1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * OF helpers for regulator framework 4 * 5 * Copyright (C) 2011 Texas Instruments, Inc. 6 * Rajendra Nayak <rnayak@ti.com> 7 */ 8 9 #include <linux/module.h> 10 #include <linux/slab.h> 11 #include <linux/of.h> 12 #include <linux/regulator/machine.h> 13 #include <linux/regulator/driver.h> 14 #include <linux/regulator/of_regulator.h> 15 16 #include "internal.h" 17 18 static const char *const regulator_states[PM_SUSPEND_MAX + 1] = { 19 [PM_SUSPEND_STANDBY] = "regulator-state-standby", 20 [PM_SUSPEND_MEM] = "regulator-state-mem", 21 [PM_SUSPEND_MAX] = "regulator-state-disk", 22 }; 23 24 static void fill_limit(int *limit, int val) 25 { 26 if (val) 27 if (val == 1) 28 *limit = REGULATOR_NOTIF_LIMIT_ENABLE; 29 else 30 *limit = val; 31 else 32 *limit = REGULATOR_NOTIF_LIMIT_DISABLE; 33 } 34 35 static void of_get_regulator_prot_limits(struct device_node *np, 36 struct regulation_constraints *constraints) 37 { 38 u32 pval; 39 int i; 40 static const char *const props[] = { 41 "regulator-oc-%s-microamp", 42 "regulator-ov-%s-microvolt", 43 "regulator-temp-%s-kelvin", 44 "regulator-uv-%s-microvolt", 45 }; 46 struct notification_limit *limits[] = { 47 &constraints->over_curr_limits, 48 &constraints->over_voltage_limits, 49 &constraints->temp_limits, 50 &constraints->under_voltage_limits, 51 }; 52 bool set[4] = {0}; 53 54 /* Protection limits: */ 55 for (i = 0; i < ARRAY_SIZE(props); i++) { 56 char prop[255]; 57 bool found; 58 int j; 59 static const char *const lvl[] = { 60 "protection", "error", "warn" 61 }; 62 int *l[] = { 63 &limits[i]->prot, &limits[i]->err, &limits[i]->warn, 64 }; 65 66 for (j = 0; j < ARRAY_SIZE(lvl); j++) { 67 snprintf(prop, 255, props[i], lvl[j]); 68 found = !of_property_read_u32(np, prop, &pval); 69 if (found) 70 fill_limit(l[j], pval); 71 set[i] |= found; 72 } 73 } 74 constraints->over_current_detection = set[0]; 75 constraints->over_voltage_detection = set[1]; 76 constraints->over_temp_detection = set[2]; 77 constraints->under_voltage_detection = set[3]; 78 } 79 80 static int of_get_regulation_constraints(struct device *dev, 81 struct device_node *np, 82 struct regulator_init_data **init_data, 83 const struct regulator_desc *desc) 84 { 85 struct regulation_constraints *constraints = &(*init_data)->constraints; 86 struct regulator_state *suspend_state; 87 struct device_node *suspend_np; 88 unsigned int mode; 89 int ret, i, len; 90 int n_phandles; 91 u32 pval; 92 93 n_phandles = of_count_phandle_with_args(np, "regulator-coupled-with", 94 NULL); 95 n_phandles = max(n_phandles, 0); 96 97 constraints->name = of_get_property(np, "regulator-name", NULL); 98 99 if (!of_property_read_u32(np, "regulator-min-microvolt", &pval)) 100 constraints->min_uV = pval; 101 102 if (!of_property_read_u32(np, "regulator-max-microvolt", &pval)) 103 constraints->max_uV = pval; 104 105 /* Voltage change possible? */ 106 if (constraints->min_uV != constraints->max_uV) 107 constraints->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE; 108 109 /* Do we have a voltage range, if so try to apply it? */ 110 if (constraints->min_uV && constraints->max_uV) 111 constraints->apply_uV = true; 112 113 if (!of_property_read_u32(np, "regulator-microvolt-offset", &pval)) 114 constraints->uV_offset = pval; 115 if (!of_property_read_u32(np, "regulator-min-microamp", &pval)) 116 constraints->min_uA = pval; 117 if (!of_property_read_u32(np, "regulator-max-microamp", &pval)) 118 constraints->max_uA = pval; 119 120 if (!of_property_read_u32(np, "regulator-input-current-limit-microamp", 121 &pval)) 122 constraints->ilim_uA = pval; 123 124 /* Current change possible? */ 125 if (constraints->min_uA != constraints->max_uA) 126 constraints->valid_ops_mask |= REGULATOR_CHANGE_CURRENT; 127 128 constraints->boot_on = of_property_read_bool(np, "regulator-boot-on"); 129 constraints->always_on = of_property_read_bool(np, "regulator-always-on"); 130 if (!constraints->always_on) /* status change should be possible. */ 131 constraints->valid_ops_mask |= REGULATOR_CHANGE_STATUS; 132 133 constraints->pull_down = of_property_read_bool(np, "regulator-pull-down"); 134 constraints->system_critical = of_property_read_bool(np, 135 "system-critical-regulator"); 136 137 if (of_property_read_bool(np, "regulator-allow-bypass")) 138 constraints->valid_ops_mask |= REGULATOR_CHANGE_BYPASS; 139 140 if (of_property_read_bool(np, "regulator-allow-set-load")) 141 constraints->valid_ops_mask |= REGULATOR_CHANGE_DRMS; 142 143 ret = of_property_read_u32(np, "regulator-ramp-delay", &pval); 144 if (!ret) { 145 if (pval) 146 constraints->ramp_delay = pval; 147 else 148 constraints->ramp_disable = true; 149 } 150 151 ret = of_property_read_u32(np, "regulator-settling-time-us", &pval); 152 if (!ret) 153 constraints->settling_time = pval; 154 155 ret = of_property_read_u32(np, "regulator-settling-time-up-us", &pval); 156 if (!ret) 157 constraints->settling_time_up = pval; 158 if (constraints->settling_time_up && constraints->settling_time) { 159 pr_warn("%pOFn: ambiguous configuration for settling time, ignoring 'regulator-settling-time-up-us'\n", 160 np); 161 constraints->settling_time_up = 0; 162 } 163 164 ret = of_property_read_u32(np, "regulator-settling-time-down-us", 165 &pval); 166 if (!ret) 167 constraints->settling_time_down = pval; 168 if (constraints->settling_time_down && constraints->settling_time) { 169 pr_warn("%pOFn: ambiguous configuration for settling time, ignoring 'regulator-settling-time-down-us'\n", 170 np); 171 constraints->settling_time_down = 0; 172 } 173 174 ret = of_property_read_u32(np, "regulator-enable-ramp-delay", &pval); 175 if (!ret) 176 constraints->enable_time = pval; 177 178 ret = of_property_read_u32(np, "regulator-uv-survival-time-ms", &pval); 179 if (!ret) 180 constraints->uv_less_critical_window_ms = pval; 181 else 182 constraints->uv_less_critical_window_ms = 183 REGULATOR_DEF_UV_LESS_CRITICAL_WINDOW_MS; 184 185 constraints->soft_start = of_property_read_bool(np, 186 "regulator-soft-start"); 187 ret = of_property_read_u32(np, "regulator-active-discharge", &pval); 188 if (!ret) { 189 constraints->active_discharge = 190 (pval) ? REGULATOR_ACTIVE_DISCHARGE_ENABLE : 191 REGULATOR_ACTIVE_DISCHARGE_DISABLE; 192 } 193 194 if (!of_property_read_u32(np, "regulator-initial-mode", &pval)) { 195 if (desc && desc->of_map_mode) { 196 mode = desc->of_map_mode(pval); 197 if (mode == REGULATOR_MODE_INVALID) 198 pr_err("%pOFn: invalid mode %u\n", np, pval); 199 else 200 constraints->initial_mode = mode; 201 } else { 202 pr_warn("%pOFn: mapping for mode %d not defined\n", 203 np, pval); 204 } 205 } 206 207 len = of_property_count_elems_of_size(np, "regulator-allowed-modes", 208 sizeof(u32)); 209 if (len > 0) { 210 if (desc && desc->of_map_mode) { 211 for (i = 0; i < len; i++) { 212 ret = of_property_read_u32_index(np, 213 "regulator-allowed-modes", i, &pval); 214 if (ret) { 215 pr_err("%pOFn: couldn't read allowed modes index %d, ret=%d\n", 216 np, i, ret); 217 break; 218 } 219 mode = desc->of_map_mode(pval); 220 if (mode == REGULATOR_MODE_INVALID) 221 pr_err("%pOFn: invalid regulator-allowed-modes element %u\n", 222 np, pval); 223 else 224 constraints->valid_modes_mask |= mode; 225 } 226 if (constraints->valid_modes_mask) 227 constraints->valid_ops_mask 228 |= REGULATOR_CHANGE_MODE; 229 } else { 230 pr_warn("%pOFn: mode mapping not defined\n", np); 231 } 232 } 233 234 if (!of_property_read_u32(np, "regulator-system-load", &pval)) 235 constraints->system_load = pval; 236 237 if (n_phandles) { 238 constraints->max_spread = devm_kzalloc(dev, 239 sizeof(*constraints->max_spread) * n_phandles, 240 GFP_KERNEL); 241 242 if (!constraints->max_spread) 243 return -ENOMEM; 244 245 of_property_read_u32_array(np, "regulator-coupled-max-spread", 246 constraints->max_spread, n_phandles); 247 } 248 249 if (!of_property_read_u32(np, "regulator-max-step-microvolt", 250 &pval)) 251 constraints->max_uV_step = pval; 252 253 constraints->over_current_protection = of_property_read_bool(np, 254 "regulator-over-current-protection"); 255 256 of_get_regulator_prot_limits(np, constraints); 257 258 for (i = 0; i < ARRAY_SIZE(regulator_states); i++) { 259 switch (i) { 260 case PM_SUSPEND_MEM: 261 suspend_state = &constraints->state_mem; 262 break; 263 case PM_SUSPEND_MAX: 264 suspend_state = &constraints->state_disk; 265 break; 266 case PM_SUSPEND_STANDBY: 267 suspend_state = &constraints->state_standby; 268 break; 269 case PM_SUSPEND_ON: 270 case PM_SUSPEND_TO_IDLE: 271 default: 272 continue; 273 } 274 275 suspend_np = of_get_child_by_name(np, regulator_states[i]); 276 if (!suspend_np) 277 continue; 278 if (!suspend_state) { 279 of_node_put(suspend_np); 280 continue; 281 } 282 283 if (!of_property_read_u32(suspend_np, "regulator-mode", 284 &pval)) { 285 if (desc && desc->of_map_mode) { 286 mode = desc->of_map_mode(pval); 287 if (mode == REGULATOR_MODE_INVALID) 288 pr_err("%pOFn: invalid mode %u\n", 289 np, pval); 290 else 291 suspend_state->mode = mode; 292 } else { 293 pr_warn("%pOFn: mapping for mode %d not defined\n", 294 np, pval); 295 } 296 } 297 298 if (of_property_read_bool(suspend_np, 299 "regulator-on-in-suspend")) 300 suspend_state->enabled = ENABLE_IN_SUSPEND; 301 else if (of_property_read_bool(suspend_np, 302 "regulator-off-in-suspend")) 303 suspend_state->enabled = DISABLE_IN_SUSPEND; 304 305 if (!of_property_read_u32(suspend_np, 306 "regulator-suspend-min-microvolt", &pval)) 307 suspend_state->min_uV = pval; 308 309 if (!of_property_read_u32(suspend_np, 310 "regulator-suspend-max-microvolt", &pval)) 311 suspend_state->max_uV = pval; 312 313 if (!of_property_read_u32(suspend_np, 314 "regulator-suspend-microvolt", &pval)) 315 suspend_state->uV = pval; 316 else /* otherwise use min_uV as default suspend voltage */ 317 suspend_state->uV = suspend_state->min_uV; 318 319 if (of_property_read_bool(suspend_np, 320 "regulator-changeable-in-suspend")) 321 suspend_state->changeable = true; 322 323 if (i == PM_SUSPEND_MEM) 324 constraints->initial_state = PM_SUSPEND_MEM; 325 326 of_node_put(suspend_np); 327 suspend_state = NULL; 328 suspend_np = NULL; 329 } 330 331 return 0; 332 } 333 334 /** 335 * of_get_regulator_init_data - extract regulator_init_data structure info 336 * @dev: device requesting for regulator_init_data 337 * @node: regulator device node 338 * @desc: regulator description 339 * 340 * Populates regulator_init_data structure by extracting data from device 341 * tree node, returns a pointer to the populated structure or NULL if memory 342 * alloc fails. 343 */ 344 struct regulator_init_data *of_get_regulator_init_data(struct device *dev, 345 struct device_node *node, 346 const struct regulator_desc *desc) 347 { 348 struct regulator_init_data *init_data; 349 350 if (!node) 351 return NULL; 352 353 init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL); 354 if (!init_data) 355 return NULL; /* Out of memory? */ 356 357 if (of_get_regulation_constraints(dev, node, &init_data, desc)) 358 return NULL; 359 360 return init_data; 361 } 362 EXPORT_SYMBOL_GPL(of_get_regulator_init_data); 363 364 struct devm_of_regulator_matches { 365 struct of_regulator_match *matches; 366 unsigned int num_matches; 367 }; 368 369 static void devm_of_regulator_put_matches(struct device *dev, void *res) 370 { 371 struct devm_of_regulator_matches *devm_matches = res; 372 int i; 373 374 for (i = 0; i < devm_matches->num_matches; i++) 375 of_node_put(devm_matches->matches[i].of_node); 376 } 377 378 /** 379 * of_regulator_match - extract multiple regulator init data from device tree. 380 * @dev: device requesting the data 381 * @node: parent device node of the regulators 382 * @matches: match table for the regulators 383 * @num_matches: number of entries in match table 384 * 385 * This function uses a match table specified by the regulator driver to 386 * parse regulator init data from the device tree. @node is expected to 387 * contain a set of child nodes, each providing the init data for one 388 * regulator. The data parsed from a child node will be matched to a regulator 389 * based on either the deprecated property regulator-compatible if present, 390 * or otherwise the child node's name. Note that the match table is modified 391 * in place and an additional of_node reference is taken for each matched 392 * regulator. 393 * 394 * Returns the number of matches found or a negative error code on failure. 395 */ 396 int of_regulator_match(struct device *dev, struct device_node *node, 397 struct of_regulator_match *matches, 398 unsigned int num_matches) 399 { 400 unsigned int count = 0; 401 unsigned int i; 402 const char *name; 403 struct device_node *child; 404 struct devm_of_regulator_matches *devm_matches; 405 406 if (!dev || !node) 407 return -EINVAL; 408 409 devm_matches = devres_alloc(devm_of_regulator_put_matches, 410 sizeof(struct devm_of_regulator_matches), 411 GFP_KERNEL); 412 if (!devm_matches) 413 return -ENOMEM; 414 415 devm_matches->matches = matches; 416 devm_matches->num_matches = num_matches; 417 418 devres_add(dev, devm_matches); 419 420 for (i = 0; i < num_matches; i++) { 421 struct of_regulator_match *match = &matches[i]; 422 match->init_data = NULL; 423 match->of_node = NULL; 424 } 425 426 for_each_child_of_node(node, child) { 427 name = of_get_property(child, 428 "regulator-compatible", NULL); 429 if (!name) 430 name = child->name; 431 for (i = 0; i < num_matches; i++) { 432 struct of_regulator_match *match = &matches[i]; 433 if (match->of_node) 434 continue; 435 436 if (strcmp(match->name, name)) 437 continue; 438 439 match->init_data = 440 of_get_regulator_init_data(dev, child, 441 match->desc); 442 if (!match->init_data) { 443 dev_err(dev, 444 "failed to parse DT for regulator %pOFn\n", 445 child); 446 of_node_put(child); 447 return -EINVAL; 448 } 449 match->of_node = of_node_get(child); 450 count++; 451 break; 452 } 453 } 454 455 return count; 456 } 457 EXPORT_SYMBOL_GPL(of_regulator_match); 458 459 static struct 460 device_node *regulator_of_get_init_node(struct device *dev, 461 const struct regulator_desc *desc) 462 { 463 struct device_node *search, *child; 464 const char *name; 465 466 if (!dev->of_node || !desc->of_match) 467 return NULL; 468 469 if (desc->regulators_node) { 470 search = of_get_child_by_name(dev->of_node, 471 desc->regulators_node); 472 } else { 473 search = of_node_get(dev->of_node); 474 475 if (!strcmp(desc->of_match, search->name)) 476 return search; 477 } 478 479 if (!search) { 480 dev_dbg(dev, "Failed to find regulator container node '%s'\n", 481 desc->regulators_node); 482 return NULL; 483 } 484 485 for_each_available_child_of_node(search, child) { 486 name = of_get_property(child, "regulator-compatible", NULL); 487 if (!name) { 488 if (!desc->of_match_full_name) 489 name = child->name; 490 else 491 name = child->full_name; 492 } 493 494 if (!strcmp(desc->of_match, name)) { 495 of_node_put(search); 496 /* 497 * 'of_node_get(child)' is already performed by the 498 * for_each loop. 499 */ 500 return child; 501 } 502 } 503 504 of_node_put(search); 505 506 return NULL; 507 } 508 509 struct regulator_init_data *regulator_of_get_init_data(struct device *dev, 510 const struct regulator_desc *desc, 511 struct regulator_config *config, 512 struct device_node **node) 513 { 514 struct device_node *child; 515 struct regulator_init_data *init_data = NULL; 516 517 child = regulator_of_get_init_node(config->dev, desc); 518 if (!child) 519 return NULL; 520 521 init_data = of_get_regulator_init_data(dev, child, desc); 522 if (!init_data) { 523 dev_err(dev, "failed to parse DT for regulator %pOFn\n", child); 524 goto error; 525 } 526 527 if (desc->of_parse_cb) { 528 int ret; 529 530 ret = desc->of_parse_cb(child, desc, config); 531 if (ret) { 532 if (ret == -EPROBE_DEFER) { 533 of_node_put(child); 534 return ERR_PTR(-EPROBE_DEFER); 535 } 536 dev_err(dev, 537 "driver callback failed to parse DT for regulator %pOFn\n", 538 child); 539 goto error; 540 } 541 } 542 543 *node = child; 544 545 return init_data; 546 547 error: 548 of_node_put(child); 549 550 return NULL; 551 } 552 553 struct regulator_dev *of_find_regulator_by_node(struct device_node *np) 554 { 555 struct device *dev; 556 557 dev = class_find_device_by_of_node(®ulator_class, np); 558 559 return dev ? dev_to_rdev(dev) : NULL; 560 } 561 562 /* 563 * Returns number of regulators coupled with rdev. 564 */ 565 int of_get_n_coupled(struct regulator_dev *rdev) 566 { 567 struct device_node *node = rdev->dev.of_node; 568 int n_phandles; 569 570 n_phandles = of_count_phandle_with_args(node, 571 "regulator-coupled-with", 572 NULL); 573 574 return (n_phandles > 0) ? n_phandles : 0; 575 } 576 577 /* Looks for "to_find" device_node in src's "regulator-coupled-with" property */ 578 static bool of_coupling_find_node(struct device_node *src, 579 struct device_node *to_find, 580 int *index) 581 { 582 int n_phandles, i; 583 bool found = false; 584 585 n_phandles = of_count_phandle_with_args(src, 586 "regulator-coupled-with", 587 NULL); 588 589 for (i = 0; i < n_phandles; i++) { 590 struct device_node *tmp = of_parse_phandle(src, 591 "regulator-coupled-with", i); 592 593 if (!tmp) 594 break; 595 596 /* found */ 597 if (tmp == to_find) 598 found = true; 599 600 of_node_put(tmp); 601 602 if (found) { 603 *index = i; 604 break; 605 } 606 } 607 608 return found; 609 } 610 611 /** 612 * of_check_coupling_data - Parse rdev's coupling properties and check data 613 * consistency 614 * @rdev: pointer to regulator_dev whose data is checked 615 * 616 * Function checks if all the following conditions are met: 617 * - rdev's max_spread is greater than 0 618 * - all coupled regulators have the same max_spread 619 * - all coupled regulators have the same number of regulator_dev phandles 620 * - all regulators are linked to each other 621 * 622 * Returns true if all conditions are met. 623 */ 624 bool of_check_coupling_data(struct regulator_dev *rdev) 625 { 626 struct device_node *node = rdev->dev.of_node; 627 int n_phandles = of_get_n_coupled(rdev); 628 struct device_node *c_node; 629 int index; 630 int i; 631 bool ret = true; 632 633 /* iterate over rdev's phandles */ 634 for (i = 0; i < n_phandles; i++) { 635 int max_spread = rdev->constraints->max_spread[i]; 636 int c_max_spread, c_n_phandles; 637 638 if (max_spread <= 0) { 639 dev_err(&rdev->dev, "max_spread value invalid\n"); 640 return false; 641 } 642 643 c_node = of_parse_phandle(node, 644 "regulator-coupled-with", i); 645 646 if (!c_node) 647 ret = false; 648 649 c_n_phandles = of_count_phandle_with_args(c_node, 650 "regulator-coupled-with", 651 NULL); 652 653 if (c_n_phandles != n_phandles) { 654 dev_err(&rdev->dev, "number of coupled reg phandles mismatch\n"); 655 ret = false; 656 goto clean; 657 } 658 659 if (!of_coupling_find_node(c_node, node, &index)) { 660 dev_err(&rdev->dev, "missing 2-way linking for coupled regulators\n"); 661 ret = false; 662 goto clean; 663 } 664 665 if (of_property_read_u32_index(c_node, "regulator-coupled-max-spread", 666 index, &c_max_spread)) { 667 ret = false; 668 goto clean; 669 } 670 671 if (c_max_spread != max_spread) { 672 dev_err(&rdev->dev, 673 "coupled regulators max_spread mismatch\n"); 674 ret = false; 675 goto clean; 676 } 677 678 clean: 679 of_node_put(c_node); 680 if (!ret) 681 break; 682 } 683 684 return ret; 685 } 686 687 /** 688 * of_parse_coupled_regulator() - Get regulator_dev pointer from rdev's property 689 * @rdev: Pointer to regulator_dev, whose DTS is used as a source to parse 690 * "regulator-coupled-with" property 691 * @index: Index in phandles array 692 * 693 * Returns the regulator_dev pointer parsed from DTS. If it has not been yet 694 * registered, returns NULL 695 */ 696 struct regulator_dev *of_parse_coupled_regulator(struct regulator_dev *rdev, 697 int index) 698 { 699 struct device_node *node = rdev->dev.of_node; 700 struct device_node *c_node; 701 struct regulator_dev *c_rdev; 702 703 c_node = of_parse_phandle(node, "regulator-coupled-with", index); 704 if (!c_node) 705 return NULL; 706 707 c_rdev = of_find_regulator_by_node(c_node); 708 709 of_node_put(c_node); 710 711 return c_rdev; 712 } 713 714 /* 715 * Check if name is a supply name according to the '*-supply' pattern 716 * return 0 if false 717 * return length of supply name without the -supply 718 */ 719 static int is_supply_name(const char *name) 720 { 721 int strs, i; 722 723 strs = strlen(name); 724 /* string need to be at minimum len(x-supply) */ 725 if (strs < 8) 726 return 0; 727 for (i = strs - 6; i > 0; i--) { 728 /* find first '-' and check if right part is supply */ 729 if (name[i] != '-') 730 continue; 731 if (strcmp(name + i + 1, "supply") != 0) 732 return 0; 733 return i; 734 } 735 return 0; 736 } 737 738 /* 739 * of_regulator_bulk_get_all - get multiple regulator consumers 740 * 741 * @dev: Device to supply 742 * @np: device node to search for consumers 743 * @consumers: Configuration of consumers; clients are stored here. 744 * 745 * @return number of regulators on success, an errno on failure. 746 * 747 * This helper function allows drivers to get several regulator 748 * consumers in one operation. If any of the regulators cannot be 749 * acquired then any regulators that were allocated will be freed 750 * before returning to the caller. 751 */ 752 int of_regulator_bulk_get_all(struct device *dev, struct device_node *np, 753 struct regulator_bulk_data **consumers) 754 { 755 int num_consumers = 0; 756 struct regulator *tmp; 757 struct property *prop; 758 int i, n = 0, ret; 759 char name[64]; 760 761 *consumers = NULL; 762 763 /* 764 * first pass: get numbers of xxx-supply 765 * second pass: fill consumers 766 */ 767 restart: 768 for_each_property_of_node(np, prop) { 769 i = is_supply_name(prop->name); 770 if (i == 0) 771 continue; 772 if (!*consumers) { 773 num_consumers++; 774 continue; 775 } else { 776 memcpy(name, prop->name, i); 777 name[i] = '\0'; 778 tmp = regulator_get(dev, name); 779 if (IS_ERR(tmp)) { 780 ret = -EINVAL; 781 goto error; 782 } 783 (*consumers)[n].consumer = tmp; 784 n++; 785 continue; 786 } 787 } 788 if (*consumers) 789 return num_consumers; 790 if (num_consumers == 0) 791 return 0; 792 *consumers = kmalloc_array(num_consumers, 793 sizeof(struct regulator_bulk_data), 794 GFP_KERNEL); 795 if (!*consumers) 796 return -ENOMEM; 797 goto restart; 798 799 error: 800 while (--n >= 0) 801 regulator_put(consumers[n]->consumer); 802 return ret; 803 } 804 EXPORT_SYMBOL_GPL(of_regulator_bulk_get_all); 805