRL_CTRL_EN; 387 pru_control_write_reg(pru, PRU_CTRL_CTRL, val); 388 389 /* dispose irq mapping - new firmware can provide new mapping */ 390 if (pru->mapped_irq) 391 pru_dispose_irq_mapping(pru); 392 393 return 0; 394 } 395 396 /* 397 * Convert PRU device address (data spaces only) to kernel virtual address. 398 * 399 * Each PRU has access to all data memories within the PRUSS, accessible at 400 * different ranges. So, look through both its primary and secondary Data 401 * RAMs as well as any shared Data RAM to convert a PRU device address to 402 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data 403 * RAM1 is primary Data RAM for PRU1. 404 */ 405 static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len) 406 { 407 struct pruss_mem_region dram0, dram1, shrd_ram; 408 struct pruss *pruss = pru->pruss; 409 u32 offset; 410 void *va = NULL; 411 412 if (len == 0) 413 return NULL; 414 415 dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0]; 416 dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1]; 417 /* PRU1 has its local RAM addresses reversed */ 418 if (pru->id == 1) 419 swap(dram0, dram1); 420 shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2]; 421 422 if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) { 423 offset = da - PRU_PDRAM_DA; 424 va = (__force void *)(dram0.va + offset); 425 } else if (da >= PRU_SDRAM_DA && 426 da + len <= PRU_SDRAM_DA + dram1.size) { 427 offset = da - PRU_SDRAM_DA; 428 va = (__force void *)(dram1.va + offset); 429 } else if (da >= PRU_SHRDRAM_DA && 430 da + len <= PRU_SHRDRAM_DA + shrd_ram.size) { 431 offset = da - PRU_SHRDRAM_DA; 432 va = (__force void *)(shrd_ram.va + offset); 433 } 434 435 return va; 436 } 437 438 /* 439 * Convert PRU device address (instruction space) to kernel virtual address. 440 * 441 * A PRU does not have an unified address space. Each PRU has its very own 442 * private Instruction RAM, and its device address is identical to that of 443 * its primary Data RAM device address. 444 */ 445 static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len) 446 { 447 u32 offset; 448 void *va = NULL; 449 450 if (len == 0) 451 return NULL; 452 453 /* 454 * GNU binutils do not support multiple address spaces. The GNU 455 * linker's default linker script places IRAM at an arbitrary high 456 * offset, in order to differentiate it from DRAM. Hence we need to 457 * strip the artificial offset in the IRAM addresses coming from the 458 * ELF file. 459 * 460 * The TI proprietary linker would never set those higher IRAM address 461 * bits anyway. PRU architecture limits the program counter to 16-bit 462 * word-address range. This in turn corresponds to 18-bit IRAM 463 * byte-address range for ELF. 464 * 465 * Two more bits are added just in case to make the final 20-bit mask. 466 * Idea is to have a safeguard in case TI decides to add banking 467 * in future SoCs. 468 */ 469 da &= 0xfffff; 470 471 if (da >= PRU_IRAM_DA && 472 da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) { 473 offset = da - PRU_IRAM_DA; 474 va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va + 475 offset); 476 } 477 478 return va; 479 } 480 481 /* 482 * Provide address translations for only PRU Data RAMs through the remoteproc 483 * core for any PRU client drivers. The PRU Instruction RAM access is restricted 484 * only to the PRU loader code. 485 */ 486 static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) 487 { 488 struct pru_rproc *pru = rproc->priv; 489 490 return pru_d_da_to_va(pru, da, len); 491 } 492 493 /* PRU-specific address translator used by PRU loader. */ 494 static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram) 495 { 496 struct pru_rproc *pru = rproc->priv; 497 void *va; 498 499 if (is_iram) 500 va = pru_i_da_to_va(pru, da, len); 501 else 502 va = pru_d_da_to_va(pru, da, len); 503 504 return va; 505 } 506 507 static struct rproc_ops pru_rproc_ops = { 508 .start = pru_rproc_start, 509 .stop = pru_rproc_stop, 510 .da_to_va = pru_rproc_da_to_va, 511 }; 512 513 /* 514 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores 515 * 516 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM 517 * memories, that is not seen on previous generation SoCs. The data is reflected 518 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned 519 * copies result in all the other pre-existing bytes zeroed out within that 520 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the 521 * IRAM memory port interface does not allow any 8-byte copies (as commonly used 522 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory 523 * ports do not show this behavior. 524 */ 525 static int pru_rproc_memcpy(void *dest, const void *src, size_t count) 526 { 527 const u32 *s = src; 528 u32 *d = dest; 529 size_t size = count / 4; 530 u32 *tmp_src = NULL; 531 532 /* 533 * TODO: relax limitation of 4-byte aligned dest addresses and copy 534 * sizes 535 */ 536 if ((long)dest % 4 || count % 4) 537 return -EINVAL; 538 539 /* src offsets in ELF firmware image can be non-aligned */ 540 if ((long)src % 4) { 541 tmp_src = kmemdup(src, count, GFP_KERNEL); 542 if (!tmp_src) 543 return -ENOMEM; 544 s = tmp_src; 545 } 546 547 while (size--) 548 *d++ = *s++; 549 550 kfree(tmp_src); 551 552 return 0; 553 } 554 555 static int 556 pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) 557 { 558 struct pru_rproc *pru = rproc->priv; 559 struct device *dev = &rproc->dev; 560 struct elf32_hdr *ehdr; 561 struct elf32_phdr *phdr; 562 int i, ret = 0; 563 const u8 *elf_data = fw->data; 564 565 ehdr = (struct elf32_hdr *)elf_data; 566 phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); 567 568 /* go through the available ELF segments */ 569 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 570 u32 da = phdr->p_paddr; 571 u32 memsz = phdr->p_memsz; 572 u32 filesz = phdr->p_filesz; 573 u32 offset = phdr->p_offset; 574 bool is_iram; 575 void *ptr; 576 577 if (phdr->p_type != PT_LOAD || !filesz) 578 continue; 579 580 dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", 581 phdr->p_type, da, memsz, filesz); 582 583 if (filesz > memsz) { 584 dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", 585 filesz, memsz); 586 ret = -EINVAL; 587 break; 588 } 589 590 if (offset + filesz > fw->size) { 591 dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", 592 offset + filesz, fw->size); 593 ret = -EINVAL; 594 break; 595 } 596 597 /* grab the kernel address for this device address */ 598 is_iram = phdr->p_flags & PF_X; 599 ptr = pru_da_to_va(rproc, da, memsz, is_iram); 600 if (!ptr) { 601 dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); 602 ret = -EINVAL; 603 break; 604 } 605 606 if (pru->data->is_k3) { 607 ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset, 608 filesz); 609 if (ret) { 610 dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n", 611 da, memsz); 612 break; 613 } 614 } else { 615 memcpy(ptr, elf_data + phdr->p_offset, filesz); 616 } 617 618 /* skip the memzero logic performed by remoteproc ELF loader */ 619 } 620 621 return ret; 622 } 623 624 static const void * 625 pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw) 626 { 627 struct elf32_shdr *shdr, *name_table_shdr; 628 const char *name_table; 629 const u8 *elf_data = fw->data; 630 struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data; 631 u16 shnum = ehdr->e_shnum; 632 u16 shstrndx = ehdr->e_shstrndx; 633 int i; 634 635 /* first, get the section header */ 636 shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff); 637 /* compute name table section header entry in shdr array */ 638 name_table_shdr = shdr + shstrndx; 639 /* finally, compute the name table section address in elf */ 640 name_table = elf_data + name_table_shdr->sh_offset; 641 642 for (i = 0; i < shnum; i++, shdr++) { 643 u32 size = shdr->sh_size; 644 u32 offset = shdr->sh_offset; 645 u32 name = shdr->sh_name; 646 647 if (strcmp(name_table + name, ".pru_irq_map")) 648 continue; 649 650 /* make sure we have the entire irq map */ 651 if (offset + size > fw->size || offset + size < size) { 652 dev_err(dev, ".pru_irq_map section truncated\n"); 653 return ERR_PTR(-EINVAL); 654 } 655 656 /* make sure irq map has at least the header */ 657 if (sizeof(struct pru_irq_rsc) > size) { 658 dev_err(dev, "header-less .pru_irq_map section\n"); 659 return ERR_PTR(-EINVAL); 660 } 661 662 return shdr; 663 } 664 665 dev_dbg(dev, "no .pru_irq_map section found for this fw\n"); 666 667 return NULL; 668 } 669 670 /* 671 * Use a custom parse_fw callback function for dealing with PRU firmware 672 * specific sections. 673 * 674 * The firmware blob can contain optional ELF sections: .resource_table section 675 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping 676 * description, which needs to be setup before powering on the PRU core. To 677 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the 678 * firmware linker) and therefore is not loaded to PRU memory. 679 */ 680 static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) 681 { 682 struct device *dev = &rproc->dev; 683 struct pru_rproc *pru = rproc->priv; 684 const u8 *elf_data = fw->data; 685 const void *shdr; 686 u8 class = fw_elf_get_class(fw); 687 u64 sh_offset; 688 int ret; 689 690 /* load optional rsc table */ 691 ret = rproc_elf_load_rsc_table(rproc, fw); 692 if (ret == -EINVAL) 693 dev_dbg(&rproc->dev, "no resource table found for this fw\n"); 694 else if (ret) 695 return ret; 696 697 /* find .pru_interrupt_map section, not having it is not an error */ 698 shdr = pru_rproc_find_interrupt_map(dev, fw); 699 if (IS_ERR(shdr)) 700 return PTR_ERR(shdr); 701 702 if (!shdr) 703 return 0; 704 705 /* preserve pointer to PRU interrupt map together with it size */ 706 sh_offset = elf_shdr_get_sh_offset(class, shdr); 707 pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset); 708 pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr); 709 710 return 0; 711 } 712 713 /* 714 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are 715 * always at a particular offset within the PRUSS address space. 716 */ 717 static int pru_rproc_set_id(struct pru_rproc *pru) 718 { 719 int ret = 0; 720 721 switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) { 722 case TX_PRU0_IRAM_ADDR_MASK: 723 fallthrough; 724 case RTU0_IRAM_ADDR_MASK: 725 fallthrough; 726 case PRU0_IRAM_ADDR_MASK: 727 pru->id = 0; 728 break; 729 case TX_PRU1_IRAM_ADDR_MASK: 730 fallthrough; 731 case RTU1_IRAM_ADDR_MASK: 732 fallthrough; 733 case PRU1_IRAM_ADDR_MASK: 734 pru->id = 1; 735 break; 736 default: 737 ret = -EINVAL; 738 } 739 740 return ret; 741 } 742 743 static int pru_rproc_probe(struct platform_device *pdev) 744 { 745 struct device *dev = &pdev->dev; 746 struct device_node *np = dev->of_node; 747 struct platform_device *ppdev = to_platform_device(dev->parent); 748 struct pru_rproc *pru; 749 const char *fw_name; 750 struct rproc *rproc = NULL; 751 struct resource *res; 752 int i, ret; 753 const struct pru_private_data *data; 754 const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" }; 755 756 data = of_device_get_match_data(&pdev->dev); 757 if (!data) 758 return -ENODEV; 759 760 ret = of_property_read_string(np, "firmware-name", &fw_name); 761 if (ret) { 762 dev_err(dev, "unable to retrieve firmware-name %d\n", ret); 763 return ret; 764 } 765 766 rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name, 767 sizeof(*pru)); 768 if (!rproc) { 769 dev_err(dev, "rproc_alloc failed\n"); 770 return -ENOMEM; 771 } 772 /* use a custom load function to deal with PRU-specific quirks */ 773 rproc->ops->load = pru_rproc_load_elf_segments; 774 775 /* use a custom parse function to deal with PRU-specific resources */ 776 rproc->ops->parse_fw = pru_rproc_parse_fw; 777 778 /* error recovery is not supported for PRUs */ 779 rproc->recovery_disabled = true; 780 781 /* 782 * rproc_add will auto-boot the processor normally, but this is not 783 * desired with PRU client driven boot-flow methodology. A PRU 784 * application/client driver will boot the corresponding PRU 785 * remote-processor as part of its state machine either through the 786 * remoteproc sysfs interface or through the equivalent kernel API. 787 */ 788 rproc->auto_boot = false; 789 790 pru = rproc->priv; 791 pru->dev = dev; 792 pru->data = data; 793 pru->pruss = platform_get_drvdata(ppdev); 794 pru->rproc = rproc; 795 pru->fw_name = fw_name; 796 797 for (i = 0; i < ARRAY_SIZE(mem_names); i++) { 798 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 799 mem_names[i]); 800 pru->mem_regions[i].va = devm_ioremap_resource(dev, res); 801 if (IS_ERR(pru->mem_regions[i].va)) { 802 dev_err(dev, "failed to parse and map memory resource %d %s\n", 803 i, mem_names[i]); 804 ret = PTR_ERR(pru->mem_regions[i].va); 805 return ret; 806 } 807 pru->mem_regions[i].pa = res->start; 808 pru->mem_regions[i].size = resource_size(res); 809 810 dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n", 811 mem_names[i], &pru->mem_regions[i].pa, 812 pru->mem_regions[i].size, pru->mem_regions[i].va); 813 } 814 815 ret = pru_rproc_set_id(pru); 816 if (ret < 0) 817 return ret; 818 819 platform_set_drvdata(pdev, rproc); 820 821 ret = devm_rproc_add(dev, pru->rproc); 822 if (ret) { 823 dev_err(dev, "rproc_add failed: %d\n", ret); 824 return ret; 825 } 826 827 pru_rproc_create_debug_entries(rproc); 828 829 dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np); 830 831 return 0; 832 } 833 834 static int pru_rproc_remove(struct platform_device *pdev) 835 { 836 struct device *dev = &pdev->dev; 837 struct rproc *rproc = platform_get_drvdata(pdev); 838 839 dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name); 840 841 return 0; 842 } 843 844 static const struct pru_private_data pru_data = { 845 .type = PRU_TYPE_PRU, 846 }; 847 848 static const struct pru_private_data k3_pru_data = { 849 .type = PRU_TYPE_PRU, 850 .is_k3 = 1, 851 }; 852 853 static const struct pru_private_data k3_rtu_data = { 854 .type = PRU_TYPE_RTU, 855 .is_k3 = 1, 856 }; 857 858 static const struct pru_private_data k3_tx_pru_data = { 859 .type = PRU_TYPE_TX_PRU, 860 .is_k3 = 1, 861 }; 862 863 static const struct of_device_id pru_rproc_match[] = { 864 { .compatible = "ti,am3356-pru", .data = &pru_data }, 865 { .compatible = "ti,am4376-pru", .data = &pru_data }, 866 { .compatible = "ti,am5728-pru", .data = &pru_data }, 867 { .compatible = "ti,k2g-pru", .data = &pru_data }, 868 { .compatible = "ti,am654-pru", .data = &k3_pru_data }, 869 { .compatible = "ti,am654-rtu", .data = &k3_rtu_data }, 870 { .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data }, 871 { .compatible = "ti,j721e-pru", .data = &k3_pru_data }, 872 { .compatible = "ti,j721e-rtu", .data = &k3_rtu_data }, 873 { .compatible = "ti,j721e-tx-pru", .data = &k3_tx_pru_data }, 874 {}, 875 }; 876 MODULE_DEVICE_TABLE(of, pru_rproc_match); 877 878 static struct platform_driver pru_rproc_driver = { 879 .driver = { 880 .name = "pru-rproc", 881 .of_match_table = pru_rproc_match, 882 .suppress_bind_attrs = true, 883 }, 884 .probe = pru_rproc_probe, 885 .remove = pru_rproc_remove, 886 }; 887 module_platform_driver(pru_rproc_driver); 888 889 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 890 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>"); 891 MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>"); 892 MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver"); 893 MODULE_LICENSE("GPL v2"); 894