xref: /linux/drivers/regulator/of_regulator.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * OF helpers for regulator framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Rajendra Nayak <rnayak@ti.com>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/of.h>
12 #include <linux/regulator/machine.h>
13 #include <linux/regulator/driver.h>
14 #include <linux/regulator/of_regulator.h>
15 
16 #include "internal.h"
17 
18 static const char *const regulator_states[PM_SUSPEND_MAX + 1] = {
19 	[PM_SUSPEND_STANDBY]	= "regulator-state-standby",
20 	[PM_SUSPEND_MEM]	= "regulator-state-mem",
21 	[PM_SUSPEND_MAX]	= "regulator-state-disk",
22 };
23 
24 static void fill_limit(int *limit, int val)
25 {
26 	if (val)
27 		if (val == 1)
28 			*limit = REGULATOR_NOTIF_LIMIT_ENABLE;
29 		else
30 			*limit = val;
31 	else
32 		*limit = REGULATOR_NOTIF_LIMIT_DISABLE;
33 }
34 
35 static void of_get_regulator_prot_limits(struct device_node *np,
36 				struct regulation_constraints *constraints)
37 {
38 	u32 pval;
39 	int i;
40 	static const char *const props[] = {
41 		"regulator-oc-%s-microamp",
42 		"regulator-ov-%s-microvolt",
43 		"regulator-temp-%s-kelvin",
44 		"regulator-uv-%s-microvolt",
45 	};
46 	struct notification_limit *limits[] = {
47 		&constraints->over_curr_limits,
48 		&constraints->over_voltage_limits,
49 		&constraints->temp_limits,
50 		&constraints->under_voltage_limits,
51 	};
52 	bool set[4] = {0};
53 
54 	/* Protection limits: */
55 	for (i = 0; i < ARRAY_SIZE(props); i++) {
56 		char prop[255];
57 		bool found;
58 		int j;
59 		static const char *const lvl[] = {
60 			"protection", "error", "warn"
61 		};
62 		int *l[] = {
63 			&limits[i]->prot, &limits[i]->err, &limits[i]->warn,
64 		};
65 
66 		for (j = 0; j < ARRAY_SIZE(lvl); j++) {
67 			snprintf(prop, 255, props[i], lvl[j]);
68 			found = !of_property_read_u32(np, prop, &pval);
69 			if (found)
70 				fill_limit(l[j], pval);
71 			set[i] |= found;
72 		}
73 	}
74 	constraints->over_current_detection = set[0];
75 	constraints->over_voltage_detection = set[1];
76 	constraints->over_temp_detection = set[2];
77 	constraints->under_voltage_detection = set[3];
78 }
79 
80 static int of_get_regulation_constraints(struct device *dev,
81 					struct device_node *np,
82 					struct regulator_init_data **init_data,
83 					const struct regulator_desc *desc)
84 {
85 	struct regulation_constraints *constraints = &(*init_data)->constraints;
86 	struct regulator_state *suspend_state;
87 	struct device_node *suspend_np;
88 	unsigned int mode;
89 	int ret, i, len;
90 	int n_phandles;
91 	u32 pval;
92 
93 	n_phandles = of_count_phandle_with_args(np, "regulator-coupled-with",
94 						NULL);
95 	n_phandles = max(n_phandles, 0);
96 
97 	constraints->name = of_get_property(np, "regulator-name", NULL);
98 
99 	if (!of_property_read_u32(np, "regulator-min-microvolt", &pval))
100 		constraints->min_uV = pval;
101 
102 	if (!of_property_read_u32(np, "regulator-max-microvolt", &pval))
103 		constraints->max_uV = pval;
104 
105 	/* Voltage change possible? */
106 	if (constraints->min_uV != constraints->max_uV)
107 		constraints->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE;
108 
109 	/* Do we have a voltage range, if so try to apply it? */
110 	if (constraints->min_uV && constraints->max_uV)
111 		constraints->apply_uV = true;
112 
113 	if (!of_property_read_u32(np, "regulator-microvolt-offset", &pval))
114 		constraints->uV_offset = pval;
115 	if (!of_property_read_u32(np, "regulator-min-microamp", &pval))
116 		constraints->min_uA = pval;
117 	if (!of_property_read_u32(np, "regulator-max-microamp", &pval))
118 		constraints->max_uA = pval;
119 
120 	if (!of_property_read_u32(np, "regulator-input-current-limit-microamp",
121 				  &pval))
122 		constraints->ilim_uA = pval;
123 
124 	/* Current change possible? */
125 	if (constraints->min_uA != constraints->max_uA)
126 		constraints->valid_ops_mask |= REGULATOR_CHANGE_CURRENT;
127 
128 	constraints->boot_on = of_property_read_bool(np, "regulator-boot-on");
129 	constraints->always_on = of_property_read_bool(np, "regulator-always-on");
130 	if (!constraints->always_on) /* status change should be possible. */
131 		constraints->valid_ops_mask |= REGULATOR_CHANGE_STATUS;
132 
133 	constraints->pull_down = of_property_read_bool(np, "regulator-pull-down");
134 	constraints->system_critical = of_property_read_bool(np,
135 						"system-critical-regulator");
136 
137 	if (of_property_read_bool(np, "regulator-allow-bypass"))
138 		constraints->valid_ops_mask |= REGULATOR_CHANGE_BYPASS;
139 
140 	if (of_property_read_bool(np, "regulator-allow-set-load"))
141 		constraints->valid_ops_mask |= REGULATOR_CHANGE_DRMS;
142 
143 	ret = of_property_read_u32(np, "regulator-ramp-delay", &pval);
144 	if (!ret) {
145 		if (pval)
146 			constraints->ramp_delay = pval;
147 		else
148 			constraints->ramp_disable = true;
149 	}
150 
151 	ret = of_property_read_u32(np, "regulator-settling-time-us", &pval);
152 	if (!ret)
153 		constraints->settling_time = pval;
154 
155 	ret = of_property_read_u32(np, "regulator-settling-time-up-us", &pval);
156 	if (!ret)
157 		constraints->settling_time_up = pval;
158 	if (constraints->settling_time_up && constraints->settling_time) {
159 		pr_warn("%pOFn: ambiguous configuration for settling time, ignoring 'regulator-settling-time-up-us'\n",
160 			np);
161 		constraints->settling_time_up = 0;
162 	}
163 
164 	ret = of_property_read_u32(np, "regulator-settling-time-down-us",
165 				   &pval);
166 	if (!ret)
167 		constraints->settling_time_down = pval;
168 	if (constraints->settling_time_down && constraints->settling_time) {
169 		pr_warn("%pOFn: ambiguous configuration for settling time, ignoring 'regulator-settling-time-down-us'\n",
170 			np);
171 		constraints->settling_time_down = 0;
172 	}
173 
174 	ret = of_property_read_u32(np, "regulator-enable-ramp-delay", &pval);
175 	if (!ret)
176 		constraints->enable_time = pval;
177 
178 	ret = of_property_read_u32(np, "regulator-uv-survival-time-ms", &pval);
179 	if (!ret)
180 		constraints->uv_less_critical_window_ms = pval;
181 	else
182 		constraints->uv_less_critical_window_ms =
183 				REGULATOR_DEF_UV_LESS_CRITICAL_WINDOW_MS;
184 
185 	constraints->soft_start = of_property_read_bool(np,
186 					"regulator-soft-start");
187 	ret = of_property_read_u32(np, "regulator-active-discharge", &pval);
188 	if (!ret) {
189 		constraints->active_discharge =
190 				(pval) ? REGULATOR_ACTIVE_DISCHARGE_ENABLE :
191 					REGULATOR_ACTIVE_DISCHARGE_DISABLE;
192 	}
193 
194 	if (!of_property_read_u32(np, "regulator-initial-mode", &pval)) {
195 		if (desc && desc->of_map_mode) {
196 			mode = desc->of_map_mode(pval);
197 			if (mode == REGULATOR_MODE_INVALID)
198 				pr_err("%pOFn: invalid mode %u\n", np, pval);
199 			else
200 				constraints->initial_mode = mode;
201 		} else {
202 			pr_warn("%pOFn: mapping for mode %d not defined\n",
203 				np, pval);
204 		}
205 	}
206 
207 	len = of_property_count_elems_of_size(np, "regulator-allowed-modes",
208 						sizeof(u32));
209 	if (len > 0) {
210 		if (desc && desc->of_map_mode) {
211 			for (i = 0; i < len; i++) {
212 				ret = of_property_read_u32_index(np,
213 					"regulator-allowed-modes", i, &pval);
214 				if (ret) {
215 					pr_err("%pOFn: couldn't read allowed modes index %d, ret=%d\n",
216 						np, i, ret);
217 					break;
218 				}
219 				mode = desc->of_map_mode(pval);
220 				if (mode == REGULATOR_MODE_INVALID)
221 					pr_err("%pOFn: invalid regulator-allowed-modes element %u\n",
222 						np, pval);
223 				else
224 					constraints->valid_modes_mask |= mode;
225 			}
226 			if (constraints->valid_modes_mask)
227 				constraints->valid_ops_mask
228 					|= REGULATOR_CHANGE_MODE;
229 		} else {
230 			pr_warn("%pOFn: mode mapping not defined\n", np);
231 		}
232 	}
233 
234 	if (!of_property_read_u32(np, "regulator-system-load", &pval))
235 		constraints->system_load = pval;
236 
237 	if (n_phandles) {
238 		constraints->max_spread = devm_kzalloc(dev,
239 				sizeof(*constraints->max_spread) * n_phandles,
240 				GFP_KERNEL);
241 
242 		if (!constraints->max_spread)
243 			return -ENOMEM;
244 
245 		of_property_read_u32_array(np, "regulator-coupled-max-spread",
246 					   constraints->max_spread, n_phandles);
247 	}
248 
249 	if (!of_property_read_u32(np, "regulator-max-step-microvolt",
250 				  &pval))
251 		constraints->max_uV_step = pval;
252 
253 	constraints->over_current_protection = of_property_read_bool(np,
254 					"regulator-over-current-protection");
255 
256 	of_get_regulator_prot_limits(np, constraints);
257 
258 	for (i = 0; i < ARRAY_SIZE(regulator_states); i++) {
259 		switch (i) {
260 		case PM_SUSPEND_MEM:
261 			suspend_state = &constraints->state_mem;
262 			break;
263 		case PM_SUSPEND_MAX:
264 			suspend_state = &constraints->state_disk;
265 			break;
266 		case PM_SUSPEND_STANDBY:
267 			suspend_state = &constraints->state_standby;
268 			break;
269 		case PM_SUSPEND_ON:
270 		case PM_SUSPEND_TO_IDLE:
271 		default:
272 			continue;
273 		}
274 
275 		suspend_np = of_get_child_by_name(np, regulator_states[i]);
276 		if (!suspend_np)
277 			continue;
278 		if (!suspend_state) {
279 			of_node_put(suspend_np);
280 			continue;
281 		}
282 
283 		if (!of_property_read_u32(suspend_np, "regulator-mode",
284 					  &pval)) {
285 			if (desc && desc->of_map_mode) {
286 				mode = desc->of_map_mode(pval);
287 				if (mode == REGULATOR_MODE_INVALID)
288 					pr_err("%pOFn: invalid mode %u\n",
289 					       np, pval);
290 				else
291 					suspend_state->mode = mode;
292 			} else {
293 				pr_warn("%pOFn: mapping for mode %d not defined\n",
294 					np, pval);
295 			}
296 		}
297 
298 		if (of_property_read_bool(suspend_np,
299 					"regulator-on-in-suspend"))
300 			suspend_state->enabled = ENABLE_IN_SUSPEND;
301 		else if (of_property_read_bool(suspend_np,
302 					"regulator-off-in-suspend"))
303 			suspend_state->enabled = DISABLE_IN_SUSPEND;
304 
305 		if (!of_property_read_u32(suspend_np,
306 				"regulator-suspend-min-microvolt", &pval))
307 			suspend_state->min_uV = pval;
308 
309 		if (!of_property_read_u32(suspend_np,
310 				"regulator-suspend-max-microvolt", &pval))
311 			suspend_state->max_uV = pval;
312 
313 		if (!of_property_read_u32(suspend_np,
314 					"regulator-suspend-microvolt", &pval))
315 			suspend_state->uV = pval;
316 		else /* otherwise use min_uV as default suspend voltage */
317 			suspend_state->uV = suspend_state->min_uV;
318 
319 		if (of_property_read_bool(suspend_np,
320 					"regulator-changeable-in-suspend"))
321 			suspend_state->changeable = true;
322 
323 		if (i == PM_SUSPEND_MEM)
324 			constraints->initial_state = PM_SUSPEND_MEM;
325 
326 		of_node_put(suspend_np);
327 		suspend_state = NULL;
328 		suspend_np = NULL;
329 	}
330 
331 	return 0;
332 }
333 
334 /**
335  * of_get_regulator_init_data - extract regulator_init_data structure info
336  * @dev: device requesting for regulator_init_data
337  * @node: regulator device node
338  * @desc: regulator description
339  *
340  * Populates regulator_init_data structure by extracting data from device
341  * tree node.
342  *
343  * Return: Pointer to a populated &struct regulator_init_data or NULL if
344  *	   memory allocation fails.
345  */
346 struct regulator_init_data *of_get_regulator_init_data(struct device *dev,
347 					  struct device_node *node,
348 					  const struct regulator_desc *desc)
349 {
350 	struct regulator_init_data *init_data;
351 
352 	if (!node)
353 		return NULL;
354 
355 	init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL);
356 	if (!init_data)
357 		return NULL; /* Out of memory? */
358 
359 	if (of_get_regulation_constraints(dev, node, &init_data, desc))
360 		return NULL;
361 
362 	return init_data;
363 }
364 EXPORT_SYMBOL_GPL(of_get_regulator_init_data);
365 
366 struct devm_of_regulator_matches {
367 	struct of_regulator_match *matches;
368 	unsigned int num_matches;
369 };
370 
371 static void devm_of_regulator_put_matches(struct device *dev, void *res)
372 {
373 	struct devm_of_regulator_matches *devm_matches = res;
374 	int i;
375 
376 	for (i = 0; i < devm_matches->num_matches; i++)
377 		of_node_put(devm_matches->matches[i].of_node);
378 }
379 
380 /**
381  * of_regulator_match - extract multiple regulator init data from device tree.
382  * @dev: device requesting the data
383  * @node: parent device node of the regulators
384  * @matches: match table for the regulators
385  * @num_matches: number of entries in match table
386  *
387  * This function uses a match table specified by the regulator driver to
388  * parse regulator init data from the device tree. @node is expected to
389  * contain a set of child nodes, each providing the init data for one
390  * regulator. The data parsed from a child node will be matched to a regulator
391  * based on either the deprecated property regulator-compatible if present,
392  * or otherwise the child node's name. Note that the match table is modified
393  * in place and an additional of_node reference is taken for each matched
394  * regulator.
395  *
396  * Return: The number of matches found or a negative error number on failure.
397  */
398 int of_regulator_match(struct device *dev, struct device_node *node,
399 		       struct of_regulator_match *matches,
400 		       unsigned int num_matches)
401 {
402 	unsigned int count = 0;
403 	unsigned int i;
404 	const char *name;
405 	struct device_node *child;
406 	struct devm_of_regulator_matches *devm_matches;
407 
408 	if (!dev || !node)
409 		return -EINVAL;
410 
411 	devm_matches = devres_alloc(devm_of_regulator_put_matches,
412 				    sizeof(struct devm_of_regulator_matches),
413 				    GFP_KERNEL);
414 	if (!devm_matches)
415 		return -ENOMEM;
416 
417 	devm_matches->matches = matches;
418 	devm_matches->num_matches = num_matches;
419 
420 	devres_add(dev, devm_matches);
421 
422 	for (i = 0; i < num_matches; i++) {
423 		struct of_regulator_match *match = &matches[i];
424 		match->init_data = NULL;
425 		match->of_node = NULL;
426 	}
427 
428 	for_each_child_of_node(node, child) {
429 		name = of_get_property(child,
430 					"regulator-compatible", NULL);
431 		if (!name)
432 			name = child->name;
433 		for (i = 0; i < num_matches; i++) {
434 			struct of_regulator_match *match = &matches[i];
435 			if (match->of_node)
436 				continue;
437 
438 			if (strcmp(match->name, name))
439 				continue;
440 
441 			match->init_data =
442 				of_get_regulator_init_data(dev, child,
443 							   match->desc);
444 			if (!match->init_data) {
445 				dev_err(dev,
446 					"failed to parse DT for regulator %pOFn\n",
447 					child);
448 				of_node_put(child);
449 				return -EINVAL;
450 			}
451 			match->of_node = of_node_get(child);
452 			count++;
453 			break;
454 		}
455 	}
456 
457 	return count;
458 }
459 EXPORT_SYMBOL_GPL(of_regulator_match);
460 
461 static struct
462 device_node *regulator_of_get_init_node(struct device *dev,
463 					const struct regulator_desc *desc)
464 {
465 	struct device_node *search, *child;
466 	const char *name;
467 
468 	if (!dev->of_node || !desc->of_match)
469 		return NULL;
470 
471 	if (desc->regulators_node) {
472 		search = of_get_child_by_name(dev->of_node,
473 					      desc->regulators_node);
474 	} else {
475 		search = of_node_get(dev->of_node);
476 
477 		if (!strcmp(desc->of_match, search->name))
478 			return search;
479 	}
480 
481 	if (!search) {
482 		dev_dbg(dev, "Failed to find regulator container node '%s'\n",
483 			desc->regulators_node);
484 		return NULL;
485 	}
486 
487 	for_each_available_child_of_node(search, child) {
488 		name = of_get_property(child, "regulator-compatible", NULL);
489 		if (!name) {
490 			if (!desc->of_match_full_name)
491 				name = child->name;
492 			else
493 				name = child->full_name;
494 		}
495 
496 		if (!strcmp(desc->of_match, name)) {
497 			of_node_put(search);
498 			/*
499 			 * 'of_node_get(child)' is already performed by the
500 			 * for_each loop.
501 			 */
502 			return child;
503 		}
504 	}
505 
506 	of_node_put(search);
507 
508 	return NULL;
509 }
510 
511 struct regulator_init_data *regulator_of_get_init_data(struct device *dev,
512 					    const struct regulator_desc *desc,
513 					    struct regulator_config *config,
514 					    struct device_node **node)
515 {
516 	struct device_node *child;
517 	struct regulator_init_data *init_data = NULL;
518 
519 	child = regulator_of_get_init_node(config->dev, desc);
520 	if (!child)
521 		return NULL;
522 
523 	init_data = of_get_regulator_init_data(dev, child, desc);
524 	if (!init_data) {
525 		dev_err(dev, "failed to parse DT for regulator %pOFn\n", child);
526 		goto error;
527 	}
528 
529 	if (desc->of_parse_cb) {
530 		int ret;
531 
532 		ret = desc->of_parse_cb(child, desc, config);
533 		if (ret) {
534 			if (ret == -EPROBE_DEFER) {
535 				of_node_put(child);
536 				return ERR_PTR(-EPROBE_DEFER);
537 			}
538 			dev_err(dev,
539 				"driver callback failed to parse DT for regulator %pOFn\n",
540 				child);
541 			goto error;
542 		}
543 	}
544 
545 	*node = child;
546 
547 	return init_data;
548 
549 error:
550 	of_node_put(child);
551 
552 	return NULL;
553 }
554 
555 /**
556  * of_get_child_regulator - get a child regulator device node
557  * based on supply name
558  * @parent: Parent device node
559  * @prop_name: Combination regulator supply name and "-supply"
560  *
561  * Traverse all child nodes.
562  * Extract the child regulator device node corresponding to the supply name.
563  *
564  * Return: Pointer to the &struct device_node corresponding to the regulator
565  *	   if found, or %NULL if not found.
566  */
567 static struct device_node *of_get_child_regulator(struct device_node *parent,
568 						  const char *prop_name)
569 {
570 	struct device_node *regnode = NULL;
571 	struct device_node *child = NULL;
572 
573 	for_each_child_of_node(parent, child) {
574 		regnode = of_parse_phandle(child, prop_name, 0);
575 		if (regnode)
576 			goto err_node_put;
577 
578 		regnode = of_get_child_regulator(child, prop_name);
579 		if (regnode)
580 			goto err_node_put;
581 	}
582 	return NULL;
583 
584 err_node_put:
585 	of_node_put(child);
586 	return regnode;
587 }
588 
589 /**
590  * of_get_regulator - get a regulator device node based on supply name
591  * @dev: Device pointer for the consumer (of regulator) device
592  * @supply: regulator supply name
593  *
594  * Extract the regulator device node corresponding to the supply name.
595  *
596  * Return: Pointer to the &struct device_node corresponding to the regulator
597  *	   if found, or %NULL if not found.
598  */
599 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
600 {
601 	struct device_node *regnode = NULL;
602 	char prop_name[64]; /* 64 is max size of property name */
603 
604 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
605 
606 	snprintf(prop_name, 64, "%s-supply", supply);
607 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
608 	if (regnode)
609 		return regnode;
610 
611 	regnode = of_get_child_regulator(dev->of_node, prop_name);
612 	if (regnode)
613 		return regnode;
614 
615 	dev_dbg(dev, "Looking up %s property in node %pOF failed\n", prop_name, dev->of_node);
616 	return NULL;
617 }
618 
619 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
620 {
621 	struct device *dev;
622 
623 	dev = class_find_device_by_of_node(&regulator_class, np);
624 
625 	return dev ? dev_to_rdev(dev) : NULL;
626 }
627 
628 /**
629  * of_regulator_dev_lookup - lookup a regulator device with device tree only
630  * @dev: Device pointer for regulator supply lookup.
631  * @supply: Supply name or regulator ID.
632  *
633  * Return: Pointer to the &struct regulator_dev on success, or ERR_PTR()
634  *	   encoded value on error.
635  *
636  * If successful, returns a pointer to the &struct regulator_dev that
637  * corresponds to the name @supply and with the embedded &struct device
638  * refcount incremented by one. The refcount must be dropped by calling
639  * put_device().
640  *
641  * On failure one of the following ERR_PTR() encoded values is returned:
642  * * -%ENODEV if lookup fails permanently.
643  * * -%EPROBE_DEFER if lookup could succeed in the future.
644  */
645 struct regulator_dev *of_regulator_dev_lookup(struct device *dev,
646 					      const char *supply)
647 {
648 	struct regulator_dev *r;
649 	struct device_node *node;
650 
651 	node = of_get_regulator(dev, supply);
652 	if (node) {
653 		r = of_find_regulator_by_node(node);
654 		of_node_put(node);
655 		if (r)
656 			return r;
657 
658 		/*
659 		 * We have a node, but there is no device.
660 		 * assume it has not registered yet.
661 		 */
662 		return ERR_PTR(-EPROBE_DEFER);
663 	}
664 
665 	return ERR_PTR(-ENODEV);
666 }
667 
668 /*
669  * Returns number of regulators coupled with rdev.
670  */
671 int of_get_n_coupled(struct regulator_dev *rdev)
672 {
673 	struct device_node *node = rdev->dev.of_node;
674 	int n_phandles;
675 
676 	n_phandles = of_count_phandle_with_args(node,
677 						"regulator-coupled-with",
678 						NULL);
679 
680 	return (n_phandles > 0) ? n_phandles : 0;
681 }
682 
683 /* Looks for "to_find" device_node in src's "regulator-coupled-with" property */
684 static bool of_coupling_find_node(struct device_node *src,
685 				  struct device_node *to_find,
686 				  int *index)
687 {
688 	int n_phandles, i;
689 	bool found = false;
690 
691 	n_phandles = of_count_phandle_with_args(src,
692 						"regulator-coupled-with",
693 						NULL);
694 
695 	for (i = 0; i < n_phandles; i++) {
696 		struct device_node *tmp = of_parse_phandle(src,
697 					   "regulator-coupled-with", i);
698 
699 		if (!tmp)
700 			break;
701 
702 		/* found */
703 		if (tmp == to_find)
704 			found = true;
705 
706 		of_node_put(tmp);
707 
708 		if (found) {
709 			*index = i;
710 			break;
711 		}
712 	}
713 
714 	return found;
715 }
716 
717 /**
718  * of_check_coupling_data - Parse rdev's coupling properties and check data
719  *			    consistency
720  * @rdev: pointer to regulator_dev whose data is checked
721  *
722  * Function checks if all the following conditions are met:
723  * - rdev's max_spread is greater than 0
724  * - all coupled regulators have the same max_spread
725  * - all coupled regulators have the same number of regulator_dev phandles
726  * - all regulators are linked to each other
727  *
728  * Return: True if all conditions are met; false otherwise.
729  */
730 bool of_check_coupling_data(struct regulator_dev *rdev)
731 {
732 	struct device_node *node = rdev->dev.of_node;
733 	int n_phandles = of_get_n_coupled(rdev);
734 	struct device_node *c_node;
735 	int index;
736 	int i;
737 	bool ret = true;
738 
739 	/* iterate over rdev's phandles */
740 	for (i = 0; i < n_phandles; i++) {
741 		int max_spread = rdev->constraints->max_spread[i];
742 		int c_max_spread, c_n_phandles;
743 
744 		if (max_spread <= 0) {
745 			dev_err(&rdev->dev, "max_spread value invalid\n");
746 			return false;
747 		}
748 
749 		c_node = of_parse_phandle(node,
750 					  "regulator-coupled-with", i);
751 
752 		if (!c_node)
753 			ret = false;
754 
755 		c_n_phandles = of_count_phandle_with_args(c_node,
756 							  "regulator-coupled-with",
757 							  NULL);
758 
759 		if (c_n_phandles != n_phandles) {
760 			dev_err(&rdev->dev, "number of coupled reg phandles mismatch\n");
761 			ret = false;
762 			goto clean;
763 		}
764 
765 		if (!of_coupling_find_node(c_node, node, &index)) {
766 			dev_err(&rdev->dev, "missing 2-way linking for coupled regulators\n");
767 			ret = false;
768 			goto clean;
769 		}
770 
771 		if (of_property_read_u32_index(c_node, "regulator-coupled-max-spread",
772 					       index, &c_max_spread)) {
773 			ret = false;
774 			goto clean;
775 		}
776 
777 		if (c_max_spread != max_spread) {
778 			dev_err(&rdev->dev,
779 				"coupled regulators max_spread mismatch\n");
780 			ret = false;
781 			goto clean;
782 		}
783 
784 clean:
785 		of_node_put(c_node);
786 		if (!ret)
787 			break;
788 	}
789 
790 	return ret;
791 }
792 
793 /**
794  * of_parse_coupled_regulator() - Get regulator_dev pointer from rdev's property
795  * @rdev: Pointer to regulator_dev, whose DTS is used as a source to parse
796  *	  "regulator-coupled-with" property
797  * @index: Index in phandles array
798  *
799  * Return: Pointer to the &struct regulator_dev parsed from DTS, or %NULL if
800  *	   it has not yet been registered.
801  */
802 struct regulator_dev *of_parse_coupled_regulator(struct regulator_dev *rdev,
803 						 int index)
804 {
805 	struct device_node *node = rdev->dev.of_node;
806 	struct device_node *c_node;
807 	struct regulator_dev *c_rdev;
808 
809 	c_node = of_parse_phandle(node, "regulator-coupled-with", index);
810 	if (!c_node)
811 		return NULL;
812 
813 	c_rdev = of_find_regulator_by_node(c_node);
814 
815 	of_node_put(c_node);
816 
817 	return c_rdev;
818 }
819 
820 /*
821  * Check if name is a supply name according to the '*-supply' pattern
822  * return 0 if false
823  * return length of supply name without the -supply
824  */
825 static int is_supply_name(const char *name)
826 {
827 	int strs, i;
828 
829 	strs = strlen(name);
830 	/* string need to be at minimum len(x-supply) */
831 	if (strs < 8)
832 		return 0;
833 	for (i = strs - 6; i > 0; i--) {
834 		/* find first '-' and check if right part is supply */
835 		if (name[i] != '-')
836 			continue;
837 		if (strcmp(name + i + 1, "supply") != 0)
838 			return 0;
839 		return i;
840 	}
841 	return 0;
842 }
843 
844 /**
845  * of_regulator_bulk_get_all - get multiple regulator consumers
846  *
847  * @dev:	Device to supply
848  * @np:		device node to search for consumers
849  * @consumers:  Configuration of consumers; clients are stored here.
850  *
851  * This helper function allows drivers to get several regulator
852  * consumers in one operation.  If any of the regulators cannot be
853  * acquired then any regulators that were allocated will be freed
854  * before returning to the caller, and @consumers will not be
855  * changed.
856  *
857  * Return: Number of regulators on success, or a negative error number
858  *	   on failure.
859  */
860 int of_regulator_bulk_get_all(struct device *dev, struct device_node *np,
861 			      struct regulator_bulk_data **consumers)
862 {
863 	int num_consumers = 0;
864 	struct regulator *tmp;
865 	struct regulator_bulk_data *_consumers = NULL;
866 	struct property *prop;
867 	int i, n = 0, ret;
868 	char name[64];
869 
870 	/*
871 	 * first pass: get numbers of xxx-supply
872 	 * second pass: fill consumers
873 	 */
874 restart:
875 	for_each_property_of_node(np, prop) {
876 		i = is_supply_name(prop->name);
877 		if (i == 0)
878 			continue;
879 		if (!_consumers) {
880 			num_consumers++;
881 			continue;
882 		} else {
883 			memcpy(name, prop->name, i);
884 			name[i] = '\0';
885 			tmp = regulator_get(dev, name);
886 			if (IS_ERR(tmp)) {
887 				ret = PTR_ERR(tmp);
888 				goto error;
889 			}
890 			_consumers[n].consumer = tmp;
891 			n++;
892 			continue;
893 		}
894 	}
895 	if (_consumers) {
896 		*consumers = _consumers;
897 		return num_consumers;
898 	}
899 	if (num_consumers == 0)
900 		return 0;
901 	_consumers = kmalloc_array(num_consumers,
902 				   sizeof(struct regulator_bulk_data),
903 				   GFP_KERNEL);
904 	if (!_consumers)
905 		return -ENOMEM;
906 	goto restart;
907 
908 error:
909 	while (--n >= 0)
910 		regulator_put(_consumers[n].consumer);
911 	kfree(_consumers);
912 	return ret;
913 }
914 EXPORT_SYMBOL_GPL(of_regulator_bulk_get_all);
915