1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Texas Instruments SoC Adaptive Body Bias(ABB) Regulator 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Mike Turquette <mturquette@ti.com> 7 * 8 * Copyright (C) 2012-2013 Texas Instruments, Inc. 9 * Andrii Tseglytskyi <andrii.tseglytskyi@ti.com> 10 * Nishanth Menon <nm@ti.com> 11 */ 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/err.h> 15 #include <linux/io.h> 16 #include <linux/module.h> 17 #include <linux/of.h> 18 #include <linux/platform_device.h> 19 #include <linux/regulator/driver.h> 20 #include <linux/regulator/machine.h> 21 #include <linux/regulator/of_regulator.h> 22 23 /* 24 * ABB LDO operating states: 25 * NOMINAL_OPP: bypasses the ABB LDO 26 * FAST_OPP: sets ABB LDO to Forward Body-Bias 27 * SLOW_OPP: sets ABB LDO to Reverse Body-Bias 28 */ 29 #define TI_ABB_NOMINAL_OPP 0 30 #define TI_ABB_FAST_OPP 1 31 #define TI_ABB_SLOW_OPP 3 32 33 /** 34 * struct ti_abb_info - ABB information per voltage setting 35 * @opp_sel: one of TI_ABB macro 36 * @vset: (optional) vset value that LDOVBB needs to be overridden with. 37 * 38 * Array of per voltage entries organized in the same order as regulator_desc's 39 * volt_table list. (selector is used to index from this array) 40 */ 41 struct ti_abb_info { 42 u32 opp_sel; 43 u32 vset; 44 }; 45 46 /** 47 * struct ti_abb_reg - Register description for ABB block 48 * @setup_off: setup register offset from base 49 * @control_off: control register offset from base 50 * @sr2_wtcnt_value_mask: setup register- sr2_wtcnt_value mask 51 * @fbb_sel_mask: setup register- FBB sel mask 52 * @rbb_sel_mask: setup register- RBB sel mask 53 * @sr2_en_mask: setup register- enable mask 54 * @opp_change_mask: control register - mask to trigger LDOVBB change 55 * @opp_sel_mask: control register - mask for mode to operate 56 */ 57 struct ti_abb_reg { 58 u32 setup_off; 59 u32 control_off; 60 61 /* Setup register fields */ 62 u32 sr2_wtcnt_value_mask; 63 u32 fbb_sel_mask; 64 u32 rbb_sel_mask; 65 u32 sr2_en_mask; 66 67 /* Control register fields */ 68 u32 opp_change_mask; 69 u32 opp_sel_mask; 70 }; 71 72 /** 73 * struct ti_abb - ABB instance data 74 * @rdesc: regulator descriptor 75 * @clk: clock(usually sysclk) supplying ABB block 76 * @base: base address of ABB block 77 * @setup_reg: setup register of ABB block 78 * @control_reg: control register of ABB block 79 * @int_base: interrupt register base address 80 * @efuse_base: (optional) efuse base address for ABB modes 81 * @ldo_base: (optional) LDOVBB vset override base address 82 * @regs: pointer to struct ti_abb_reg for ABB block 83 * @txdone_mask: mask on int_base for tranxdone interrupt 84 * @ldovbb_override_mask: mask to ldo_base for overriding default LDO VBB 85 * vset with value from efuse 86 * @ldovbb_vset_mask: mask to ldo_base for providing the VSET override 87 * @info: array to per voltage ABB configuration 88 * @current_info_idx: current index to info 89 * @settling_time: SoC specific settling time for LDO VBB 90 */ 91 struct ti_abb { 92 struct regulator_desc rdesc; 93 struct clk *clk; 94 void __iomem *base; 95 void __iomem *setup_reg; 96 void __iomem *control_reg; 97 void __iomem *int_base; 98 void __iomem *efuse_base; 99 void __iomem *ldo_base; 100 101 const struct ti_abb_reg *regs; 102 u32 txdone_mask; 103 u32 ldovbb_override_mask; 104 u32 ldovbb_vset_mask; 105 106 struct ti_abb_info *info; 107 int current_info_idx; 108 109 u32 settling_time; 110 }; 111 112 /** 113 * ti_abb_rmw() - handy wrapper to set specific register bits 114 * @mask: mask for register field 115 * @value: value shifted to mask location and written 116 * @reg: register address 117 * 118 * Return: final register value (may be unused) 119 */ 120 static inline u32 ti_abb_rmw(u32 mask, u32 value, void __iomem *reg) 121 { 122 u32 val; 123 124 val = readl(reg); 125 val &= ~mask; 126 val |= (value << __ffs(mask)) & mask; 127 writel(val, reg); 128 129 return val; 130 } 131 132 /** 133 * ti_abb_check_txdone() - handy wrapper to check ABB tranxdone status 134 * @abb: pointer to the abb instance 135 * 136 * Return: true or false 137 */ 138 static inline bool ti_abb_check_txdone(const struct ti_abb *abb) 139 { 140 return !!(readl(abb->int_base) & abb->txdone_mask); 141 } 142 143 /** 144 * ti_abb_clear_txdone() - handy wrapper to clear ABB tranxdone status 145 * @abb: pointer to the abb instance 146 */ 147 static inline void ti_abb_clear_txdone(const struct ti_abb *abb) 148 { 149 writel(abb->txdone_mask, abb->int_base); 150 }; 151 152 /** 153 * ti_abb_wait_txdone() - waits for ABB tranxdone event 154 * @dev: device 155 * @abb: pointer to the abb instance 156 * 157 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. 158 */ 159 static int ti_abb_wait_txdone(struct device *dev, struct ti_abb *abb) 160 { 161 int timeout = 0; 162 bool status; 163 164 while (timeout++ <= abb->settling_time) { 165 status = ti_abb_check_txdone(abb); 166 if (status) 167 return 0; 168 169 udelay(1); 170 } 171 172 dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n", 173 __func__, timeout, readl(abb->int_base)); 174 return -ETIMEDOUT; 175 } 176 177 /** 178 * ti_abb_clear_all_txdone() - clears ABB tranxdone event 179 * @dev: device 180 * @abb: pointer to the abb instance 181 * 182 * Return: 0 on success or -ETIMEDOUT if the event is not cleared on time. 183 */ 184 static int ti_abb_clear_all_txdone(struct device *dev, const struct ti_abb *abb) 185 { 186 int timeout = 0; 187 bool status; 188 189 while (timeout++ <= abb->settling_time) { 190 ti_abb_clear_txdone(abb); 191 192 status = ti_abb_check_txdone(abb); 193 if (!status) 194 return 0; 195 196 udelay(1); 197 } 198 199 dev_warn_ratelimited(dev, "%s:TRANXDONE timeout(%duS) int=0x%08x\n", 200 __func__, timeout, readl(abb->int_base)); 201 return -ETIMEDOUT; 202 } 203 204 /** 205 * ti_abb_program_ldovbb() - program LDOVBB register for override value 206 * @dev: device 207 * @abb: pointer to the abb instance 208 * @info: ABB info to program 209 */ 210 static void ti_abb_program_ldovbb(struct device *dev, const struct ti_abb *abb, 211 struct ti_abb_info *info) 212 { 213 u32 val; 214 215 val = readl(abb->ldo_base); 216 /* clear up previous values */ 217 val &= ~(abb->ldovbb_override_mask | abb->ldovbb_vset_mask); 218 219 switch (info->opp_sel) { 220 case TI_ABB_SLOW_OPP: 221 case TI_ABB_FAST_OPP: 222 val |= abb->ldovbb_override_mask; 223 val |= info->vset << __ffs(abb->ldovbb_vset_mask); 224 break; 225 } 226 227 writel(val, abb->ldo_base); 228 } 229 230 /** 231 * ti_abb_set_opp() - Setup ABB and LDO VBB for required bias 232 * @rdev: regulator device 233 * @abb: pointer to the abb instance 234 * @info: ABB info to program 235 * 236 * Return: 0 on success or appropriate error value when fails 237 */ 238 static int ti_abb_set_opp(struct regulator_dev *rdev, struct ti_abb *abb, 239 struct ti_abb_info *info) 240 { 241 const struct ti_abb_reg *regs = abb->regs; 242 struct device *dev = &rdev->dev; 243 int ret; 244 245 ret = ti_abb_clear_all_txdone(dev, abb); 246 if (ret) 247 goto out; 248 249 ti_abb_rmw(regs->fbb_sel_mask | regs->rbb_sel_mask, 0, abb->setup_reg); 250 251 switch (info->opp_sel) { 252 case TI_ABB_SLOW_OPP: 253 ti_abb_rmw(regs->rbb_sel_mask, 1, abb->setup_reg); 254 break; 255 case TI_ABB_FAST_OPP: 256 ti_abb_rmw(regs->fbb_sel_mask, 1, abb->setup_reg); 257 break; 258 } 259 260 /* program next state of ABB ldo */ 261 ti_abb_rmw(regs->opp_sel_mask, info->opp_sel, abb->control_reg); 262 263 /* 264 * program LDO VBB vset override if needed for !bypass mode 265 * XXX: Do not switch sequence - for !bypass, LDO override reset *must* 266 * be performed *before* switch to bias mode else VBB glitches. 267 */ 268 if (abb->ldo_base && info->opp_sel != TI_ABB_NOMINAL_OPP) 269 ti_abb_program_ldovbb(dev, abb, info); 270 271 /* Initiate ABB ldo change */ 272 ti_abb_rmw(regs->opp_change_mask, 1, abb->control_reg); 273 274 /* Wait for ABB LDO to complete transition to new Bias setting */ 275 ret = ti_abb_wait_txdone(dev, abb); 276 if (ret) 277 goto out; 278 279 ret = ti_abb_clear_all_txdone(dev, abb); 280 if (ret) 281 goto out; 282 283 /* 284 * Reset LDO VBB vset override bypass mode 285 * XXX: Do not switch sequence - for bypass, LDO override reset *must* 286 * be performed *after* switch to bypass else VBB glitches. 287 */ 288 if (abb->ldo_base && info->opp_sel == TI_ABB_NOMINAL_OPP) 289 ti_abb_program_ldovbb(dev, abb, info); 290 291 out: 292 return ret; 293 } 294 295 /** 296 * ti_abb_set_voltage_sel() - regulator accessor function to set ABB LDO 297 * @rdev: regulator device 298 * @sel: selector to index into required ABB LDO settings (maps to 299 * regulator descriptor's volt_table) 300 * 301 * Return: 0 on success or appropriate error value when fails 302 */ 303 static int ti_abb_set_voltage_sel(struct regulator_dev *rdev, unsigned int sel) 304 { 305 const struct regulator_desc *desc = rdev->desc; 306 struct ti_abb *abb = rdev_get_drvdata(rdev); 307 struct device *dev = &rdev->dev; 308 struct ti_abb_info *info, *oinfo; 309 int ret = 0; 310 311 if (!abb) { 312 dev_err_ratelimited(dev, "%s: No regulator drvdata\n", 313 __func__); 314 return -ENODEV; 315 } 316 317 if (!desc->n_voltages || !abb->info) { 318 dev_err_ratelimited(dev, 319 "%s: No valid voltage table entries?\n", 320 __func__); 321 return -EINVAL; 322 } 323 324 if (sel >= desc->n_voltages) { 325 dev_err(dev, "%s: sel idx(%d) >= n_voltages(%d)\n", __func__, 326 sel, desc->n_voltages); 327 return -EINVAL; 328 } 329 330 /* If we are in the same index as we were, nothing to do here! */ 331 if (sel == abb->current_info_idx) { 332 dev_dbg(dev, "%s: Already at sel=%d\n", __func__, sel); 333 return ret; 334 } 335 336 info = &abb->info[sel]; 337 /* 338 * When Linux kernel is starting up, we aren't sure of the 339 * Bias configuration that bootloader has configured. 340 * So, we get to know the actual setting the first time 341 * we are asked to transition. 342 */ 343 if (abb->current_info_idx == -EINVAL) 344 goto just_set_abb; 345 346 /* If data is exactly the same, then just update index, no change */ 347 oinfo = &abb->info[abb->current_info_idx]; 348 if (!memcmp(info, oinfo, sizeof(*info))) { 349 dev_dbg(dev, "%s: Same data new idx=%d, old idx=%d\n", __func__, 350 sel, abb->current_info_idx); 351 goto out; 352 } 353 354 just_set_abb: 355 ret = ti_abb_set_opp(rdev, abb, info); 356 357 out: 358 if (!ret) 359 abb->current_info_idx = sel; 360 else 361 dev_err_ratelimited(dev, 362 "%s: Volt[%d] idx[%d] mode[%d] Fail(%d)\n", 363 __func__, desc->volt_table[sel], sel, 364 info->opp_sel, ret); 365 return ret; 366 } 367 368 /** 369 * ti_abb_get_voltage_sel() - Regulator accessor to get current ABB LDO setting 370 * @rdev: regulator device 371 * 372 * Return: 0 on success or appropriate error value when fails 373 */ 374 static int ti_abb_get_voltage_sel(struct regulator_dev *rdev) 375 { 376 const struct regulator_desc *desc = rdev->desc; 377 struct ti_abb *abb = rdev_get_drvdata(rdev); 378 struct device *dev = &rdev->dev; 379 380 if (!abb) { 381 dev_err_ratelimited(dev, "%s: No regulator drvdata\n", 382 __func__); 383 return -ENODEV; 384 } 385 386 if (!desc->n_voltages || !abb->info) { 387 dev_err_ratelimited(dev, 388 "%s: No valid voltage table entries?\n", 389 __func__); 390 return -EINVAL; 391 } 392 393 if (abb->current_info_idx >= (int)desc->n_voltages) { 394 dev_err(dev, "%s: Corrupted data? idx(%d) >= n_voltages(%d)\n", 395 __func__, abb->current_info_idx, desc->n_voltages); 396 return -EINVAL; 397 } 398 399 return abb->current_info_idx; 400 } 401 402 /** 403 * ti_abb_init_timings() - setup ABB clock timing for the current platform 404 * @dev: device 405 * @abb: pointer to the abb instance 406 * 407 * Return: 0 if timing is updated, else returns error result. 408 */ 409 static int ti_abb_init_timings(struct device *dev, struct ti_abb *abb) 410 { 411 u32 clock_cycles; 412 u32 clk_rate, sr2_wt_cnt_val, cycle_rate; 413 const struct ti_abb_reg *regs = abb->regs; 414 int ret; 415 char *pname = "ti,settling-time"; 416 417 /* read device tree properties */ 418 ret = of_property_read_u32(dev->of_node, pname, &abb->settling_time); 419 if (ret) { 420 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); 421 return ret; 422 } 423 424 /* ABB LDO cannot be settle in 0 time */ 425 if (!abb->settling_time) { 426 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 427 return -EINVAL; 428 } 429 430 pname = "ti,clock-cycles"; 431 ret = of_property_read_u32(dev->of_node, pname, &clock_cycles); 432 if (ret) { 433 dev_err(dev, "Unable to get property '%s'(%d)\n", pname, ret); 434 return ret; 435 } 436 /* ABB LDO cannot be settle in 0 clock cycles */ 437 if (!clock_cycles) { 438 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 439 return -EINVAL; 440 } 441 442 abb->clk = devm_clk_get(dev, NULL); 443 if (IS_ERR(abb->clk)) { 444 ret = PTR_ERR(abb->clk); 445 dev_err(dev, "%s: Unable to get clk(%d)\n", __func__, ret); 446 return ret; 447 } 448 449 /* 450 * SR2_WTCNT_VALUE is the settling time for the ABB ldo after a 451 * transition and must be programmed with the correct time at boot. 452 * The value programmed into the register is the number of SYS_CLK 453 * clock cycles that match a given wall time profiled for the ldo. 454 * This value depends on: 455 * settling time of ldo in micro-seconds (varies per OMAP family) 456 * # of clock cycles per SYS_CLK period (varies per OMAP family) 457 * the SYS_CLK frequency in MHz (varies per board) 458 * The formula is: 459 * 460 * ldo settling time (in micro-seconds) 461 * SR2_WTCNT_VALUE = ------------------------------------------ 462 * (# system clock cycles) * (sys_clk period) 463 * 464 * Put another way: 465 * 466 * SR2_WTCNT_VALUE = settling time / (# SYS_CLK cycles / SYS_CLK rate)) 467 * 468 * To avoid dividing by zero multiply both "# clock cycles" and 469 * "settling time" by 10 such that the final result is the one we want. 470 */ 471 472 /* Convert SYS_CLK rate to MHz & prevent divide by zero */ 473 clk_rate = DIV_ROUND_CLOSEST(clk_get_rate(abb->clk), 1000000); 474 475 /* Calculate cycle rate */ 476 cycle_rate = DIV_ROUND_CLOSEST(clock_cycles * 10, clk_rate); 477 478 /* Calculate SR2_WTCNT_VALUE */ 479 sr2_wt_cnt_val = DIV_ROUND_CLOSEST(abb->settling_time * 10, cycle_rate); 480 481 dev_dbg(dev, "%s: Clk_rate=%ld, sr2_cnt=0x%08x\n", __func__, 482 clk_get_rate(abb->clk), sr2_wt_cnt_val); 483 484 ti_abb_rmw(regs->sr2_wtcnt_value_mask, sr2_wt_cnt_val, abb->setup_reg); 485 486 return 0; 487 } 488 489 /** 490 * ti_abb_init_table() - Initialize ABB table from device tree 491 * @dev: device 492 * @abb: pointer to the abb instance 493 * @rinit_data: regulator initdata 494 * 495 * Return: 0 on success or appropriate error value when fails 496 */ 497 static int ti_abb_init_table(struct device *dev, struct ti_abb *abb, 498 struct regulator_init_data *rinit_data) 499 { 500 struct ti_abb_info *info; 501 const u32 num_values = 6; 502 char *pname = "ti,abb_info"; 503 u32 i; 504 unsigned int *volt_table; 505 int num_entries, min_uV = INT_MAX, max_uV = 0; 506 struct regulation_constraints *c = &rinit_data->constraints; 507 508 /* 509 * Each abb_info is a set of n-tuple, where n is num_values, consisting 510 * of voltage and a set of detection logic for ABB information for that 511 * voltage to apply. 512 */ 513 num_entries = of_property_count_u32_elems(dev->of_node, pname); 514 if (num_entries < 0) { 515 dev_err(dev, "No '%s' property?\n", pname); 516 return num_entries; 517 } 518 519 if (!num_entries || (num_entries % num_values)) { 520 dev_err(dev, "All '%s' list entries need %d vals\n", pname, 521 num_values); 522 return -EINVAL; 523 } 524 num_entries /= num_values; 525 526 info = devm_kcalloc(dev, num_entries, sizeof(*info), GFP_KERNEL); 527 if (!info) 528 return -ENOMEM; 529 530 abb->info = info; 531 532 volt_table = devm_kcalloc(dev, num_entries, sizeof(unsigned int), 533 GFP_KERNEL); 534 if (!volt_table) 535 return -ENOMEM; 536 537 abb->rdesc.n_voltages = num_entries; 538 abb->rdesc.volt_table = volt_table; 539 /* We do not know where the OPP voltage is at the moment */ 540 abb->current_info_idx = -EINVAL; 541 542 for (i = 0; i < num_entries; i++, info++, volt_table++) { 543 u32 efuse_offset, rbb_mask, fbb_mask, vset_mask; 544 u32 efuse_val; 545 546 /* NOTE: num_values should equal to entries picked up here */ 547 of_property_read_u32_index(dev->of_node, pname, i * num_values, 548 volt_table); 549 of_property_read_u32_index(dev->of_node, pname, 550 i * num_values + 1, &info->opp_sel); 551 of_property_read_u32_index(dev->of_node, pname, 552 i * num_values + 2, &efuse_offset); 553 of_property_read_u32_index(dev->of_node, pname, 554 i * num_values + 3, &rbb_mask); 555 of_property_read_u32_index(dev->of_node, pname, 556 i * num_values + 4, &fbb_mask); 557 of_property_read_u32_index(dev->of_node, pname, 558 i * num_values + 5, &vset_mask); 559 560 dev_dbg(dev, 561 "[%d]v=%d ABB=%d ef=0x%x rbb=0x%x fbb=0x%x vset=0x%x\n", 562 i, *volt_table, info->opp_sel, efuse_offset, rbb_mask, 563 fbb_mask, vset_mask); 564 565 /* Find min/max for voltage set */ 566 if (min_uV > *volt_table) 567 min_uV = *volt_table; 568 if (max_uV < *volt_table) 569 max_uV = *volt_table; 570 571 if (!abb->efuse_base) { 572 /* Ignore invalid data, but warn to help cleanup */ 573 if (efuse_offset || rbb_mask || fbb_mask || vset_mask) 574 dev_err(dev, "prop '%s': v=%d,bad efuse/mask\n", 575 pname, *volt_table); 576 goto check_abb; 577 } 578 579 efuse_val = readl(abb->efuse_base + efuse_offset); 580 581 /* Use ABB recommendation from Efuse */ 582 if (efuse_val & rbb_mask) 583 info->opp_sel = TI_ABB_SLOW_OPP; 584 else if (efuse_val & fbb_mask) 585 info->opp_sel = TI_ABB_FAST_OPP; 586 else if (rbb_mask || fbb_mask) 587 info->opp_sel = TI_ABB_NOMINAL_OPP; 588 589 dev_dbg(dev, 590 "[%d]v=%d efusev=0x%x final ABB=%d\n", 591 i, *volt_table, efuse_val, info->opp_sel); 592 593 /* Use recommended Vset bits from Efuse */ 594 if (!abb->ldo_base) { 595 if (vset_mask) 596 dev_err(dev, "prop'%s':v=%d vst=%x LDO base?\n", 597 pname, *volt_table, vset_mask); 598 continue; 599 } 600 info->vset = (efuse_val & vset_mask) >> __ffs(vset_mask); 601 dev_dbg(dev, "[%d]v=%d vset=%x\n", i, *volt_table, info->vset); 602 check_abb: 603 switch (info->opp_sel) { 604 case TI_ABB_NOMINAL_OPP: 605 case TI_ABB_FAST_OPP: 606 case TI_ABB_SLOW_OPP: 607 /* Valid values */ 608 break; 609 default: 610 dev_err(dev, "%s:[%d]v=%d, ABB=%d is invalid! Abort!\n", 611 __func__, i, *volt_table, info->opp_sel); 612 return -EINVAL; 613 } 614 } 615 616 /* Setup the min/max voltage constraints from the supported list */ 617 c->min_uV = min_uV; 618 c->max_uV = max_uV; 619 620 return 0; 621 } 622 623 static const struct regulator_ops ti_abb_reg_ops = { 624 .list_voltage = regulator_list_voltage_table, 625 626 .set_voltage_sel = ti_abb_set_voltage_sel, 627 .get_voltage_sel = ti_abb_get_voltage_sel, 628 }; 629 630 /* Default ABB block offsets, IF this changes in future, create new one */ 631 static const struct ti_abb_reg abb_regs_v1 = { 632 /* WARNING: registers are wrongly documented in TRM */ 633 .setup_off = 0x04, 634 .control_off = 0x00, 635 636 .sr2_wtcnt_value_mask = (0xff << 8), 637 .fbb_sel_mask = (0x01 << 2), 638 .rbb_sel_mask = (0x01 << 1), 639 .sr2_en_mask = (0x01 << 0), 640 641 .opp_change_mask = (0x01 << 2), 642 .opp_sel_mask = (0x03 << 0), 643 }; 644 645 static const struct ti_abb_reg abb_regs_v2 = { 646 .setup_off = 0x00, 647 .control_off = 0x04, 648 649 .sr2_wtcnt_value_mask = (0xff << 8), 650 .fbb_sel_mask = (0x01 << 2), 651 .rbb_sel_mask = (0x01 << 1), 652 .sr2_en_mask = (0x01 << 0), 653 654 .opp_change_mask = (0x01 << 2), 655 .opp_sel_mask = (0x03 << 0), 656 }; 657 658 static const struct ti_abb_reg abb_regs_generic = { 659 .sr2_wtcnt_value_mask = (0xff << 8), 660 .fbb_sel_mask = (0x01 << 2), 661 .rbb_sel_mask = (0x01 << 1), 662 .sr2_en_mask = (0x01 << 0), 663 664 .opp_change_mask = (0x01 << 2), 665 .opp_sel_mask = (0x03 << 0), 666 }; 667 668 static const struct of_device_id ti_abb_of_match[] = { 669 {.compatible = "ti,abb-v1", .data = &abb_regs_v1}, 670 {.compatible = "ti,abb-v2", .data = &abb_regs_v2}, 671 {.compatible = "ti,abb-v3", .data = &abb_regs_generic}, 672 { }, 673 }; 674 675 MODULE_DEVICE_TABLE(of, ti_abb_of_match); 676 677 /** 678 * ti_abb_probe() - Initialize an ABB ldo instance 679 * @pdev: ABB platform device 680 * 681 * Initializes an individual ABB LDO for required Body-Bias. ABB is used to 682 * additional bias supply to SoC modules for power savings or mandatory stability 683 * configuration at certain Operating Performance Points(OPPs). 684 * 685 * Return: 0 on success or appropriate error value when fails 686 */ 687 static int ti_abb_probe(struct platform_device *pdev) 688 { 689 struct device *dev = &pdev->dev; 690 struct resource *res; 691 struct ti_abb *abb; 692 struct regulator_init_data *initdata = NULL; 693 struct regulator_dev *rdev = NULL; 694 struct regulator_desc *desc; 695 struct regulation_constraints *c; 696 struct regulator_config config = { }; 697 char *pname; 698 int ret = 0; 699 700 abb = devm_kzalloc(dev, sizeof(struct ti_abb), GFP_KERNEL); 701 if (!abb) 702 return -ENOMEM; 703 704 abb->regs = device_get_match_data(dev); 705 if (!abb->regs) { 706 dev_err(dev, "%s: Bad data in match\n", __func__); 707 return -EINVAL; 708 } 709 710 /* Map ABB resources */ 711 if (abb->regs->setup_off || abb->regs->control_off) { 712 abb->base = devm_platform_ioremap_resource_byname(pdev, "base-address"); 713 if (IS_ERR(abb->base)) 714 return PTR_ERR(abb->base); 715 716 abb->setup_reg = abb->base + abb->regs->setup_off; 717 abb->control_reg = abb->base + abb->regs->control_off; 718 719 } else { 720 abb->control_reg = devm_platform_ioremap_resource_byname(pdev, "control-address"); 721 if (IS_ERR(abb->control_reg)) 722 return PTR_ERR(abb->control_reg); 723 724 abb->setup_reg = devm_platform_ioremap_resource_byname(pdev, "setup-address"); 725 if (IS_ERR(abb->setup_reg)) 726 return PTR_ERR(abb->setup_reg); 727 } 728 729 pname = "int-address"; 730 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 731 if (!res) { 732 dev_err(dev, "Missing '%s' IO resource\n", pname); 733 return -ENODEV; 734 } 735 /* 736 * The MPU interrupt status register (PRM_IRQSTATUS_MPU) is 737 * shared between regulator-abb-{ivahd,dspeve,gpu} driver 738 * instances. Therefore use devm_ioremap() rather than 739 * devm_platform_ioremap_resource_byname() to avoid busy 740 * resource region conflicts. 741 */ 742 abb->int_base = devm_ioremap(dev, res->start, 743 resource_size(res)); 744 if (!abb->int_base) { 745 dev_err(dev, "Unable to map '%s'\n", pname); 746 return -ENOMEM; 747 } 748 749 /* Map Optional resources */ 750 pname = "efuse-address"; 751 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 752 if (!res) { 753 dev_dbg(dev, "Missing '%s' IO resource\n", pname); 754 ret = -ENODEV; 755 goto skip_opt; 756 } 757 758 /* 759 * We may have shared efuse register offsets which are read-only 760 * between domains 761 */ 762 abb->efuse_base = devm_ioremap(dev, res->start, 763 resource_size(res)); 764 if (!abb->efuse_base) { 765 dev_err(dev, "Unable to map '%s'\n", pname); 766 return -ENOMEM; 767 } 768 769 pname = "ldo-address"; 770 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pname); 771 if (!res) { 772 dev_dbg(dev, "Missing '%s' IO resource\n", pname); 773 ret = -ENODEV; 774 goto skip_opt; 775 } 776 abb->ldo_base = devm_ioremap_resource(dev, res); 777 if (IS_ERR(abb->ldo_base)) 778 return PTR_ERR(abb->ldo_base); 779 780 /* IF ldo_base is set, the following are mandatory */ 781 pname = "ti,ldovbb-override-mask"; 782 ret = 783 of_property_read_u32(pdev->dev.of_node, pname, 784 &abb->ldovbb_override_mask); 785 if (ret) { 786 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 787 return ret; 788 } 789 if (!abb->ldovbb_override_mask) { 790 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 791 return -EINVAL; 792 } 793 794 pname = "ti,ldovbb-vset-mask"; 795 ret = 796 of_property_read_u32(pdev->dev.of_node, pname, 797 &abb->ldovbb_vset_mask); 798 if (ret) { 799 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 800 return ret; 801 } 802 if (!abb->ldovbb_vset_mask) { 803 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 804 return -EINVAL; 805 } 806 807 skip_opt: 808 pname = "ti,tranxdone-status-mask"; 809 ret = 810 of_property_read_u32(pdev->dev.of_node, pname, 811 &abb->txdone_mask); 812 if (ret) { 813 dev_err(dev, "Missing '%s' (%d)\n", pname, ret); 814 return ret; 815 } 816 if (!abb->txdone_mask) { 817 dev_err(dev, "Invalid property:'%s' set as 0!\n", pname); 818 return -EINVAL; 819 } 820 821 initdata = of_get_regulator_init_data(dev, pdev->dev.of_node, 822 &abb->rdesc); 823 if (!initdata) { 824 dev_err(dev, "%s: Unable to alloc regulator init data\n", 825 __func__); 826 return -ENOMEM; 827 } 828 829 /* init ABB opp_sel table */ 830 ret = ti_abb_init_table(dev, abb, initdata); 831 if (ret) 832 return ret; 833 834 /* init ABB timing */ 835 ret = ti_abb_init_timings(dev, abb); 836 if (ret) 837 return ret; 838 839 desc = &abb->rdesc; 840 desc->name = dev_name(dev); 841 desc->owner = THIS_MODULE; 842 desc->type = REGULATOR_VOLTAGE; 843 desc->ops = &ti_abb_reg_ops; 844 845 c = &initdata->constraints; 846 if (desc->n_voltages > 1) 847 c->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE; 848 c->always_on = true; 849 850 config.dev = dev; 851 config.init_data = initdata; 852 config.driver_data = abb; 853 config.of_node = pdev->dev.of_node; 854 855 rdev = devm_regulator_register(dev, desc, &config); 856 if (IS_ERR(rdev)) { 857 ret = PTR_ERR(rdev); 858 dev_err(dev, "%s: failed to register regulator(%d)\n", 859 __func__, ret); 860 return ret; 861 } 862 platform_set_drvdata(pdev, rdev); 863 864 /* Enable the ldo if not already done by bootloader */ 865 ti_abb_rmw(abb->regs->sr2_en_mask, 1, abb->setup_reg); 866 867 return 0; 868 } 869 870 MODULE_ALIAS("platform:ti_abb"); 871 872 static struct platform_driver ti_abb_driver = { 873 .probe = ti_abb_probe, 874 .driver = { 875 .name = "ti_abb", 876 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 877 .of_match_table = ti_abb_of_match, 878 }, 879 }; 880 module_platform_driver(ti_abb_driver); 881 882 MODULE_DESCRIPTION("Texas Instruments ABB LDO regulator driver"); 883 MODULE_AUTHOR("Texas Instruments Inc."); 884 MODULE_LICENSE("GPL v2"); 885