xref: /linux/drivers/regulator/qcom_spmi-regulator.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/kernel.h>
10 #include <linux/interrupt.h>
11 #include <linux/bitops.h>
12 #include <linux/slab.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/ktime.h>
17 #include <linux/regulator/driver.h>
18 #include <linux/regmap.h>
19 #include <linux/list.h>
20 #include <linux/mfd/syscon.h>
21 #include <linux/io.h>
22 
23 /* Pin control enable input pins. */
24 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_NONE		0x00
25 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN0		0x01
26 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN1		0x02
27 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN2		0x04
28 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_EN3		0x08
29 #define SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT	0x10
30 
31 /* Pin control high power mode input pins. */
32 #define SPMI_REGULATOR_PIN_CTRL_HPM_NONE		0x00
33 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN0			0x01
34 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN1			0x02
35 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN2			0x04
36 #define SPMI_REGULATOR_PIN_CTRL_HPM_EN3			0x08
37 #define SPMI_REGULATOR_PIN_CTRL_HPM_SLEEP_B		0x10
38 #define SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT		0x20
39 
40 /*
41  * Used with enable parameters to specify that hardware default register values
42  * should be left unaltered.
43  */
44 #define SPMI_REGULATOR_USE_HW_DEFAULT			2
45 
46 /* Soft start strength of a voltage switch type regulator */
47 enum spmi_vs_soft_start_str {
48 	SPMI_VS_SOFT_START_STR_0P05_UA = 0,
49 	SPMI_VS_SOFT_START_STR_0P25_UA,
50 	SPMI_VS_SOFT_START_STR_0P55_UA,
51 	SPMI_VS_SOFT_START_STR_0P75_UA,
52 	SPMI_VS_SOFT_START_STR_HW_DEFAULT,
53 };
54 
55 /**
56  * struct spmi_regulator_init_data - spmi-regulator initialization data
57  * @pin_ctrl_enable:        Bit mask specifying which hardware pins should be
58  *				used to enable the regulator, if any
59  *			    Value should be an ORing of
60  *				SPMI_REGULATOR_PIN_CTRL_ENABLE_* constants.  If
61  *				the bit specified by
62  *				SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT is
63  *				set, then pin control enable hardware registers
64  *				will not be modified.
65  * @pin_ctrl_hpm:           Bit mask specifying which hardware pins should be
66  *				used to force the regulator into high power
67  *				mode, if any
68  *			    Value should be an ORing of
69  *				SPMI_REGULATOR_PIN_CTRL_HPM_* constants.  If
70  *				the bit specified by
71  *				SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT is
72  *				set, then pin control mode hardware registers
73  *				will not be modified.
74  * @vs_soft_start_strength: This parameter sets the soft start strength for
75  *				voltage switch type regulators.  Its value
76  *				should be one of SPMI_VS_SOFT_START_STR_*.  If
77  *				its value is SPMI_VS_SOFT_START_STR_HW_DEFAULT,
78  *				then the soft start strength will be left at its
79  *				default hardware value.
80  */
81 struct spmi_regulator_init_data {
82 	unsigned				pin_ctrl_enable;
83 	unsigned				pin_ctrl_hpm;
84 	enum spmi_vs_soft_start_str		vs_soft_start_strength;
85 };
86 
87 /* These types correspond to unique register layouts. */
88 enum spmi_regulator_logical_type {
89 	SPMI_REGULATOR_LOGICAL_TYPE_SMPS,
90 	SPMI_REGULATOR_LOGICAL_TYPE_LDO,
91 	SPMI_REGULATOR_LOGICAL_TYPE_VS,
92 	SPMI_REGULATOR_LOGICAL_TYPE_BOOST,
93 	SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS,
94 	SPMI_REGULATOR_LOGICAL_TYPE_BOOST_BYP,
95 	SPMI_REGULATOR_LOGICAL_TYPE_LN_LDO,
96 	SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS,
97 	SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS,
98 	SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO,
99 	SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS426,
100 	SPMI_REGULATOR_LOGICAL_TYPE_HFS430,
101 };
102 
103 enum spmi_regulator_type {
104 	SPMI_REGULATOR_TYPE_BUCK		= 0x03,
105 	SPMI_REGULATOR_TYPE_LDO			= 0x04,
106 	SPMI_REGULATOR_TYPE_VS			= 0x05,
107 	SPMI_REGULATOR_TYPE_BOOST		= 0x1b,
108 	SPMI_REGULATOR_TYPE_FTS			= 0x1c,
109 	SPMI_REGULATOR_TYPE_BOOST_BYP		= 0x1f,
110 	SPMI_REGULATOR_TYPE_ULT_LDO		= 0x21,
111 	SPMI_REGULATOR_TYPE_ULT_BUCK		= 0x22,
112 };
113 
114 enum spmi_regulator_subtype {
115 	SPMI_REGULATOR_SUBTYPE_GP_CTL		= 0x08,
116 	SPMI_REGULATOR_SUBTYPE_RF_CTL		= 0x09,
117 	SPMI_REGULATOR_SUBTYPE_N50		= 0x01,
118 	SPMI_REGULATOR_SUBTYPE_N150		= 0x02,
119 	SPMI_REGULATOR_SUBTYPE_N300		= 0x03,
120 	SPMI_REGULATOR_SUBTYPE_N600		= 0x04,
121 	SPMI_REGULATOR_SUBTYPE_N1200		= 0x05,
122 	SPMI_REGULATOR_SUBTYPE_N600_ST		= 0x06,
123 	SPMI_REGULATOR_SUBTYPE_N1200_ST		= 0x07,
124 	SPMI_REGULATOR_SUBTYPE_N900_ST		= 0x14,
125 	SPMI_REGULATOR_SUBTYPE_N300_ST		= 0x15,
126 	SPMI_REGULATOR_SUBTYPE_P50		= 0x08,
127 	SPMI_REGULATOR_SUBTYPE_P150		= 0x09,
128 	SPMI_REGULATOR_SUBTYPE_P300		= 0x0a,
129 	SPMI_REGULATOR_SUBTYPE_P600		= 0x0b,
130 	SPMI_REGULATOR_SUBTYPE_P1200		= 0x0c,
131 	SPMI_REGULATOR_SUBTYPE_LN		= 0x10,
132 	SPMI_REGULATOR_SUBTYPE_LV_P50		= 0x28,
133 	SPMI_REGULATOR_SUBTYPE_LV_P150		= 0x29,
134 	SPMI_REGULATOR_SUBTYPE_LV_P300		= 0x2a,
135 	SPMI_REGULATOR_SUBTYPE_LV_P600		= 0x2b,
136 	SPMI_REGULATOR_SUBTYPE_LV_P1200		= 0x2c,
137 	SPMI_REGULATOR_SUBTYPE_LV_P450		= 0x2d,
138 	SPMI_REGULATOR_SUBTYPE_LV100		= 0x01,
139 	SPMI_REGULATOR_SUBTYPE_LV300		= 0x02,
140 	SPMI_REGULATOR_SUBTYPE_MV300		= 0x08,
141 	SPMI_REGULATOR_SUBTYPE_MV500		= 0x09,
142 	SPMI_REGULATOR_SUBTYPE_HDMI		= 0x10,
143 	SPMI_REGULATOR_SUBTYPE_OTG		= 0x11,
144 	SPMI_REGULATOR_SUBTYPE_5V_BOOST		= 0x01,
145 	SPMI_REGULATOR_SUBTYPE_FTS_CTL		= 0x08,
146 	SPMI_REGULATOR_SUBTYPE_FTS2p5_CTL	= 0x09,
147 	SPMI_REGULATOR_SUBTYPE_FTS426_CTL	= 0x0a,
148 	SPMI_REGULATOR_SUBTYPE_BB_2A		= 0x01,
149 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL1	= 0x0d,
150 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL2	= 0x0e,
151 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL3	= 0x0f,
152 	SPMI_REGULATOR_SUBTYPE_ULT_HF_CTL4	= 0x10,
153 	SPMI_REGULATOR_SUBTYPE_HFS430		= 0x0a,
154 };
155 
156 enum spmi_common_regulator_registers {
157 	SPMI_COMMON_REG_DIG_MAJOR_REV		= 0x01,
158 	SPMI_COMMON_REG_TYPE			= 0x04,
159 	SPMI_COMMON_REG_SUBTYPE			= 0x05,
160 	SPMI_COMMON_REG_VOLTAGE_RANGE		= 0x40,
161 	SPMI_COMMON_REG_VOLTAGE_SET		= 0x41,
162 	SPMI_COMMON_REG_MODE			= 0x45,
163 	SPMI_COMMON_REG_ENABLE			= 0x46,
164 	SPMI_COMMON_REG_PULL_DOWN		= 0x48,
165 	SPMI_COMMON_REG_SOFT_START		= 0x4c,
166 	SPMI_COMMON_REG_STEP_CTRL		= 0x61,
167 };
168 
169 /*
170  * Second common register layout used by newer devices starting with ftsmps426
171  * Note that some of the registers from the first common layout remain
172  * unchanged and their definition is not duplicated.
173  */
174 enum spmi_ftsmps426_regulator_registers {
175 	SPMI_FTSMPS426_REG_VOLTAGE_LSB		= 0x40,
176 	SPMI_FTSMPS426_REG_VOLTAGE_MSB		= 0x41,
177 	SPMI_FTSMPS426_REG_VOLTAGE_ULS_LSB	= 0x68,
178 	SPMI_FTSMPS426_REG_VOLTAGE_ULS_MSB	= 0x69,
179 };
180 
181 enum spmi_vs_registers {
182 	SPMI_VS_REG_OCP				= 0x4a,
183 	SPMI_VS_REG_SOFT_START			= 0x4c,
184 };
185 
186 enum spmi_boost_registers {
187 	SPMI_BOOST_REG_CURRENT_LIMIT		= 0x4a,
188 };
189 
190 enum spmi_boost_byp_registers {
191 	SPMI_BOOST_BYP_REG_CURRENT_LIMIT	= 0x4b,
192 };
193 
194 enum spmi_saw3_registers {
195 	SAW3_SECURE				= 0x00,
196 	SAW3_ID					= 0x04,
197 	SAW3_SPM_STS				= 0x0C,
198 	SAW3_AVS_STS				= 0x10,
199 	SAW3_PMIC_STS				= 0x14,
200 	SAW3_RST				= 0x18,
201 	SAW3_VCTL				= 0x1C,
202 	SAW3_AVS_CTL				= 0x20,
203 	SAW3_AVS_LIMIT				= 0x24,
204 	SAW3_AVS_DLY				= 0x28,
205 	SAW3_AVS_HYSTERESIS			= 0x2C,
206 	SAW3_SPM_STS2				= 0x38,
207 	SAW3_SPM_PMIC_DATA_3			= 0x4C,
208 	SAW3_VERSION				= 0xFD0,
209 };
210 
211 /* Used for indexing into ctrl_reg.  These are offets from 0x40 */
212 enum spmi_common_control_register_index {
213 	SPMI_COMMON_IDX_VOLTAGE_RANGE		= 0,
214 	SPMI_COMMON_IDX_VOLTAGE_SET		= 1,
215 	SPMI_COMMON_IDX_MODE			= 5,
216 	SPMI_COMMON_IDX_ENABLE			= 6,
217 };
218 
219 /* Common regulator control register layout */
220 #define SPMI_COMMON_ENABLE_MASK			0x80
221 #define SPMI_COMMON_ENABLE			0x80
222 #define SPMI_COMMON_DISABLE			0x00
223 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN3_MASK	0x08
224 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN2_MASK	0x04
225 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN1_MASK	0x02
226 #define SPMI_COMMON_ENABLE_FOLLOW_HW_EN0_MASK	0x01
227 #define SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK	0x0f
228 
229 /* Common regulator mode register layout */
230 #define SPMI_COMMON_MODE_HPM_MASK		0x80
231 #define SPMI_COMMON_MODE_AUTO_MASK		0x40
232 #define SPMI_COMMON_MODE_BYPASS_MASK		0x20
233 #define SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK	0x10
234 #define SPMI_COMMON_MODE_FOLLOW_HW_EN3_MASK	0x08
235 #define SPMI_COMMON_MODE_FOLLOW_HW_EN2_MASK	0x04
236 #define SPMI_COMMON_MODE_FOLLOW_HW_EN1_MASK	0x02
237 #define SPMI_COMMON_MODE_FOLLOW_HW_EN0_MASK	0x01
238 #define SPMI_COMMON_MODE_FOLLOW_ALL_MASK	0x1f
239 
240 #define SPMI_FTSMPS426_MODE_BYPASS_MASK		3
241 #define SPMI_FTSMPS426_MODE_RETENTION_MASK	4
242 #define SPMI_FTSMPS426_MODE_LPM_MASK		5
243 #define SPMI_FTSMPS426_MODE_AUTO_MASK		6
244 #define SPMI_FTSMPS426_MODE_HPM_MASK		7
245 
246 #define SPMI_FTSMPS426_MODE_MASK		0x07
247 
248 /* Common regulator pull down control register layout */
249 #define SPMI_COMMON_PULL_DOWN_ENABLE_MASK	0x80
250 
251 /* LDO regulator current limit control register layout */
252 #define SPMI_LDO_CURRENT_LIMIT_ENABLE_MASK	0x80
253 
254 /* LDO regulator soft start control register layout */
255 #define SPMI_LDO_SOFT_START_ENABLE_MASK		0x80
256 
257 /* VS regulator over current protection control register layout */
258 #define SPMI_VS_OCP_OVERRIDE			0x01
259 #define SPMI_VS_OCP_NO_OVERRIDE			0x00
260 
261 /* VS regulator soft start control register layout */
262 #define SPMI_VS_SOFT_START_ENABLE_MASK		0x80
263 #define SPMI_VS_SOFT_START_SEL_MASK		0x03
264 
265 /* Boost regulator current limit control register layout */
266 #define SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK	0x80
267 #define SPMI_BOOST_CURRENT_LIMIT_MASK		0x07
268 
269 #define SPMI_VS_OCP_DEFAULT_MAX_RETRIES		10
270 #define SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS	30
271 #define SPMI_VS_OCP_FALL_DELAY_US		90
272 #define SPMI_VS_OCP_FAULT_DELAY_US		20000
273 
274 #define SPMI_FTSMPS_STEP_CTRL_STEP_MASK		0x18
275 #define SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT	3
276 #define SPMI_FTSMPS_STEP_CTRL_DELAY_MASK	0x07
277 #define SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT	0
278 
279 /* Clock rate in kHz of the FTSMPS regulator reference clock. */
280 #define SPMI_FTSMPS_CLOCK_RATE		19200
281 
282 /* Minimum voltage stepper delay for each step. */
283 #define SPMI_FTSMPS_STEP_DELAY		8
284 #define SPMI_DEFAULT_STEP_DELAY		20
285 
286 /*
287  * The ratio SPMI_FTSMPS_STEP_MARGIN_NUM/SPMI_FTSMPS_STEP_MARGIN_DEN is used to
288  * adjust the step rate in order to account for oscillator variance.
289  */
290 #define SPMI_FTSMPS_STEP_MARGIN_NUM	4
291 #define SPMI_FTSMPS_STEP_MARGIN_DEN	5
292 
293 #define SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK	0x03
294 #define SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT	0
295 
296 /* Clock rate in kHz of the FTSMPS426 regulator reference clock. */
297 #define SPMI_FTSMPS426_CLOCK_RATE		4800
298 
299 #define SPMI_HFS430_CLOCK_RATE			1600
300 
301 /* Minimum voltage stepper delay for each step. */
302 #define SPMI_FTSMPS426_STEP_DELAY		2
303 
304 /*
305  * The ratio SPMI_FTSMPS426_STEP_MARGIN_NUM/SPMI_FTSMPS426_STEP_MARGIN_DEN is
306  * used to adjust the step rate in order to account for oscillator variance.
307  */
308 #define SPMI_FTSMPS426_STEP_MARGIN_NUM	10
309 #define SPMI_FTSMPS426_STEP_MARGIN_DEN	11
310 
311 
312 /* VSET value to decide the range of ULT SMPS */
313 #define ULT_SMPS_RANGE_SPLIT 0x60
314 
315 /**
316  * struct spmi_voltage_range - regulator set point voltage mapping description
317  * @min_uV:		Minimum programmable output voltage resulting from
318  *			set point register value 0x00
319  * @max_uV:		Maximum programmable output voltage
320  * @step_uV:		Output voltage increase resulting from the set point
321  *			register value increasing by 1
322  * @set_point_min_uV:	Minimum allowed voltage
323  * @set_point_max_uV:	Maximum allowed voltage.  This may be tweaked in order
324  *			to pick which range should be used in the case of
325  *			overlapping set points.
326  * @n_voltages:		Number of preferred voltage set points present in this
327  *			range
328  * @range_sel:		Voltage range register value corresponding to this range
329  *
330  * The following relationships must be true for the values used in this struct:
331  * (max_uV - min_uV) % step_uV == 0
332  * (set_point_min_uV - min_uV) % step_uV == 0*
333  * (set_point_max_uV - min_uV) % step_uV == 0*
334  * n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1
335  *
336  * *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to
337  * specify that the voltage range has meaning, but is not preferred.
338  */
339 struct spmi_voltage_range {
340 	int					min_uV;
341 	int					max_uV;
342 	int					step_uV;
343 	int					set_point_min_uV;
344 	int					set_point_max_uV;
345 	unsigned				n_voltages;
346 	u8					range_sel;
347 };
348 
349 /*
350  * The ranges specified in the spmi_voltage_set_points struct must be listed
351  * so that range[i].set_point_max_uV < range[i+1].set_point_min_uV.
352  */
353 struct spmi_voltage_set_points {
354 	struct spmi_voltage_range		*range;
355 	int					count;
356 	unsigned				n_voltages;
357 };
358 
359 struct spmi_regulator {
360 	struct regulator_desc			desc;
361 	struct device				*dev;
362 	struct delayed_work			ocp_work;
363 	struct regmap				*regmap;
364 	struct spmi_voltage_set_points		*set_points;
365 	enum spmi_regulator_logical_type	logical_type;
366 	int					ocp_irq;
367 	int					ocp_count;
368 	int					ocp_max_retries;
369 	int					ocp_retry_delay_ms;
370 	int					hpm_min_load;
371 	int					slew_rate;
372 	ktime_t					vs_enable_time;
373 	u16					base;
374 	struct list_head			node;
375 };
376 
377 struct spmi_regulator_mapping {
378 	enum spmi_regulator_type		type;
379 	enum spmi_regulator_subtype		subtype;
380 	enum spmi_regulator_logical_type	logical_type;
381 	u32					revision_min;
382 	u32					revision_max;
383 	struct regulator_ops			*ops;
384 	struct spmi_voltage_set_points		*set_points;
385 	int					hpm_min_load;
386 };
387 
388 struct spmi_regulator_data {
389 	const char			*name;
390 	u16				base;
391 	const char			*supply;
392 	const char			*ocp;
393 	u16				force_type;
394 };
395 
396 #define SPMI_VREG(_type, _subtype, _dig_major_min, _dig_major_max, \
397 		      _logical_type, _ops_val, _set_points_val, _hpm_min_load) \
398 	{ \
399 		.type		= SPMI_REGULATOR_TYPE_##_type, \
400 		.subtype	= SPMI_REGULATOR_SUBTYPE_##_subtype, \
401 		.revision_min	= _dig_major_min, \
402 		.revision_max	= _dig_major_max, \
403 		.logical_type	= SPMI_REGULATOR_LOGICAL_TYPE_##_logical_type, \
404 		.ops		= &spmi_##_ops_val##_ops, \
405 		.set_points	= &_set_points_val##_set_points, \
406 		.hpm_min_load	= _hpm_min_load, \
407 	}
408 
409 #define SPMI_VREG_VS(_subtype, _dig_major_min, _dig_major_max) \
410 	{ \
411 		.type		= SPMI_REGULATOR_TYPE_VS, \
412 		.subtype	= SPMI_REGULATOR_SUBTYPE_##_subtype, \
413 		.revision_min	= _dig_major_min, \
414 		.revision_max	= _dig_major_max, \
415 		.logical_type	= SPMI_REGULATOR_LOGICAL_TYPE_VS, \
416 		.ops		= &spmi_vs_ops, \
417 	}
418 
419 #define SPMI_VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \
420 			_set_point_max_uV, _max_uV, _step_uV) \
421 	{ \
422 		.min_uV			= _min_uV, \
423 		.max_uV			= _max_uV, \
424 		.set_point_min_uV	= _set_point_min_uV, \
425 		.set_point_max_uV	= _set_point_max_uV, \
426 		.step_uV		= _step_uV, \
427 		.range_sel		= _range_sel, \
428 	}
429 
430 #define DEFINE_SPMI_SET_POINTS(name) \
431 struct spmi_voltage_set_points name##_set_points = { \
432 	.range	= name##_ranges, \
433 	.count	= ARRAY_SIZE(name##_ranges), \
434 }
435 
436 /*
437  * These tables contain the physically available PMIC regulator voltage setpoint
438  * ranges.  Where two ranges overlap in hardware, one of the ranges is trimmed
439  * to ensure that the setpoints available to software are monotonically
440  * increasing and unique.  The set_voltage callback functions expect these
441  * properties to hold.
442  */
443 static struct spmi_voltage_range pldo_ranges[] = {
444 	SPMI_VOLTAGE_RANGE(2,  750000,  750000, 1537500, 1537500, 12500),
445 	SPMI_VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000),
446 	SPMI_VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000),
447 };
448 
449 static struct spmi_voltage_range nldo1_ranges[] = {
450 	SPMI_VOLTAGE_RANGE(2,  750000,  750000, 1537500, 1537500, 12500),
451 };
452 
453 static struct spmi_voltage_range nldo2_ranges[] = {
454 	SPMI_VOLTAGE_RANGE(0,  375000,       0,       0, 1537500, 12500),
455 	SPMI_VOLTAGE_RANGE(1,  375000,  375000,  768750,  768750,  6250),
456 	SPMI_VOLTAGE_RANGE(2,  750000,  775000, 1537500, 1537500, 12500),
457 };
458 
459 static struct spmi_voltage_range nldo3_ranges[] = {
460 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1537500, 1537500, 12500),
461 	SPMI_VOLTAGE_RANGE(1,  375000,       0,       0, 1537500, 12500),
462 	SPMI_VOLTAGE_RANGE(2,  750000,       0,       0, 1537500, 12500),
463 };
464 
465 static struct spmi_voltage_range ln_ldo_ranges[] = {
466 	SPMI_VOLTAGE_RANGE(1,  690000,  690000, 1110000, 1110000, 60000),
467 	SPMI_VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000),
468 };
469 
470 static struct spmi_voltage_range smps_ranges[] = {
471 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1562500, 1562500, 12500),
472 	SPMI_VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000),
473 };
474 
475 static struct spmi_voltage_range ftsmps_ranges[] = {
476 	SPMI_VOLTAGE_RANGE(0,       0,  350000, 1275000, 1275000,  5000),
477 	SPMI_VOLTAGE_RANGE(1,       0, 1280000, 2040000, 2040000, 10000),
478 };
479 
480 static struct spmi_voltage_range ftsmps2p5_ranges[] = {
481 	SPMI_VOLTAGE_RANGE(0,   80000,  350000, 1355000, 1355000,  5000),
482 	SPMI_VOLTAGE_RANGE(1,  160000, 1360000, 2200000, 2200000, 10000),
483 };
484 
485 static struct spmi_voltage_range ftsmps426_ranges[] = {
486 	SPMI_VOLTAGE_RANGE(0,       0,  320000, 1352000, 1352000,  4000),
487 };
488 
489 static struct spmi_voltage_range boost_ranges[] = {
490 	SPMI_VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000),
491 };
492 
493 static struct spmi_voltage_range boost_byp_ranges[] = {
494 	SPMI_VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000),
495 };
496 
497 static struct spmi_voltage_range ult_lo_smps_ranges[] = {
498 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1562500, 1562500, 12500),
499 	SPMI_VOLTAGE_RANGE(1,  750000,       0,       0, 1525000, 25000),
500 };
501 
502 static struct spmi_voltage_range ult_ho_smps_ranges[] = {
503 	SPMI_VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000),
504 };
505 
506 static struct spmi_voltage_range ult_nldo_ranges[] = {
507 	SPMI_VOLTAGE_RANGE(0,  375000,  375000, 1537500, 1537500, 12500),
508 };
509 
510 static struct spmi_voltage_range ult_pldo_ranges[] = {
511 	SPMI_VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500),
512 };
513 
514 static struct spmi_voltage_range hfs430_ranges[] = {
515 	SPMI_VOLTAGE_RANGE(0, 320000, 320000, 2040000, 2040000, 8000),
516 };
517 
518 static DEFINE_SPMI_SET_POINTS(pldo);
519 static DEFINE_SPMI_SET_POINTS(nldo1);
520 static DEFINE_SPMI_SET_POINTS(nldo2);
521 static DEFINE_SPMI_SET_POINTS(nldo3);
522 static DEFINE_SPMI_SET_POINTS(ln_ldo);
523 static DEFINE_SPMI_SET_POINTS(smps);
524 static DEFINE_SPMI_SET_POINTS(ftsmps);
525 static DEFINE_SPMI_SET_POINTS(ftsmps2p5);
526 static DEFINE_SPMI_SET_POINTS(ftsmps426);
527 static DEFINE_SPMI_SET_POINTS(boost);
528 static DEFINE_SPMI_SET_POINTS(boost_byp);
529 static DEFINE_SPMI_SET_POINTS(ult_lo_smps);
530 static DEFINE_SPMI_SET_POINTS(ult_ho_smps);
531 static DEFINE_SPMI_SET_POINTS(ult_nldo);
532 static DEFINE_SPMI_SET_POINTS(ult_pldo);
533 static DEFINE_SPMI_SET_POINTS(hfs430);
534 
535 static inline int spmi_vreg_read(struct spmi_regulator *vreg, u16 addr, u8 *buf,
536 				 int len)
537 {
538 	return regmap_bulk_read(vreg->regmap, vreg->base + addr, buf, len);
539 }
540 
541 static inline int spmi_vreg_write(struct spmi_regulator *vreg, u16 addr,
542 				u8 *buf, int len)
543 {
544 	return regmap_bulk_write(vreg->regmap, vreg->base + addr, buf, len);
545 }
546 
547 static int spmi_vreg_update_bits(struct spmi_regulator *vreg, u16 addr, u8 val,
548 		u8 mask)
549 {
550 	return regmap_update_bits(vreg->regmap, vreg->base + addr, mask, val);
551 }
552 
553 static int spmi_regulator_vs_enable(struct regulator_dev *rdev)
554 {
555 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
556 
557 	if (vreg->ocp_irq) {
558 		vreg->ocp_count = 0;
559 		vreg->vs_enable_time = ktime_get();
560 	}
561 
562 	return regulator_enable_regmap(rdev);
563 }
564 
565 static int spmi_regulator_vs_ocp(struct regulator_dev *rdev)
566 {
567 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
568 	u8 reg = SPMI_VS_OCP_OVERRIDE;
569 
570 	return spmi_vreg_write(vreg, SPMI_VS_REG_OCP, &reg, 1);
571 }
572 
573 static int spmi_regulator_select_voltage(struct spmi_regulator *vreg,
574 					 int min_uV, int max_uV)
575 {
576 	const struct spmi_voltage_range *range;
577 	int uV = min_uV;
578 	int lim_min_uV, lim_max_uV, i, range_id, range_max_uV;
579 	int selector, voltage_sel;
580 
581 	/* Check if request voltage is outside of physically settable range. */
582 	lim_min_uV = vreg->set_points->range[0].set_point_min_uV;
583 	lim_max_uV =
584 	  vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV;
585 
586 	if (uV < lim_min_uV && max_uV >= lim_min_uV)
587 		uV = lim_min_uV;
588 
589 	if (uV < lim_min_uV || uV > lim_max_uV) {
590 		dev_err(vreg->dev,
591 			"request v=[%d, %d] is outside possible v=[%d, %d]\n",
592 			 min_uV, max_uV, lim_min_uV, lim_max_uV);
593 		return -EINVAL;
594 	}
595 
596 	/* Find the range which uV is inside of. */
597 	for (i = vreg->set_points->count - 1; i > 0; i--) {
598 		range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV;
599 		if (uV > range_max_uV && range_max_uV > 0)
600 			break;
601 	}
602 
603 	range_id = i;
604 	range = &vreg->set_points->range[range_id];
605 
606 	/*
607 	 * Force uV to be an allowed set point by applying a ceiling function to
608 	 * the uV value.
609 	 */
610 	voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
611 	uV = voltage_sel * range->step_uV + range->min_uV;
612 
613 	if (uV > max_uV) {
614 		dev_err(vreg->dev,
615 			"request v=[%d, %d] cannot be met by any set point; "
616 			"next set point: %d\n",
617 			min_uV, max_uV, uV);
618 		return -EINVAL;
619 	}
620 
621 	selector = 0;
622 	for (i = 0; i < range_id; i++)
623 		selector += vreg->set_points->range[i].n_voltages;
624 	selector += (uV - range->set_point_min_uV) / range->step_uV;
625 
626 	return selector;
627 }
628 
629 static int spmi_sw_selector_to_hw(struct spmi_regulator *vreg,
630 				  unsigned selector, u8 *range_sel,
631 				  u8 *voltage_sel)
632 {
633 	const struct spmi_voltage_range *range, *end;
634 	unsigned offset;
635 
636 	range = vreg->set_points->range;
637 	end = range + vreg->set_points->count;
638 
639 	for (; range < end; range++) {
640 		if (selector < range->n_voltages) {
641 			/*
642 			 * hardware selectors between set point min and real
643 			 * min are invalid so we ignore them
644 			 */
645 			offset = range->set_point_min_uV - range->min_uV;
646 			offset /= range->step_uV;
647 			*voltage_sel = selector + offset;
648 			*range_sel = range->range_sel;
649 			return 0;
650 		}
651 
652 		selector -= range->n_voltages;
653 	}
654 
655 	return -EINVAL;
656 }
657 
658 static int spmi_hw_selector_to_sw(struct spmi_regulator *vreg, u8 hw_sel,
659 				  const struct spmi_voltage_range *range)
660 {
661 	unsigned sw_sel = 0;
662 	unsigned offset, max_hw_sel;
663 	const struct spmi_voltage_range *r = vreg->set_points->range;
664 	const struct spmi_voltage_range *end = r + vreg->set_points->count;
665 
666 	for (; r < end; r++) {
667 		if (r == range && range->n_voltages) {
668 			/*
669 			 * hardware selectors between set point min and real
670 			 * min and between set point max and real max are
671 			 * invalid so we return an error if they're
672 			 * programmed into the hardware
673 			 */
674 			offset = range->set_point_min_uV - range->min_uV;
675 			offset /= range->step_uV;
676 			if (hw_sel < offset)
677 				return -EINVAL;
678 
679 			max_hw_sel = range->set_point_max_uV - range->min_uV;
680 			max_hw_sel /= range->step_uV;
681 			if (hw_sel > max_hw_sel)
682 				return -EINVAL;
683 
684 			return sw_sel + hw_sel - offset;
685 		}
686 		sw_sel += r->n_voltages;
687 	}
688 
689 	return -EINVAL;
690 }
691 
692 static const struct spmi_voltage_range *
693 spmi_regulator_find_range(struct spmi_regulator *vreg)
694 {
695 	u8 range_sel;
696 	const struct spmi_voltage_range *range, *end;
697 
698 	range = vreg->set_points->range;
699 	end = range + vreg->set_points->count;
700 
701 	spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, &range_sel, 1);
702 
703 	for (; range < end; range++)
704 		if (range->range_sel == range_sel)
705 			return range;
706 
707 	return NULL;
708 }
709 
710 static int spmi_regulator_select_voltage_same_range(struct spmi_regulator *vreg,
711 		int min_uV, int max_uV)
712 {
713 	const struct spmi_voltage_range *range;
714 	int uV = min_uV;
715 	int i, selector;
716 
717 	range = spmi_regulator_find_range(vreg);
718 	if (!range)
719 		goto different_range;
720 
721 	if (uV < range->min_uV && max_uV >= range->min_uV)
722 		uV = range->min_uV;
723 
724 	if (uV < range->min_uV || uV > range->max_uV) {
725 		/* Current range doesn't support the requested voltage. */
726 		goto different_range;
727 	}
728 
729 	/*
730 	 * Force uV to be an allowed set point by applying a ceiling function to
731 	 * the uV value.
732 	 */
733 	uV = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
734 	uV = uV * range->step_uV + range->min_uV;
735 
736 	if (uV > max_uV) {
737 		/*
738 		 * No set point in the current voltage range is within the
739 		 * requested min_uV to max_uV range.
740 		 */
741 		goto different_range;
742 	}
743 
744 	selector = 0;
745 	for (i = 0; i < vreg->set_points->count; i++) {
746 		if (uV >= vreg->set_points->range[i].set_point_min_uV
747 		    && uV <= vreg->set_points->range[i].set_point_max_uV) {
748 			selector +=
749 			    (uV - vreg->set_points->range[i].set_point_min_uV)
750 				/ vreg->set_points->range[i].step_uV;
751 			break;
752 		}
753 
754 		selector += vreg->set_points->range[i].n_voltages;
755 	}
756 
757 	if (selector >= vreg->set_points->n_voltages)
758 		goto different_range;
759 
760 	return selector;
761 
762 different_range:
763 	return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
764 }
765 
766 static int spmi_regulator_common_map_voltage(struct regulator_dev *rdev,
767 					     int min_uV, int max_uV)
768 {
769 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
770 
771 	/*
772 	 * Favor staying in the current voltage range if possible.  This avoids
773 	 * voltage spikes that occur when changing the voltage range.
774 	 */
775 	return spmi_regulator_select_voltage_same_range(vreg, min_uV, max_uV);
776 }
777 
778 static int
779 spmi_regulator_common_set_voltage(struct regulator_dev *rdev, unsigned selector)
780 {
781 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
782 	int ret;
783 	u8 buf[2];
784 	u8 range_sel, voltage_sel;
785 
786 	ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
787 	if (ret)
788 		return ret;
789 
790 	buf[0] = range_sel;
791 	buf[1] = voltage_sel;
792 	return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, buf, 2);
793 }
794 
795 static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev,
796 					      unsigned selector);
797 
798 static int spmi_regulator_ftsmps426_set_voltage(struct regulator_dev *rdev,
799 					      unsigned selector)
800 {
801 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
802 	u8 buf[2];
803 	int mV;
804 
805 	mV = spmi_regulator_common_list_voltage(rdev, selector) / 1000;
806 
807 	buf[0] = mV & 0xff;
808 	buf[1] = mV >> 8;
809 	return spmi_vreg_write(vreg, SPMI_FTSMPS426_REG_VOLTAGE_LSB, buf, 2);
810 }
811 
812 static int spmi_regulator_set_voltage_time_sel(struct regulator_dev *rdev,
813 		unsigned int old_selector, unsigned int new_selector)
814 {
815 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
816 	int diff_uV;
817 
818 	diff_uV = abs(spmi_regulator_common_list_voltage(rdev, new_selector) -
819 		      spmi_regulator_common_list_voltage(rdev, old_selector));
820 
821 	return DIV_ROUND_UP(diff_uV, vreg->slew_rate);
822 }
823 
824 static int spmi_regulator_common_get_voltage(struct regulator_dev *rdev)
825 {
826 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
827 	const struct spmi_voltage_range *range;
828 	u8 voltage_sel;
829 
830 	spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
831 
832 	range = spmi_regulator_find_range(vreg);
833 	if (!range)
834 		return -EINVAL;
835 
836 	return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
837 }
838 
839 static int spmi_regulator_ftsmps426_get_voltage(struct regulator_dev *rdev)
840 {
841 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
842 	const struct spmi_voltage_range *range;
843 	u8 buf[2];
844 	int uV;
845 
846 	spmi_vreg_read(vreg, SPMI_FTSMPS426_REG_VOLTAGE_LSB, buf, 2);
847 
848 	uV = (((unsigned int)buf[1] << 8) | (unsigned int)buf[0]) * 1000;
849 	range = vreg->set_points->range;
850 
851 	return (uV - range->set_point_min_uV) / range->step_uV;
852 }
853 
854 static int spmi_regulator_single_map_voltage(struct regulator_dev *rdev,
855 		int min_uV, int max_uV)
856 {
857 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
858 
859 	return spmi_regulator_select_voltage(vreg, min_uV, max_uV);
860 }
861 
862 static int spmi_regulator_single_range_set_voltage(struct regulator_dev *rdev,
863 						   unsigned selector)
864 {
865 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
866 	u8 sel = selector;
867 
868 	/*
869 	 * Certain types of regulators do not have a range select register so
870 	 * only voltage set register needs to be written.
871 	 */
872 	return spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &sel, 1);
873 }
874 
875 static int spmi_regulator_single_range_get_voltage(struct regulator_dev *rdev)
876 {
877 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
878 	u8 selector;
879 	int ret;
880 
881 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &selector, 1);
882 	if (ret)
883 		return ret;
884 
885 	return selector;
886 }
887 
888 static int spmi_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev,
889 						  unsigned selector)
890 {
891 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
892 	int ret;
893 	u8 range_sel, voltage_sel;
894 
895 	ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
896 	if (ret)
897 		return ret;
898 
899 	/*
900 	 * Calculate VSET based on range
901 	 * In case of range 0: voltage_sel is a 7 bit value, can be written
902 	 *			witout any modification.
903 	 * In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to
904 	 *			[011].
905 	 */
906 	if (range_sel == 1)
907 		voltage_sel |= ULT_SMPS_RANGE_SPLIT;
908 
909 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_VOLTAGE_SET,
910 				     voltage_sel, 0xff);
911 }
912 
913 static int spmi_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev)
914 {
915 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
916 	const struct spmi_voltage_range *range;
917 	u8 voltage_sel;
918 
919 	spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_SET, &voltage_sel, 1);
920 
921 	range = spmi_regulator_find_range(vreg);
922 	if (!range)
923 		return -EINVAL;
924 
925 	if (range->range_sel == 1)
926 		voltage_sel &= ~ULT_SMPS_RANGE_SPLIT;
927 
928 	return spmi_hw_selector_to_sw(vreg, voltage_sel, range);
929 }
930 
931 static int spmi_regulator_common_list_voltage(struct regulator_dev *rdev,
932 			unsigned selector)
933 {
934 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
935 	int uV = 0;
936 	int i;
937 
938 	if (selector >= vreg->set_points->n_voltages)
939 		return 0;
940 
941 	for (i = 0; i < vreg->set_points->count; i++) {
942 		if (selector < vreg->set_points->range[i].n_voltages) {
943 			uV = selector * vreg->set_points->range[i].step_uV
944 				+ vreg->set_points->range[i].set_point_min_uV;
945 			break;
946 		}
947 
948 		selector -= vreg->set_points->range[i].n_voltages;
949 	}
950 
951 	return uV;
952 }
953 
954 static int
955 spmi_regulator_common_set_bypass(struct regulator_dev *rdev, bool enable)
956 {
957 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
958 	u8 mask = SPMI_COMMON_MODE_BYPASS_MASK;
959 	u8 val = 0;
960 
961 	if (enable)
962 		val = mask;
963 
964 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
965 }
966 
967 static int
968 spmi_regulator_common_get_bypass(struct regulator_dev *rdev, bool *enable)
969 {
970 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
971 	u8 val;
972 	int ret;
973 
974 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &val, 1);
975 	*enable = val & SPMI_COMMON_MODE_BYPASS_MASK;
976 
977 	return ret;
978 }
979 
980 static unsigned int spmi_regulator_common_get_mode(struct regulator_dev *rdev)
981 {
982 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
983 	u8 reg;
984 
985 	spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &reg, 1);
986 
987 	reg &= SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK;
988 
989 	switch (reg) {
990 	case SPMI_COMMON_MODE_HPM_MASK:
991 		return REGULATOR_MODE_NORMAL;
992 	case SPMI_COMMON_MODE_AUTO_MASK:
993 		return REGULATOR_MODE_FAST;
994 	default:
995 		return REGULATOR_MODE_IDLE;
996 	}
997 }
998 
999 static unsigned int spmi_regulator_ftsmps426_get_mode(struct regulator_dev *rdev)
1000 {
1001 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1002 	u8 reg;
1003 
1004 	spmi_vreg_read(vreg, SPMI_COMMON_REG_MODE, &reg, 1);
1005 
1006 	switch (reg) {
1007 	case SPMI_FTSMPS426_MODE_HPM_MASK:
1008 		return REGULATOR_MODE_NORMAL;
1009 	case SPMI_FTSMPS426_MODE_AUTO_MASK:
1010 		return REGULATOR_MODE_FAST;
1011 	default:
1012 		return REGULATOR_MODE_IDLE;
1013 	}
1014 }
1015 
1016 static int
1017 spmi_regulator_common_set_mode(struct regulator_dev *rdev, unsigned int mode)
1018 {
1019 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1020 	u8 mask = SPMI_COMMON_MODE_HPM_MASK | SPMI_COMMON_MODE_AUTO_MASK;
1021 	u8 val;
1022 
1023 	switch (mode) {
1024 	case REGULATOR_MODE_NORMAL:
1025 		val = SPMI_COMMON_MODE_HPM_MASK;
1026 		break;
1027 	case REGULATOR_MODE_FAST:
1028 		val = SPMI_COMMON_MODE_AUTO_MASK;
1029 		break;
1030 	default:
1031 		val = 0;
1032 		break;
1033 	}
1034 
1035 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
1036 }
1037 
1038 static int
1039 spmi_regulator_ftsmps426_set_mode(struct regulator_dev *rdev, unsigned int mode)
1040 {
1041 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1042 	u8 mask = SPMI_FTSMPS426_MODE_MASK;
1043 	u8 val;
1044 
1045 	switch (mode) {
1046 	case REGULATOR_MODE_NORMAL:
1047 		val = SPMI_FTSMPS426_MODE_HPM_MASK;
1048 		break;
1049 	case REGULATOR_MODE_FAST:
1050 		val = SPMI_FTSMPS426_MODE_AUTO_MASK;
1051 		break;
1052 	case REGULATOR_MODE_IDLE:
1053 		val = SPMI_FTSMPS426_MODE_LPM_MASK;
1054 		break;
1055 	default:
1056 		return -EINVAL;
1057 	}
1058 
1059 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_MODE, val, mask);
1060 }
1061 
1062 static int
1063 spmi_regulator_common_set_load(struct regulator_dev *rdev, int load_uA)
1064 {
1065 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1066 	unsigned int mode;
1067 
1068 	if (load_uA >= vreg->hpm_min_load)
1069 		mode = REGULATOR_MODE_NORMAL;
1070 	else
1071 		mode = REGULATOR_MODE_IDLE;
1072 
1073 	return spmi_regulator_common_set_mode(rdev, mode);
1074 }
1075 
1076 static int spmi_regulator_common_set_pull_down(struct regulator_dev *rdev)
1077 {
1078 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1079 	unsigned int mask = SPMI_COMMON_PULL_DOWN_ENABLE_MASK;
1080 
1081 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_PULL_DOWN,
1082 				     mask, mask);
1083 }
1084 
1085 static int spmi_regulator_common_set_soft_start(struct regulator_dev *rdev)
1086 {
1087 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1088 	unsigned int mask = SPMI_LDO_SOFT_START_ENABLE_MASK;
1089 
1090 	return spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_SOFT_START,
1091 				     mask, mask);
1092 }
1093 
1094 static int spmi_regulator_set_ilim(struct regulator_dev *rdev, int ilim_uA)
1095 {
1096 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1097 	enum spmi_regulator_logical_type type = vreg->logical_type;
1098 	unsigned int current_reg;
1099 	u8 reg;
1100 	u8 mask = SPMI_BOOST_CURRENT_LIMIT_MASK |
1101 		  SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
1102 	int max = (SPMI_BOOST_CURRENT_LIMIT_MASK + 1) * 500;
1103 
1104 	if (type == SPMI_REGULATOR_LOGICAL_TYPE_BOOST)
1105 		current_reg = SPMI_BOOST_REG_CURRENT_LIMIT;
1106 	else
1107 		current_reg = SPMI_BOOST_BYP_REG_CURRENT_LIMIT;
1108 
1109 	if (ilim_uA > max || ilim_uA <= 0)
1110 		return -EINVAL;
1111 
1112 	reg = (ilim_uA - 1) / 500;
1113 	reg |= SPMI_BOOST_CURRENT_LIMIT_ENABLE_MASK;
1114 
1115 	return spmi_vreg_update_bits(vreg, current_reg, reg, mask);
1116 }
1117 
1118 static int spmi_regulator_vs_clear_ocp(struct spmi_regulator *vreg)
1119 {
1120 	int ret;
1121 
1122 	ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
1123 		SPMI_COMMON_DISABLE, SPMI_COMMON_ENABLE_MASK);
1124 
1125 	vreg->vs_enable_time = ktime_get();
1126 
1127 	ret = spmi_vreg_update_bits(vreg, SPMI_COMMON_REG_ENABLE,
1128 		SPMI_COMMON_ENABLE, SPMI_COMMON_ENABLE_MASK);
1129 
1130 	return ret;
1131 }
1132 
1133 static void spmi_regulator_vs_ocp_work(struct work_struct *work)
1134 {
1135 	struct delayed_work *dwork = to_delayed_work(work);
1136 	struct spmi_regulator *vreg
1137 		= container_of(dwork, struct spmi_regulator, ocp_work);
1138 
1139 	spmi_regulator_vs_clear_ocp(vreg);
1140 }
1141 
1142 static irqreturn_t spmi_regulator_vs_ocp_isr(int irq, void *data)
1143 {
1144 	struct spmi_regulator *vreg = data;
1145 	ktime_t ocp_irq_time;
1146 	s64 ocp_trigger_delay_us;
1147 
1148 	ocp_irq_time = ktime_get();
1149 	ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time,
1150 						vreg->vs_enable_time);
1151 
1152 	/*
1153 	 * Reset the OCP count if there is a large delay between switch enable
1154 	 * and when OCP triggers.  This is indicative of a hotplug event as
1155 	 * opposed to a fault.
1156 	 */
1157 	if (ocp_trigger_delay_us > SPMI_VS_OCP_FAULT_DELAY_US)
1158 		vreg->ocp_count = 0;
1159 
1160 	/* Wait for switch output to settle back to 0 V after OCP triggered. */
1161 	udelay(SPMI_VS_OCP_FALL_DELAY_US);
1162 
1163 	vreg->ocp_count++;
1164 
1165 	if (vreg->ocp_count == 1) {
1166 		/* Immediately clear the over current condition. */
1167 		spmi_regulator_vs_clear_ocp(vreg);
1168 	} else if (vreg->ocp_count <= vreg->ocp_max_retries) {
1169 		/* Schedule the over current clear task to run later. */
1170 		schedule_delayed_work(&vreg->ocp_work,
1171 			msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1);
1172 	} else {
1173 		dev_err(vreg->dev,
1174 			"OCP triggered %d times; no further retries\n",
1175 			vreg->ocp_count);
1176 	}
1177 
1178 	return IRQ_HANDLED;
1179 }
1180 
1181 #define SAW3_VCTL_DATA_MASK	0xFF
1182 #define SAW3_VCTL_CLEAR_MASK	0x700FF
1183 #define SAW3_AVS_CTL_EN_MASK	0x1
1184 #define SAW3_AVS_CTL_TGGL_MASK	0x8000000
1185 #define SAW3_AVS_CTL_CLEAR_MASK	0x7efc00
1186 
1187 static struct regmap *saw_regmap;
1188 
1189 static void spmi_saw_set_vdd(void *data)
1190 {
1191 	u32 vctl, data3, avs_ctl, pmic_sts;
1192 	bool avs_enabled = false;
1193 	unsigned long timeout;
1194 	u8 voltage_sel = *(u8 *)data;
1195 
1196 	regmap_read(saw_regmap, SAW3_AVS_CTL, &avs_ctl);
1197 	regmap_read(saw_regmap, SAW3_VCTL, &vctl);
1198 	regmap_read(saw_regmap, SAW3_SPM_PMIC_DATA_3, &data3);
1199 
1200 	/* select the band */
1201 	vctl &= ~SAW3_VCTL_CLEAR_MASK;
1202 	vctl |= (u32)voltage_sel;
1203 
1204 	data3 &= ~SAW3_VCTL_CLEAR_MASK;
1205 	data3 |= (u32)voltage_sel;
1206 
1207 	/* If AVS is enabled, switch it off during the voltage change */
1208 	avs_enabled = SAW3_AVS_CTL_EN_MASK & avs_ctl;
1209 	if (avs_enabled) {
1210 		avs_ctl &= ~SAW3_AVS_CTL_TGGL_MASK;
1211 		regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl);
1212 	}
1213 
1214 	regmap_write(saw_regmap, SAW3_RST, 1);
1215 	regmap_write(saw_regmap, SAW3_VCTL, vctl);
1216 	regmap_write(saw_regmap, SAW3_SPM_PMIC_DATA_3, data3);
1217 
1218 	timeout = jiffies + usecs_to_jiffies(100);
1219 	do {
1220 		regmap_read(saw_regmap, SAW3_PMIC_STS, &pmic_sts);
1221 		pmic_sts &= SAW3_VCTL_DATA_MASK;
1222 		if (pmic_sts == (u32)voltage_sel)
1223 			break;
1224 
1225 		cpu_relax();
1226 
1227 	} while (time_before(jiffies, timeout));
1228 
1229 	/* After successful voltage change, switch the AVS back on */
1230 	if (avs_enabled) {
1231 		pmic_sts &= 0x3f;
1232 		avs_ctl &= ~SAW3_AVS_CTL_CLEAR_MASK;
1233 		avs_ctl |= ((pmic_sts - 4) << 10);
1234 		avs_ctl |= (pmic_sts << 17);
1235 		avs_ctl |= SAW3_AVS_CTL_TGGL_MASK;
1236 		regmap_write(saw_regmap, SAW3_AVS_CTL, avs_ctl);
1237 	}
1238 }
1239 
1240 static int
1241 spmi_regulator_saw_set_voltage(struct regulator_dev *rdev, unsigned selector)
1242 {
1243 	struct spmi_regulator *vreg = rdev_get_drvdata(rdev);
1244 	int ret;
1245 	u8 range_sel, voltage_sel;
1246 
1247 	ret = spmi_sw_selector_to_hw(vreg, selector, &range_sel, &voltage_sel);
1248 	if (ret)
1249 		return ret;
1250 
1251 	if (0 != range_sel) {
1252 		dev_dbg(&rdev->dev, "range_sel = %02X voltage_sel = %02X", \
1253 			range_sel, voltage_sel);
1254 		return -EINVAL;
1255 	}
1256 
1257 	/* Always do the SAW register writes on the first CPU */
1258 	return smp_call_function_single(0, spmi_saw_set_vdd, \
1259 					&voltage_sel, true);
1260 }
1261 
1262 static struct regulator_ops spmi_saw_ops = {};
1263 
1264 static struct regulator_ops spmi_smps_ops = {
1265 	.enable			= regulator_enable_regmap,
1266 	.disable		= regulator_disable_regmap,
1267 	.is_enabled		= regulator_is_enabled_regmap,
1268 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1269 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1270 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1271 	.map_voltage		= spmi_regulator_common_map_voltage,
1272 	.list_voltage		= spmi_regulator_common_list_voltage,
1273 	.set_mode		= spmi_regulator_common_set_mode,
1274 	.get_mode		= spmi_regulator_common_get_mode,
1275 	.set_load		= spmi_regulator_common_set_load,
1276 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1277 };
1278 
1279 static struct regulator_ops spmi_ldo_ops = {
1280 	.enable			= regulator_enable_regmap,
1281 	.disable		= regulator_disable_regmap,
1282 	.is_enabled		= regulator_is_enabled_regmap,
1283 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1284 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1285 	.map_voltage		= spmi_regulator_common_map_voltage,
1286 	.list_voltage		= spmi_regulator_common_list_voltage,
1287 	.set_mode		= spmi_regulator_common_set_mode,
1288 	.get_mode		= spmi_regulator_common_get_mode,
1289 	.set_load		= spmi_regulator_common_set_load,
1290 	.set_bypass		= spmi_regulator_common_set_bypass,
1291 	.get_bypass		= spmi_regulator_common_get_bypass,
1292 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1293 	.set_soft_start		= spmi_regulator_common_set_soft_start,
1294 };
1295 
1296 static struct regulator_ops spmi_ln_ldo_ops = {
1297 	.enable			= regulator_enable_regmap,
1298 	.disable		= regulator_disable_regmap,
1299 	.is_enabled		= regulator_is_enabled_regmap,
1300 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1301 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1302 	.map_voltage		= spmi_regulator_common_map_voltage,
1303 	.list_voltage		= spmi_regulator_common_list_voltage,
1304 	.set_bypass		= spmi_regulator_common_set_bypass,
1305 	.get_bypass		= spmi_regulator_common_get_bypass,
1306 };
1307 
1308 static struct regulator_ops spmi_vs_ops = {
1309 	.enable			= spmi_regulator_vs_enable,
1310 	.disable		= regulator_disable_regmap,
1311 	.is_enabled		= regulator_is_enabled_regmap,
1312 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1313 	.set_soft_start		= spmi_regulator_common_set_soft_start,
1314 	.set_over_current_protection = spmi_regulator_vs_ocp,
1315 	.set_mode		= spmi_regulator_common_set_mode,
1316 	.get_mode		= spmi_regulator_common_get_mode,
1317 };
1318 
1319 static struct regulator_ops spmi_boost_ops = {
1320 	.enable			= regulator_enable_regmap,
1321 	.disable		= regulator_disable_regmap,
1322 	.is_enabled		= regulator_is_enabled_regmap,
1323 	.set_voltage_sel	= spmi_regulator_single_range_set_voltage,
1324 	.get_voltage_sel	= spmi_regulator_single_range_get_voltage,
1325 	.map_voltage		= spmi_regulator_single_map_voltage,
1326 	.list_voltage		= spmi_regulator_common_list_voltage,
1327 	.set_input_current_limit = spmi_regulator_set_ilim,
1328 };
1329 
1330 static struct regulator_ops spmi_ftsmps_ops = {
1331 	.enable			= regulator_enable_regmap,
1332 	.disable		= regulator_disable_regmap,
1333 	.is_enabled		= regulator_is_enabled_regmap,
1334 	.set_voltage_sel	= spmi_regulator_common_set_voltage,
1335 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1336 	.get_voltage_sel	= spmi_regulator_common_get_voltage,
1337 	.map_voltage		= spmi_regulator_common_map_voltage,
1338 	.list_voltage		= spmi_regulator_common_list_voltage,
1339 	.set_mode		= spmi_regulator_common_set_mode,
1340 	.get_mode		= spmi_regulator_common_get_mode,
1341 	.set_load		= spmi_regulator_common_set_load,
1342 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1343 };
1344 
1345 static struct regulator_ops spmi_ult_lo_smps_ops = {
1346 	.enable			= regulator_enable_regmap,
1347 	.disable		= regulator_disable_regmap,
1348 	.is_enabled		= regulator_is_enabled_regmap,
1349 	.set_voltage_sel	= spmi_regulator_ult_lo_smps_set_voltage,
1350 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1351 	.get_voltage_sel	= spmi_regulator_ult_lo_smps_get_voltage,
1352 	.list_voltage		= spmi_regulator_common_list_voltage,
1353 	.set_mode		= spmi_regulator_common_set_mode,
1354 	.get_mode		= spmi_regulator_common_get_mode,
1355 	.set_load		= spmi_regulator_common_set_load,
1356 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1357 };
1358 
1359 static struct regulator_ops spmi_ult_ho_smps_ops = {
1360 	.enable			= regulator_enable_regmap,
1361 	.disable		= regulator_disable_regmap,
1362 	.is_enabled		= regulator_is_enabled_regmap,
1363 	.set_voltage_sel	= spmi_regulator_single_range_set_voltage,
1364 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1365 	.get_voltage_sel	= spmi_regulator_single_range_get_voltage,
1366 	.map_voltage		= spmi_regulator_single_map_voltage,
1367 	.list_voltage		= spmi_regulator_common_list_voltage,
1368 	.set_mode		= spmi_regulator_common_set_mode,
1369 	.get_mode		= spmi_regulator_common_get_mode,
1370 	.set_load		= spmi_regulator_common_set_load,
1371 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1372 };
1373 
1374 static struct regulator_ops spmi_ult_ldo_ops = {
1375 	.enable			= regulator_enable_regmap,
1376 	.disable		= regulator_disable_regmap,
1377 	.is_enabled		= regulator_is_enabled_regmap,
1378 	.set_voltage_sel	= spmi_regulator_single_range_set_voltage,
1379 	.get_voltage_sel	= spmi_regulator_single_range_get_voltage,
1380 	.map_voltage		= spmi_regulator_single_map_voltage,
1381 	.list_voltage		= spmi_regulator_common_list_voltage,
1382 	.set_mode		= spmi_regulator_common_set_mode,
1383 	.get_mode		= spmi_regulator_common_get_mode,
1384 	.set_load		= spmi_regulator_common_set_load,
1385 	.set_bypass		= spmi_regulator_common_set_bypass,
1386 	.get_bypass		= spmi_regulator_common_get_bypass,
1387 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1388 	.set_soft_start		= spmi_regulator_common_set_soft_start,
1389 };
1390 
1391 static struct regulator_ops spmi_ftsmps426_ops = {
1392 	.enable			= regulator_enable_regmap,
1393 	.disable		= regulator_disable_regmap,
1394 	.is_enabled		= regulator_is_enabled_regmap,
1395 	.set_voltage_sel	= spmi_regulator_ftsmps426_set_voltage,
1396 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1397 	.get_voltage_sel	= spmi_regulator_ftsmps426_get_voltage,
1398 	.map_voltage		= spmi_regulator_single_map_voltage,
1399 	.list_voltage		= spmi_regulator_common_list_voltage,
1400 	.set_mode		= spmi_regulator_ftsmps426_set_mode,
1401 	.get_mode		= spmi_regulator_ftsmps426_get_mode,
1402 	.set_load		= spmi_regulator_common_set_load,
1403 	.set_pull_down		= spmi_regulator_common_set_pull_down,
1404 };
1405 
1406 static struct regulator_ops spmi_hfs430_ops = {
1407 	.enable			= regulator_enable_regmap,
1408 	.disable		= regulator_disable_regmap,
1409 	.is_enabled		= regulator_is_enabled_regmap,
1410 	.set_voltage_sel	= spmi_regulator_ftsmps426_set_voltage,
1411 	.set_voltage_time_sel	= spmi_regulator_set_voltage_time_sel,
1412 	.get_voltage_sel	= spmi_regulator_ftsmps426_get_voltage,
1413 	.map_voltage		= spmi_regulator_single_map_voltage,
1414 	.list_voltage		= spmi_regulator_common_list_voltage,
1415 	.set_mode		= spmi_regulator_ftsmps426_set_mode,
1416 	.get_mode		= spmi_regulator_ftsmps426_get_mode,
1417 };
1418 
1419 /* Maximum possible digital major revision value */
1420 #define INF 0xFF
1421 
1422 static const struct spmi_regulator_mapping supported_regulators[] = {
1423 	/*           type subtype dig_min dig_max ltype ops setpoints hpm_min */
1424 	SPMI_VREG(BUCK,  GP_CTL,   0, INF, SMPS,   smps,   smps,   100000),
1425 	SPMI_VREG(BUCK,  HFS430,   0, INF, HFS430, hfs430, hfs430,  10000),
1426 	SPMI_VREG(LDO,   N300,     0, INF, LDO,    ldo,    nldo1,   10000),
1427 	SPMI_VREG(LDO,   N600,     0,   0, LDO,    ldo,    nldo2,   10000),
1428 	SPMI_VREG(LDO,   N1200,    0,   0, LDO,    ldo,    nldo2,   10000),
1429 	SPMI_VREG(LDO,   N600,     1, INF, LDO,    ldo,    nldo3,   10000),
1430 	SPMI_VREG(LDO,   N1200,    1, INF, LDO,    ldo,    nldo3,   10000),
1431 	SPMI_VREG(LDO,   N600_ST,  0,   0, LDO,    ldo,    nldo2,   10000),
1432 	SPMI_VREG(LDO,   N1200_ST, 0,   0, LDO,    ldo,    nldo2,   10000),
1433 	SPMI_VREG(LDO,   N600_ST,  1, INF, LDO,    ldo,    nldo3,   10000),
1434 	SPMI_VREG(LDO,   N1200_ST, 1, INF, LDO,    ldo,    nldo3,   10000),
1435 	SPMI_VREG(LDO,   P50,      0, INF, LDO,    ldo,    pldo,     5000),
1436 	SPMI_VREG(LDO,   P150,     0, INF, LDO,    ldo,    pldo,    10000),
1437 	SPMI_VREG(LDO,   P300,     0, INF, LDO,    ldo,    pldo,    10000),
1438 	SPMI_VREG(LDO,   P600,     0, INF, LDO,    ldo,    pldo,    10000),
1439 	SPMI_VREG(LDO,   P1200,    0, INF, LDO,    ldo,    pldo,    10000),
1440 	SPMI_VREG(LDO,   LN,       0, INF, LN_LDO, ln_ldo, ln_ldo,      0),
1441 	SPMI_VREG(LDO,   LV_P50,   0, INF, LDO,    ldo,    pldo,     5000),
1442 	SPMI_VREG(LDO,   LV_P150,  0, INF, LDO,    ldo,    pldo,    10000),
1443 	SPMI_VREG(LDO,   LV_P300,  0, INF, LDO,    ldo,    pldo,    10000),
1444 	SPMI_VREG(LDO,   LV_P600,  0, INF, LDO,    ldo,    pldo,    10000),
1445 	SPMI_VREG(LDO,   LV_P1200, 0, INF, LDO,    ldo,    pldo,    10000),
1446 	SPMI_VREG_VS(LV100,        0, INF),
1447 	SPMI_VREG_VS(LV300,        0, INF),
1448 	SPMI_VREG_VS(MV300,        0, INF),
1449 	SPMI_VREG_VS(MV500,        0, INF),
1450 	SPMI_VREG_VS(HDMI,         0, INF),
1451 	SPMI_VREG_VS(OTG,          0, INF),
1452 	SPMI_VREG(BOOST, 5V_BOOST, 0, INF, BOOST,  boost,  boost,       0),
1453 	SPMI_VREG(FTS,   FTS_CTL,  0, INF, FTSMPS, ftsmps, ftsmps, 100000),
1454 	SPMI_VREG(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5, 100000),
1455 	SPMI_VREG(FTS, FTS426_CTL, 0, INF, FTSMPS426, ftsmps426, ftsmps426, 100000),
1456 	SPMI_VREG(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0),
1457 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1458 						ult_lo_smps,   100000),
1459 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1460 						ult_lo_smps,   100000),
1461 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps,
1462 						ult_lo_smps,   100000),
1463 	SPMI_VREG(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps,
1464 						ult_ho_smps,   100000),
1465 	SPMI_VREG(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1466 	SPMI_VREG(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1467 	SPMI_VREG(ULT_LDO, N900_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1468 	SPMI_VREG(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo, 10000),
1469 	SPMI_VREG(ULT_LDO, LV_P150,  0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1470 	SPMI_VREG(ULT_LDO, LV_P300,  0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1471 	SPMI_VREG(ULT_LDO, LV_P450,  0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1472 	SPMI_VREG(ULT_LDO, P600,     0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1473 	SPMI_VREG(ULT_LDO, P150,     0, INF, ULT_LDO, ult_ldo, ult_pldo, 10000),
1474 	SPMI_VREG(ULT_LDO, P50,     0, INF, ULT_LDO, ult_ldo, ult_pldo, 5000),
1475 };
1476 
1477 static void spmi_calculate_num_voltages(struct spmi_voltage_set_points *points)
1478 {
1479 	unsigned int n;
1480 	struct spmi_voltage_range *range = points->range;
1481 
1482 	for (; range < points->range + points->count; range++) {
1483 		n = 0;
1484 		if (range->set_point_max_uV) {
1485 			n = range->set_point_max_uV - range->set_point_min_uV;
1486 			n = (n / range->step_uV) + 1;
1487 		}
1488 		range->n_voltages = n;
1489 		points->n_voltages += n;
1490 	}
1491 }
1492 
1493 static int spmi_regulator_match(struct spmi_regulator *vreg, u16 force_type)
1494 {
1495 	const struct spmi_regulator_mapping *mapping;
1496 	int ret, i;
1497 	u32 dig_major_rev;
1498 	u8 version[SPMI_COMMON_REG_SUBTYPE - SPMI_COMMON_REG_DIG_MAJOR_REV + 1];
1499 	u8 type, subtype;
1500 
1501 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_DIG_MAJOR_REV, version,
1502 		ARRAY_SIZE(version));
1503 	if (ret) {
1504 		dev_dbg(vreg->dev, "could not read version registers\n");
1505 		return ret;
1506 	}
1507 	dig_major_rev	= version[SPMI_COMMON_REG_DIG_MAJOR_REV
1508 					- SPMI_COMMON_REG_DIG_MAJOR_REV];
1509 
1510 	if (!force_type) {
1511 		type		= version[SPMI_COMMON_REG_TYPE -
1512 					  SPMI_COMMON_REG_DIG_MAJOR_REV];
1513 		subtype		= version[SPMI_COMMON_REG_SUBTYPE -
1514 					  SPMI_COMMON_REG_DIG_MAJOR_REV];
1515 	} else {
1516 		type = force_type >> 8;
1517 		subtype = force_type;
1518 	}
1519 
1520 	for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) {
1521 		mapping = &supported_regulators[i];
1522 		if (mapping->type == type && mapping->subtype == subtype
1523 		    && mapping->revision_min <= dig_major_rev
1524 		    && mapping->revision_max >= dig_major_rev)
1525 			goto found;
1526 	}
1527 
1528 	dev_err(vreg->dev,
1529 		"unsupported regulator: name=%s type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n",
1530 		vreg->desc.name, type, subtype, dig_major_rev);
1531 
1532 	return -ENODEV;
1533 
1534 found:
1535 	vreg->logical_type	= mapping->logical_type;
1536 	vreg->set_points	= mapping->set_points;
1537 	vreg->hpm_min_load	= mapping->hpm_min_load;
1538 	vreg->desc.ops		= mapping->ops;
1539 
1540 	if (mapping->set_points) {
1541 		if (!mapping->set_points->n_voltages)
1542 			spmi_calculate_num_voltages(mapping->set_points);
1543 		vreg->desc.n_voltages = mapping->set_points->n_voltages;
1544 	}
1545 
1546 	return 0;
1547 }
1548 
1549 static int spmi_regulator_init_slew_rate(struct spmi_regulator *vreg)
1550 {
1551 	int ret;
1552 	u8 reg = 0;
1553 	int step, delay, slew_rate, step_delay;
1554 	const struct spmi_voltage_range *range;
1555 
1556 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, &reg, 1);
1557 	if (ret) {
1558 		dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret);
1559 		return ret;
1560 	}
1561 
1562 	range = spmi_regulator_find_range(vreg);
1563 	if (!range)
1564 		return -EINVAL;
1565 
1566 	switch (vreg->logical_type) {
1567 	case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
1568 		step_delay = SPMI_FTSMPS_STEP_DELAY;
1569 		break;
1570 	default:
1571 		step_delay = SPMI_DEFAULT_STEP_DELAY;
1572 		break;
1573 	}
1574 
1575 	step = reg & SPMI_FTSMPS_STEP_CTRL_STEP_MASK;
1576 	step >>= SPMI_FTSMPS_STEP_CTRL_STEP_SHIFT;
1577 
1578 	delay = reg & SPMI_FTSMPS_STEP_CTRL_DELAY_MASK;
1579 	delay >>= SPMI_FTSMPS_STEP_CTRL_DELAY_SHIFT;
1580 
1581 	/* slew_rate has units of uV/us */
1582 	slew_rate = SPMI_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step);
1583 	slew_rate /= 1000 * (step_delay << delay);
1584 	slew_rate *= SPMI_FTSMPS_STEP_MARGIN_NUM;
1585 	slew_rate /= SPMI_FTSMPS_STEP_MARGIN_DEN;
1586 
1587 	/* Ensure that the slew rate is greater than 0 */
1588 	vreg->slew_rate = max(slew_rate, 1);
1589 
1590 	return ret;
1591 }
1592 
1593 static int spmi_regulator_init_slew_rate_ftsmps426(struct spmi_regulator *vreg,
1594 						   int clock_rate)
1595 {
1596 	int ret;
1597 	u8 reg = 0;
1598 	int delay, slew_rate;
1599 	const struct spmi_voltage_range *range = &vreg->set_points->range[0];
1600 
1601 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_STEP_CTRL, &reg, 1);
1602 	if (ret) {
1603 		dev_err(vreg->dev, "spmi read failed, ret=%d\n", ret);
1604 		return ret;
1605 	}
1606 
1607 	delay = reg & SPMI_FTSMPS426_STEP_CTRL_DELAY_MASK;
1608 	delay >>= SPMI_FTSMPS426_STEP_CTRL_DELAY_SHIFT;
1609 
1610 	/* slew_rate has units of uV/us */
1611 	slew_rate = clock_rate * range->step_uV;
1612 	slew_rate /= 1000 * (SPMI_FTSMPS426_STEP_DELAY << delay);
1613 	slew_rate *= SPMI_FTSMPS426_STEP_MARGIN_NUM;
1614 	slew_rate /= SPMI_FTSMPS426_STEP_MARGIN_DEN;
1615 
1616 	/* Ensure that the slew rate is greater than 0 */
1617 	vreg->slew_rate = max(slew_rate, 1);
1618 
1619 	return ret;
1620 }
1621 
1622 static int spmi_regulator_init_registers(struct spmi_regulator *vreg,
1623 				const struct spmi_regulator_init_data *data)
1624 {
1625 	int ret;
1626 	enum spmi_regulator_logical_type type;
1627 	u8 ctrl_reg[8], reg, mask;
1628 
1629 	type = vreg->logical_type;
1630 
1631 	ret = spmi_vreg_read(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
1632 	if (ret)
1633 		return ret;
1634 
1635 	/* Set up enable pin control. */
1636 	if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS
1637 	     || type == SPMI_REGULATOR_LOGICAL_TYPE_LDO
1638 	     || type == SPMI_REGULATOR_LOGICAL_TYPE_VS)
1639 	    && !(data->pin_ctrl_enable
1640 			& SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) {
1641 		ctrl_reg[SPMI_COMMON_IDX_ENABLE] &=
1642 			~SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
1643 		ctrl_reg[SPMI_COMMON_IDX_ENABLE] |=
1644 		    data->pin_ctrl_enable & SPMI_COMMON_ENABLE_FOLLOW_ALL_MASK;
1645 	}
1646 
1647 	/* Set up mode pin control. */
1648 	if ((type == SPMI_REGULATOR_LOGICAL_TYPE_SMPS
1649 	    || type == SPMI_REGULATOR_LOGICAL_TYPE_LDO)
1650 		&& !(data->pin_ctrl_hpm
1651 			& SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1652 		ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1653 			~SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
1654 		ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1655 			data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_ALL_MASK;
1656 	}
1657 
1658 	if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS
1659 	   && !(data->pin_ctrl_hpm & SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1660 		ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1661 			~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1662 		ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1663 		       data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1664 	}
1665 
1666 	if ((type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
1667 		|| type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
1668 		|| type == SPMI_REGULATOR_LOGICAL_TYPE_ULT_LDO)
1669 		&& !(data->pin_ctrl_hpm
1670 			& SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
1671 		ctrl_reg[SPMI_COMMON_IDX_MODE] &=
1672 			~SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1673 		ctrl_reg[SPMI_COMMON_IDX_MODE] |=
1674 		       data->pin_ctrl_hpm & SPMI_COMMON_MODE_FOLLOW_AWAKE_MASK;
1675 	}
1676 
1677 	/* Write back any control register values that were modified. */
1678 	ret = spmi_vreg_write(vreg, SPMI_COMMON_REG_VOLTAGE_RANGE, ctrl_reg, 8);
1679 	if (ret)
1680 		return ret;
1681 
1682 	/* Set soft start strength and over current protection for VS. */
1683 	if (type == SPMI_REGULATOR_LOGICAL_TYPE_VS) {
1684 		if (data->vs_soft_start_strength
1685 				!= SPMI_VS_SOFT_START_STR_HW_DEFAULT) {
1686 			reg = data->vs_soft_start_strength
1687 				& SPMI_VS_SOFT_START_SEL_MASK;
1688 			mask = SPMI_VS_SOFT_START_SEL_MASK;
1689 			return spmi_vreg_update_bits(vreg,
1690 						     SPMI_VS_REG_SOFT_START,
1691 						     reg, mask);
1692 		}
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 static void spmi_regulator_get_dt_config(struct spmi_regulator *vreg,
1699 		struct device_node *node, struct spmi_regulator_init_data *data)
1700 {
1701 	/*
1702 	 * Initialize configuration parameters to use hardware default in case
1703 	 * no value is specified via device tree.
1704 	 */
1705 	data->pin_ctrl_enable	    = SPMI_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT;
1706 	data->pin_ctrl_hpm	    = SPMI_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT;
1707 	data->vs_soft_start_strength	= SPMI_VS_SOFT_START_STR_HW_DEFAULT;
1708 
1709 	/* These bindings are optional, so it is okay if they aren't found. */
1710 	of_property_read_u32(node, "qcom,ocp-max-retries",
1711 		&vreg->ocp_max_retries);
1712 	of_property_read_u32(node, "qcom,ocp-retry-delay",
1713 		&vreg->ocp_retry_delay_ms);
1714 	of_property_read_u32(node, "qcom,pin-ctrl-enable",
1715 		&data->pin_ctrl_enable);
1716 	of_property_read_u32(node, "qcom,pin-ctrl-hpm", &data->pin_ctrl_hpm);
1717 	of_property_read_u32(node, "qcom,vs-soft-start-strength",
1718 		&data->vs_soft_start_strength);
1719 }
1720 
1721 static unsigned int spmi_regulator_of_map_mode(unsigned int mode)
1722 {
1723 	if (mode == 1)
1724 		return REGULATOR_MODE_NORMAL;
1725 	if (mode == 2)
1726 		return REGULATOR_MODE_FAST;
1727 
1728 	return REGULATOR_MODE_IDLE;
1729 }
1730 
1731 static int spmi_regulator_of_parse(struct device_node *node,
1732 			    const struct regulator_desc *desc,
1733 			    struct regulator_config *config)
1734 {
1735 	struct spmi_regulator_init_data data = { };
1736 	struct spmi_regulator *vreg = config->driver_data;
1737 	struct device *dev = config->dev;
1738 	int ret;
1739 
1740 	spmi_regulator_get_dt_config(vreg, node, &data);
1741 
1742 	if (!vreg->ocp_max_retries)
1743 		vreg->ocp_max_retries = SPMI_VS_OCP_DEFAULT_MAX_RETRIES;
1744 	if (!vreg->ocp_retry_delay_ms)
1745 		vreg->ocp_retry_delay_ms = SPMI_VS_OCP_DEFAULT_RETRY_DELAY_MS;
1746 
1747 	ret = spmi_regulator_init_registers(vreg, &data);
1748 	if (ret) {
1749 		dev_err(dev, "common initialization failed, ret=%d\n", ret);
1750 		return ret;
1751 	}
1752 
1753 	switch (vreg->logical_type) {
1754 	case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS:
1755 	case SPMI_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS:
1756 	case SPMI_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS:
1757 	case SPMI_REGULATOR_LOGICAL_TYPE_SMPS:
1758 		ret = spmi_regulator_init_slew_rate(vreg);
1759 		if (ret)
1760 			return ret;
1761 		break;
1762 	case SPMI_REGULATOR_LOGICAL_TYPE_FTSMPS426:
1763 		ret = spmi_regulator_init_slew_rate_ftsmps426(vreg,
1764 						SPMI_FTSMPS426_CLOCK_RATE);
1765 		if (ret)
1766 			return ret;
1767 		break;
1768 	case SPMI_REGULATOR_LOGICAL_TYPE_HFS430:
1769 		ret = spmi_regulator_init_slew_rate_ftsmps426(vreg,
1770 							SPMI_HFS430_CLOCK_RATE);
1771 		if (ret)
1772 			return ret;
1773 		break;
1774 	default:
1775 		break;
1776 	}
1777 
1778 	if (vreg->logical_type != SPMI_REGULATOR_LOGICAL_TYPE_VS)
1779 		vreg->ocp_irq = 0;
1780 
1781 	if (vreg->ocp_irq) {
1782 		ret = devm_request_irq(dev, vreg->ocp_irq,
1783 			spmi_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp",
1784 			vreg);
1785 		if (ret < 0) {
1786 			dev_err(dev, "failed to request irq %d, ret=%d\n",
1787 				vreg->ocp_irq, ret);
1788 			return ret;
1789 		}
1790 
1791 		INIT_DELAYED_WORK(&vreg->ocp_work, spmi_regulator_vs_ocp_work);
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 static const struct spmi_regulator_data pm8941_regulators[] = {
1798 	{ "s1", 0x1400, "vdd_s1", },
1799 	{ "s2", 0x1700, "vdd_s2", },
1800 	{ "s3", 0x1a00, "vdd_s3", },
1801 	{ "s4", 0xa000, },
1802 	{ "l1", 0x4000, "vdd_l1_l3", },
1803 	{ "l2", 0x4100, "vdd_l2_lvs_1_2_3", },
1804 	{ "l3", 0x4200, "vdd_l1_l3", },
1805 	{ "l4", 0x4300, "vdd_l4_l11", },
1806 	{ "l5", 0x4400, "vdd_l5_l7", NULL, 0x0410 },
1807 	{ "l6", 0x4500, "vdd_l6_l12_l14_l15", },
1808 	{ "l7", 0x4600, "vdd_l5_l7", NULL, 0x0410 },
1809 	{ "l8", 0x4700, "vdd_l8_l16_l18_19", },
1810 	{ "l9", 0x4800, "vdd_l9_l10_l17_l22", },
1811 	{ "l10", 0x4900, "vdd_l9_l10_l17_l22", },
1812 	{ "l11", 0x4a00, "vdd_l4_l11", },
1813 	{ "l12", 0x4b00, "vdd_l6_l12_l14_l15", },
1814 	{ "l13", 0x4c00, "vdd_l13_l20_l23_l24", },
1815 	{ "l14", 0x4d00, "vdd_l6_l12_l14_l15", },
1816 	{ "l15", 0x4e00, "vdd_l6_l12_l14_l15", },
1817 	{ "l16", 0x4f00, "vdd_l8_l16_l18_19", },
1818 	{ "l17", 0x5000, "vdd_l9_l10_l17_l22", },
1819 	{ "l18", 0x5100, "vdd_l8_l16_l18_19", },
1820 	{ "l19", 0x5200, "vdd_l8_l16_l18_19", },
1821 	{ "l20", 0x5300, "vdd_l13_l20_l23_l24", },
1822 	{ "l21", 0x5400, "vdd_l21", },
1823 	{ "l22", 0x5500, "vdd_l9_l10_l17_l22", },
1824 	{ "l23", 0x5600, "vdd_l13_l20_l23_l24", },
1825 	{ "l24", 0x5700, "vdd_l13_l20_l23_l24", },
1826 	{ "lvs1", 0x8000, "vdd_l2_lvs_1_2_3", },
1827 	{ "lvs2", 0x8100, "vdd_l2_lvs_1_2_3", },
1828 	{ "lvs3", 0x8200, "vdd_l2_lvs_1_2_3", },
1829 	{ "5vs1", 0x8300, "vin_5vs", "ocp-5vs1", },
1830 	{ "5vs2", 0x8400, "vin_5vs", "ocp-5vs2", },
1831 	{ }
1832 };
1833 
1834 static const struct spmi_regulator_data pm8841_regulators[] = {
1835 	{ "s1", 0x1400, "vdd_s1", },
1836 	{ "s2", 0x1700, "vdd_s2", NULL, 0x1c08 },
1837 	{ "s3", 0x1a00, "vdd_s3", },
1838 	{ "s4", 0x1d00, "vdd_s4", NULL, 0x1c08 },
1839 	{ "s5", 0x2000, "vdd_s5", NULL, 0x1c08 },
1840 	{ "s6", 0x2300, "vdd_s6", NULL, 0x1c08 },
1841 	{ "s7", 0x2600, "vdd_s7", NULL, 0x1c08 },
1842 	{ "s8", 0x2900, "vdd_s8", NULL, 0x1c08 },
1843 	{ }
1844 };
1845 
1846 static const struct spmi_regulator_data pm8916_regulators[] = {
1847 	{ "s1", 0x1400, "vdd_s1", },
1848 	{ "s2", 0x1700, "vdd_s2", },
1849 	{ "s3", 0x1a00, "vdd_s3", },
1850 	{ "s4", 0x1d00, "vdd_s4", },
1851 	{ "l1", 0x4000, "vdd_l1_l3", },
1852 	{ "l2", 0x4100, "vdd_l2", },
1853 	{ "l3", 0x4200, "vdd_l1_l3", },
1854 	{ "l4", 0x4300, "vdd_l4_l5_l6", },
1855 	{ "l5", 0x4400, "vdd_l4_l5_l6", },
1856 	{ "l6", 0x4500, "vdd_l4_l5_l6", },
1857 	{ "l7", 0x4600, "vdd_l7", },
1858 	{ "l8", 0x4700, "vdd_l8_l11_l14_l15_l16", },
1859 	{ "l9", 0x4800, "vdd_l9_l10_l12_l13_l17_l18", },
1860 	{ "l10", 0x4900, "vdd_l9_l10_l12_l13_l17_l18", },
1861 	{ "l11", 0x4a00, "vdd_l8_l11_l14_l15_l16", },
1862 	{ "l12", 0x4b00, "vdd_l9_l10_l12_l13_l17_l18", },
1863 	{ "l13", 0x4c00, "vdd_l9_l10_l12_l13_l17_l18", },
1864 	{ "l14", 0x4d00, "vdd_l8_l11_l14_l15_l16", },
1865 	{ "l15", 0x4e00, "vdd_l8_l11_l14_l15_l16", },
1866 	{ "l16", 0x4f00, "vdd_l8_l11_l14_l15_l16", },
1867 	{ "l17", 0x5000, "vdd_l9_l10_l12_l13_l17_l18", },
1868 	{ "l18", 0x5100, "vdd_l9_l10_l12_l13_l17_l18", },
1869 	{ }
1870 };
1871 
1872 static const struct spmi_regulator_data pm8994_regulators[] = {
1873 	{ "s1", 0x1400, "vdd_s1", },
1874 	{ "s2", 0x1700, "vdd_s2", },
1875 	{ "s3", 0x1a00, "vdd_s3", },
1876 	{ "s4", 0x1d00, "vdd_s4", },
1877 	{ "s5", 0x2000, "vdd_s5", },
1878 	{ "s6", 0x2300, "vdd_s6", },
1879 	{ "s7", 0x2600, "vdd_s7", },
1880 	{ "s8", 0x2900, "vdd_s8", },
1881 	{ "s9", 0x2c00, "vdd_s9", },
1882 	{ "s10", 0x2f00, "vdd_s10", },
1883 	{ "s11", 0x3200, "vdd_s11", },
1884 	{ "s12", 0x3500, "vdd_s12", },
1885 	{ "l1", 0x4000, "vdd_l1", },
1886 	{ "l2", 0x4100, "vdd_l2_l26_l28", },
1887 	{ "l3", 0x4200, "vdd_l3_l11", },
1888 	{ "l4", 0x4300, "vdd_l4_l27_l31", },
1889 	{ "l5", 0x4400, "vdd_l5_l7", },
1890 	{ "l6", 0x4500, "vdd_l6_l12_l32", },
1891 	{ "l7", 0x4600, "vdd_l5_l7", },
1892 	{ "l8", 0x4700, "vdd_l8_l16_l30", },
1893 	{ "l9", 0x4800, "vdd_l9_l10_l18_l22", },
1894 	{ "l10", 0x4900, "vdd_l9_l10_l18_l22", },
1895 	{ "l11", 0x4a00, "vdd_l3_l11", },
1896 	{ "l12", 0x4b00, "vdd_l6_l12_l32", },
1897 	{ "l13", 0x4c00, "vdd_l13_l19_l23_l24", },
1898 	{ "l14", 0x4d00, "vdd_l14_l15", },
1899 	{ "l15", 0x4e00, "vdd_l14_l15", },
1900 	{ "l16", 0x4f00, "vdd_l8_l16_l30", },
1901 	{ "l17", 0x5000, "vdd_l17_l29", },
1902 	{ "l18", 0x5100, "vdd_l9_l10_l18_l22", },
1903 	{ "l19", 0x5200, "vdd_l13_l19_l23_l24", },
1904 	{ "l20", 0x5300, "vdd_l20_l21", },
1905 	{ "l21", 0x5400, "vdd_l20_l21", },
1906 	{ "l22", 0x5500, "vdd_l9_l10_l18_l22", },
1907 	{ "l23", 0x5600, "vdd_l13_l19_l23_l24", },
1908 	{ "l24", 0x5700, "vdd_l13_l19_l23_l24", },
1909 	{ "l25", 0x5800, "vdd_l25", },
1910 	{ "l26", 0x5900, "vdd_l2_l26_l28", },
1911 	{ "l27", 0x5a00, "vdd_l4_l27_l31", },
1912 	{ "l28", 0x5b00, "vdd_l2_l26_l28", },
1913 	{ "l29", 0x5c00, "vdd_l17_l29", },
1914 	{ "l30", 0x5d00, "vdd_l8_l16_l30", },
1915 	{ "l31", 0x5e00, "vdd_l4_l27_l31", },
1916 	{ "l32", 0x5f00, "vdd_l6_l12_l32", },
1917 	{ "lvs1", 0x8000, "vdd_lvs_1_2", },
1918 	{ "lvs2", 0x8100, "vdd_lvs_1_2", },
1919 	{ }
1920 };
1921 
1922 static const struct spmi_regulator_data pmi8994_regulators[] = {
1923 	{ "s1", 0x1400, "vdd_s1", },
1924 	{ "s2", 0x1700, "vdd_s2", },
1925 	{ "s3", 0x1a00, "vdd_s3", },
1926 	{ "l1", 0x4000, "vdd_l1", },
1927 	{ }
1928 };
1929 
1930 static const struct spmi_regulator_data pm8005_regulators[] = {
1931 	{ "s1", 0x1400, "vdd_s1", },
1932 	{ "s2", 0x1700, "vdd_s2", },
1933 	{ "s3", 0x1a00, "vdd_s3", },
1934 	{ "s4", 0x1d00, "vdd_s4", },
1935 	{ }
1936 };
1937 
1938 static const struct spmi_regulator_data pms405_regulators[] = {
1939 	{ "s3", 0x1a00, "vdd_s3"},
1940 	{ }
1941 };
1942 
1943 static const struct of_device_id qcom_spmi_regulator_match[] = {
1944 	{ .compatible = "qcom,pm8005-regulators", .data = &pm8005_regulators },
1945 	{ .compatible = "qcom,pm8841-regulators", .data = &pm8841_regulators },
1946 	{ .compatible = "qcom,pm8916-regulators", .data = &pm8916_regulators },
1947 	{ .compatible = "qcom,pm8941-regulators", .data = &pm8941_regulators },
1948 	{ .compatible = "qcom,pm8994-regulators", .data = &pm8994_regulators },
1949 	{ .compatible = "qcom,pmi8994-regulators", .data = &pmi8994_regulators },
1950 	{ .compatible = "qcom,pms405-regulators", .data = &pms405_regulators },
1951 	{ }
1952 };
1953 MODULE_DEVICE_TABLE(of, qcom_spmi_regulator_match);
1954 
1955 static int qcom_spmi_regulator_probe(struct platform_device *pdev)
1956 {
1957 	const struct spmi_regulator_data *reg;
1958 	const struct spmi_voltage_range *range;
1959 	const struct of_device_id *match;
1960 	struct regulator_config config = { };
1961 	struct regulator_dev *rdev;
1962 	struct spmi_regulator *vreg;
1963 	struct regmap *regmap;
1964 	const char *name;
1965 	struct device *dev = &pdev->dev;
1966 	struct device_node *node = pdev->dev.of_node;
1967 	struct device_node *syscon, *reg_node;
1968 	struct property *reg_prop;
1969 	int ret, lenp;
1970 	struct list_head *vreg_list;
1971 
1972 	vreg_list = devm_kzalloc(dev, sizeof(*vreg_list), GFP_KERNEL);
1973 	if (!vreg_list)
1974 		return -ENOMEM;
1975 	INIT_LIST_HEAD(vreg_list);
1976 	platform_set_drvdata(pdev, vreg_list);
1977 
1978 	regmap = dev_get_regmap(dev->parent, NULL);
1979 	if (!regmap)
1980 		return -ENODEV;
1981 
1982 	match = of_match_device(qcom_spmi_regulator_match, &pdev->dev);
1983 	if (!match)
1984 		return -ENODEV;
1985 
1986 	if (of_find_property(node, "qcom,saw-reg", &lenp)) {
1987 		syscon = of_parse_phandle(node, "qcom,saw-reg", 0);
1988 		saw_regmap = syscon_node_to_regmap(syscon);
1989 		of_node_put(syscon);
1990 		if (IS_ERR(saw_regmap))
1991 			dev_err(dev, "ERROR reading SAW regmap\n");
1992 	}
1993 
1994 	for (reg = match->data; reg->name; reg++) {
1995 
1996 		if (saw_regmap) {
1997 			reg_node = of_get_child_by_name(node, reg->name);
1998 			reg_prop = of_find_property(reg_node, "qcom,saw-slave",
1999 						    &lenp);
2000 			of_node_put(reg_node);
2001 			if (reg_prop)
2002 				continue;
2003 		}
2004 
2005 		vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
2006 		if (!vreg)
2007 			return -ENOMEM;
2008 
2009 		vreg->dev = dev;
2010 		vreg->base = reg->base;
2011 		vreg->regmap = regmap;
2012 		if (reg->ocp) {
2013 			vreg->ocp_irq = platform_get_irq_byname(pdev, reg->ocp);
2014 			if (vreg->ocp_irq < 0) {
2015 				ret = vreg->ocp_irq;
2016 				goto err;
2017 			}
2018 		}
2019 		vreg->desc.id = -1;
2020 		vreg->desc.owner = THIS_MODULE;
2021 		vreg->desc.type = REGULATOR_VOLTAGE;
2022 		vreg->desc.enable_reg = reg->base + SPMI_COMMON_REG_ENABLE;
2023 		vreg->desc.enable_mask = SPMI_COMMON_ENABLE_MASK;
2024 		vreg->desc.enable_val = SPMI_COMMON_ENABLE;
2025 		vreg->desc.name = name = reg->name;
2026 		vreg->desc.supply_name = reg->supply;
2027 		vreg->desc.of_match = reg->name;
2028 		vreg->desc.of_parse_cb = spmi_regulator_of_parse;
2029 		vreg->desc.of_map_mode = spmi_regulator_of_map_mode;
2030 
2031 		ret = spmi_regulator_match(vreg, reg->force_type);
2032 		if (ret)
2033 			continue;
2034 
2035 		if (saw_regmap) {
2036 			reg_node = of_get_child_by_name(node, reg->name);
2037 			reg_prop = of_find_property(reg_node, "qcom,saw-leader",
2038 						    &lenp);
2039 			of_node_put(reg_node);
2040 			if (reg_prop) {
2041 				spmi_saw_ops = *(vreg->desc.ops);
2042 				spmi_saw_ops.set_voltage_sel =
2043 					spmi_regulator_saw_set_voltage;
2044 				vreg->desc.ops = &spmi_saw_ops;
2045 			}
2046 		}
2047 
2048 		if (vreg->set_points && vreg->set_points->count == 1) {
2049 			/* since there is only one range */
2050 			range = vreg->set_points->range;
2051 			vreg->desc.uV_step = range->step_uV;
2052 		}
2053 
2054 		config.dev = dev;
2055 		config.driver_data = vreg;
2056 		config.regmap = regmap;
2057 		rdev = devm_regulator_register(dev, &vreg->desc, &config);
2058 		if (IS_ERR(rdev)) {
2059 			dev_err(dev, "failed to register %s\n", name);
2060 			ret = PTR_ERR(rdev);
2061 			goto err;
2062 		}
2063 
2064 		INIT_LIST_HEAD(&vreg->node);
2065 		list_add(&vreg->node, vreg_list);
2066 	}
2067 
2068 	return 0;
2069 
2070 err:
2071 	list_for_each_entry(vreg, vreg_list, node)
2072 		if (vreg->ocp_irq)
2073 			cancel_delayed_work_sync(&vreg->ocp_work);
2074 	return ret;
2075 }
2076 
2077 static int qcom_spmi_regulator_remove(struct platform_device *pdev)
2078 {
2079 	struct spmi_regulator *vreg;
2080 	struct list_head *vreg_list = platform_get_drvdata(pdev);
2081 
2082 	list_for_each_entry(vreg, vreg_list, node)
2083 		if (vreg->ocp_irq)
2084 			cancel_delayed_work_sync(&vreg->ocp_work);
2085 
2086 	return 0;
2087 }
2088 
2089 static struct platform_driver qcom_spmi_regulator_driver = {
2090 	.driver		= {
2091 		.name	= "qcom-spmi-regulator",
2092 		.of_match_table = qcom_spmi_regulator_match,
2093 	},
2094 	.probe		= qcom_spmi_regulator_probe,
2095 	.remove		= qcom_spmi_regulator_remove,
2096 };
2097 module_platform_driver(qcom_spmi_regulator_driver);
2098 
2099 MODULE_DESCRIPTION("Qualcomm SPMI PMIC regulator driver");
2100 MODULE_LICENSE("GPL v2");
2101 MODULE_ALIAS("platform:qcom-spmi-regulator");
2102