1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI Keystone DSP remoteproc driver 4 * 5 * Copyright (C) 2015-2017 Texas Instruments Incorporated - http://www.ti.com/ 6 */ 7 8 #include <linux/module.h> 9 #include <linux/slab.h> 10 #include <linux/io.h> 11 #include <linux/interrupt.h> 12 #include <linux/platform_device.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/workqueue.h> 15 #include <linux/of_address.h> 16 #include <linux/of_reserved_mem.h> 17 #include <linux/gpio/consumer.h> 18 #include <linux/regmap.h> 19 #include <linux/mfd/syscon.h> 20 #include <linux/remoteproc.h> 21 #include <linux/reset.h> 22 23 #include "remoteproc_internal.h" 24 25 #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) 26 27 /** 28 * struct keystone_rproc_mem - internal memory structure 29 * @cpu_addr: MPU virtual address of the memory region 30 * @bus_addr: Bus address used to access the memory region 31 * @dev_addr: Device address of the memory region from DSP view 32 * @size: Size of the memory region 33 */ 34 struct keystone_rproc_mem { 35 void __iomem *cpu_addr; 36 phys_addr_t bus_addr; 37 u32 dev_addr; 38 size_t size; 39 }; 40 41 /** 42 * struct keystone_rproc - keystone remote processor driver structure 43 * @dev: cached device pointer 44 * @rproc: remoteproc device handle 45 * @mem: internal memory regions data 46 * @num_mems: number of internal memory regions 47 * @dev_ctrl: device control regmap handle 48 * @reset: reset control handle 49 * @boot_offset: boot register offset in @dev_ctrl regmap 50 * @irq_ring: irq entry for vring 51 * @irq_fault: irq entry for exception 52 * @kick_gpio: gpio used for virtio kicks 53 * @workqueue: workqueue for processing virtio interrupts 54 */ 55 struct keystone_rproc { 56 struct device *dev; 57 struct rproc *rproc; 58 struct keystone_rproc_mem *mem; 59 int num_mems; 60 struct regmap *dev_ctrl; 61 struct reset_control *reset; 62 struct gpio_desc *kick_gpio; 63 u32 boot_offset; 64 int irq_ring; 65 int irq_fault; 66 struct work_struct workqueue; 67 }; 68 69 /* Put the DSP processor into reset */ 70 static void keystone_rproc_dsp_reset(struct keystone_rproc *ksproc) 71 { 72 reset_control_assert(ksproc->reset); 73 } 74 75 /* Configure the boot address and boot the DSP processor */ 76 static int keystone_rproc_dsp_boot(struct keystone_rproc *ksproc, u32 boot_addr) 77 { 78 int ret; 79 80 if (boot_addr & (SZ_1K - 1)) { 81 dev_err(ksproc->dev, "invalid boot address 0x%x, must be aligned on a 1KB boundary\n", 82 boot_addr); 83 return -EINVAL; 84 } 85 86 ret = regmap_write(ksproc->dev_ctrl, ksproc->boot_offset, boot_addr); 87 if (ret) { 88 dev_err(ksproc->dev, "regmap_write of boot address failed, status = %d\n", 89 ret); 90 return ret; 91 } 92 93 reset_control_deassert(ksproc->reset); 94 95 return 0; 96 } 97 98 /* 99 * Process the remoteproc exceptions 100 * 101 * The exception reporting on Keystone DSP remote processors is very simple 102 * compared to the equivalent processors on the OMAP family, it is notified 103 * through a software-designed specific interrupt source in the IPC interrupt 104 * generation register. 105 * 106 * This function just invokes the rproc_report_crash to report the exception 107 * to the remoteproc driver core, to trigger a recovery. 108 */ 109 static irqreturn_t keystone_rproc_exception_interrupt(int irq, void *dev_id) 110 { 111 struct keystone_rproc *ksproc = dev_id; 112 113 rproc_report_crash(ksproc->rproc, RPROC_FATAL_ERROR); 114 115 return IRQ_HANDLED; 116 } 117 118 /* 119 * Main virtqueue message workqueue function 120 * 121 * This function is executed upon scheduling of the keystone remoteproc 122 * driver's workqueue. The workqueue is scheduled by the vring ISR handler. 123 * 124 * There is no payload message indicating the virtqueue index as is the 125 * case with mailbox-based implementations on OMAP family. As such, this 126 * handler processes both the Tx and Rx virtqueue indices on every invocation. 127 * The rproc_vq_interrupt function can detect if there are new unprocessed 128 * messages or not (returns IRQ_NONE vs IRQ_HANDLED), but there is no need 129 * to check for these return values. The index 0 triggering will process all 130 * pending Rx buffers, and the index 1 triggering will process all newly 131 * available Tx buffers and will wakeup any potentially blocked senders. 132 * 133 * NOTE: 134 * 1. A payload could be added by using some of the source bits in the 135 * IPC interrupt generation registers, but this would need additional 136 * changes to the overall IPC stack, and currently there are no benefits 137 * of adapting that approach. 138 * 2. The current logic is based on an inherent design assumption of supporting 139 * only 2 vrings, but this can be changed if needed. 140 */ 141 static void handle_event(struct work_struct *work) 142 { 143 struct keystone_rproc *ksproc = 144 container_of(work, struct keystone_rproc, workqueue); 145 146 rproc_vq_interrupt(ksproc->rproc, 0); 147 rproc_vq_interrupt(ksproc->rproc, 1); 148 } 149 150 /* 151 * Interrupt handler for processing vring kicks from remote processor 152 */ 153 static irqreturn_t keystone_rproc_vring_interrupt(int irq, void *dev_id) 154 { 155 struct keystone_rproc *ksproc = dev_id; 156 157 schedule_work(&ksproc->workqueue); 158 159 return IRQ_HANDLED; 160 } 161 162 /* 163 * Power up the DSP remote processor. 164 * 165 * This function will be invoked only after the firmware for this rproc 166 * was loaded, parsed successfully, and all of its resource requirements 167 * were met. 168 */ 169 static int keystone_rproc_start(struct rproc *rproc) 170 { 171 struct keystone_rproc *ksproc = rproc->priv; 172 int ret; 173 174 INIT_WORK(&ksproc->workqueue, handle_event); 175 176 ret = request_irq(ksproc->irq_ring, keystone_rproc_vring_interrupt, 0, 177 dev_name(ksproc->dev), ksproc); 178 if (ret) { 179 dev_err(ksproc->dev, "failed to enable vring interrupt, ret = %d\n", 180 ret); 181 goto out; 182 } 183 184 ret = request_irq(ksproc->irq_fault, keystone_rproc_exception_interrupt, 185 0, dev_name(ksproc->dev), ksproc); 186 if (ret) { 187 dev_err(ksproc->dev, "failed to enable exception interrupt, ret = %d\n", 188 ret); 189 goto free_vring_irq; 190 } 191 192 ret = keystone_rproc_dsp_boot(ksproc, rproc->bootaddr); 193 if (ret) 194 goto free_exc_irq; 195 196 return 0; 197 198 free_exc_irq: 199 free_irq(ksproc->irq_fault, ksproc); 200 free_vring_irq: 201 free_irq(ksproc->irq_ring, ksproc); 202 flush_work(&ksproc->workqueue); 203 out: 204 return ret; 205 } 206 207 /* 208 * Stop the DSP remote processor. 209 * 210 * This function puts the DSP processor into reset, and finishes processing 211 * of any pending messages. 212 */ 213 static int keystone_rproc_stop(struct rproc *rproc) 214 { 215 struct keystone_rproc *ksproc = rproc->priv; 216 217 keystone_rproc_dsp_reset(ksproc); 218 free_irq(ksproc->irq_fault, ksproc); 219 free_irq(ksproc->irq_ring, ksproc); 220 flush_work(&ksproc->workqueue); 221 222 return 0; 223 } 224 225 /* 226 * Kick the remote processor to notify about pending unprocessed messages. 227 * The vqid usage is not used and is inconsequential, as the kick is performed 228 * through a simulated GPIO (a bit in an IPC interrupt-triggering register), 229 * the remote processor is expected to process both its Tx and Rx virtqueues. 230 */ 231 static void keystone_rproc_kick(struct rproc *rproc, int vqid) 232 { 233 struct keystone_rproc *ksproc = rproc->priv; 234 235 if (!ksproc->kick_gpio) 236 return; 237 238 gpiod_set_value(ksproc->kick_gpio, 1); 239 } 240 241 /* 242 * Custom function to translate a DSP device address (internal RAMs only) to a 243 * kernel virtual address. The DSPs can access their RAMs at either an internal 244 * address visible only from a DSP, or at the SoC-level bus address. Both these 245 * addresses need to be looked through for translation. The translated addresses 246 * can be used either by the remoteproc core for loading (when using kernel 247 * remoteproc loader), or by any rpmsg bus drivers. 248 */ 249 static void *keystone_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) 250 { 251 struct keystone_rproc *ksproc = rproc->priv; 252 void __iomem *va = NULL; 253 phys_addr_t bus_addr; 254 u32 dev_addr, offset; 255 size_t size; 256 int i; 257 258 if (len == 0) 259 return NULL; 260 261 for (i = 0; i < ksproc->num_mems; i++) { 262 bus_addr = ksproc->mem[i].bus_addr; 263 dev_addr = ksproc->mem[i].dev_addr; 264 size = ksproc->mem[i].size; 265 266 if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { 267 /* handle DSP-view addresses */ 268 if ((da >= dev_addr) && 269 ((da + len) <= (dev_addr + size))) { 270 offset = da - dev_addr; 271 va = ksproc->mem[i].cpu_addr + offset; 272 break; 273 } 274 } else { 275 /* handle SoC-view addresses */ 276 if ((da >= bus_addr) && 277 (da + len) <= (bus_addr + size)) { 278 offset = da - bus_addr; 279 va = ksproc->mem[i].cpu_addr + offset; 280 break; 281 } 282 } 283 } 284 285 return (__force void *)va; 286 } 287 288 static const struct rproc_ops keystone_rproc_ops = { 289 .start = keystone_rproc_start, 290 .stop = keystone_rproc_stop, 291 .kick = keystone_rproc_kick, 292 .da_to_va = keystone_rproc_da_to_va, 293 }; 294 295 static int keystone_rproc_of_get_memories(struct platform_device *pdev, 296 struct keystone_rproc *ksproc) 297 { 298 static const char * const mem_names[] = {"l2sram", "l1pram", "l1dram"}; 299 struct device *dev = &pdev->dev; 300 struct resource *res; 301 int num_mems = 0; 302 int i; 303 304 num_mems = ARRAY_SIZE(mem_names); 305 ksproc->mem = devm_kcalloc(ksproc->dev, num_mems, 306 sizeof(*ksproc->mem), GFP_KERNEL); 307 if (!ksproc->mem) 308 return -ENOMEM; 309 310 for (i = 0; i < num_mems; i++) { 311 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 312 mem_names[i]); 313 ksproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res); 314 if (IS_ERR(ksproc->mem[i].cpu_addr)) { 315 dev_err(dev, "failed to parse and map %s memory\n", 316 mem_names[i]); 317 return PTR_ERR(ksproc->mem[i].cpu_addr); 318 } 319 ksproc->mem[i].bus_addr = res->start; 320 ksproc->mem[i].dev_addr = 321 res->start & KEYSTONE_RPROC_LOCAL_ADDRESS_MASK; 322 ksproc->mem[i].size = resource_size(res); 323 324 /* zero out memories to start in a pristine state */ 325 memset((__force void *)ksproc->mem[i].cpu_addr, 0, 326 ksproc->mem[i].size); 327 } 328 ksproc->num_mems = num_mems; 329 330 return 0; 331 } 332 333 static int keystone_rproc_of_get_dev_syscon(struct platform_device *pdev, 334 struct keystone_rproc *ksproc) 335 { 336 struct device_node *np = pdev->dev.of_node; 337 struct device *dev = &pdev->dev; 338 int ret; 339 340 if (!of_property_read_bool(np, "ti,syscon-dev")) { 341 dev_err(dev, "ti,syscon-dev property is absent\n"); 342 return -EINVAL; 343 } 344 345 ksproc->dev_ctrl = 346 syscon_regmap_lookup_by_phandle(np, "ti,syscon-dev"); 347 if (IS_ERR(ksproc->dev_ctrl)) { 348 ret = PTR_ERR(ksproc->dev_ctrl); 349 return ret; 350 } 351 352 if (of_property_read_u32_index(np, "ti,syscon-dev", 1, 353 &ksproc->boot_offset)) { 354 dev_err(dev, "couldn't read the boot register offset\n"); 355 return -EINVAL; 356 } 357 358 return 0; 359 } 360 361 static int keystone_rproc_probe(struct platform_device *pdev) 362 { 363 struct device *dev = &pdev->dev; 364 struct device_node *np = dev->of_node; 365 struct keystone_rproc *ksproc; 366 struct rproc *rproc; 367 int dsp_id; 368 char *fw_name = NULL; 369 int ret = 0; 370 371 if (!np) { 372 dev_err(dev, "only DT-based devices are supported\n"); 373 return -ENODEV; 374 } 375 376 dsp_id = of_alias_get_id(np, "rproc"); 377 if (dsp_id < 0) { 378 dev_warn(dev, "device does not have an alias id\n"); 379 return dsp_id; 380 } 381 382 /* construct a custom default fw name - subject to change in future */ 383 fw_name = devm_kasprintf(dev, GFP_KERNEL, "keystone-dsp%d-fw", dsp_id); 384 if (!fw_name) 385 return -ENOMEM; 386 387 rproc = devm_rproc_alloc(dev, dev_name(dev), &keystone_rproc_ops, 388 fw_name, sizeof(*ksproc)); 389 if (!rproc) 390 return -ENOMEM; 391 392 rproc->has_iommu = false; 393 ksproc = rproc->priv; 394 ksproc->rproc = rproc; 395 ksproc->dev = dev; 396 397 ret = keystone_rproc_of_get_dev_syscon(pdev, ksproc); 398 if (ret) 399 return ret; 400 401 ksproc->reset = devm_reset_control_get_exclusive(dev, NULL); 402 if (IS_ERR(ksproc->reset)) 403 return PTR_ERR(ksproc->reset); 404 405 /* enable clock for accessing DSP internal memories */ 406 pm_runtime_enable(dev); 407 ret = pm_runtime_resume_and_get(dev); 408 if (ret < 0) { 409 dev_err(dev, "failed to enable clock, status = %d\n", ret); 410 goto disable_rpm; 411 } 412 413 ret = keystone_rproc_of_get_memories(pdev, ksproc); 414 if (ret) 415 goto disable_clk; 416 417 ksproc->irq_ring = platform_get_irq_byname(pdev, "vring"); 418 if (ksproc->irq_ring < 0) { 419 ret = ksproc->irq_ring; 420 goto disable_clk; 421 } 422 423 ksproc->irq_fault = platform_get_irq_byname(pdev, "exception"); 424 if (ksproc->irq_fault < 0) { 425 ret = ksproc->irq_fault; 426 goto disable_clk; 427 } 428 429 ksproc->kick_gpio = gpiod_get(dev, "kick", GPIOD_ASIS); 430 ret = PTR_ERR_OR_ZERO(ksproc->kick_gpio); 431 if (ret) { 432 dev_err(dev, "failed to get gpio for virtio kicks, status = %d\n", 433 ret); 434 goto disable_clk; 435 } 436 437 if (of_reserved_mem_device_init(dev)) 438 dev_warn(dev, "device does not have specific CMA pool\n"); 439 440 /* ensure the DSP is in reset before loading firmware */ 441 ret = reset_control_status(ksproc->reset); 442 if (ret < 0) { 443 dev_err(dev, "failed to get reset status, status = %d\n", ret); 444 goto release_mem; 445 } else if (ret == 0) { 446 WARN(1, "device is not in reset\n"); 447 keystone_rproc_dsp_reset(ksproc); 448 } 449 450 ret = rproc_add(rproc); 451 if (ret) { 452 dev_err(dev, "failed to add register device with remoteproc core, status = %d\n", 453 ret); 454 goto release_mem; 455 } 456 457 platform_set_drvdata(pdev, ksproc); 458 459 return 0; 460 461 release_mem: 462 of_reserved_mem_device_release(dev); 463 gpiod_put(ksproc->kick_gpio); 464 disable_clk: 465 pm_runtime_put_sync(dev); 466 disable_rpm: 467 pm_runtime_disable(dev); 468 return ret; 469 } 470 471 static void keystone_rproc_remove(struct platform_device *pdev) 472 { 473 struct keystone_rproc *ksproc = platform_get_drvdata(pdev); 474 475 rproc_del(ksproc->rproc); 476 gpiod_put(ksproc->kick_gpio); 477 pm_runtime_put_sync(&pdev->dev); 478 pm_runtime_disable(&pdev->dev); 479 of_reserved_mem_device_release(&pdev->dev); 480 } 481 482 static const struct of_device_id keystone_rproc_of_match[] = { 483 { .compatible = "ti,k2hk-dsp", }, 484 { .compatible = "ti,k2l-dsp", }, 485 { .compatible = "ti,k2e-dsp", }, 486 { .compatible = "ti,k2g-dsp", }, 487 { /* sentinel */ }, 488 }; 489 MODULE_DEVICE_TABLE(of, keystone_rproc_of_match); 490 491 static struct platform_driver keystone_rproc_driver = { 492 .probe = keystone_rproc_probe, 493 .remove_new = keystone_rproc_remove, 494 .driver = { 495 .name = "keystone-rproc", 496 .of_match_table = keystone_rproc_of_match, 497 }, 498 }; 499 500 module_platform_driver(keystone_rproc_driver); 501 502 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); 503 MODULE_LICENSE("GPL v2"); 504 MODULE_DESCRIPTION("TI Keystone DSP Remoteproc driver"); 505