xref: /linux/drivers/regulator/of_regulator.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * OF helpers for regulator framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Rajendra Nayak <rnayak@ti.com>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/of.h>
12 #include <linux/regulator/machine.h>
13 #include <linux/regulator/driver.h>
14 #include <linux/regulator/of_regulator.h>
15 
16 #include "internal.h"
17 
18 static const char *const regulator_states[PM_SUSPEND_MAX + 1] = {
19 	[PM_SUSPEND_STANDBY]	= "regulator-state-standby",
20 	[PM_SUSPEND_MEM]	= "regulator-state-mem",
21 	[PM_SUSPEND_MAX]	= "regulator-state-disk",
22 };
23 
24 static void fill_limit(int *limit, int val)
25 {
26 	if (val)
27 		if (val == 1)
28 			*limit = REGULATOR_NOTIF_LIMIT_ENABLE;
29 		else
30 			*limit = val;
31 	else
32 		*limit = REGULATOR_NOTIF_LIMIT_DISABLE;
33 }
34 
35 static void of_get_regulator_prot_limits(struct device_node *np,
36 				struct regulation_constraints *constraints)
37 {
38 	u32 pval;
39 	int i;
40 	static const char *const props[] = {
41 		"regulator-oc-%s-microamp",
42 		"regulator-ov-%s-microvolt",
43 		"regulator-temp-%s-kelvin",
44 		"regulator-uv-%s-microvolt",
45 	};
46 	struct notification_limit *limits[] = {
47 		&constraints->over_curr_limits,
48 		&constraints->over_voltage_limits,
49 		&constraints->temp_limits,
50 		&constraints->under_voltage_limits,
51 	};
52 	bool set[4] = {0};
53 
54 	/* Protection limits: */
55 	for (i = 0; i < ARRAY_SIZE(props); i++) {
56 		char prop[255];
57 		bool found;
58 		int j;
59 		static const char *const lvl[] = {
60 			"protection", "error", "warn"
61 		};
62 		int *l[] = {
63 			&limits[i]->prot, &limits[i]->err, &limits[i]->warn,
64 		};
65 
66 		for (j = 0; j < ARRAY_SIZE(lvl); j++) {
67 			snprintf(prop, 255, props[i], lvl[j]);
68 			found = !of_property_read_u32(np, prop, &pval);
69 			if (found)
70 				fill_limit(l[j], pval);
71 			set[i] |= found;
72 		}
73 	}
74 	constraints->over_current_detection = set[0];
75 	constraints->over_voltage_detection = set[1];
76 	constraints->over_temp_detection = set[2];
77 	constraints->under_voltage_detection = set[3];
78 }
79 
80 static int of_get_regulation_constraints(struct device *dev,
81 					struct device_node *np,
82 					struct regulator_init_data **init_data,
83 					const struct regulator_desc *desc)
84 {
85 	struct regulation_constraints *constraints = &(*init_data)->constraints;
86 	struct regulator_state *suspend_state;
87 	struct device_node *suspend_np;
88 	unsigned int mode;
89 	int ret, i, len;
90 	int n_phandles;
91 	u32 pval;
92 
93 	n_phandles = of_count_phandle_with_args(np, "regulator-coupled-with",
94 						NULL);
95 	n_phandles = max(n_phandles, 0);
96 
97 	constraints->name = of_get_property(np, "regulator-name", NULL);
98 
99 	if (!of_property_read_u32(np, "regulator-min-microvolt", &pval))
100 		constraints->min_uV = pval;
101 
102 	if (!of_property_read_u32(np, "regulator-max-microvolt", &pval))
103 		constraints->max_uV = pval;
104 
105 	/* Voltage change possible? */
106 	if (constraints->min_uV != constraints->max_uV)
107 		constraints->valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE;
108 
109 	/* Do we have a voltage range, if so try to apply it? */
110 	if (constraints->min_uV && constraints->max_uV)
111 		constraints->apply_uV = true;
112 
113 	if (!of_property_read_u32(np, "regulator-microvolt-offset", &pval))
114 		constraints->uV_offset = pval;
115 	if (!of_property_read_u32(np, "regulator-min-microamp", &pval))
116 		constraints->min_uA = pval;
117 	if (!of_property_read_u32(np, "regulator-max-microamp", &pval))
118 		constraints->max_uA = pval;
119 
120 	if (!of_property_read_u32(np, "regulator-input-current-limit-microamp",
121 				  &pval))
122 		constraints->ilim_uA = pval;
123 
124 	/* Current change possible? */
125 	if (constraints->min_uA != constraints->max_uA)
126 		constraints->valid_ops_mask |= REGULATOR_CHANGE_CURRENT;
127 
128 	constraints->boot_on = of_property_read_bool(np, "regulator-boot-on");
129 	constraints->always_on = of_property_read_bool(np, "regulator-always-on");
130 	if (!constraints->always_on) /* status change should be possible. */
131 		constraints->valid_ops_mask |= REGULATOR_CHANGE_STATUS;
132 
133 	constraints->pull_down = of_property_read_bool(np, "regulator-pull-down");
134 	constraints->system_critical = of_property_read_bool(np,
135 						"system-critical-regulator");
136 
137 	if (of_property_read_bool(np, "regulator-allow-bypass"))
138 		constraints->valid_ops_mask |= REGULATOR_CHANGE_BYPASS;
139 
140 	if (of_property_read_bool(np, "regulator-allow-set-load"))
141 		constraints->valid_ops_mask |= REGULATOR_CHANGE_DRMS;
142 
143 	ret = of_property_read_u32(np, "regulator-ramp-delay", &pval);
144 	if (!ret) {
145 		if (pval)
146 			constraints->ramp_delay = pval;
147 		else
148 			constraints->ramp_disable = true;
149 	}
150 
151 	ret = of_property_read_u32(np, "regulator-settling-time-us", &pval);
152 	if (!ret)
153 		constraints->settling_time = pval;
154 
155 	ret = of_property_read_u32(np, "regulator-settling-time-up-us", &pval);
156 	if (!ret)
157 		constraints->settling_time_up = pval;
158 	if (constraints->settling_time_up && constraints->settling_time) {
159 		pr_warn("%pOFn: ambiguous configuration for settling time, ignoring 'regulator-settling-time-up-us'\n",
160 			np);
161 		constraints->settling_time_up = 0;
162 	}
163 
164 	ret = of_property_read_u32(np, "regulator-settling-time-down-us",
165 				   &pval);
166 	if (!ret)
167 		constraints->settling_time_down = pval;
168 	if (constraints->settling_time_down && constraints->settling_time) {
169 		pr_warn("%pOFn: ambiguous configuration for settling time, ignoring 'regulator-settling-time-down-us'\n",
170 			np);
171 		constraints->settling_time_down = 0;
172 	}
173 
174 	ret = of_property_read_u32(np, "regulator-enable-ramp-delay", &pval);
175 	if (!ret)
176 		constraints->enable_time = pval;
177 
178 	ret = of_property_read_u32(np, "regulator-uv-survival-time-ms", &pval);
179 	if (!ret)
180 		constraints->uv_less_critical_window_ms = pval;
181 	else
182 		constraints->uv_less_critical_window_ms =
183 				REGULATOR_DEF_UV_LESS_CRITICAL_WINDOW_MS;
184 
185 	constraints->soft_start = of_property_read_bool(np,
186 					"regulator-soft-start");
187 	ret = of_property_read_u32(np, "regulator-active-discharge", &pval);
188 	if (!ret) {
189 		constraints->active_discharge =
190 				(pval) ? REGULATOR_ACTIVE_DISCHARGE_ENABLE :
191 					REGULATOR_ACTIVE_DISCHARGE_DISABLE;
192 	}
193 
194 	if (!of_property_read_u32(np, "regulator-initial-mode", &pval)) {
195 		if (desc && desc->of_map_mode) {
196 			mode = desc->of_map_mode(pval);
197 			if (mode == REGULATOR_MODE_INVALID)
198 				pr_err("%pOFn: invalid mode %u\n", np, pval);
199 			else
200 				constraints->initial_mode = mode;
201 		} else {
202 			pr_warn("%pOFn: mapping for mode %d not defined\n",
203 				np, pval);
204 		}
205 	}
206 
207 	len = of_property_count_elems_of_size(np, "regulator-allowed-modes",
208 						sizeof(u32));
209 	if (len > 0) {
210 		if (desc && desc->of_map_mode) {
211 			for (i = 0; i < len; i++) {
212 				ret = of_property_read_u32_index(np,
213 					"regulator-allowed-modes", i, &pval);
214 				if (ret) {
215 					pr_err("%pOFn: couldn't read allowed modes index %d, ret=%d\n",
216 						np, i, ret);
217 					break;
218 				}
219 				mode = desc->of_map_mode(pval);
220 				if (mode == REGULATOR_MODE_INVALID)
221 					pr_err("%pOFn: invalid regulator-allowed-modes element %u\n",
222 						np, pval);
223 				else
224 					constraints->valid_modes_mask |= mode;
225 			}
226 			if (constraints->valid_modes_mask)
227 				constraints->valid_ops_mask
228 					|= REGULATOR_CHANGE_MODE;
229 		} else {
230 			pr_warn("%pOFn: mode mapping not defined\n", np);
231 		}
232 	}
233 
234 	if (!of_property_read_u32(np, "regulator-system-load", &pval))
235 		constraints->system_load = pval;
236 
237 	if (n_phandles) {
238 		constraints->max_spread = devm_kzalloc(dev,
239 				sizeof(*constraints->max_spread) * n_phandles,
240 				GFP_KERNEL);
241 
242 		if (!constraints->max_spread)
243 			return -ENOMEM;
244 
245 		of_property_read_u32_array(np, "regulator-coupled-max-spread",
246 					   constraints->max_spread, n_phandles);
247 	}
248 
249 	if (!of_property_read_u32(np, "regulator-max-step-microvolt",
250 				  &pval))
251 		constraints->max_uV_step = pval;
252 
253 	constraints->over_current_protection = of_property_read_bool(np,
254 					"regulator-over-current-protection");
255 
256 	of_get_regulator_prot_limits(np, constraints);
257 
258 	for (i = 0; i < ARRAY_SIZE(regulator_states); i++) {
259 		switch (i) {
260 		case PM_SUSPEND_MEM:
261 			suspend_state = &constraints->state_mem;
262 			break;
263 		case PM_SUSPEND_MAX:
264 			suspend_state = &constraints->state_disk;
265 			break;
266 		case PM_SUSPEND_STANDBY:
267 			suspend_state = &constraints->state_standby;
268 			break;
269 		case PM_SUSPEND_ON:
270 		case PM_SUSPEND_TO_IDLE:
271 		default:
272 			continue;
273 		}
274 
275 		suspend_np = of_get_child_by_name(np, regulator_states[i]);
276 		if (!suspend_np)
277 			continue;
278 		if (!suspend_state) {
279 			of_node_put(suspend_np);
280 			continue;
281 		}
282 
283 		if (!of_property_read_u32(suspend_np, "regulator-mode",
284 					  &pval)) {
285 			if (desc && desc->of_map_mode) {
286 				mode = desc->of_map_mode(pval);
287 				if (mode == REGULATOR_MODE_INVALID)
288 					pr_err("%pOFn: invalid mode %u\n",
289 					       np, pval);
290 				else
291 					suspend_state->mode = mode;
292 			} else {
293 				pr_warn("%pOFn: mapping for mode %d not defined\n",
294 					np, pval);
295 			}
296 		}
297 
298 		if (of_property_read_bool(suspend_np,
299 					"regulator-on-in-suspend"))
300 			suspend_state->enabled = ENABLE_IN_SUSPEND;
301 		else if (of_property_read_bool(suspend_np,
302 					"regulator-off-in-suspend"))
303 			suspend_state->enabled = DISABLE_IN_SUSPEND;
304 
305 		if (!of_property_read_u32(suspend_np,
306 				"regulator-suspend-min-microvolt", &pval))
307 			suspend_state->min_uV = pval;
308 
309 		if (!of_property_read_u32(suspend_np,
310 				"regulator-suspend-max-microvolt", &pval))
311 			suspend_state->max_uV = pval;
312 
313 		if (!of_property_read_u32(suspend_np,
314 					"regulator-suspend-microvolt", &pval))
315 			suspend_state->uV = pval;
316 		else /* otherwise use min_uV as default suspend voltage */
317 			suspend_state->uV = suspend_state->min_uV;
318 
319 		if (of_property_read_bool(suspend_np,
320 					"regulator-changeable-in-suspend"))
321 			suspend_state->changeable = true;
322 
323 		if (i == PM_SUSPEND_MEM)
324 			constraints->initial_state = PM_SUSPEND_MEM;
325 
326 		of_node_put(suspend_np);
327 		suspend_state = NULL;
328 		suspend_np = NULL;
329 	}
330 
331 	return 0;
332 }
333 
334 /**
335  * of_get_regulator_init_data - extract regulator_init_data structure info
336  * @dev: device requesting for regulator_init_data
337  * @node: regulator device node
338  * @desc: regulator description
339  *
340  * Populates regulator_init_data structure by extracting data from device
341  * tree node.
342  *
343  * Return: Pointer to a populated &struct regulator_init_data or NULL if
344  *	   memory allocation fails.
345  */
346 struct regulator_init_data *of_get_regulator_init_data(struct device *dev,
347 					  struct device_node *node,
348 					  const struct regulator_desc *desc)
349 {
350 	struct regulator_init_data *init_data;
351 
352 	if (!node)
353 		return NULL;
354 
355 	init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL);
356 	if (!init_data)
357 		return NULL; /* Out of memory? */
358 
359 	if (of_get_regulation_constraints(dev, node, &init_data, desc))
360 		return NULL;
361 
362 	return init_data;
363 }
364 EXPORT_SYMBOL_GPL(of_get_regulator_init_data);
365 
366 struct devm_of_regulator_matches {
367 	struct of_regulator_match *matches;
368 	unsigned int num_matches;
369 };
370 
371 static void devm_of_regulator_put_matches(struct device *dev, void *res)
372 {
373 	struct devm_of_regulator_matches *devm_matches = res;
374 	int i;
375 
376 	for (i = 0; i < devm_matches->num_matches; i++)
377 		of_node_put(devm_matches->matches[i].of_node);
378 }
379 
380 /**
381  * of_regulator_match - extract multiple regulator init data from device tree.
382  * @dev: device requesting the data
383  * @node: parent device node of the regulators
384  * @matches: match table for the regulators
385  * @num_matches: number of entries in match table
386  *
387  * This function uses a match table specified by the regulator driver to
388  * parse regulator init data from the device tree. @node is expected to
389  * contain a set of child nodes, each providing the init data for one
390  * regulator. The data parsed from a child node will be matched to a regulator
391  * based on either the deprecated property regulator-compatible if present,
392  * or otherwise the child node's name. Note that the match table is modified
393  * in place and an additional of_node reference is taken for each matched
394  * regulator.
395  *
396  * Return: The number of matches found or a negative error number on failure.
397  */
398 int of_regulator_match(struct device *dev, struct device_node *node,
399 		       struct of_regulator_match *matches,
400 		       unsigned int num_matches)
401 {
402 	unsigned int count = 0;
403 	unsigned int i;
404 	const char *name;
405 	struct device_node *child;
406 	struct devm_of_regulator_matches *devm_matches;
407 
408 	if (!dev || !node)
409 		return -EINVAL;
410 
411 	devm_matches = devres_alloc(devm_of_regulator_put_matches,
412 				    sizeof(struct devm_of_regulator_matches),
413 				    GFP_KERNEL);
414 	if (!devm_matches)
415 		return -ENOMEM;
416 
417 	devm_matches->matches = matches;
418 	devm_matches->num_matches = num_matches;
419 
420 	devres_add(dev, devm_matches);
421 
422 	for (i = 0; i < num_matches; i++) {
423 		struct of_regulator_match *match = &matches[i];
424 		match->init_data = NULL;
425 		match->of_node = NULL;
426 	}
427 
428 	for_each_child_of_node(node, child) {
429 		name = of_get_property(child,
430 					"regulator-compatible", NULL);
431 		if (!name)
432 			name = child->name;
433 		for (i = 0; i < num_matches; i++) {
434 			struct of_regulator_match *match = &matches[i];
435 			if (match->of_node)
436 				continue;
437 
438 			if (strcmp(match->name, name))
439 				continue;
440 
441 			match->init_data =
442 				of_get_regulator_init_data(dev, child,
443 							   match->desc);
444 			if (!match->init_data) {
445 				dev_err(dev,
446 					"failed to parse DT for regulator %pOFn\n",
447 					child);
448 				of_node_put(child);
449 				return -EINVAL;
450 			}
451 			match->of_node = of_node_get(child);
452 			count++;
453 			break;
454 		}
455 	}
456 
457 	return count;
458 }
459 EXPORT_SYMBOL_GPL(of_regulator_match);
460 
461 static struct
462 device_node *regulator_of_get_init_node(struct device *dev,
463 					const struct regulator_desc *desc)
464 {
465 	struct device_node *search, *child;
466 	const char *name;
467 
468 	if (!dev->of_node || !desc->of_match)
469 		return NULL;
470 
471 	if (desc->regulators_node) {
472 		search = of_get_child_by_name(dev->of_node,
473 					      desc->regulators_node);
474 	} else {
475 		search = of_node_get(dev->of_node);
476 
477 		if (!strcmp(desc->of_match, search->name))
478 			return search;
479 	}
480 
481 	if (!search) {
482 		dev_dbg(dev, "Failed to find regulator container node '%s'\n",
483 			desc->regulators_node);
484 		return NULL;
485 	}
486 
487 	for_each_available_child_of_node(search, child) {
488 		name = of_get_property(child, "regulator-compatible", NULL);
489 		if (!name) {
490 			if (!desc->of_match_full_name)
491 				name = child->name;
492 			else
493 				name = child->full_name;
494 		}
495 
496 		if (!strcmp(desc->of_match, name)) {
497 			of_node_put(search);
498 			/*
499 			 * 'of_node_get(child)' is already performed by the
500 			 * for_each loop.
501 			 */
502 			return child;
503 		}
504 	}
505 
506 	of_node_put(search);
507 
508 	return NULL;
509 }
510 
511 struct regulator_init_data *regulator_of_get_init_data(struct device *dev,
512 					    const struct regulator_desc *desc,
513 					    struct regulator_config *config,
514 					    struct device_node **node)
515 {
516 	struct device_node *child;
517 	struct regulator_init_data *init_data = NULL;
518 
519 	child = regulator_of_get_init_node(config->dev, desc);
520 	if (!child)
521 		return NULL;
522 
523 	init_data = of_get_regulator_init_data(dev, child, desc);
524 	if (!init_data) {
525 		dev_err(dev, "failed to parse DT for regulator %pOFn\n", child);
526 		goto error;
527 	}
528 
529 	if (desc->of_parse_cb) {
530 		int ret;
531 
532 		ret = desc->of_parse_cb(child, desc, config);
533 		if (ret) {
534 			if (ret == -EPROBE_DEFER) {
535 				of_node_put(child);
536 				return ERR_PTR(-EPROBE_DEFER);
537 			}
538 			dev_err(dev,
539 				"driver callback failed to parse DT for regulator %pOFn\n",
540 				child);
541 			goto error;
542 		}
543 	}
544 
545 	*node = child;
546 
547 	return init_data;
548 
549 error:
550 	of_node_put(child);
551 
552 	return NULL;
553 }
554 
555 /**
556  * of_get_child_regulator - get a child regulator device node
557  * based on supply name
558  * @parent: Parent device node
559  * @prop_name: Combination regulator supply name and "-supply"
560  *
561  * Traverse all child nodes.
562  * Extract the child regulator device node corresponding to the supply name.
563  *
564  * Return: Pointer to the &struct device_node corresponding to the regulator
565  *	   if found, or %NULL if not found.
566  */
567 static struct device_node *of_get_child_regulator(struct device_node *parent,
568 						  const char *prop_name)
569 {
570 	struct device_node *regnode = NULL;
571 	struct device_node *child = NULL;
572 
573 	for_each_child_of_node(parent, child) {
574 		regnode = of_parse_phandle(child, prop_name, 0);
575 		if (regnode)
576 			goto err_node_put;
577 
578 		regnode = of_get_child_regulator(child, prop_name);
579 		if (regnode)
580 			goto err_node_put;
581 	}
582 	return NULL;
583 
584 err_node_put:
585 	of_node_put(child);
586 	return regnode;
587 }
588 
589 /**
590  * of_get_regulator - get a regulator device node based on supply name
591  * @dev: Device pointer for dev_printk() messages
592  * @node: Device node pointer for supply property lookup
593  * @supply: regulator supply name
594  *
595  * Extract the regulator device node corresponding to the supply name.
596  *
597  * Return: Pointer to the &struct device_node corresponding to the regulator
598  *	   if found, or %NULL if not found.
599  */
600 static struct device_node *of_get_regulator(struct device *dev, struct device_node *node,
601 					    const char *supply)
602 {
603 	struct device_node *regnode = NULL;
604 	char prop_name[64]; /* 64 is max size of property name */
605 
606 	dev_dbg(dev, "Looking up %s-supply from device node %pOF\n", supply, node);
607 
608 	snprintf(prop_name, 64, "%s-supply", supply);
609 	regnode = of_parse_phandle(node, prop_name, 0);
610 	if (regnode)
611 		return regnode;
612 
613 	regnode = of_get_child_regulator(dev->of_node, prop_name);
614 	if (regnode)
615 		return regnode;
616 
617 	dev_dbg(dev, "Looking up %s property in node %pOF failed\n", prop_name, dev->of_node);
618 	return NULL;
619 }
620 
621 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
622 {
623 	struct device *dev;
624 
625 	dev = class_find_device_by_of_node(&regulator_class, np);
626 
627 	return dev ? dev_to_rdev(dev) : NULL;
628 }
629 
630 /**
631  * of_regulator_dev_lookup - lookup a regulator device with device tree only
632  * @dev: Device pointer for regulator supply lookup.
633  * @np: Device node pointer for regulator supply lookup.
634  * @supply: Supply name or regulator ID.
635  *
636  * Return: Pointer to the &struct regulator_dev on success, or ERR_PTR()
637  *	   encoded value on error.
638  *
639  * If successful, returns a pointer to the &struct regulator_dev that
640  * corresponds to the name @supply and with the embedded &struct device
641  * refcount incremented by one. The refcount must be dropped by calling
642  * put_device().
643  *
644  * On failure one of the following ERR_PTR() encoded values is returned:
645  * * -%ENODEV if lookup fails permanently.
646  * * -%EPROBE_DEFER if lookup could succeed in the future.
647  */
648 struct regulator_dev *of_regulator_dev_lookup(struct device *dev, struct device_node *np,
649 					      const char *supply)
650 {
651 	struct regulator_dev *r;
652 	struct device_node *node;
653 
654 	node = of_get_regulator(dev, np, supply);
655 	if (node) {
656 		r = of_find_regulator_by_node(node);
657 		of_node_put(node);
658 		if (r)
659 			return r;
660 
661 		/*
662 		 * We have a node, but there is no device.
663 		 * assume it has not registered yet.
664 		 */
665 		return ERR_PTR(-EPROBE_DEFER);
666 	}
667 
668 	return ERR_PTR(-ENODEV);
669 }
670 
671 struct regulator *_of_regulator_get(struct device *dev, struct device_node *node,
672 				    const char *id, enum regulator_get_type get_type)
673 {
674 	struct regulator_dev *r;
675 	int ret;
676 
677 	ret = _regulator_get_common_check(dev, id, get_type);
678 	if (ret)
679 		return ERR_PTR(ret);
680 
681 	r = of_regulator_dev_lookup(dev, node, id);
682 	return _regulator_get_common(r, dev, id, get_type);
683 }
684 
685 /**
686  * of_regulator_get_optional - get optional regulator via device tree lookup
687  * @dev: device used for dev_printk() messages
688  * @node: device node for regulator "consumer"
689  * @id: Supply name
690  *
691  * Return: pointer to struct regulator corresponding to the regulator producer,
692  *	   or PTR_ERR() encoded error number.
693  *
694  * This is intended for use by consumers that want to get a regulator
695  * supply directly from a device node, and can and want to deal with
696  * absence of such supplies. This will _not_ consider supply aliases.
697  * See regulator_dev_lookup().
698  */
699 struct regulator *of_regulator_get_optional(struct device *dev,
700 					    struct device_node *node,
701 					    const char *id)
702 {
703 	return _of_regulator_get(dev, node, id, OPTIONAL_GET);
704 }
705 EXPORT_SYMBOL_GPL(of_regulator_get_optional);
706 
707 /*
708  * Returns number of regulators coupled with rdev.
709  */
710 int of_get_n_coupled(struct regulator_dev *rdev)
711 {
712 	struct device_node *node = rdev->dev.of_node;
713 	int n_phandles;
714 
715 	n_phandles = of_count_phandle_with_args(node,
716 						"regulator-coupled-with",
717 						NULL);
718 
719 	return (n_phandles > 0) ? n_phandles : 0;
720 }
721 
722 /* Looks for "to_find" device_node in src's "regulator-coupled-with" property */
723 static bool of_coupling_find_node(struct device_node *src,
724 				  struct device_node *to_find,
725 				  int *index)
726 {
727 	int n_phandles, i;
728 	bool found = false;
729 
730 	n_phandles = of_count_phandle_with_args(src,
731 						"regulator-coupled-with",
732 						NULL);
733 
734 	for (i = 0; i < n_phandles; i++) {
735 		struct device_node *tmp = of_parse_phandle(src,
736 					   "regulator-coupled-with", i);
737 
738 		if (!tmp)
739 			break;
740 
741 		/* found */
742 		if (tmp == to_find)
743 			found = true;
744 
745 		of_node_put(tmp);
746 
747 		if (found) {
748 			*index = i;
749 			break;
750 		}
751 	}
752 
753 	return found;
754 }
755 
756 /**
757  * of_check_coupling_data - Parse rdev's coupling properties and check data
758  *			    consistency
759  * @rdev: pointer to regulator_dev whose data is checked
760  *
761  * Function checks if all the following conditions are met:
762  * - rdev's max_spread is greater than 0
763  * - all coupled regulators have the same max_spread
764  * - all coupled regulators have the same number of regulator_dev phandles
765  * - all regulators are linked to each other
766  *
767  * Return: True if all conditions are met; false otherwise.
768  */
769 bool of_check_coupling_data(struct regulator_dev *rdev)
770 {
771 	struct device_node *node = rdev->dev.of_node;
772 	int n_phandles = of_get_n_coupled(rdev);
773 	struct device_node *c_node;
774 	int index;
775 	int i;
776 	bool ret = true;
777 
778 	/* iterate over rdev's phandles */
779 	for (i = 0; i < n_phandles; i++) {
780 		int max_spread = rdev->constraints->max_spread[i];
781 		int c_max_spread, c_n_phandles;
782 
783 		if (max_spread <= 0) {
784 			dev_err(&rdev->dev, "max_spread value invalid\n");
785 			return false;
786 		}
787 
788 		c_node = of_parse_phandle(node,
789 					  "regulator-coupled-with", i);
790 
791 		if (!c_node)
792 			ret = false;
793 
794 		c_n_phandles = of_count_phandle_with_args(c_node,
795 							  "regulator-coupled-with",
796 							  NULL);
797 
798 		if (c_n_phandles != n_phandles) {
799 			dev_err(&rdev->dev, "number of coupled reg phandles mismatch\n");
800 			ret = false;
801 			goto clean;
802 		}
803 
804 		if (!of_coupling_find_node(c_node, node, &index)) {
805 			dev_err(&rdev->dev, "missing 2-way linking for coupled regulators\n");
806 			ret = false;
807 			goto clean;
808 		}
809 
810 		if (of_property_read_u32_index(c_node, "regulator-coupled-max-spread",
811 					       index, &c_max_spread)) {
812 			ret = false;
813 			goto clean;
814 		}
815 
816 		if (c_max_spread != max_spread) {
817 			dev_err(&rdev->dev,
818 				"coupled regulators max_spread mismatch\n");
819 			ret = false;
820 			goto clean;
821 		}
822 
823 clean:
824 		of_node_put(c_node);
825 		if (!ret)
826 			break;
827 	}
828 
829 	return ret;
830 }
831 
832 /**
833  * of_parse_coupled_regulator() - Get regulator_dev pointer from rdev's property
834  * @rdev: Pointer to regulator_dev, whose DTS is used as a source to parse
835  *	  "regulator-coupled-with" property
836  * @index: Index in phandles array
837  *
838  * Return: Pointer to the &struct regulator_dev parsed from DTS, or %NULL if
839  *	   it has not yet been registered.
840  */
841 struct regulator_dev *of_parse_coupled_regulator(struct regulator_dev *rdev,
842 						 int index)
843 {
844 	struct device_node *node = rdev->dev.of_node;
845 	struct device_node *c_node;
846 	struct regulator_dev *c_rdev;
847 
848 	c_node = of_parse_phandle(node, "regulator-coupled-with", index);
849 	if (!c_node)
850 		return NULL;
851 
852 	c_rdev = of_find_regulator_by_node(c_node);
853 
854 	of_node_put(c_node);
855 
856 	return c_rdev;
857 }
858 
859 /*
860  * Check if name is a supply name according to the '*-supply' pattern
861  * return 0 if false
862  * return length of supply name without the -supply
863  */
864 static int is_supply_name(const char *name)
865 {
866 	int strs, i;
867 
868 	strs = strlen(name);
869 	/* string need to be at minimum len(x-supply) */
870 	if (strs < 8)
871 		return 0;
872 	for (i = strs - 6; i > 0; i--) {
873 		/* find first '-' and check if right part is supply */
874 		if (name[i] != '-')
875 			continue;
876 		if (strcmp(name + i + 1, "supply") != 0)
877 			return 0;
878 		return i;
879 	}
880 	return 0;
881 }
882 
883 /**
884  * of_regulator_bulk_get_all - get multiple regulator consumers
885  *
886  * @dev:	Device to supply
887  * @np:		device node to search for consumers
888  * @consumers:  Configuration of consumers; clients are stored here.
889  *
890  * This helper function allows drivers to get several regulator
891  * consumers in one operation.  If any of the regulators cannot be
892  * acquired then any regulators that were allocated will be freed
893  * before returning to the caller, and @consumers will not be
894  * changed.
895  *
896  * Return: Number of regulators on success, or a negative error number
897  *	   on failure.
898  */
899 int of_regulator_bulk_get_all(struct device *dev, struct device_node *np,
900 			      struct regulator_bulk_data **consumers)
901 {
902 	int num_consumers = 0;
903 	struct regulator *tmp;
904 	struct regulator_bulk_data *_consumers = NULL;
905 	struct property *prop;
906 	int i, n = 0, ret;
907 	char name[64];
908 
909 	/*
910 	 * first pass: get numbers of xxx-supply
911 	 * second pass: fill consumers
912 	 */
913 restart:
914 	for_each_property_of_node(np, prop) {
915 		i = is_supply_name(prop->name);
916 		if (i == 0)
917 			continue;
918 		if (!_consumers) {
919 			num_consumers++;
920 			continue;
921 		} else {
922 			memcpy(name, prop->name, i);
923 			name[i] = '\0';
924 			tmp = regulator_get(dev, name);
925 			if (IS_ERR(tmp)) {
926 				ret = PTR_ERR(tmp);
927 				goto error;
928 			}
929 			_consumers[n].consumer = tmp;
930 			n++;
931 			continue;
932 		}
933 	}
934 	if (_consumers) {
935 		*consumers = _consumers;
936 		return num_consumers;
937 	}
938 	if (num_consumers == 0)
939 		return 0;
940 	_consumers = kmalloc_array(num_consumers,
941 				   sizeof(struct regulator_bulk_data),
942 				   GFP_KERNEL);
943 	if (!_consumers)
944 		return -ENOMEM;
945 	goto restart;
946 
947 error:
948 	while (--n >= 0)
949 		regulator_put(_consumers[n].consumer);
950 	kfree(_consumers);
951 	return ret;
952 }
953 EXPORT_SYMBOL_GPL(of_regulator_bulk_get_all);
954